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Integrated Transcriptome Analysis Reveals Novel Molecular
Signatures for Schizophrenia Characterization

Tong Ni, Yu Sun, Zefeng Li, Tao Tan, Wei Han, Miao Li, Li Zhu, Jing Xiao, Huiying Wang,
Wenpei Zhang, Yitian Ma, Biao Wang, Di Wen, Teng Chen, Justin Tubbs, Xiaofeng Zeng,*
Jiangwei Yan,* Hongsheng Gui,* Pak Sham, and Fanglin Guan*

Schizophrenia (SCZ) is a complex psychiatric disorder presenting challenges
for characterization. The current study aimed to identify and evaluate
disease-responsive essential genes (DREGs) to enhance the molecular
characterization of SCZ. RNA-sequencing data from PsychENCODE (536 SCZ
patients, 832 controls) and peripheral blood transcriptome data from 144
recruited subjects (59 SCZ patients, 6 non-SCZ psychiatric patients, 79
controls) are analyzed. Shared differential expression genes are obtained
using three algorithms. Support vector machine (SVM)-based recursive
feature elimination is employed to identify DREGs. The biological relevance of
these DREGs is examined through protein–protein interaction network,
pathway enrichment, polygenic scoring, and brain tissue expression. Key
DREGs are validated in SCZ animal models. A DREGs-based
machine-learning model for SCZ characterization is developed and its
performance is assessed using multiple datasets. The analysis identified 184
DREGs forming an interconnected network involved in synaptic plasticity,
inflammation, neuronal development, and neurotransmission. DREGs
exhibited distinct expression in SCZ-related brain regions and animal models.
Their genetic contributions are comparable to genome-wide polygenic risk
scores. The DREG-based SVM model demonstrated high performance (AUC
85% for SCZ characterization, 79% for specificity). These findings provide
new insights into the molecular mechanisms underlying SCZ and emphasize
the potential of DREGs in improving SCZ characterization.
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1. Introduction

Schizophrenia (SCZ) is a complex psychi-
atric disorder with a significant societal bur-
den, affecting roughly 0.3% of the popula-
tion and characterized by a combination of
psychotic symptoms, cognitive deficits, and
functional impairments.[1] Understanding
the underlying pathogenic mechanisms of
SCZ is crucial for improving diagnosis,
treatment, and patient outcomes. Consid-
erable progress has been made in identi-
fying genetic risk factors through genome-
wide association studies (GWAS).[2,3] These
studies have provided valuable insights into
the genetic architecture of SCZ, suggest-
ing that the disorder is influenced by the
combined effects of numerous common ge-
netic variants. However, the translation of
GWAS findings into clinically useful risk
prediction models has been challenging.[4]

Genetic risk factors alone often have limited
predictive power, as the complex pathogen-
esis of SCZ likely involves the interplay of
various molecular mechanisms beyond ge-
netic variations.[5,6]

Transcriptomic analysis has emerged as
a complementary approach to elucidate the
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molecular underpinnings of SCZ.[7,8] By examining disease-
driven gene expression patterns, researchers can uncover key
genes and pathways involved in the pathogenesis of SCZ, which
may also contain important genetic variations underlying disease
susceptibility and development.[9,10] Recent biomedical research
has opened new avenues for identifying disease-associated fea-
tures, particularly through the use of artificial intelligence tech-
niques like machine learning (ML).[11] While previous studies
have employed ML on peripheral blood or prefrontal cortex
(PFC) transcriptomic data to distinguish SCZ cases from healthy
controls,[12,13] the absence of external validation and functional
analysis on the identified genes has undermined reproducibility
and limited their utility as stable disease-responsive features. Fur-
thermore, these studies are typically confined to either blood or
PFC data, lacking an integrated approach that encompasses both
peripheral and central transcriptomic profiles. This gap high-
lights the need for integrating PFC and peripheral blood tran-
scriptomics via ML to uncover more stable disease-responsive
features and reliable peripheral biomarkers.[14]

Building on GWAS insights, our study employs a comprehen-
sive approach, integrating transcriptomic analysis with genomic
data and experimental validation, to identify disease-responsive
essential genes (DREGs) that enhance SCZ characterization. By
applying advanced ML methods to a large cohort of postmortem
brain and peripheral blood RNA-sequencing data, we aim to cap-
ture core SCZ-driven transcriptional patterns, elucidate under-
lying biological mechanisms, and evaluate these DREGs as po-
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tential disease markers. To better illustrate our analytical frame-
work and workflow, we have provided a detailed schematic in
Figure 1. Unlike previous studies focused on distinguishing SCZ
cases from controls, we target disease-driven molecular signa-
tures involved in SCZ pathogenesis. This comprehensive ap-
proach aims to provide a deeper understanding of SCZ’s complex
molecular mechanisms and further develop improved character-
ization models with clinical applications. Our approach comple-
ments previous GWAS efforts and offers a fresh perspective on
the disorder’s genetic and genomic basis.

2. Results

2.1. Characterization of 184 SCZ DREGs

Table S1 (Supporting Information) and Figure 2A–L present
the detailed results of differentially expressed genes by DESeq2,
EdgeR, and Limma analysis. Pathway enrichment analysis re-
sults are shown in Table S2 (Supporting Information). Integrat-
ing pathways enriched with differentially expressed genes from
the four training datasets identified 70 significant pathways and
600 corresponding genes (Figure 2M,N; Table S3, Supporting In-
formation). Recursive feature elimination using the support vec-
tor machine (SVM) model (Figure 2O) selected 184 DREGs (Table
S4, Supporting Information). These DREGs were further used
for constructing a characterization model for SCZ.

2.2. DREGs Exhibit Significant Biological and Clinical Relevance

2.2.1. A Significantly Interconnected Protein–Protein Interaction
(PPI) Network Encoded by the DREGs

We constructed a comprehensive human interactome dataset
with 24 178 genes and 2 544 177 interactions (Table S5, Sup-
porting Information). Among the 184 DREGs, we identified 155
with direct interactions, forming a densely interconnected PPI
network of 155 genes with 900 interactions (Figure 3A). Permu-
tation tests compared this network to 1000 randomly generated
PPI networks, showing that the DREGs PPI network had signif-
icantly more protein interactions (P < 1×10−16) (Figure 3B). Net-
work parameters (node degree and betweenness centrality) indi-
cated that DREGs had higher values than background (BG) genes
(node degree P < 2×10−16, betweenness centrality P = 4.8×10−16)
(Figure 3C,D). These findings demonstrate enriched protein in-
teractions and central roles of DREGs in the network.

2.2.2. Identification of 19 key DREGs in the PPI Network

We analyzed the DREGs PPI network to investigate its charac-
teristics. We defined hub genes as DREGs with at least 20 direct
interactions with other DREGs, identifying 8 hub genes: ESR1,
GRB2, STAT3, BRD4, CDK9, TRIM28, MYH9, and DOT1L
(Figure 3A). Using ClusterONE, we identified two significant
functional modules: module 1 (P = 0.019) and module 2 (P =
0.03) (Figure 4C,D). Module 1 consists of 8 genes: RFGAP1,
CYTH2, ADORA2A, IFFO1, PACSIN2, ENTPD1, BICD1, and
KDELR3. Module 2 comprises 3 genes: PLXND1, PLXNA2, and
SEMA7A.
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Figure 1. The workflow for SCZ DREGs identification, analysis, and characterization. (SCZ DREGs identification) Using PsychENCODE data (three PFC
RNA-Seq datasets) and new peripheral blood RNA-Seq data, 70% were used for differential expression gene (DEG) analysis. DEGs in each dataset were
identified by intersecting DESeq2, EdgeR, and Limma results, then subjected to support vector machine (SVM)-based feature elimination to identify
DREGs. (Biological significance analysis of SCZ DREGs) Protein–protein interaction analysis used a self-constructed latest human interactome. GO
and KEGG analyses revealed SCZ-related pathway enrichment. DREGs expression were validated in human brain tissues and SCZ models. PRS analysis
assessed DREGs’ genetic contribution comparable to genome-wide PRS. (Evaluation of DREGs’ SCZ characterization) Eight top machine learning models
performed tenfold cross-validation on 70% of PFC and blood RNA-Seq data to obtain the best characterization model. The best model was used to validate
DREGs’ SCZ characterization in three independent datasets: internal test set, external test set (Dataset 2), and SCZ/non-SCZ patient set (Dataset 3).
Results were evaluated using AUC values of ROC curves. SCZ: schizophrenia; PFC: prefrontal cortex; DREGs: disease-responsive essential genes; PPI:
protein–protein interaction; PRS: polygenic risk score; ROC: receiver operating characteristic; AUC: area under the curve; LR: logistic regression; DT:
decision tree; RF: random forest; ET: extra tree; GBDT: gradient boosting decision tree; XGBoost: eXtreme gradient boosting; SVM: support vector
machine; MLP: multilayer perceptron.
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Figure 2. The results of characterization of 184 SCZ DREGs. (A–L) Differentially expressed genes in four datasets: Analysis of the differentially expressed
genes obtained from four datasets (CommonMind Consortium [CMC], Human Brain Collection Core [HBCC], and Lieber Institute for Brain Development
[LIBD], Dataset 1 from peripheral blood) using limma (A–D); edgeR (E–H) and DESeq2 (I–L). Given of the potential transcriptional heterogeneity of
different tissues, the direction of expression changes was not strictly limited, and thus the absolute value of log2FC was considered. (M) 70 shared
enriched pathways for differentially expressed genes: Presenting the 70 shared enriched pathways associated with differentially expressed genes in the
four training sets. Each circle color represents pathways enriched in different training sets, with a significance threshold of P-value <0.05. (N) 600
common genes included in the shared enriched pathways: Highlighting the 600 common genes found in the shared enriched pathways of differentially
expressed genes across the four training sets. The circles denote genes included in the shared enriched pathways in different training sets, indicated
by varying colors. (O) Result curve of recursive feature elimination: Demonstrating the result curve of recursive feature elimination based on the 600
shared genes. The x-axis represents the number of discarded genes, while the y-axis represents the average under the curve accuracy value of the SVM
model after tenfold cross-validation. The shaded area depicts the 95% confidence interval. Each point represents the result of a specific experiment, and
the gray dotted line indicates the number of genes finally discarded when reaching the optimal AUC value.

2.2.3. Dominant Enrichment of Pathways Associated with Synaptic
Plasticity, Immune Inflammation, Neuronal Development,
Neurotransmitters, and Astrocytes in the DREGs PPI Network

To examine the convergence of SCZ DREGs in the DREGs
PPI network toward specific pathways, we performed GO and
KEGG pathway enrichment analysis. The analysis identified
significant pathways including synaptic plasticity, neuronal

development/projection, synaptic transmission, inflammation
regulation, calcium homeostasis, neurotransmitter regulation,
vesicle transport/secretion, GPCR signaling, miRNA regula-
tion, and MAPK/neurotrophin/toll-like receptor/TNF/JAK-STAT
signaling (Table S6, Supporting Information). Further analysis
of key DREGs, including 8 hub genes and 2 densely con-
nected modules, revealed enrichments in pathways related to
epigenetic gene regulation, immune response, inflammation,
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Figure 3. The characteristics of the significantly interconnected PPI Network encoded by the DREGs. (A) A densely interconnected PPI network encoded
by DREGs: The visualization of a densely interconnected PPI network, where nodes represent genes and edges represent interaction relationships. Pink
nodes indicate hub genes, while cyan nodes denote genes included in two functional modules. (B) Permutation test results of 1000 random PPI networks:
During the permutation test, 1000 random PPI networks were generated by randomly selecting 155 genes from the human interactome to maintain the
same number of nodes as the DREGs PPI network. The size of the direct connectivity component (number of edges in the network) was compared
between the DREGs PPI network and the random PPI networks. The largest random PPI network had a direct connectivity component size of 248, which
is significantly smaller than the observed 900 in the DREGs PPI network (grey dashed line). (C) Comparative box plots of node degree: A comparative
box plot of the node degree between the DREGs PPI network and a background gene (BGG) PPI network. The Wilcoxon test was performed, revealing
a highly significant difference between the two networks (P < 2 × 10−16). (D) Comparative box plots of betweenness centrality: A comparative box plot
indicating the betweenness centrality between the DREGs PPI network and a BGG PPI network. The Wilcoxon test was conducted, showing a statistically
significant difference between the two networks (P = 4.8×10−16). Data presented as violin plots with embedded box plots showing the distribution of
log2-transformed values. The box plots display the median (central line), first and third quartiles (box boundaries), and whiskers extending to the most
extreme data points that are not considered outliers. The violin plots show the kernel density estimation of the underlying distribution for both DREGs
and BGGs (background genes) groups.

neurotransmitter secretion, synaptic transmission, astrocyte
activation, synaptic plasticity, neuronal development, and
Notch/IL6/toll-like receptor/JAK-STAT/chemokine signaling
(Tables S7–S9, Supporting Information).

We further analyzed gene repetitions across different path-
ways within each gene set (Tables S10–S13, Supporting Infor-
mation) to quantify pathway enrichment and assess the sig-
nificance of each pathway. In the DREGs set, immune reg-
ulation, synaptic plasticity, neuronal development, glutamate
synapse, and MAPK/JAK-STAT/neurotrophin signaling were sig-
nificantly enriched (Figure 4A). The hub gene set showed
remarkable enrichments in chromatin remodeling, transcrip-
tional regulation, miRNA regulation, JAK-STAT signaling, and
chemokine signaling (Figure 4B). Module 1 was associated
with glutamate-based neurotransmitter secretion and synap-
tic transmission (Figure 4E), while module 2 was related

to synaptic plasticity, neuronal development, and projection
(Figure 4F). Notably, the most repeated genes in the hub
and module gene sets were among the top 32 genes in the
DREGs set (Tables S10–S13, Supporting Information). Addi-
tionally, SYT11, like ADORA2A, is another noteworthy gene
linked to SCZ in our unpublished study, playing a role in
mediating SCZ-like behaviors through dopamine overtransmis-
sion.

2.2.4. Expression Changes in DREGs Across Various Human Brain
Tissues

We analyzed RNA-seq data from various sources to study the ex-
pression patterns of DREGs in different brain contexts. In hu-
man brain tissues (GTEx V8 database), DREGs showed higher
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Figure 4. The results of dominant pathway enrichment in the DREG PPI network. (A) Pathway enrichment of top 32 genes in DREG set: Analysis
of pathway enrichment for the top 32 genes in the DREG set. The presence of genes across different pathways (DREGs, Hub genes, Module 1, and
Module 2) was examined with a repetition threshold of 30% of the maximum number of repetitions (135 times for BCL2, approximately 41 times for
TICAM1). The left subfigure displays the significance of enriched GO (Molecular Function [MF], Biological Process[BP], Cell Component [CC]) and KEGG
entries, focusing on the top 20 most significant entries. The right subfigure indicates the number of DREGs genes associated with each entry. Significant
enrichments included immune response regulation, synaptic plasticity, neuronal development and projection, glutamatergic synapse, MAPK signaling
pathway, JAK-STAT signaling pathway, and neurotrophin signaling pathway. (B) Hub pathway enrichment of gene sets: Genes with direct interactions
greater than 20 were extracted from the DREGs PPI network to identify hub genes. GO and KEGG enrichment analysis was conducted on the hub genes.
The left subfigure presents the significance of GO (BP, CC, MF) and KEGG enriched entries, with the top 20 most significant entries. The right subfigure
shows the gene count from the 184 DREGs present in each entry. (C) Function module 1: The specific genes enriched in this module are presented. (D)
Function module 2: The specific genes enriched in this module are presented. (E) Module 1 pathway enrichment: Pathway enrichment analysis of the
functional enrichment module 1. The left subfigure displays significant GO (BP, CC, MF) and KEGG entries, with the top 20 most significant entries.
The right subfigure shows the gene count from the 184 DREGs present in each entry. (F) Module 2 pathway enrichment: Pathway enrichment analysis of
the functional enrichment module 2. The left subfigure displays significant GO (BP, CC, MF) and KEGG entries, with the top 20 most significant entries.
The right subfigure shows the gene count from the 184 DREGs present in each entry.

expression levels compared to BG genes (DREGs: P = 0.085,
hub genes: P < 1×10−8, module 1: P = 0.020, module 2: P =
0.001), with hub genes displaying the highest overall expression
(Figure 5A). Hub genes and genes in module 2 showed con-
sistent expression trends across different brain tissues, while
genes in module 1 had lower expression in certain brain regions
(Figure 5A). During brain development (BrainSpan database),

DREGs, hub genes, and module 2 genes showed significantly
higher expression levels across all developmental stages com-
pared to BG genes (DREGs: P = 2×10−5, hub genes: P <

1×10−8, module 2: P < 1×10−8) (Figure 5B). Hub genes ex-
hibited a peak in expression after birth, while hub genes and
genes in module 2 displayed prominent expression fluctuations
throughout development. In diverse brain regions (Human Brain
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Figure 5. The results of expression patterns in DREGs across various human brain tissues. (A) Expression patterns of DREGs, key DREGs, and BG genes
in 13 types of human brain tissues in the GTEx database. The expression trends of hub genes and genes in module 2 were consistent across different brain
tissues, showing high expression in the brain spinal cord (vervical c-1). On the other hand, genes in module 1 exhibited low expression in this specific brain
tissue. (B) Spatiotemporal expression patterns of DREGs, key DREGs, and BG genes in 13 brain development stages in the Brainspan database. These
stages ranged from embryonic to young adulthood. BG genes and module 1 genes showed no significant changes in expression throughout development
(P = 0.1146328, one-way repeated measures ANOVA). However, hub genes and module 2 genes displayed noticeable expression fluctuations, with hub
genes peaking after birth and maintaining relatively high expression levels during development. (C) Expression patterns of DREGs, key DREGs, and BG
genes in 16 brain regions in the HBT database. The 16 brain areas include primary auditory (A1) cortex (A1C), amygdala (AMY), cerebellar cortex (CBC),
dorsolateral prefrontal cortex (DFC), hippocampus (HIP), posterior inferior parietal cortex (IPC), inferior temporal cortex (ITC), primary motor (M1)
cortex (M1C), mediodorsal nucleus of the thalamus (MD), medial prefrontal cortex (MFC), orbital prefrontal cortex (OFC), primary somatosensory (S1)
cortex (S1C), superior temporal cortex (STC), striatum (STR), primary visual (V1) cortex (V1C), and ventrolateral prefrontal cortex (VFC). Hub genes
displayed the highest overall expression across all regions, while genes in module 2 exhibited significant expression variations among brain regions. (D)
Expression patterns of DREGs, key DREGs, and BG genes in cell types of the middle temporal gyrus in the Allen database. (E) Expression patterns of
DREGs, key DREGs, and BG genes in cell types of the anterior cingulate gyrus in the Allen database. In both brain regions, the key DREGs in glutamate-
type neurons (IT, L4 IT, L5 ET, L5/6 IT Car3, L6 CT, L6b) exhibited obvious expression fluctuations, along with consistent expression trends in hub genes
and DREGs. Furthermore, the expression patterns of genes in modules 1–2 varied between the two brain regions. In the middle temporal gyrus, genes
in modules 1–2 were mainly expressed in the cell type L6 CT, while in the anterior cingulate gyrus, genes in modules 1–2 were highly expressed not only
in the cell type L6 CT but also in L5 ET. All values are presented as mean expression levels across genes within each gene set (Hub genes, Module1,
Module2, DREGs, and BG genes) for each condition (tissues, developmental stages, brain regions, or cell types). Expression values were normalized
and processed according to their respective databases: TPM values for GTEx, RPKM values for BrainSpan, and normalized expression values for HBT
and Allen Brain Atlas data.

Transcriptome [HBT] database), DREGs, hub genes, and module
1–2 genes had significantly higher expression levels across dif-
ferent brain regions (all P < 1×10−16) (Figure 5C). Hub genes
consistently showed the highest expression, and module 2 genes
demonstrated expression variations specific to different brain re-
gions. In the SCZ-associated middle temporal gyrus (MTG) and
anterior cingulate gyrus (CgGr) (Allen database), DREGs, hub
genes, module 1–2 genes showed significantly higher expres-
sion levels compared to BG genes (Figure 5D,E). Fluctuating
expression patterns of key DREGs were observed in glutamate-
type neurons, with consistent trends between hub genes and
DREGs. Notably, genes in modules 1 and 2 exhibited distinct
expression patterns between MTG and CgGr, indicating diverse
roles in different neuron types, particularly glutamatergic neu-
rons.

2.2.5. Significant Changes in Expression Patterns of 9 Novel Key
DREGs in Animal Models

We identified 19 key DREGs, including 8 hub genes, 8 genes
from module 1, and 3 genes from module 2. Among these, 10
genes (ADORA2A, ENTPD1, PLXNA2, SEMA7A, ESR1, GRB2,
STAT3, BRD4, TRIM28, MYH9) have previously been associ-
ated with SCZ (see Supporting Information). To validate the ex-
pression patterns of these key DREGs, we focused on 9 novel
genes (BICD1, IFFO1, ARFGAP1, KDELR3, CYTH2, PACSIN2,
PLXND1, CDK9, DOT1L) using an SCZ animal model induced
by MK-801 (Figure S1, Supporting Information). We examined
the mRNA levels of these 9 key DREGs in the peripheral blood
and the PFC of the modeled mice (Figure 6). In the animal mod-
els, 8 out of the 9 novel genes showed statistically significant
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Figure 6. Differential expression profiles of 9 key DREGs in the peripheral blood and prefrontal cortex of SCZ animal models and human RNA-seq
datasets. mRNA expression changes of (A) BICD1; (B) IFFO1; (C) ARFGAP1; (D) KDELR3;(E) CYTH2; (F) PACSIN2; (G) PLXND1; (H) CDK9; (I) DOTIL
in the peripheral blood and prefrontal cortex of human (left) and mice (right). The human peripheral blood data is derived from the combined Datasets
1 and 2, while the human prefrontal cortex data is obtained from the merged datasets of the CMC, LIBD, and HBCC. Statistical comparisons were
performed using Student’s t-test. Data are presented as means ± SEM (n = 8 per group). Significant differences between SCZ and control groups are
indicated in the figure (P < 0.05).
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Figure 7. Assessment of characteristic performance and specificity of DREGs for SCZ. (A) Performance evaluation results of optimized machine learning
models: Results of 10-fold cross-validation on 8 optimized machine learning models using the combined training dataset. The x-axis represents the
names of the 8 optimized machine learning models, while the y-axis represents the average accuracy achieved through 10-fold cross-validation. All
values are presented as mean ± SEM of accuracy values obtained from 10-fold cross-validation. (B) Receiver operating characteristic (ROC) curves of
DREG-based SVM model for different testsets: ROC curves illustrating the performance of the DREG-based SVM model on various test sets.(C) ROC
curves for differentiating SCZ and non-SCZ patients: The ROC curve demonstrating the ability to distinguish between patients with SCZ and patients
with non-SCZ conditions. Only 1 out of 6 SCZ patients was misclassified, and only methamphetamine-induced psychosis was not differentiated among
the 6 non-SCZ diseases. The ROC curves, AUC (area under the curve (AUC), and ACC (accuracy) values were calculated using the scikit-learn package
in Python. Specifically, the roc_curve and auc_score functions were used for ROC curve generation and AUC calculation, while accuracy_score was used
for ACC calculation.

expression changes in the brain samples, with the KDELR3 gene
exhibiting a trend toward significance (Figure 6A–I). Although
four DREGs (KDELR3, PACSIN2, CDK9, PLXND1) did not ex-
hibit statistically significant differences in the peripheral blood
of the SCZ animal model, their expression trends were consis-
tent with those observed in human brain data (Figure 6D,E,G,H).
Despite small sample sizes, these findings confirm DREGs as re-
liable SCZ responsive indicators, with potential to elucidate SCZ
mechanisms.

2.3. Strong Polygenic Risk for SCZ Associated with DREGs
Polygenic Risk Scoring (PRS)

When applied to the UK Biobank (UKB)-SCZ dataset, both the
genome-wide PRS and the 184-DREGs PRS derived from Psy-
chiatric Genomic Consortium version 3 (PGC3)-SCZ showed sig-
nificant associations with SCZ status (permutation P < 0.00001;
Table S14 and Figure S2, Supporting Information). In the smaller
PsychENCODE-SCZ dataset, the genome-wide PRS remained
significant (permutation P < 0.00001), although the significance
of the 184-DREGs PRS was slightly reduced (permutation P <

0.005). However, the consistent effect direction with odds ratios
(ORs)> 1.1 was noteworthy (Table S14, Supporting Information).
These findings suggest that the polygenic risk contributed by the
184-DREGs SNPs for SCZ is significantly higher than random
chance and is even comparable to those optimal PRS using genes
across whole genome.

2.4. DREGs Exhibit Characteristic Capabilities and Specificity for
SCZ

To optimize characterization models for SCZ, we combined four
training sets and evaluated eight models using tenfold cross-

validation, with optimized parameters detailed in Table S15 (Sup-
porting Information). The SVM model performed best, surpass-
ing other models with an average accuracy of 89.21% (Figure 7A).
We selected the optimized SVM model, called the DREGs-based
SVM (DRES) model, as the ideal characterization model. Testing
the DRES model on internal datasets showed accuracy rates of
69%, 76%, 82%, and 83%, with corresponding area under the
curve (AUC) values of 73%, 81%, 88%, and 85% (Figure 7B).
External evaluation on testset Dataset 2 demonstrated a charac-
teristic accuracy of 83% and an AUC value of 85% (Figure 7B).
The DRES model effectively differentiated SCZ from non-SCZ
conditions, achieving an AUC of 79% and an accuracy of 83%
(Figure 7C). Our findings suggest the potential of the DRES
model in identifying individuals with SCZ across different dis-
ease categories.

3. Discussion

This study leverages cross-tissue transcriptomic data and var-
ious omics annotation/integration approaches to provide both
biological and clinical insight on SCZ manifestation. In clin-
ical settings, there is currently a lack of effective approaches
for diagnosing and characterizing SCZ. This study utilizes ML-
based approaches with RNA-seq datasets to characterize SCZ.
Our novel methods address the limitations of current character-
ization methods (low discriminative ability), further improving
characterization for individuals with SCZ (AUC> 0.8). Analyzing
the PPI network, performing pathway enrichment, utilizing hu-
man brain datasets, and conducting laboratory experiments col-
lectively demonstrate the crucial role of DREGs in SCZ etiology.
This approach has potential for extending to other neuropsychi-
atric disorders, facilitating precision psychiatry.

While many studies have utilized transcriptomics data and ML
to identify characteristic expression patterns[15] or biomarkers
for SCZ,[16] there remains room for further refinement. Most of
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these studies did not conduct functional analyses or experimen-
tal validations of the identified genes,[12,13,15,16] which may limit
their effectiveness in providing stable disease characterizations.
In our study, we first combined traditional bioinformatics meth-
ods and recursive feature elimination algorithms with multiple
RNA-seq datasets. This approach identified 184 SCZ DREGs, im-
proving our ability to extract relevant disease-responsive features.
Then through PPI network analysis, we found strong evidence
that DREGs form a highly interconnected network involved in
SCZ pathogenesis. Within this network, we identified 19 key
DREGs, including 11 genes in densely connected modules and
8 hub genes. Enrichment analysis revealed shared gene ontology
terms and pathways, including neuronal development, immune
response regulation, synaptic plasticity, and epigenetic gene ex-
pression regulation, known to be involved in SCZ.[17] Both the
genome-wide PRS and the 184-DREGs PRS were significantly
associated with SCZ status, validating the biological relevance of
DREGs in SCZ characterization. These findings support the use
of DREGs as a reliable gene set for characterizing SCZ.

Among the 19 key DREGs, 10 have previously been linked
to SCZ. SYT11, along with ADORA2A, is notable as both
genes play crucial roles in the glutamatergic and dopaminer-
gic systems,[18] which are implicated in SCZ pathogenesis.[17]

ADORA2A in astrocytes regulates glial glutamate transporter
1 activity, potentially leading to disturbances in glutamine lev-
els and SCZ induction.[19] Besides, our unpublished study sug-
gests that abnormal SYT11 expression contributes to SCZ-
related behaviors through dopamine overtransmission. Signifi-
cant associations between ADORA2A, SYT11 polymorphisms,
and SCZ susceptibility have been identified, indicating their cen-
tral role in triggering SCZ.[20] Additionally, nine newly identified
genes (BICD1, IFFO1, ARFGAP1, KDELR3, CYTH2, PACSIN2,
PLXND1, CDK9, DOT1L) are implicated in SCZ, some of which
are involved in other central nervous system disorders.[21] Fur-
thermore, all nine of these novel genes are involved in synap-
tic function (PACSIN2,[22] PLXND1,[23] DOT1L,[24]) neurodevel-
opment (BICD1,[25] ARFGAP1,[26] CYTH2,[27]) and immune re-
sponse (IFFO1,[28] KDELR3,[29] CDK9,[30]), aligning closely with
our enrichment analysis. These findings resonate with the con-
clusions of a recent Science article, which used single-nucleus
RNA sequencing technology to identify significant transcrip-
tional changes in synaptic and neurodevelopmental pathways
across various cell types in the PFC of SCZ patients.[31] This
convergence of evidence further emphasizes the critical roles
of these key DREGs in synaptic plasticity and neuronal devel-
opment in the pathophysiology of SCZ. Additionally, RT-qPCR
validation revealed consistent similar expression change direc-
tions for these nine key DREGs between human and SCZ ani-
mal model brain samples, with statistically significant changes
observed in both. Peripheral blood samples showed consistent
trends across humans and animal models, though not all reached
statistical significance. These findings highlight the potential rel-
evance of these genes in SCZ pathophysiology, demonstrating
parallels in expression patterns between human and animal mod-
els in both central and peripheral tissues. Further functional re-
search is needed to understand how these nine genes regulate
molecular mechanisms in SCZ.

Transcriptomic data poses challenge due to its wide nature and
the potential for overfitting in data analysis models.[32] To address

this, we employed dimensionality reduction and utilized a prac-
tical ML model to minimize overfitting.[33] Our unique analysis
methods identified SCZ DREGs from diverse RNA-seq datasets
(brain and blood) and provided insights into underlying biolog-
ical processes and pathways. We also developed an accurate dis-
ease characterization model using DREGs and ML, indicating
strong performance in classifying SCZ patients and distinguish-
ing them from other psychiatric disorders. While previous stud-
ies using omics data have improved risk stratification for SCZ
and other psychiatric disorders,[34] our pipeline offers a more tar-
geted focus by characterizing SCZ-responsive genes and identi-
fying core pathogenic mechanisms with minimal transcriptome
data. Unlike the broad approach of Wang et al.,[34] which created a
comprehensive functional genomic resource, our study focuses
on disease-driven expression patterns specific to SCZ. By lever-
aging ML, functional annotation, network analysis, and animal
validation, we provide deeper insights into the roles of DREGs in
synaptic function, immune regulation, and neurodevelopment.
Notably, the disease-responsive essential genes may contain SCZ
risk or development variations, but examining how these SNPs
regulate DREGs’ expression changes was beyond the scope of our
study.

Our study addresses some limitations in previous research.
Merikangas et al.[35] faced methodological inconsistencies and
covariate variations, leading to few consistently replicated genes.
Unlike their literature-based approach, we integrate multiple
RNA-seq datasets with ML, ensuring the stability of identified
genes through experimental validation. By aligning with LIBD
principles,[36] we correct for batch effects and include critical co-
variates such as age and sex, addressing confounding factors and
improving robustness. While there may be ancestry-dependent
differential expression genes for brain disorders, most are less
constrained and sensitive to evolutionary changes.[37] However,
by conducting differential expression analyses independently for
each dataset and employing ancestry-matched data in our PRS
analysis, we enhance the validity and reliability of our findings.
This approach ensures that ancestry-related biases are unlikely to
significantly impact our results. Despite fewer peripheral blood
samples, our findings remain robust through repeat validation.
Additionally, recent findings by Ruzicka et al.[31] support the
importance of neurodevelopment and synapse-related pathways
in SCZ, validating our mechanisms. We also evaluated the ge-
netic effects of DREGs via PRS analysis, offering new insights
into SCZ’s genetic basis. While Wang et al.[34] provided a broad
foundational understanding, our study offers targeted mechanis-
tic insights and potential clinical applications, emphasizing the
unique advantages of our approach. Our work demonstrates the
importance of LIBD principles[36] like sample size, covariates,
and expression complexity, reflecting the effectiveness of these
principles in advancing SCZ research.

While our study demonstrates robustness in identifying SCZ
characterization using RNA-seq data and ML techniques, cau-
tion should be exercised in extrapolating the findings to broader
populations. First, gene expression changes are regulated by a
multitude of factors and cannot be solely attributed to disease
response. Second, the relatively small sample size and the pre-
dominance of Han Chinese participants may limit the gener-
alizability of our results to other ethnic groups or clinical set-
tings. Additionally, the reliance on peripheral blood samples for
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RNA-seq analysis may not fully capture the disease-specific tran-
scriptional changes occurring in the brain, and the absence of
regulatory RNA data, such as miRNA, limits our understanding
of the transcriptional regulatory networks associated with disease
features. The lack of unified processing standards across differ-
ent laboratories adds complexity and challenges to our study. De-
spite these limitations, our model offers significant value in accu-
rately characterizing SCZ. The findings have important implica-
tions for clinical practice, potentially aiding in earlier and more
precise diagnosis. Give of our preliminary results, future stud-
ies, with larger sample sizes, diverse populations, and additional
types of data, would be required to further validate and expand
our findings.

4. Conclusion

In summary, our study presents a comprehensive approach to en-
hance SCZ characterization by integrating ML-based transcrip-
tomic analysis with genomic data annotation and experimental
validation. We identified 184 DREGs significantly associated with
SCZ, conducted pathway enrichment and PPI network analyses,
and validated key DREGs in SCZ animal models. Additionally,
we assessed the genetic contribution of DREGs using PRS and
developed high-performance machine-learning models for SCZ
characterization. Our findings contribute to improved disease
characterization, elucidate SCZ molecular mechanisms, and sug-
gest new potential therapeutic targets. Future research will focus
on functional validation, longitudinal studies, and expanding to
broader cohorts to enhance robustness and generalizability.

5. Experimental Section
Sample Collection: Participants were recruited from multiple sites.

Dataset 1 included episodic SCZ patients and healthy controls from Ying-
tan Mental Health Hospital. Dataset 2 comprised episodic SCZ patients
from Shandong Mental Health Center and healthy controls from Qilu Hos-
pital of Shandong University. Dataset 3 consisted of both episodic SCZ and
non-SCZ psychiatric patients from Yingtan Mental Health Hospital. Partic-
ipants provided written informed consent and 2.5 mL of whole blood was
collected for RNA sequencing. The study followed ethical principles out-
lined in the 2002 Declaration of Helsinki, with approval from the Medical
Ethics Committee of Xi’an Jiaotong University Health Science Center. The
study employed three independent datasets (Dataset 1 with 43 SCZ and 59
controls; Dataset 2 with 10 SCZ and 20 controls; Dataset 3 with 6 SCZ and
6 non-SCZ psychiatric patients), with Supplementary Methods (Support-
ing Information) providing detailed information and inclusion/exclusion
criteria. All patient samples had more than one-month medication-free
history, and Dataset 1 consisted of medication-naïve first-episode patients.
This study was conducted in accordance with the ethical principles out-
lined in the 2002 Declaration of Helsinki. The protocol was approved by
the Medical Ethics Committee of Xi’an Jiaotong University Health Science
Center (approval number: NO. 2017030). Written informed consent was
obtained from all participants prior to their enrollment in the study.

RNA Sequencing and Data Pre-Processing: Total RNA extraction from
peripheral blood samples was performed using the PAXgene Blood RNA
Kit (BD Biosciences, USA) following the manufacturer’s instructions for
datasets 1, 2, and 3. Total RNA quality was assessed using agarose gel elec-
trophoresis and quantified with a NanoDrop spectrophotometer (Nan-
oDrop, USA). For mRNA library construction, total RNA underwent riboso-
mal RNA depletion using the Epicenter Ribo-Zero kit. TruSeq RNA Sample
Preparation kit processed 3 μg RNA/sample following Illumina’s proto-
col. RT-PCR employed Phusion high-fidelity DNA polymerase, indexed (X)

primers, and universal PCR primers. AMPure XP system purified the prod-
ucts, while library quality was evaluated on the Agilent Bioanalyzer 2100
system. The Illumina NovaSeq 6000 platform sequenced the mRNA li-
braries. Initial quality control was performed using FastQC[38] to assess se-
quencing data quality, including base quality distribution, GC content, and
sequence duplication levels. Fastp[39] software was used to filter out low-
quality reads and adapter sequences. The remaining reads were aligned
to the human reference genome hg19 using HISAT2.2.4.[40] All count data
were finally generated for subsequent analysis.

Existing Data and Combined Data Preparation: This study also uti-
lized three PFC RNA-seq datasets (CommonMind Consortium [CMC], Hu-
man Brain Collection Core [HBCC], and Lieber Institute for Brain Develop-
ment [LIBD]) accessed from PsychENCODE, comprising SCZ patients and
healthy controls (Table S16, Supporting Information). To ensure reliable re-
sults, these datasets and Dataset 1 (43 SCZ and 59 controls) were split into
training and internal test sets (7:3 ratio, no overlap). The training sets were
used for DREG extraction, model training, and hyperparameter optimiza-
tion, while the internal test sets assessed model performance. Dataset 2
served as an external test set to evaluate the analysis pipeline and findings’
robustness. PRS was performed using three large-scale genetic datasets
(PGC, UKB, and PsychENCODE project including CMC, HBCC, and LIBD,
detailed in Table S16, Supporting Information) to assess SCZ status holis-
tically. PGC version 3 data for SCZ GWAS was publicly available. UKB raw
data was accessed under approved application No. 86920. PsychENCODE
data was accessed via Synapse portal with granted approval to Dr. Guan’s
team. This approach aimed to evaluate the collective impact of identified
SCZ DREGs and their genomic contribution to this mental disorder. Sup-
plementary Methods (Supporting Information) provide brief descriptions
of each dataset.

Extraction of Characteristic DREGs: The four RNA-seq datasets (CMC,
HBCC, LIBD, Dataset 1) were divided into training and test sets (7:3
ratio). The SVA (Surrogate Variable Analysis) package was used to cor-
rect for batch effects, ensuring that the variability introduced by differ-
ent batches did not confound our results. Differential expression analysis
was performed on the training datasets using the limma[41], Deseq2[42],
and edgeR[43] packages, with significance determined as P-value < 0.05
and |logFC| > 0. To mitigate the impact of age and gender on gene ex-
pression, these variables were included as covariates in the differential
expression analysis using DESeq2, edgeR, and limma. Specifically, the de-
sign matrix incorporated age and gender along with the primary condition
of phenotype (SCZ vs. control). The final set of differentially expressed
genes for each training dataset was determined by taking the intersec-
tion of the results from these three software packages. ENSEMBL IDs
were converted to ENTREZ IDs, and pathway enrichment analysis was
conducted using the clusterProfiler package.[44] Significant pathways (P-
value < 0.05) and their shared differentially expressed genes were inte-
grated to identify responsive characteristics for SCZ. After correcting and
standardizing the count matrices, recursive feature elimination (RFE)[45]

with a SVM model was employed to identify characteristic DREGs. Fur-
ther details can be found in the Supplementary Methods (Supporting
Information).

Analysis of the Biological Basis of DREGs: The newest human interac-
tome database was self-constructed by integrating PPI data from multiple
sources (String, Biogrid, Bioplex, CCSB, HINT, HPRD, IntAct, and Mint)
and analyzed the PPI networks formed by DREGs. Various network param-
eters were computed, including node degree and betweenness centrality,
to understand the characteristics of DREGs in the network. Permutation
tests were performed to compare the network connectivity with 1000 ran-
domly generated networks, while Wilcoxon tests were used to compare
network parameters (node degree and betweenness centrality) between
DREGs and background genes. Hub genes and densely connected mod-
ules were identified in the PPI network, defining all hub genes and those
within these modules as key DREGs. Pathway enrichment analysis ex-
plored the biological functions of DREGs, hub genes, and modules. Addi-
tionally, gene expression profiles in various tissues, developmental stages,
brain regions, and specific cell types were analyzed using RNA sequenc-
ing data from multiple databases (GTEx, BrainSpan, HBT, and Allen).
These analyses provided insights into the functional roles and expression
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patterns of DREGs relevant to SCZ. Further details can be found in the
Supplementary Methods (Supporting Information).

Detecting Expression Patterns of Key DREGs in SCZ Animal Models: All
animal experiments were performed using male C57BL/6J mice (n = 8
per group) obtained from Beijing Vital River Laboratory Animal Technol-
ogy Co., Ltd. (Beijing, China). The experimental procedures were con-
ducted in accordance with institutional guidelines and approved by the
Institutional Animal Care and Use Committee of Xi’an Jiaotong Univer-
sity (approval number: No. 2022680). SCZ mice models were estab-
lished by NMDA receptor antagonist MK-801 to further validate the ex-
pression changes of SCZ DREGs. Then the prefrontal cortex and blood
samples were collected for RNA extraction. The following qRT-PCR were
carried out in the Bio-Rad CFX96 detection instrument (Bio-Rad, USA).
Primer sequences are provided in Table S17 (Supporting Information).
For more details, please refer to the Supplementary Methods (Supporting
Information).

Assessing the Genetic Effect of DREGs Using PRS: To assess the poly-
genic risk of SCZ, PRSice2 was employed with GWAS summary statistics
(PGC3) and raw data (PsychENCODE-SCZ and UKB-SCZ) with matched
ancestry. The aim was to characterize SCZ risk in PsychENCODE-SCZ or
UKB-SCZ (target data), using PGC3-SCZ as the training dataset.[46] No
sample overlap occurred between the training and target datasets. Com-
mon SNPs (minor allele frequency > 0.05) in both datasets were ana-
lyzed for compatibility. Exclusion criteria included imputation scores <

0.5 in training data and palindromic SNPs with ambiguous alleles. Two
PRS models were created: one with genome-wide SNPs and another map-
ping to DREGs (± 10kb boundary). PRS were standardized and associ-
ated using logistic regression, adjusting for gender and principal com-
ponents (3 for PsychENCODE-SCZ, 4 for UKB-SCZ). PRSice2 generated
optimal PRS scores across different P thresholds (5×10−8, 10−7, 10−6,
10−5, 104, .001, .01, .05, 0.1, 0.2, 0.3, 0.4, 0.5, and 1),[47] with permuta-
tion (100 000 times) correcting for multiple testing and overfitting.[48]

SCZ Characterization via ML Models: Four training sets of RNA-seq
data were combined to create a unified dataset and employed eight high-
performance ML models. These models were used to assess the reliabil-
ity and stability of DREGs in characterizing SCZ, including logistic regres-
sion (LR), decision tree (DT), random forest (RF), extra tree (ET), gradi-
ent boosting decision tree (GBDT), eXtreme gradient boosting (XGBoost),
SVM, and multilayer perceptron (MLP). The model with the best general-
ization performance was selected after hyperparameter tuning and vali-
dated it using four internal test sets and one external test set (Dataset 2).
The model’s discriminative performance between SCZ and non-SCZ dis-
orders was also evaluated using Dataset 3. The model performance was
evaluated using the scikit-learn package in Python to calculate the AUC
and accuracy values. Supplementary Methods (Supporting Information)
provide further details.

Statistical Analysis—Pre-Processing: RNA-seq data underwent quality
control using FastQC v0.11.9, with low-quality reads and adapter se-
quences filtered by Fastp v0.20.0. Batch effects were corrected using SVA
package. Data normalization included variance stabilizing transformation
in DESeq2. Age and gender were included as covariates in differential ex-
pression analyses, with data aligned to human reference genome hg19
using HISAT2.2.4.

Statistical Analysis—Data Presentation: Laboratory experimental data
and animal experiments are presented as mean ± SEM. RNA-seq expres-
sion values are presented according to their respective databases (TPM
values for GTEx, RPKM values for BrainSpan, and normalized expression
values for HBT and Allen Brain Atlas). Network analysis results are pre-
sented as violin plots with embedded box plots showing log2-transformed
values, with PPI network comprising 155 DREGs forming 900 direct inter-
actions. Machine learning model performance is presented as mean ±
SEM from tenfold cross-validation.

Statistical Analysis—Sample size: The study analyzed RNA-sequencing
data from two sources: 1) PsychENCODE public database (536 SCZ pa-
tients, 832 controls), and 2) the newly generated peripheral blood RNA-seq
data from three independent cohorts (Dataset 1: 43 SCZ and 59 controls;
Dataset 2: 10 SCZ and 20 controls; Dataset 3: 6 SCZ and 6 non-SCZ psy-
chiatric patients). Animal experiments used 8 mice per group.

Statistical Analysis—Statistical Methods: Differential expression analy-
sis employed three algorithms (limma, DESeq2, and edgeR) with signifi-
cance defined as P-value < 0.05 and |logFC| > 0. PPI network connectivity
was evaluated using two-sided permutation tests (1000 times), while net-
work parameters were compared using two-sided Wilcoxon tests. One-way
repeated measures ANOVA assessed expression changes across devel-
opmental stages. Student’s t-test was used for animal experimental data.
Pathway enrichment used hypergeometric tests with P-value< 0.05 thresh-
old. PRS analysis used permutation testing (100 000 times) for multiple
testing correction.

Statistical Analysis—Software: RNA-seq analyses were performed us-
ing R version 4.2.0 with packages including limma, DESeq2, edgeR, and
clusterProfiler. Network analyses used R packages igraph and ggplot2. Ma-
chine learning analyses were conducted using Python’s scikit-learn pack-
age, with roc_curve and auc_score functions for receiver operating charac-
teristic (ROC) curves and AUC calculations, and accuracy_score for ACC
calculations. PRS analyses used PRSice2. Animal experimental data were
analyzed using SPSS version 23.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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