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A B S T R A C T

Organic micropollutants (OMPs) present considerable threats to both human health and the environment. 
Traditional thin film composite (TFC) nanofiltration (NF) polyamide membranes, despite their high water per
meance and salt rejection capabilities, often fail to effectively remove OMPs. This study addresses this limitation 
by incorporating two-dimensional (2D) zinc(II) tetrakis(4-carboxy-phenyl)porphyrin (Zn-TCPP) metal-organic 
framework (MOF) nanosheets as interlayers in TFC membranes (TFNi), using a polyethylene glycol (PEG) 
assisted exfoliation technique to mitigate issues of nanosheet restacking and aggregation. The uniformly 
distributed MOF interlayers significantly improved pure water permeance from 10.6 to 32.1 L m⁻² h⁻¹ bar⁻¹ while 
maintaining a high rejection of 97.0% towards Na₂SO₄. Moreover, the optimized membrane showed significant 
improvements in OMP removal, attributed to the increased negative charge and greater hydrophilicity of the 
polyamide rejection layer. These findings highlight the potential of 2D MOF nanosheets as interlayers in 
developing high-performance membranes for effective OMP removal and water reuse.

1. Introduction

The presence of organic micropollutants (OMPs) such as pharma
ceutically active compounds (PhACs), endocrine-disrupting chemicals 
(EDCs), and poly- and perfluoroalkyl substances (PFASs) has raised 
significant global concerns regarding aquatic safety (Bhatt et al., 2022; 
Tran et al., 2018; Zhao et al., 2023). These persistent contaminants enter 
water bodies through various pathways, including domestic wastewater 
and industrial effluents (Eggen et al., 2014; Luo et al., 2014). Despite 
trace levels of OMPs found in water ranging from ng/L to μg/L, the 
increasing quantities of these pollutants have heightened concerns due 
to their toxicological impacts on both aquatic ecosystems and human 
health (Barbosa et al., 2016; Garg et al., 2020; Lapworth et al., 2012; 
Price et al., 2010). Compounding these challenges, many OMPs exhibit 
molecular weights of <500 Da and diverse physicochemical properties 
(e.g., charge and hydrophobicity), rendering them poorly removed by 
the traditional water treatment methods (Guo et al., 2022; Khanzada 
et al., 2020; Luo et al., 2014). Consequently, it is imperative to imple
ment effective remediation strategies to effectively remove OMPs.

Thin film composite (TFC) polyamide (PA) nanofiltration (NF) 
membranes are widely utilized in contemporary water treatment pro
cesses for water reuse and purification (Ahmad et al., 2022; Lau et al., 

2015; Tang et al., 2018; Zhou et al., 2023). Although these NF mem
branes show high rejection for divalent salts, they are less effective at 
removing OMPs, particularly those neutral low-molecular weight com
pounds (Guo et al., 2022; Liu et al., 2022). This reduced efficiency is 
often attributed to unfavorable interactions such as hydrophobic inter
action between the membrane and the solutes (Braeken et al., 2005; Guo 
et al., 2016; Kimura et al., 2003; Schafer et al., 2011).

To improve OMP rejection by TFC membranes, it is crucial to 
improve membrane selectivity (Guo et al., 2022; Liu et al., 2023). Recent 
studies have shown that incorporating interlayers within TFC mem
branes can significantly accelerate water transport (thereby increasing 
water permeance) and simultaneously enhance salt retention (resulting 
in decreased solute permeance) (Dai et al., 2020; Wang et al., 2023; 
Zhao et al., 2021). These insightful findings prompt us to investigate 
whether water/OMP selectivity could be enhanced in TFC membranes 
with interlayered structures (TFNi).

Various nanomaterials have been investigated as interlayers 
including graphene oxide, MXene, and carbon nanotubes (Ji et al., 2021; 
Long et al., 2022; Wang et al., 2021; Xu et al., 2020). Compared to these 
nanomaterials, two-dimensional (2D) metal-organic framework (MOF) 
nanosheets present distinct advantages as interlayers. They provide a 
hydrophilic surface conducive to forming a thin polyamide rejection 
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layer (Wen et al., 2020). Besides, their ultrathin thickness and high 
porosity minimize water transport resistance (Cheng et al., 2024), 
making them promising interlayers for high-performance TFC mem
branes (Alemayehu et al., 2022; Li et al., 2017; Wang et al., 2022). 
Nevertheless, the development of high-performance 2D MOF TFNi 
membranes encounters several challenges. Conventional 
ultrasonic-assisted methods yield low quantities of MOF nanosheets (Jin 
et al., 2023; Li et al., 2011; Rodenas et al., 2015). The restacking and 
aggregation of these exfoliated nanosheets may also hinder membrane 
formation and deteriorate performance. Additionally, most studies on 
MOF TFNi membranes primarily focus on enhancing water permeance 
and salt rejection (Cheng et al., 2022), with a lack of comprehensive 
research exploring the potential of 2D MOF nanosheets to elucidate the 
mechanisms involved in the removal of OMPs.

In this study, we developed a highly selective 2D zinc(II) tetrakis(4- 
carboxy-phenyl)porphyrin (Zn-TCPP) MOF TFNi membrane. MOF 
nanosheets were prepared by a novel polyethylene glycol (PEG) assisted 
exfoliation method to prevent their aggregation. The resulting uniform 
MOF interlayer was utilized to synthesize the polyamide rejection layer 
via interfacial polymerization (IP). We systematically investigated the 
impact of these interlayers on membrane formation and transport 
characteristics for removing OMPs, specifically targeting PhACs, EDCs, 
and PFASs. Moreover, the mechanisms underlying the enhanced OMP 
removal capabilities of the MOF TFNi membrane were elucidated. The 
role of the interlayer in improving water-OMPs selectivity was thor
oughly investigated, framed within the context of the membrane’s 
structure-property-performance relationship. This study provides valu
able insights into employing 2D MOF nanosheets in constructing TFNi 
membranes toward efficient OMP removal.

2. Experimental

2.1. Materials and chemicals

In this study, all the chemicals with analytical grades were used 
without further purification. Zinc nitrate hexahydrate (Zn(NO)3⋅6H2O, 
98%), tetrakis(4-carboxyphenyl)porphyrin (TCPP, 97%), pyrazine, 
polyethylene glycol (PEG, Mn~20,000), dimethylformamide (DMF, 

98%) and ethanol (99%) were obtained from Sigma-Aldrich and were 
used for the synthesis of Zn-TCPP MOF nanosheet. A polyethersulfone 
(PES) ultrafiltration membrane with a MWCO of 20,000 Da (UP020) was 
chosen as the substrate to prepare NF membranes. Piperazine (PIP, 99%) 
and trimesoyl chloride (TMC, 98%) purchased from Sigma-Aldrich were 
used for the IP reaction to obtain the polyamide rejection layer. Sodium 
chloride (NaCl, 99%) and sodium sulfate (Na2SO4, 99%) used in salt 
rejection were purchased from Dieckmann. Four PFASs, four EDCs, and 
three PhACs (Table S1) were investigated in the OMPs removal test. Five 
neutral molecules (Table S1) were applied to determine the membrane 
pore size and molecular weight cutoff.

2.2. Preparation of Zn-TCPP MOF nanosheets

Zn-TCPP MOF nanosheets were synthesized using a PEG-assisted 
approach (Fig. 1A). Zn(NO)3⋅6H2O (13.5 mg), pyrazine (2.4 mg) and 
PEG (360 mg) were fully dissolved in 36 mL DMF and ethanol mixture 
(v:v = 3:1). Subsequently, TCPP (12 mg) dissolved in 12 mL mixture of 
DMF and ethanol (v:v = 3:1) was dropwise added. The mixed solution 
was kept stirring at 65◦C for 1 day, and then the collected nanosheets 
were thoroughly washed with ethanol and centrifuged at 10,000 rpm for 
10 min. This process was repeated at least three times. Additionally, the 
same amounts of PEGs with different molecular weights (Mn ~ 600, 
4000, and 10,000 g/mol) were employed in the MOF exfoliation process 
to observe differences in morphology.

2.3. Fabrication of NF membranes with MOF interlayer

To prepare the MOF interlayer, the synthesized Zn-TCPP (8 mg) 
nanosheets were well dispersed in 800 mL ethanol and subjected to 
sonication to achieve a homogeneous solution before being loaded onto 
the substrate. Then, different amounts of Zn-TCPP were loaded onto the 
PES substrate by filtering a certain volume of the aforementioned sus
pension (0 mL, 12.5 mL, 25 mL, 50 mL, 100 mL). To synthesize the 
polyamide rejection layer, IP was performed on the modified MOF-PES 
support (Fig. 1B). The substrate was first soaked in 20 mL 0.2 wt.% PIP/ 
H2O solution for 1 min, and then the solution was completely vacuum 
filtered through the substrate. This vacuum-assisted process can 

Fig. 1. Schematics of (A) exfoliation of MOF nanosheets and (B) fabrication of NF membranes.
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facilitate a more uniform distribution of PIP monomers in the substrate 
(Fang et al., 2024; Zhu et al., 2020). Next, the PIP-impregnated support 
was exposed to a 20 mL 0.1 wt.% TMC/hexane solution for 90 s to 
conduct the IP reaction. The resultant membranes were thoroughly 
rinsed with pure hexane to remove the residues and dried at room 
temperature. The fabricated NF membranes were denoted as NF-x 
membranes, with x presenting the filtration volume of the MOF sus
pension. To exclude the influence of PEG, an additional TFC membrane 
without MOF interlayer was fabricated. This membrane, denoted as 
NF-0-PEG, was produced by incorporating 360 mg PEG into the PIP 
solution during the IP reaction.

2.4. Characterization

The morphology and lamellar structure of the synthesized MOF 
nanosheets were observed using transmission electron microscopy 
(TEM, G2, FEI Tecnai). The crystal structure of the Zn-TCPP was 
examined by X-ray diffraction (XRD, D8, Bruker), scanning from 5◦ to 
40◦ (angle 2θ) with a step of 0.02◦. The thickness of the Zn-TCPP 
nanosheet was evaluated by an atomic force microscope (AFM, 
Dimension Icon, Bruker).

The membrane morphologies were characterized using field emis
sion scanning electron microscopy (FE-SEM, S-4800, Hitachi) and TEM 
(G2, FEI Tecnai). The functional groups on the membrane surface were 
determined by an attenuated total reflection Fourier transform infrared 
spectroscopy (ATR-FTIR, iD5, Thermo Scientific). An X-ray photoelec
tron spectrometer (XPS, K-Alpha, Thermo Scientific) was used to analyze 
the elemental compositions of the membrane surface. The AFM 
(Dimension Icon, Bruker) was applied to evaluate the roughness of the 
membrane surface. An optical goniometer (Attension Theta, Biolin Sci
entific) was employed to measure the water contact angle of the mem
brane surface. A zeta potential analyzer (SurPASS 3, Anton Paar) was 
used with 1 mM KCl solution as the background electrolyte to determine 
the membrane surface charge.

2.5. Filtration experiments

The NF membrane filtration experiments were conducted using a 
homemade crossflow filtration system at 25◦C. Before the measure
ments, the membranes with an effective area of 2 cm2 were pre- 
compacted under 5 bar with a crossflow rate of 16.7 cm/s for 2 h to 
reach a stable flux. All the filtration experiments were performed at least 
three times.

Salt rejection of the membrane was performed using 1000 ppm 
Na2SO4 or NaCl as the feed solution (pH 6.7±0.2). The concentrations of 
the salt in the collected permeate were determined by a conductivity 
meter (Ultrameter II, Myron L). The membrane rejection of neutral 
probes, such as dextran, raffinose, sucrose, glucose, and glycerol 
(Table S1), was tested using a feed concentration of 200 ppm. Their 
permeate concentrations were measured using a total organic carbon 
analyzer (TOC-L CPH, Shimadzu).

The rejection of OMPs including PFASs, EDCs, and PhACs (Table S1) 
was tested using a cocktail of all OMPs with a feed concentration of 200 
ppb. A concentration of 600 ppm of NaCl was included in the feed so
lution to mimic the typical ionic strength levels relevant to water reuse 
scenarios (Liu et al., 2023). The permeate samples were collected after 6 
h of filtration to reach stable rejections of OMPs. We performed addi
tional tests over 48 h, and stable rejections of OMPs were obtained 
(Fig. S1). This suggests that 6 h of filtration is sufficient for the deter
mination of steady-state rejections. The OMP concentrations were 
measured by liquid chromatography with tandem mass spectrometry 
(LC-MS/MS, 1290 Infinity, Agilent; 3200 QTRAP, AB SCIEX). The 
analysis method and the detailed settings of LC-MS/MS can be found in 
our previous work (Guo et al., 2017).

The water flux Jw (L m− 2 h− 1), the water permeance of the mem
brane A (L m− 2 h− 1 bar− 1), membrane rejection R (%), and solute 

permeance B (L m− 2 h− 1) are determined by Eqs. (1), (2), (3), and (4)
respectively: 

Jw =
ΔV

S × Δt
(1) 

A =
Jw

(ΔP − Δπ) (2) 

R = 1 −
Cp

Cf
(3) 

B = Jw ×

(
1
R
− 1

)

(4) 

where ΔV (L) is the volume of the collected water permeate during a 
certain time Δt (h), S (m2) is the effective membrane filtration area, ΔP 
(bar) is the applied pressure, Δπ (bar) is the osmotic pressure difference 
across the membrane, Cf and Cp are the concentrations of the solutes in 
the feed and permeate respectively.

3. Results and discussion

3.1. Exfoliation of Zn-TCPP MOF nanosheets

The Zn-TCPP MOF was exfoliated using the PEG-assisted approach 
(Fig. 1A). The tetragonal structure of the exfoliated Zn-TCPP MOF 
nanosheets was confirmed by the XRD results (Fig. 2A), which revealed 
four distinct peaks corresponding to its (100), (110), (002), and (004) 
crystallographic planes. Compared to the XRD spectra of bulk Zn-TCPP 
(Fig. S2), the tetragonal crystalline structure of the Zn-TCPP nanosheets 
remained intact after exfoliation.

The structural compositions of the Zn-TCPP MOFs were further 
elucidated through FTIR analysis (Fig. 2B). The FTIR spectrum of the 
TCPP ligand displayed an absorption peak at 3310 cm− 1 for the N–H 
stretching vibration and two peaks at 1604 cm− 1 and 1100 cm− 1 

attributed to the skeletal vibrations (Zhao et al., 2018). For the bulk and 
exfoliated Zn-TCPP, the absence of the peak at 3310 cm− 1, the emer
gence of a new peak at 993 cm− 1, and the retention of two peaks at 1604 
cm− 1 and 1100 cm− 1 from TCPP indicated the substitution of hydrogen 
proton with zinc ions, resulting in the formation of metalloporphyrin 
(Zhao et al., 2020). Comparing the FTIR spectrum of Zn-TCPP nanosheet 
and bulk Zn-TCPP, a stronger vibration stretching at 1255 cm− 1 assigned 
to the C–O bond in the nanosheets confirmed the successful attachment 
of PEG onto the MOF nanosheets. The synthesized Zn-TCPP nanosheets 
had an approximate thickness of 0.9 nm, as shown in the AFM data 
(Fig. 2C), which agrees well with the theoretical thickness (0.93 nm) of a 
monolayer of Zn-TCPP nanosheets (Zhang et al., 2024). Furthermore, 
the HRTEM images (Fig. S3) displayed the ultrathin nanosheets with a 
crystalline structure after exfoliation.

In this synthesis process, PEG with a molecular weight of 20,000 g/ 
mol functions as a surfactant. It selectively binds to the MOF surface 
after nucleation, promoting anisotropic growth (Cao et al., 2016; Zhao 
et al., 2015), resulting in the formation of ultrathin Zn-TCPP nanosheets 
(Fig. S4D). This selective binding by PEG inhibits the growth of MOFs 
along the stacking direction while facilitating two-dimensional expan
sion, ultimately leading to the formation of ultrathin MOF nanosheets. In 
contrast, using the traditional synthesis method without PEG results in 
isotropic growth, producing only bulk MOF crystals (Fig. 1A). Addi
tionally, an added advantage of PEG-assisted exfoliation is the preven
tion of the aggregation of the nanosheets, as evidenced by the 
characteristic Tyndall effect observed in the stable colloidal suspension 
(Fig. S5). This suggests a feasible method for producing ultrathin 
monolayers of MOFs with the use of PEG, which can then be utilized to 
create uniform MOF interlayers for membrane fabrication.
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Fig. 2. (A) XRD spectra of exfoliated Zn-TCPP nanosheet. (B) FTIR spectrum of the Zn-TCPP nanosheet, bulk Zn-TCPP, and TCPP ligand. (C) AFM of the Zn- 
TCPP nanosheet.

Fig. 3. TEM cross-section images of (A-1) NF-0 membrane and (A-2) NF-25 membrane. AFM micrographs of (B-1) NF-0 membrane and (B-2) NF-25 membrane.
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3.2. Fabrication of MOF TFNi membranes

To confirm the successful fabrication of TFNi membranes, the cross- 
section of the NF-25 membrane was examined using TEM and compared 
to that of the control NF-0 membrane. As shown in Fig. 3A-2, a uniform 
and evenly distributed MOF interlayer with a thickness of 7.1 nm was 
noticeable between the PA layer and the PES support of NF-25, whereas 
only a thin layer of PA was present in NF-0. The characteristic FTIR peak 
at ~1620 cm− 1 further confirmed the successful formation of the 
polyamide rejection layer (Fig. S6) (Tang et al., 2009). Additionally, the 
presence of Zn in the XPS survey spectra of NF-25 and the C=O 
deconvoluted peak at ~287.6 eV in its C 1 s spectra indicated the 
incorporation of Zn-TCPP MOF nanosheets and the formation of the 
polyamide layer, respectively (Fig. S7). The MOF interlayer had no 

obvious influence on the thickness of the PA rejection layer (Figs. 3A-1, 
3A-2, S8, and S9). However, the presence of the MOF interlayers 
increased the membrane roughness from 12.5 ± 2.5 nm for NF-0 to 21.0 
± 4.6 nm for NF-25 (Fig. 3B-1 and 3B-2). According to the literature 
(Yang et al., 2020a), inclusion of an interlayer may induce a thinner PA 
layer as a result of reduced diffusion of PIP monomers to the reaction 
interface (Xu et al., 2020). On the other hand, the presence of the MOF 
layer may enhance the adsorption of more amine monomers; this 
increased monomer supply tends to promote the growth of the PA layer 
(Cheng et al., 2024; Zhao et al., 2022). These effects may offset each 
other, resulting in a nearly consistent thickness for the PA layer in the 
current study.

To understand the role of MOF interlayers in regulating polyamide 
formation and their impact on membrane properties, different amounts 

Fig. 4. SEM top view images of (A) PES substrates loaded with different amounts of MOF nanosheets; (B) Different MOF TFNi membranes.
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of MOFs were tested as interlayers for constructing TFNi membranes. 
The surface characteristics of PES substrates coated with varying 
amounts of MOFs and the subsequent NF membranes were investigated, 
as illustrated in Fig. 4A and B. When the concentration of MOFs was low, 
the substrate showed incomplete coverage (e.g., PES-12.5). Optimal 
levels of MOF nanosheets resulted in a uniform layer across the substrate 
(e.g., PES-25). The incorporation of PEG as a surfactant also aided in 
preventing aggregation when loading MOFs. However, at higher con
centrations, the nanosheets show an increased tendency to form aggre
gates (e.g., PES-50 and PES-100).

Regarding the fabricated NF membranes (Fig. 4B), the NF-0 control 
membrane without MOF interlayers exhibited a nodular-like structure 
typical of TFC membranes. NF-25, with the more uniformly distributed 
MOF interlayer, displayed a distinct stripe-like and crumpled structure, 
which is consistent with the increase in surface roughness observed in 
Fig. 3B. This morphology was possibly attributed to the enhanced 
confinement of degassed nanobubbles within the PA layer during the IP 
reaction (Gan et al., 2024; Wen et al., 2020), facilitated by the dense 
MOF interlayer with smaller pore sizes, leading to the formation of 
stripe-like features with higher roughness (Jiang et al., 2020). As for 
NF-50 and NF-100 with elevated MOF concentrations, the coverage of 
the stripes diminished gradually, likely attributed to reduced confine
ment effects due to nanosheet aggregation.

3.3. Membrane separation performance

As demonstrated in Fig. 5A, among all TFNi membranes, the NF-25 
with the most uniform MOF coverage showed a remarkable improve
ment in water permeance (32.1 LMH/bar), exhibiting a threefold in
crease against the NF-0 control membrane (10.6 LMH/bar). This 

substantial improvement in water permeance could be potentially 
attributed to the introduction of PEG during the MOF exfoliation or the 
incorporation of MOF interlayers. XPS analysis (Fig. S10) revealed a 
higher relative content of C–O functional groups, while FTIR (Fig. S11) 
showed an intensified ν(C–O) vibration at 1255 cm− 1 in Zn-TCPP 
nanosheets, confirming the retention of PEG on the MOF surface even 
after purification. To elucidate the underlying mechanisms, a control NF 
membrane incorporating the PEG was prepared (NF-0-PEG). As shown 
in Fig. S12, the NF-0-PEG membrane without the MOF interlayer 
exhibited only a slight increase in pure water permeance compared to 
NF-0, indicating that PEG had a mild effect on enhancing pure water 
permeance. Furthermore, a comparative study was conducted using 
bulk Zn-TCPP MOF as the interlayer. Despite having the same MOF 
concentration as NF-25, the bulk MOF-based membrane displayed 
significantly lower water permeance (Fig. S12). This reduction can be 
explained by the thicker and less uniform interlayers formed by bulk 
MOF, which introduce greater transport resistance compared to the 
well-exfoliated nanosheets in NF-25.

Hence, the observed enhancement in water permeance was mainly 
ascribed to the influence of interlayers on membrane formation and the 
facilitation of water transport (Dai et al., 2020; Yang et al., 2020b). The 
increased permeance could be attributed to a synergy of mechanisms: 
(1) the induction of a gutter effect by the interlayers, significantly 
diminishing the transverse resistance to water transport and overcome 
the unfavorable funnel effect within the polyamide layer (Long et al., 
2022; Wen and Liu, 2022; Yang et al., 2020b); (2) the enhancement of 
the membrane’s surface hydrophilicity, evidenced by a decrease in 
water contact angle from 33.7◦±1.1◦ for NF-0 to 10.3◦±0.4◦ for NF-25 
(Fig. 5B), thereby fostering augmented water transport (Wei et al., 
2024; Yan et al., 2016), and (3) the introduction of a more crumpled 

Fig. 5. (A) Pure water permeance, (B) Water contact angles, (C) Salt rejection, and (D) Zeta potential of all NF membranes.
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membrane surface architecture, potentially increasing the effective 
filtration area accessible to water molecules (Ren et al., 2020; Shao 
et al., 2022). However, increasing MOF loading to form NF-50 and 
NF-100 resulted in decreased water permeance, possibly due to greater 
transport resistance caused by the thicker MOF layer.

Furthermore, the optimized NF-25 membrane demonstrated effec
tive separation efficiency for divalent and monovalent salts, achieving a 
rejection of 97.0% for Na2SO4 and 21.7% for NaCl (Fig. 5C). This 
rejection difference between divalent and monovalent salts may be 
ascribed to the larger ionic size of sulfate ions compared to chloride ions, 
making them more challenging to pass through the membrane pores (Shi 
et al., 2021). Additionally, the stronger electrostatic repulsion between 
divalent ions and the negatively charged membrane surface indicated by 
the zeta potential results (Fig. 5D) also contributes to the higher reten
tion of sulfate ions (Childress and Elimelech, 2000; Long et al., 2022). 
The NF-25 membrane also exhibited a lower rejection of NaCl than the 
NF-0 membrane, which can be ascribed to its slightly larger mean pore 
radius (0.306 nm) compared to that of the NF-0 membrane (0.293 nm) 
(Fig. S13). Nevertheless, the NF-25 membrane can maintain the high 
rejection for Na2SO4 attributed to its more negatively charged surface. 
Moreover, the NF-25 membrane maintained 97% Na₂SO₄ rejection and a 
relatively stable permeance over 24 h (Fig. S14), highlighting its good 
stability for prolonged operation.

3.4. OMPs rejection and selectivity

The rejection of OMPs including PFASs, EDCs, and PhACs, in com
parison to various neutral hydrophilic surrogates, was investigated 
using both NF-0 and the optimized NF-25 TFNi membrane (see details in 
Section 2.4 and Text S1). The rejection data of these compounds were 
plotted against their molecular weights (Fig. 6A and B). For the neutral 
surrogates, their rejection is primarily determined by the size exclusion 
effect (Bellona et al., 2004; Mohammad et al., 2015). In the current 
study, the rejection of OMPs by the NF-0 membrane (Fig. 6A) was 
comparable to those of the neutral probes of similar molecular weights, 
which might suggest the important role of size exclusion (Liu et al., 
2023). Some hydrophobic EDCs and PFASs were slightly below the fitted 
curve, which might be ascribed to the hydrophobic interactions between 
solutes and the membranes, thereby reducing their removal efficiency 
(Guo et al., 2022).

Upon comparing Fig. 6A and B, it is evident that the NF-25 mem
brane had a notably higher rejection of OMPs compared to the control 
NF-0 membrane. This heightened rejection suggests that factors beyond 
mere size exclusion may influence the OMP rejection process. Given that 
the NF-25 membrane was more negatively charged and more hydro
philic compared to the NF-0 membrane (Fig. 5B and D), it is reasonable 
to attribute enhanced rejection by NF-25 to stronger electrostatic 
repulsion and reduced hydrophobic interactions, as depicted in the 
schematic illustration in Fig. 6C. For instance, the negatively charged 
and hydrophobic PFASs exhibited a significant increase in the rejection 

Fig. 6. Rejection of PFASs, EDCs, PhACs, and neutral probes as a function of their molecular weights of (A) NF-0 membrane and (B) NF-25 membrane. The line 
represents the “log-normal cdf” function fitting of the neutral probe rejection curve. (C) The modified schematic illustration of the mechanisms underlying OMP 
removal for the NF-0 and NF-25 membranes (Guo et al., 2022; Kim et al., 2008; Yang et al., 2020b).
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compared to the neutral probes for NF-25 (Fig. 6B), further confirming 
the important role of the charge and hydrophilicity effects of this 
membrane. Additional evidence comes from the stable rejection per
formance during prolonged operation (Fig. S1), which demonstrates 
minor adsorption effects by either the membrane or nanomaterials. 
These results collectively demonstrate that the improved rejection per
formance stems primarily from the enhanced hydrophilicity and nega
tive charge characteristics of the polyamide layer.

To evaluate the enhanced selectivity of the TFNi membrane for OMPs 
and to understand the underlying mechanisms, the water-solute selec
tivity ratio A/B for different OMPs was compared (Fig. 7). Notably, a 
prominent enhancement in selectivity was observed for hydrophobic 
and negatively charged PFASs as compared to PhACs and EDCs. This 
enhancement could be potentially attributed to the synergistic effect of 
increased electrostatic repulsion and hydrophobic suppression for 
PFASs, resulting in a more substantial reduction in B. Among the four 
PFASs studied, the reduction of B was particularly pronounced for PFBS 
and PFOS, resulting in much higher selectivity enhancements for these 
two compounds. The repulsion of negatively charged PFASs was 
significantly intensified, especially for PFBS with the lowest pKa 
(Table S1). Furthermore, the more hydrophilic surface impeded the 
attachment of hydrophobic molecules, particularly PFOS, which pos
sesses the highest log Kow (Table S1). Moreover, the NF-25 membrane 
exhibits excellent long-term stability over 48 h of operation (Fig. S1) and 
good reusability across five filtration cycles (Fig. S15).

In summary, the NF-25 TFNi membrane, which exhibited enhanced 
negative charge and hydrophilicity compared to the control TFC mem
brane, significantly improved the rejection and selectivity of all assessed 
OMPs. These properties would effectively reduce solute transport (lower 
B value) for charged (PFASs) or hydrophobic compounds (PFASs and 
EDCs). In addition, the enhanced water transport of NF-25 (greater A 
value, Fig. 5A) would also favor a higher selectivity even for neutral 
hydrophilic compounds (e.g., SMZ and TMP). Compared to recent 
studies on TFNi membranes (Table S2), the NF-25 TFNi membrane in 
this study demonstrates impressive performance in terms of water per
meance and rejection of a substantial portion of OMPs. This highlights 
the promising potential of 2D MOFs as interlayers for efficient water 
reuse.

4. Conclusions

In this study, ultrathin Zn-TCPP MOF nanosheets with a thickness of 
0.9 nm were successfully exfoliated using a PEG-assisted synthesis 
approach, and the resulting MOF nanosheets were employed as in
terlayers for constructing TFNi membranes. The NF-25 TFNi membrane, 
with the most uniformly distributed MOF interlayers, exhibited a strip- 
like and crumpled surface morphology compared to the pristine TFC 
membrane. It demonstrated a significant enhancement in water per
meance and OMP selectivity (particularly for PFASs) compared to con
ventional TFC membranes. The observed increase in water permeance 
can be attributed to the gutter effect, alongside a more hydrophilic and 
crumpled surface morphology. Additionally, the improved OMP selec
tivity may be linked to a more hydrophilic and negatively charged 
surface that suppresses solute permeance. This work provides new 
insight into the fabrication of high-performance MOF TFNi membranes 
using a novel PEG-assisted exfoliation method to mitigate MOF 
restacking and aggregation issues. The findings from this study also 
deepen our understanding of OMP removal mechanisms regarding MOF 
TFNi membranes and pave the way for the broader application of these 
membranes in OMP removal and water reuse.
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