

Demo of VTutor for High-Impact Tutoring at Scale: A Real-Time Multi-Screen Tutor Support System with P2P Connections

Eason Chen
Carnegie Mellon University
Pittsburgh, PA, USA
eason.tw.chen@gmail.com

Xinyi Tang
Carnegie Mellon University
Pittsburgh, PA, USA

Aprille Xi
Carnegie Mellon University
Pittsburgh, PA, USA

Chenyu Lin
New York University
New York, NY, USA

Conrad Borchers
Carnegie Mellon University
Pittsburgh, PA, USA

Shivang Gupta
Carnegie Mellon University
Pittsburgh, PA, USA

Jionghao Lin
The University of Hong Kong
Hong Kong, Hong Kong

Kenneth R Koedinger
Carnegie Mellon University
Pittsburgh, PA, USA

Abstract

Delivering high-impact tutoring at scale remains a persistent challenge in hybrid learning environments, where a single tutor supports multiple students working with educational technologies. Existing video conferencing tools are limited in their ability to provide real-time visibility and timely feedback across multiple learners simultaneously. We present *VTutor*, a web-based system designed to support real-time multi-student monitoring and adaptive feedback through peer-to-peer screen sharing and stylized virtual avatars. Tutors can view students' screens concurrently, detect off-task behavior, and intervene with spoken or animated prompts delivered by an on-screen avatar. *VTutor* enhances tutor awareness and responsiveness without increasing cognitive load, and operates fully in the browser for ease of deployment at scale. This demonstration showcases how *VTutor* enables scalable, real-time hybrid tutoring by allowing one tutor to manage and support multiple students concurrently. Attendees can experience both student and tutor roles and interact with the system live at the conference. The *VTutor* platform can be accessed at <https://ls2025.vtutor.ai>. The system demo video is at <https://ls2025.vtutor.ai/video>.

CCS Concepts

- Human-centered computing → Interactive systems and tools;
- Applied computing → Learning management systems.

Keywords

High-Impact Tutoring, Tutoring at Scale, Multi-Student Monitoring, Animated Pedagogical Agents, Virtual Avatars

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

L@S '25, July 21–23, 2025, Palermo, Italy
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1291-3/2025/07
<https://doi.org/10.1145/3698205.3733920>

ACM Reference Format:

Eason Chen, Xinyi Tang, Aprille Xi, Chenyu Lin, Conrad Borchers, Shivang Gupta, Jionghao Lin, and Kenneth R Koedinger. 2025. Demo of VTutor for High-Impact Tutoring at Scale: A Real-Time Multi-Screen Tutor Support System with P2P Connections. In *Proceedings of the Twelfth ACM Conference on Learning @ Scale (L@S '25), July 21–23, 2025, Palermo, Italy*. ACM, New York, NY, USA, 3 pages. <https://doi.org/10.1145/3698205.3733920>

1 Introduction

High-impact tutoring has proven effective in enhancing student achievement and engagement across both K–12 and higher education settings [12, 16]. While personalized instruction is key to successful learning, scaling one-on-one or small-group tutoring remains a significant challenge in large classroom environments [6, 11].

Recent studies have explored how to scale one-on-one tutoring in hybrid learning environments to make high-impact tutoring more broadly accessible [7, 10, 15]. In these models, a single tutor supports multiple students via video conferencing tools like Zoom [10], while students engage with educational technologies. These platforms, along with their generated log data, provide learning analytics that help tutors identify which students may need support—such as those showing signs of disengagement or struggle [1, 2, 8].

However, conventional online learning platforms often limit direct interaction between tutors and students. Tutors must navigate multiple browser tabs or manually check in with students to identify who needs help. These inefficiencies hinder timely interventions, which are essential for maintaining motivation and reducing frustration [13, 14]. To address these issues, we introduce **VTutor**, a web-based system that unites:

- (1) **Real-time multi-student screen sharing** so a single tutor can observe and guide many students concurrently.
- (2) **Interactive avatar tutoring**, leveraging stylized virtual characters to deliver just-in-time feedback and maintain learner engagement with intelligence tutoring system.

Due to the page constraints for this demo paper, for the system implementation details, related literature works, and detail user flows, please refer to our L@S Work-in-Progress publication [5] and our previous works [3, 4, 9].

← Student Details

Anonymous
Status: Active (Screen Sharing)

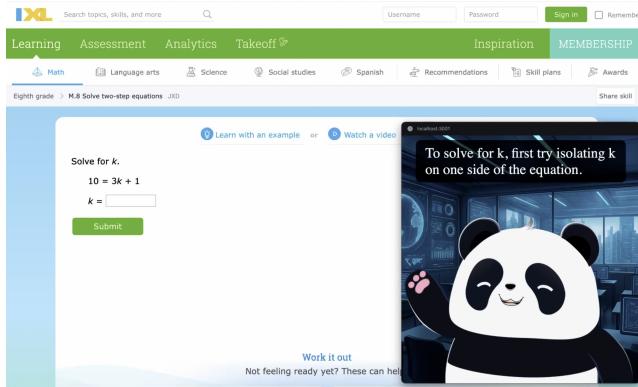
Screen Share

Messages

Anonymous Teacher
It seems you are inactive for a while, what happened?
11:32 PM

Anonymous
I'm stuck... How to solve this?
11:32 PM

Anonymous Teacher
To solve for k, first try isolating k on one side of the equation.
11:35 PM


Anonymous
Got it! Thank you!
11:35 PM

Type a message...
Select animation feedback...
Send

Status: Active
Class: Grade 9 Class A
Last Tutor Interaction: 10 minutes ago

Figure 1: Tutor Dashboard and Messaging Interface for individual student. The tutor's view shows an “Anonymous” student currently screen-sharing IXL, where the student attempts a math problem. On the right, the tutor and student exchange messages in real-time; any tutor messages sent here are spoken aloud by the VTutor avatar on the student’s screen. The lower panels provide status information (e.g., last tutor interaction), letting the tutor quickly detect off-task behavior and intervene with targeted guidance.

The VTutor platform can be accessed at <https://ls2025.vtutor.ai>. The system demo video is at <https://ls2025.vtutor.ai/video>. Figure ?? illustrates the three main VTutor components: the VTutor Student Client, the Tutors Frontend Dashboard, and the Node.js Backend Server.

Figure 2: Student Interface During Tutoring Session. The student is solving an algebraic equation on IXL (“Solve for k”), while the VTutor avatar, an animated panda agent, waves and offers animated guidance in the lower-right corner. Students can also chat directly with tutors; messages from tutors are spoken aloud by the VTutor avatar.

Demonstration Setup Plan at the L@S Conference

We will bring laptops to the conference venue to support an interactive, hands-on demonstration of VTutor. During the demonstration, we will configure these laptops to simulate both student and tutor roles. Attendees will have the opportunity to experience VTutor from both perspectives. As students, they will share their screens and receive real-time, avatar-delivered feedback and guidance. As tutors, they will monitor multiple student feeds through the dashboard and send adaptive messages that appear as animated, spoken prompts on the student side.

In addition to the on-site devices, as the system is production ready, we will invite attendees to join the demo using their own laptops via a public URL, enabling a broader and more personalized engagement. Our team members will be present throughout the session to assist participants, answer technical questions, and collect informal feedback that will inform future iterations of the system.

We will set up the demo station adjacent to our poster display, allowing attendees to experience the system with context such as design elements and technical details on the poster, and provide feedback.

This live demonstration aims to showcase how VTutor enables scalable, real-time high-impact tutoring interactions for one tutor with multiple students, and to engage the learning science community in discussions around its usability and educational potential.

References

- [1] Joseph E Beck and Yue Gong. 2013. Wheel-spinning: Students who fail to master a skill. In *Artificial Intelligence in Education: 16th International Conference, AIED 2013, Memphis, TN, USA, July 9–13, 2013. Proceedings 16*. Springer, 431–440.
- [2] Hoang Tieu Binh, Nguyen Quang Trung, Hoang-Anh The Nguyen, and Bui The Duy. 2019. Detecting student engagement in classrooms for intelligent tutoring systems. In *2019 23rd International Computer Science and Engineering Conference (ICSEC)*. IEEE, 145–149.
- [3] Eason Chen, Chenyu Lin, Yu-Kai Huang, Xinyi Tang, Aprille Xi, Jionghao Lin, and Kenneth Koedinger. 2025. VTutor: An Animated Pedagogical Agent SDK that Provide Real Time Multi-Model Feedback. *arXiv:2505.06676 [cs.HC]* <https://arxiv.org/abs/2505.06676>
- [4] Eason Chen, Chenyu Lin, Xinyi Tang, Aprille Xi, Canwen Wang, Jionghao Lin, and Kenneth R Koedinger. 2025. VTutor: An Open-Source SDK for Generative AI-Powered Animated Pedagogical Agents with Multi-Media Output. *arXiv:2502.04103 [cs.HC]* <https://arxiv.org/abs/2502.04103>
- [5] Eason Chen, Xinyi Tang, Aprille Xi, Chenyu Lin, Conrad Borchers, Shivang Gupta, Jionghao Lin, and Kenneth R Koedinger. 2025. VTutor for High-Impact Tutoring at Scale: Managing Engagement and Real-Time Multi-Screen Monitoring with P2P Connections. *arXiv:2505.07736 [cs.HC]* <https://arxiv.org/abs/2505.07736>
- [6] Kalena E Cortes, Karen Kortecamp, Susanna Loeb, and Carly D Robinson. 2025. A scalable approach to high-impact tutoring for young readers. *Learning and Instruction* 95 (2025), 102021.
- [7] Zifei FeiFei Han, Jionghao Lin, Ashish Gurung, Danielle R Thomas, Eason Chen, Conrad Borchers, Shivang Gupta, and Kenneth R Koedinger. 2024. Improving assessment of tutoring practices using retrieval-augmented generation. *arXiv preprint arXiv:2402.14594* (2024).
- [8] Kenneth Holstein and Vincent Aleven. 2022. Designing for human–AI complementarity in K–12 education. *AI Magazine* 43, 2 (2022), 239–248.
- [9] Jionghao Lin, Eason Chen, Ashish Gurung, and Kenneth R Koedinger. 2024. MuFIN: A Framework for Automating Multimodal Feedback Generation using Generative Artificial Intelligence. In *Proceedings of the Eleventh ACM Conference on Learning@ Scale*. 550–552.
- [10] Jionghao Lin, Danielle R Thomas, Zifei Han, Wei Tan, Ngoc Dang Nguyen, Shivang Gupta, Erin Gatz, Cindy Tipper, and Kenneth R Koedinger. 2023. Personalized Learning Squared (PLUS): Doubling Math Learning through AI-assisted Tutoring. (2023).
- [11] Alvin Makori, Patricia Burch, and Susanna Loeb. 2024. Scaling High-impact tutoring: School Level Perspectives on Implementation Challenges and Strategies.
- [12] Carly D Robinson and Susanna Loeb. 2021. High-impact tutoring: State of the research and priorities for future learning. *National Student Support Accelerator* 21, 284 (2021), 1–53.
- [13] Mary F Sinclair, Sandra L Christenson, Camilla A Lehr, and Amy Reschly Anderson. 2003. Facilitating student engagement: Lessons learned from Check & Connect longitudinal studies. *The California School Psychologist* 8, 1 (2003), 29–41.
- [14] Han Wan, Kangxu Liu, Qiaoye Yu, and Xiaopeng Gao. 2019. Pedagogical intervention practices: Improving learning engagement based on early prediction. *IEEE Transactions on Learning Technologies* 12, 2 (2019), 278–289.
- [15] Ross E Wang, Ana T Ribeiro, Carly D Robinson, Susanna Loeb, and Dora Demszky. 2024. Tutor CoPilot: A human–AI approach for scaling real-time expertise. *arXiv preprint arXiv:2410.03017* (2024).
- [16] Sara White, Megan Carey, Annie O'Donnell, and Susanna Loeb. 2021. Early Lessons from Implementing High-Impact Tutoring at Scale. *National Student Support Accelerator* (2021).