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ABSTRACT

Recent advancements in quantum polarization theory have propelled the exploration of topological

insulators (T1s) into the realm of higher-order systems, leading to the study of the celebrated
two-dimensional (2D) quadrupole and 3D octupole TIs. Traditionally, these topological phases have been

associated with the toroidal topology of the conventional Brillouin zone. This paper reports the discovery of

a novel octupole topological insulating phase protected by a 3D momentum-space nonsymmorphic group
emerging within the framework of the Brillouin 3D real projective space (RP*). We theoretically propose

the model and its corresponding topological invariant, experimentally construct this insulator within a

topological circuit framework and capture the octupole insulating phase as a localized impedance peak at the

circuit’s corner. Furthermore, our RP* circuit stands out as a pioneering 3D model to simultaneously

exhibit both intrinsic, termination-independent symmetry-protected topological phases and extrinsic,

termination-dependent surface-obstructed topological phases within the symmetry-protected topological

phases. Our results broaden the topological landscape and provide insights into the band theory within the

manifold of the Brillouin RP* space.

Keywords: real projective space, octupole moment, surface-obstructed topological phase,

three-dimensional topological circuit

INTRODUCTION

Topological insulators (TIs), remarkable for their
robustness against internal defects and external per-
turbations, have risen to a research prominence in
various areas such as photonics [ 1-5], acoustics [6-
10], mechanics [11,12] and electrical circuits [13—
25]. The field of topological materials has witnessed
significant advancements, ranging from first-order
systems to higher-order topological insulators (HO-
TIs). HOTIs transcend the conventional bulk-edge
correspondence theory, featuring boundary states
in dimensions lower than n — 1 [1,2,26-32,32-34].
To date, the topological properties of the aforemen-
tioned research are based on the Brillouin zone (BZ)
torus T" (= S' x S! x -+ x S', an orientable n-

dimensional manifold defined as the product of the
bundle of S' cylinders), where the Bloch Hamilto-

nian H (k) is restricted to the first Brillouin zone and
defined with a reciprocal lattice vector G as H(k) =
H(k+ G) [35-39].

However, the torus is not the only example of a
closed compact manifold; the Klein bottle and the
real projective plane also belong to this category.
Under the Z, gauge field [40-43] with the alterna-
tive signs of the hopping amplitudes, the symmetries
of the system would satisfy projective algebra, ex-
tending the Bloch band theory based on the T*
BZ to the Klein K? (= S' x X! with X' defining
the Mébius bundle) BZ manifold [44,4S]. Specif-
ically, the projective symmetry algebra generates
an unconventional momentum-space nonsymmor-
phic (k-NS) symmetry, which contains a fractional
translation in the reciprocal lattice. Such phenom-
ena have already been experimentally demon-
strated in acoustic crystals in the form of Mobius
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insulators [43,46]. Recent studies have shown
that a real projective plane RP* (= X! x X!) BZ
can be employed to construct two-dimensional
(2D) HOTIs with quadrupole moments [45,47].
Research has also recently been conducted on the
development of HOTIs within RP* of real space
[48]. The concept is also associated with the half-
turn space HT® (= X! x S' x S') [49], which
induces surface states of the 3D system. Similarly,
the Brillouin Klein space K* (= X! x X! x S)
[50] introduces the second pair of twisted bound-
aries, which further constrains the system and
localizes the topological states along 1D hinges as
hinge states. The comprehensive understanding
of fundamental theory remains incomplete, with
the three-dimensional real projective space RIP®
(= X' x X! x X') representing the elusive final
piece of the puzzle in three dimensions. The in-
troduction of the third pair of twisted boundaries
may give rise to an intriguing phenomenon, further
localizing the topological states at the corners.
Moreover, there are two different classifications
of HOTIs [S51,52]: intrinsic HOTIs, which host
symmetry-protected topological phases (SPTPs)
induced by bulk gap closures, and extrinsic HOTTIs,
which host boundary-obstructed topological phases
(BOTPs) dependent on boundary termination. To
date, the 3D HOTI that simultaneously involves
both k-NS symmetries and the coexistence of SPTP
and BOTP features has not been reported.

In this paper, we propose a 3D HOTT in the Bril-
louin RP® space, which hosts higher-order corner
states induced by the octupole moment of the bulk.
Unlike the Benalcazar-Bernevig-Hughes (BBH)
model [28,53], which also hosts the bulk octupole
moment, we introduce k-NS symmetries along all
three axes in momentum space by enforcing the Z,
gauge field with a chessboard 7-flux configuration
to the 3D lattice, transforming the original BZ as a
manifold with three pairs of opposing faces glued
by a half-twist method [44,47]. These unconven-
tional symmetries divide the 3D BZ into 64 blocks,
which are further grouped into eight categories.
Selecting one block from each category forms a
reduced Brillouin zone that preserves all essential
information of the original BZ. Note that these eight
blocks should collectively form a closed compact
manifold, ensuring that the reduced BZ is a topolog-
ically complete and self-contained representation of
the system. In particular, the model exhibits both
intrinsic and extrinsic HOTI features, where the
octupole moment is protected by the k-NS symme-
tries in the bulk, and edge polarization is induced
by either bulk gap closure affecting SPTPs or edge
gap closure affecting surface-obstructed topological
phases (SOTPs; BOTPs in the 2D case), depending
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on boundary terminations. We demonstrate the
RP* HOTI model in a 3D electrical circuit and
experimentally observe the octupole corner states
by measuring the self-impedance spectra.

RESULTS

Brillouin real projective space

The RP* space is constructed by adhering the op-
posing faces of a cube with a half twist (Fig. 1a).
Mathematically, it is represented as a unit cube
([0, 1] x [0, 1] x [0, 1]) with each pair of oppos-
ing faces identified in the specified relation:

(0,y,2) ~ (1,1 —y,1 —z),
(%,0,2) ~ (1 —x,1,1 —2),

(%,9,0) ~ (1 —x,1—y,1),

0=<y3z=<1,
0<«x,z<1,

0<x,y=<1
(1)

Following the designated mapping rule, we real-
ize RP? in momentum space and derive three k-NS
reflection operators for the wave vector (k,, k,, k. ),

defined as

Mx : (kxa ky’kz) - (_kxa ky+77:a kz+7T)a
M, : (kg ky k) = (ke + 7, —ky, k, +70),
MZ : (kx’ k’)/!kz) - (kx+7-[’ ky+7t7_kz)v

)

where each operator anti-commutes with the oth-
ers [54-57], such that {M,, M;} = 0 for all a #
bwith a, b € {x, y, z}. By applying these operators,
the first BZ is divided into eight segments, as shown
in Fig. 1b, with diagonally opposing segments form-
ing pairs that are represented with identical col-
ors. Furthermore, the pairwise combination of these
three operators induces novel symmetries, lead-
ing to the formulation of k-N§ inversion operators

P = M, My:
ny : (kxv kya kz) - (JT - kxv T — ky» kz)a
Pyt (kes ky k) = (ko m — ky, 7w — k),
sz : (kxv ky’ kz) i (7T - kx’ kya T — kz)

)

A singular operator P, enforces spatial inversion
symmetry in the corresponding a-b plane within
the BZ centered at (£ /2, 7 /2), resulting in
the subdivision of each segment into four blocks
along diagonal and off-diagonal pairs (Fig. 1c). The
application of the remaining two operators yields
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Figure 1. Topological construction of the Brillouin RIP® space. (a) Schematic illustration
depicting the gluing rules of the Brillouin manifold, with a half-twist operation connect-
ing the opposing faces. (b) The k-NS reflection symmetries M,, M,, M, divide the
first BZ into eight segments. (c) The k-NS inversion symmetries Py, Py, P, further
divide one segment in (b) into diagonal and off-diagonal pairs. (d) The k-NS operators
M and P, jointly divide the BZ into 64 blocks, in which a reduced BZ can be defined
(semitransparent box) and constructed from any eight uniquely colored blocks.

analogous subdivisions. Consequently, the k-NS
symmetric operators M and P jointly divide the
BZ into 64 blocks, where blocks with the same color
denote equivalence in the BZ (Fig. 1d). Therefore, a
reduced BZ can be defined and constructed from any
eight uniquely colored blocks that are enclosed, for
instance, by the semitransparent box in Fig. 1d. The
reduced BZ inherits all the topological information
from the original BZ, thereby enabling comprehen-
sive analyses of the HOT]I, including band-structure
properties and topological invariants. The key factor
in considering a divided BZ patch as the smallest
unit is how it reflects the bulk topological informa-
tion, including the band structure. Topologically,
this requires the BZ patch to be a closed, compact
manifold, allowing for the definition of a closed path.
This is essential for defining the homotopy group,
whose elements correspond to distinct topological
phases. We further highlight that, although there
are eight fixed points (7 /2, 27 /2, 7 /2) at the
corners of the reduced BZ, they are topologically
equivalent to a single point and do not affect the for-
mation of a closed, compact manifold (see the online
supplementary material for a detailed discussion).
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Tight-binding model implementation

To construct the 3D HOTI in the Brillouin RIP®
space, we consider a cubic lattice with eight sites as
the unit cell, as shown in Fig. 2a. These eight sites
are connected through specially designed hopping
connections, with positive (negative) hoppings indi-
cated by solid (dashed) lines fulfilling Z, gauge flux.
This configuration encloses a 7 flux, resulting in an
anti-commutative relation between the k-NS reflec-
tion operator M, and translation operators L,L,
along the other two directions, respectively. There-
fore, in addition to mirror reversion in the k, di-
rection, M, also includes a half-period translation
along k, and k. simultaneously. Applying these rules
to the remaining two directions, we observe a chess-
board 77 -flux pattern across the x-y, x-z and y-z planes
in Fig. 2a. Note that this model significantly differs
from the BBH model [28,53], in which all plaquettes
enclose a 77 -flux phase.

For convenience, we first assume that the intra-
cell coupling strengths y and the inter-cell coupling
strengths A are isotropic, that is, ¥, = ¥, = y. =
y and A, = A, = A, = A. The tight-binding (TB)
Hamiltonian can be formulated as

H(ky, ky, k.) = A(—cosk,I"y — sink, I
+ cosk,I'| — sink, I, — cosk,I'
+ sink,I;) +y - ¢, (4)

where the I’ matrices are defined as 1"6 =0 ®
[y, I=00®T; (i=1,2,3,4), T;=0,0 T,
where 'y =03 ® 7, ['; =01 ® 7; (j=1,2,3),
'y =0, ® 1) and ¢ = 037159 + 01ToSo — 037252,
in which o, T and s are Pauli matrices acting on
sites along the x, y, z axes, respectively. Constrained
by the k-NS symmetry operators, the band struc-
ture in the Brillouin RP*® space displays the corre-
sponding symmetric relations, as evident from the
iso-energy contour in Fig. 2b, and panels c-e of
Fig. 2 depict the specific effects of the k-NS symme-
try operators (see the online supplementary material
for a detailed analysis). Thus, the BZ partition in
Fig. 1d is further validated. In addition to the k-
NS reflection symmetries M, and P, H (k) also
retains the conventional inversion symmetry 7 =
M M,M., (Fig. 2f), and the chiral symmetry
CH(k,, k,, k.)C! = —H(k,, ky, k.). As shown in
Fig. 2g and throughout Fig. 4 below, the energy
bands appear in pairs at positive and negative ener-
gies due to the chiral symmetry C of the system. See
the online supplementary material for the specific
forms of symmetry operators and their effects on the
Hamiltonian.

Figure 2g shows the bulk energy spectrum of
the open system as the ratio 7 = y /A varies. Note
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Figure 2. Tight-binding model and the topological properties of the HOTI. (a) The lattice with 2.5 x 2.5 x 2.5 unit cells, featuring k-NS reflection
symmetry M. The chesshoard w-flux configuration projectively changes the conventional reflection operator M, into the k-NS one, which anti-
commutes with the translation symmetries along the other two directions &, and k.. Solid and dashed lines indicate hoppings with positive and
negative signs, respectively; blue lines and red lines represent intra-cell and inter-cell couplings, respectively. (b) Iso-energy contour at £ = 4 for
y = 1and A = 3.3. Gray contour lines on the k, — k. planes are the projections of the blue contour surface at k, = £0.75x. (c) The projection of
the iso-energy contour in (b) at the k, = —0.75x cross section. (d—f) The iso-energy contour modified by k-NS symmetry operators M, P,, and the
inversion symmetry operator Z, respectively. (g) Bulk energy spectrum for a cubic lattice with isotropic coupling strengths and N, = N, = N, = 10.
Corner states are highlighted by red lines. (h) Topological invariants calculated through nested Wilson loops.

that this parameter is isotropic in this case. When
[n| < 1, in-gap modes emerge at zero energy (red
lines), which indicates the presence of octupole cor-
ner states. To better understand and characterize
the topological properties of the 3D Brillouin RIP®
model, a topological invariant of 1/2 can be defined
using the nested Wilson loop method [47,53], which
suggests a nontrivial topological phase for |n| <1
and a trivial phase for || > 1 (see Fig. 2h and the
online supplementary material). Because of the k-
NS symmetry, the topological invariant can also be
perfectly defined in the reduced BZ (Fig. 3b-d).
See the online supplementary material for a detailed
calculation.

The coexistence of extrinsic and
intrinsic HOTI features

Figure 3a presents the phase diagram of edge po-
larization for the 3D RP* HOTY, characterized by
surface polarizations (P, P,., P,.). A sphere in the
parameter space (1, 1)y, 7);) with a radius of V3
is divided into two distinct regions, colored blue
and gray. Here, 1 represents the ratio of intra-cell
to inter-cell hopping strengths along the respec-
tive directions. The interior of the sphere repre-
sents a topologically nontrivial phase, while the ex-
terior is topologically trivial. By fixing the inter-
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cell coupling strengths to A, = A, = A, =1 and
performing band-structure calculations for different
Yx» Vy» Yz we find that the gap of bulk bands closes
when the sum of the squares of the intra-cell hop-
ping strengths equals that of the inter-cell hopping
strengths,

vty Hvi=M 40+l =3 (3)

To demonstrate the coexistence of the extrinsic
and intrinsic HOTT features, we consider a cylin-
drical geometry with periodic boundary conditions
(PBCs) in the x and y directions, and open boundary
conditions (OBCs) in the z direction, and calculate
the Wannier values (v.y, vy, Vy;) and surface po-
larizations (ny, P, P.) by Py = Zfif pa,b(rc),
where p, ,(.) is the polarization at each site r, (see
the Methods section below for a detailed calcula-
tion) [47,58,59]. We select three points from the
parameter space (1, 1, 7z): A (0.3, 04, 0.5), B
(1.1, 1.1, 0.3) and C (0.3, 04, 1.7). Point A be-
longs to the blue phase region, with surface polariza-
tion (ny, P, P.) =(1/2,1/2,1/2), indicating a
topologically nontrivial phase (Fig. 3¢). Point B falls
within the gray phase region, with (P, P,., P,;) =
(0,1/2,1/2) (Fig. 3f). The transition from points
A to B suggests that increasing the hopping strengths
along the periodic directions and crossing the z
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Figure 3. Topological properties of the RIP* HOTI. (a) Phase diagram of the RIP* HOTI. (b—d) The procedure for calculating the topological invariant
in the reduced BZ involves three rounds of nested Wilson loops along ki, ,, k,, respectively (y = 1). (e-g) The cylindrical geometry with PBCs in the
x and y directions, and OBCs in the z direction: Wannier values U;b (upper panels) and surface polarization Fy(L;) (lower panels) in different phase
diagram regions. Panels (e} and (f) correspond to regions (1/2, 1/2,1/2) and (0, 1/2, 1/2) in the phase diagram, respectively, indicating the SOTP
transition. Panel (g) corresponds to the region (0, 0, 0), indicating the SPTP transition together with (e).

hinges at [n,| = |n,| = 1 leads to surface gap clo-
sure, resulting in the SOTP transition. Panels e-g
of Fig. 3 collectively illustrate the SPTP transition:
point C lies outside the /3 sphere and is classified
as intrinsically topologically trivial (Fig. 3g). Thus,
transitioning from point A to point C results in bulk
gap closure and induces the SPTP transition.

We further confirm that edge polarization phase
transitions can occur through either bulk or edge
gap closures: varying the hopping strengths along
the periodic directions results in an edge gap clo-
sure, whereas tuning them along the open direction
leads to bulk gap closure. With OBCs in the z direc-
tion and PBCs in the x and y directions, both surface
states (blue lines, in the y— z plane) and bulk states
(gray lines) coexist, as shown in Fig. 4a. Simultane-
ous changes in hopping strengths along the two peri-
odic directions induce phase transitions; specifically,
transitioning from the gray region to the blue region
across the hinge at [1,| = [1.| = 1results in the clo-
sure of the surface band gap (Fig. 4b), and the surface
states near zero energy vanish when the gap reopens
(Fig. 4c). However, adjusting the hopping strengths
along the open direction leads to bulk gap closure
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and an edge phase transition (Fig. 4d-f), resulting
in the disappearance of surface states. The bulk band
closure induces an SPTP transition, as described in
Equation (2), a hallmark of the intrinsic HOTL
Moreover, these insights into the phase transi-
tions under mixed boundary conditions can be ex-
tended to the fully open system. Specifically, crossing
the point (1., 1y, 7.) = (%1, %1, &1) from the
interijor to the exterior of the sphere leads to the dis-
appearance of the corner states (Fig. 4g-i).

Implementation of the RPP® topological
circuit

The TB model in the quantum electronic system
can be directly implemented in the electric circuit by
mapping the TB Hamiltonian in Equation (4) onto
the circuit Laplacian. We realize the Z, gauge con-
nections in circuits by utilizing the opposite phases
of the admittance in capacitors and inductors. Two
pairs of capacitors and inductors (C;, L1 ) and (C, =
ACy, Ly = AL,) are employed as the intra-cell and
inter-cell couplings in the circuit, respectively, as
shown in Fig. 3a. Note that the boundary circuit
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Figure 4. Intrinsic and extrinsic HOTI features of the RP* HOTI. (a—c) SOTP transition induced by surface gap closure under
PBCs in the x and y directions, and OBCs in the z direction. (d—f) SPTP transition induced by bulk gap closure under the same
boundary conditions. (g—i) Phase transition induced by corner gap closure under full OBCs. The appearance of eight corner

modes under full OBCs is shown in (h).

nodes should be grounded with additional capaci-
tors and inductors to maintain the same resonant
frequency as the bulk nodes, wy = 1//L,C, =
1/4/L,C, (see the online supplementary material).
In this work, we specify C; = 1nF, C, = 3.3nF,
L] =33 MH, L2 = IILH

According to Kirchhoft’s current law, we can
derive the circuit Laplacian that characterizes the
behavior of the circuit as J(w) = iwC — i/wW,
where C and W are the matrices of capacitance
and inverse inductance, respectively. Note that, as
the admittance of the capacitor and inductor can-
cel at wy, the diagonal terms of J(w) vanish at w.
Consequently, J(wy) takes exactly the form of the
Hamiltonian of the quantum electronic system in
Equation (4), up to a scaling factor of iy/C,/L;.
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One can obtain the eigenfrequencies of the circuit
by using the dynamical matrix D = C~/2WC~1/2
[16,60].

To experimentally demonstrate the octupole cor-
ner state induced by the 3D Brillouin RP* model,
we fabricated a 3D circuit with 2.5 x 2.5 x 2.5
unit cells by connecting five layers of printed circuit
boards via copper wires (Fig. Sa). Low dc resistance
inductors with a maximum tolerance of $% were se-
lected for the experiment to improve the quality fac-
tor of the circuit while maintaining sufficient preci-
sion. In the eigenvalue spectrum of the circuit Lapla-
cian (Fig. Sb), the frequencies satisfying J(w) = 0
represent the eigenfrequencies of the circuit system,
as indicated by the intersections of the eigenvalue
spectrum with the gray dashed line. This can be
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Figure 5. Topological properties of the circuit realization. (a) Circuit diagram of the unit cell and the experimental sample.
The grounded terms 'z’ represent shunt resonant circuits with capacitors and inductors connected in parallel. (b) Eigenvalue
spectrum of J(w). (c) Eigenfrequency of the finite circuit characterized by the D matrix. The corner mode is highlighted by
the red dot. (d) Theoretical calculated impedance spectra (upper panel) and the impedance distribution at resonant frequency
2.77 MHz (lower panel). (e) Experimental impedance spectra measured by the vector network analyzer (upper panel) and
the impedance distribution at 2.77 MHz (lower panel). Both theoretical and experimental results clearly demonstrate the
presence of the octupole corner state localized at the bottom left corner.

observed from the eigenfrequencies of the finite cir-
cuit in Fig. Sc, where an in-gap mode at the resonant
frequency wy = 2.77 MHz signifies the presence of
the octupole corner state. It has been suggested that
the eigenstates of the circuit can be accessed by mea-
suring the self-impedance across all circuit nodes at
@y, which is proportional to the square of the eigen-
states in the TB Hamiltonian [61]. In the exper-
iment, we obtained the self-impedance spectra by
measuring the circuit’s scattering parameters using
a vector network analyzer (Tektronix TTRS06A).
As depicted in the upper panel of Fig. 5d and e, the
self-impedance spectra obtained at all circuit nodes
(upper panel) exhibit high consistency between the-
oretical and experimental results. The spectrum
measured at the corner node reveals a prominent
peak at 2.77 MHz (red curve), signifying the pres-
ence of the topological corner state. This is further
validated by the impedance distribution at the cor-
ner mode frequency of 2.77 MHz across all circuit
nodes, as shown in the lower panel of Fig. 5d and
e. Note that, due to the configuration with a half-
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integer number of unit cells in all three dimensions,
the current circuit supports only one corner state,
with an impedance peak localized at a single cor-
ner (Fig. 5d and e). Additionally, the corner state is
equally localized in all spatial directions. The appar-
ent localization in the z direction in the figure is sim-
ply for illustration, as the states are shown as slices
along the z axis. The results of the 3D RP* topo-
logical circuit with an integer number of unit cells
are given in the online supplementary material. We
also verify the phase transitions among the bulk, sur-
face, hinge and corner states of our 3D HOTT in the
circuit system by calculating the band structure and
eigenstates of the circuit in both fully open and semi-
open scenarios, which align with the results from the
electronic system shown in Fig. 4 (see the online
supplementary material).

CONCLUSIONS

In conclusion, we experimentally demonstrate a
novel octupole topological insulating phase induced
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by the 3D real projective space RP® in momen-
tum space. A m-flux chessboard pattern enforced
by the k-NS symmetries under the Z, gauge field
is shown to give rise to the unconventional fea-
tures of the 3D RP* HOT], distinguishing it from
the first HOTI with all plaquettes enclosed by a
mw-flux [28,53]. Note that the current method for
implementing the Z, gauge field in electrical cir-
cuits with inductors and capacitors allows the direct
mapping of the Hamiltonian in the quantum elec-
tronic system only at the resonant frequency. This
prevents us from measuring the eigenstates of the
other modes (e.g. surface and hinge states). Alterna-
tive approaches for realizing the negative coupling
include the use of negative capacitors with nega-
tive impedance convertor [62], or employing a pair
of circuit nodes with twist connection [63]. Both
methods enable access to all eigenstates.

METHODS

Topological invariant calculated in the
reduced BZ

As shown in Fig. 3b—d, the topological invariant
of the RPP* HOTI model can be effectively calcu-
lated in the reduced BZ, where k, € (—m, 0), k, €
(=0.57,0.57), k, € (—0.57,0.57). Under the
constraints of the k-NS reflection symmetries, the
eigenstates used to calculate the first-round nested
Wilson loop will be modified as

i), = M) (6)

Similarly, the recombined eigenstates |w:]‘(j ) =

Z < Jup) [v:k] 1" used to calculated the second-
round nested Wilson loop will be modified as

i), =M Zu o

and the line elements of the third-round nested Wil-
son loop will be modified as

w +X )

=M, im )

Thus, by repeating the nested Wilson loop calcu-
lation steps in the online supplementary material,
while restricting the integration range to the reduced
BZ, we can obtain the results of nested Wilson loops.
By comparing Fig. 2h and Fig. 3d, we confirm that
the reduced BZ can be effectively used to calculate
the topological invariant of the RP® HOTL
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Edge polarizations

To calculate surface polarization of the RPP* HOTI
and confirm the coexistence of SOTPs and SPTPs
[45,47,59], a z-open cylinder geometry with N, x
N, x N_sites is considered. The surface polarization
P,, can be obtained by the following methods.

1. Treat the z-open cylinder as a wide pseudo-2D
structure by absorbing thelabelsr, € 1, ..., N,
into the supercell lattice degrees of freedom,
since there is no crystal momenta k.

2. Solve the eigenvectors |u)} K, of the pseudo-2D
k-space Hamiltonian, and first perform the Wil-
son loop W, along k, to obtain its eigenstates
0],

3. Construct the Wannier states |vy+kj , ky> =

Z oce |uk & ) [v:kj 1" and use them to calculate
the nested Wllson loop Wyﬂ along k, (see the
online supplementary material). This allows us
to obtain the eigenstates |n)] & We can now
calculate the density of the hybrld Wannier
function using the equation

NlN DR

ykkot n

2
n

p'(r.) =

’

['I;ix,ky]

(9)

" . .
where [V} k)‘]rz.a is the corresponding compo-

nent of the nth Wannier state, and [n,i Qs
<k,

the nth component of the jth eigenstate [17); .
wky
The polarization at each site r, is given by

Puy(r2) = Z P’ (r)nl,,. (10)

4. Finally, calculate the surface polarization by
summing p,.,(r.) over half of the system along

z:
N,/2

piu;face Z Px,y(rz)' (11)

r,=1

Simulation and experiment

The Agilent Design System software is employed for
the numerical simulation of a circuit of 5 X § X §
unit cells, using the exact values of the components
in the fabricated sample. The sample consists of five
layers of PBCs, with each adjacent layer connected
by high-temperature Teflon wires. To minimize ex-
perimental deviations, the maximal tolerance for cir-
cuit components is capped at 5%, and inductors are
selected with minimal direct current resistance.

The eigenstate of the circuit system can be ac-
cessed through the self-impedance of each circuit
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node [61], as demonstrated below. According to
Kirchhoff’s circuit laws in the frequency domain,
eigenstate V and eigenfrequencies @ of the cir-
cuit can be obtained by solving the eigenvalue

problem
HV =1V, (12)

where Hj takes exactly the form of the Hamilto-
nian of the TB model, with eigenvalue A = (W, —
@*C;)/(w*C). The self-impedance of each circuit
node is defined as

=Y = ()
I, iwC\H -1/,
1 [V
iwC — = A

(13)

Equation (13) indicates that, when A equals the
nth mode of Hj, the denominator becomes zero, re-
sulting in divergences of the expression. For exam-
ple, the impedance spectrum measured at the corner
nodes is expected to show a prominent peak at the
corresponding frequency, indicating the presence of
the corner state. This suggests that Z,,(w) scanned
across all circuit nodes at the nth eigenfrequency w,
represents the squared magnitudes [V}, |* of the eigen-
states associated with the nth mode of Hj up to a scal-
ing factor of 1/iwC.

In the circuit experiment, we employed the vector
network analyzer (Tektronix TTR5S06A) to measure
the S;; parameters of each node. The reflection coef-
ficient Sy, of the circuit can be transformed into the
self-impedance using the formula

1+ S
Zy =2Zo—, 14
11 01—811 ( )

where Z, represents the characteristic impedance.

SUPPLEMENTARY DATA

Supplementary data are available at NSR online.
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