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ABSTRACT 

Recent advancements in quantum polarization theory have propelled the exploration of topological 
insulators (TIs) into the realm of higher-order systems, leading to the study of the celebrated 
two-dimensional (2D) quadrupole and 3D octupole TIs. Traditionally, these topological phases have been 
associated with the toroidal topology of the conventional Bri l louin zone. This paper reports the discovery of 
a novel octupole topological insulating phase protected by a 3D momentum-space nonsymmorphic group 
emerging within the framework of the Bri l louin 3D real projective space ( RP 

3 ). We theoretically propose 
the model and its corresponding topological invariant, experimentally construct this insulator within a 
topological circuit framework and capture the octupole insulating phase as a localized impedance peak at the 
circuit’s corner. Furthermore, our RP 

3 circuit stands out as a pioneering 3D model to simultaneously 
exhibit both intrinsic, termination-independent symmetry-protected topological phases and extrinsic, 
termination-dependent surface-obstructed topological phases within the symmetry-protected topological 
phases. Our results broaden the topological landscape and provide insights into the band theory within the 
manifold of the Bri l louin RP 

3 space. 

Keywords: real projective space, octupole moment, surface-obstructed topological phase, 
three-dimensional topological circuit 
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nian H(k) is restricted to the first Bri l louin zone and 
defined with a reciprocal lattice vector G as H(k) = 

H(k + G ) [35 –39 ]. 
However, the torus is not the only example of a 

closed compact manifold; the Klein bottle and the 
real projective plane also belong to this category. 
Under the Z2 gauge field [40 –43 ] with the alterna- 
tive signs of the hopping amplitudes, the symmetries 
of the system would satisfy projective algebra, ex- 
tending the Bloch band theory based on the T2 

BZ to the Klein K2 ( = S
1 × X

1 with X1 defining 
the Möbius bundle) BZ manifold [44 ,45 ]. Specif- 
ically, the projective symmetry algebra generates 
an unconventional momentum-space nonsymmor- 
phic ( k-NS) symmetry, which contains a fractional 
translation in the reciprocal lattice. Such phenom- 
ena have already been experimentally demon- 
strated in acoustic crystals in the form of Möbius 
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NTRODUCTION 

opological insulators (TIs), remarkable for their
obustness against internal defects and external per-
urbations, have risen to a research prominence in
arious areas such as photonics [1 –5 ], acoustics [6 –
0 ], mechanics [11 ,12 ] and electrical circuits [13 –
5 ]. The field of topological materials has witnessed
ignificant advancements, ranging from first-order
ystems to higher-order topological insulators (HO-
Is). HOTIs transcend the conventional bulk-edge
orrespondence theor y, featuring boundar y states
n dimensions lower than n − 1 [1 ,2 ,26 –32 ,32 –34 ].
o date, the topological properties of the aforemen-
ioned research are based on the Bri l louin zone (BZ)
orus Tn ( = S

1 × S
1 × · · · × S

1 ︸ ︷︷ ︸ 
n 

, an orientable n -

imensional manifold defined as the product of the
1 
undle of S cylinders), where the Bloch Hamilto- 
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nsulators [43 ,46 ]. Recent studies have shown
hat a real projective plane RP 

2 ( = X
1 × X

1 ) BZ
an be employed to construct two-dimensional
2D) HOTIs with quadrupole moments [45 ,47 ].
esearch has also recently been conducted on the
evelopment of HOTIs within RP 

2 of real space
48 ]. The concept is also associated with the half-
urn space HT 

3 ( = X
1 × S

1 × S
1 ) [49 ], which

nduces surface states of the 3D system. Similarly,
he Bri l louin Klein space K3 ( = X

1 × X
1 × S

1 )
50 ] introduces the second pair of twisted bound-
ries, which further constrains the system and
ocalizes the topological states along 1D hinges as
inge states. The comprehensive understanding
f fundamental theory remains incomplete, with
he three-dimensional real projective space RP 

3 

 = X
1 × X

1 × X
1 ) representing the elusive final

iece of the puzzle in three dimensions. The in-
roduction of the third pair of twisted boundaries
ay give rise to an intriguing phenomenon, further

ocalizing the topological states at the corners.
oreover, there are two different classifications
f HOTIs [51 ,52 ]: intrinsic HOTIs, which host
ymmetry-protected topological phases (SPTPs)
nduced by bulk gap closures, and extrinsic HOTIs,
hich host boundary-obstructed topological phases
BOTPs) dependent on boundary termination. To
ate, the 3D HOTI that simultaneously involves
oth k-NS symmetries and the coexistence of SPTP
nd BOTP features has not been reported. 
In this paper, we propose a 3D HOTI in the Bril-

ouin RP 

3 space, which hosts higher-order corner
tates induced by the octupole moment of the bulk.
nlike the Benalcazar-Bernevig-Hughes (BBH)
odel [28 ,53 ], which also hosts the bulk octupole
oment, we introduce k-NS symmetries along all
hree axes in momentum space by enforcing the Z2 
auge field with a chessboard π -flux configuration
o the 3D lattice, transforming the original BZ as a
anifold with three pairs of opposing faces glued
y a half-twist method [44 ,47 ]. These unconven-
ional symmetries divide the 3D BZ into 64 blocks,
hich are further grouped into eight categories.
electing one block from each category forms a
educed Bri l louin zone that preserves all essential
nformation of the original BZ. Note that these eight
locks should collectively form a closed compact
anifold, ensuring that the reduced BZ is a topolog-

cally complete and self-contained representation of
he system. In particular, the model exhibits both
ntrinsic and extrinsic HOTI features, where the
ctupole moment is protected by the k-NS symme-
ries in the bulk, and edge polarization is induced
y either bulk gap closure affecting SPTPs or edge
ap closure affecting surface-obstructed topological
hases (SOTPs; BOTPs in the 2D case), depending
Page 2 of 10
on boundary terminations. We demonstrate the 
RP 

3 HOTI model in a 3D electrical circuit and 
experimentally observe the octupole corner states 
by measuring the self-impedance spectra. 

RESULTS 

Brillouin real projective space 

The RP 

3 space is constructed by adhering the op- 
posing faces of a cube with a half twist (Fig. 1 a).
Mathematically, it is represented as a unit cube 
( [0 , 1] × [0 , 1] × [0 , 1] ) with each pair of oppos-
ing faces identified in the specified relation: 

(0 , y, z ) ∼ (1 , 1 − y, 1 − z ) , 0 ≤ y, z ≤ 1 , 

(x, 0 , z ) ∼ (1 − x, 1 , 1 − z ) , 0 ≤ x, z ≤ 1 , 

(x, y, 0) ∼ (1 − x, 1 − y, 1) , 0 ≤ x, y ≤ 1 . 

(1) 

Following the designated mapping rule, we real- 
ize RP 

3 in momentum space and derive three k-NS 
reflection operators for the wave vector (kx , ky , kz ) , 
defined as 

Mx : (kx , ky , kz ) → (−kx , ky + π, kz + π ) , 

My : (kx , ky , kz ) → (kx + π, −ky , kz + π ) , 

Mz : (kx , ky , kz ) → (kx + π, ky + π, −kz ) , 

(2) 

where each operator anti-commutes with the oth- 
ers [54 –57 ], such that {Ma , Mb } = 0 for all a � =
b with a, b ∈ { x, y, z } . By applying these operators,
the first BZ is divided into eight segments, as shown 
in Fig. 1 b, with diagonally opposing segments form- 
ing pairs that are represented with identical col- 
ors. Furthermore, the pairwise combination of these 
three operators induces novel symmetries, lead- 
ing to the formulation of k-NS inversion operators 
Pab = Ma Mb : 

Pxy : (kx , ky , kz ) → (π − kx , π − ky , kz ) , 

Pyz : (kx , ky , kz ) → (kx , π − ky , π − kz ) , 

Pxz : (kx , ky , kz ) → (π − kx , ky , π − kz ) . 

(3) 

A singular operator Pab enforces spatial inversion 
symmetry in the corresponding a - b plane within 
the BZ centered at (±π/ 2 , ±π/ 2) , resulting in
the subdivision of each segment into four blocks 
along diagonal and off-diagonal pairs (Fig. 1 c). The 
application of the remaining two operators yields 
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Figure 1. Topological construction of the Brillouin RP 

3 space. (a) Schematic illustration 
depicting the gluing rules of the Brillouin manifold, with a half-twist operation connect- 
ing the opposing faces. (b) The k -NS reflection symmetries M x , M y , M z divide the 
first BZ into eight segments. (c) The k -NS inversion symmetries P xy , P xz , P yz further 
divide one segment in (b) into diagonal and off-diagonal pairs. (d) The k -NS operators 
M a and P ab jointly divide the BZ into 64 blocks, in which a reduced BZ can be defined 
(semitransparent box) and constructed from any eight uniquely colored blocks. 
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nalogous subdivisions. Consequently, the k-NS
ymmetric operators M and P jointly divide the
Z into 64 blocks, where blocks with the same color
enote equivalence in the BZ (Fig. 1 d). Therefore, a
educed BZ can be defined and constructed from any
ight uniquely colored blocks that are enclosed, for
nstance, by the semitransparent box in Fig. 1 d. The
educed BZ inherits all the topological information
rom the original BZ, thereby enabling comprehen-
ive analyses of the HOTI, including band-structure
roperties and topological invariants. The key factor
n considering a divided BZ patch as the smallest
nit is how it reflects the bulk topological informa-
ion, including the band structure. Topologically,
his requires the BZ patch to be a closed, compact
anifold, allowing for the definition of a closed path.
his is essential for defining the homotopy group,
hose elements correspond to distinct topological
hases. We further highlight that, although there
re eight fixed points (±π/ 2 , ±π/ 2 , ±π/ 2) at the
orners of the reduced BZ, they are topologically
quivalent to a single point and do not affect the for-
ation of a closed, compact manifold (see the online
upplementary material for a detailed discussion). 
Page 3 of 10
Tight-binding model implementation 

To construct the 3D HOTI in the Bri l louin RP 

3 

space, we consider a cubic lattice with eight sites as
the unit cell, as shown in Fig. 2 a. These eight sites
are connected through specially designed hopping 
connections, with positive (negative) hoppings indi- 
cated by solid (dashed) lines fulfilling Z2 gauge flux. 
This configuration encloses a π flux, resulting in an 
anti-commutative relation between the k-NS reflec- 
tion operator Mx and translation operators Ly , Lz 
along the other two directions, respectively. There- 
fore, in addition to mirror reversion in the kx di- 
rection, Mx also includes a half-period translation 
along ky and kz simultaneously. Applying these rules 
to the remaining two directions, we observe a chess- 
board π -flux pattern across the x - y , x - z and y - z planes
in Fig. 2 a. Note that this model significantly differs
from the BBH model [28 ,53 ], in which all plaquettes
enclose a π -flux phase. 

For convenience, we first assume that the intra- 
cell coupling strengths γ and the inter-cell coupling 
strengths λ are isotropic, that is, γx = γy = γz = 

γ and λx = λy = λz = λ. The tight-binding (TB) 
Hamiltonian can be formulated as 

H(kx , ky , kz ) = λ(−cos kx �′ 
3 − sin kx �′ 

0 

+ cos ky �′ 
1 − sin ky �′ 

2 − cos kz �′ 
0 

+ sin kz �′ 
5 ) + γ · ζ , (4) 

where the �′ matrices are defined as �′ 
0 = σ1 ⊗

�0 , �′ 
i = σ0 ⊗ �i (i = 1 , 2 , 3 , 4) , �′ 

5 = σ2 ⊗ �0 ,
where �0 = σ3 ⊗ τ0 , � j = σ1 ⊗ τ j ( j = 1 , 2 , 3) ,
�4 = σ2 ⊗ τ0 and ζ = σ3 τ1 s0 + σ1 τ0 s0 − σ3 τ2 s2 , 
in which σ , τ and s are Pauli matrices acting on
sites along the x, y, z axes, respectively. Constrained 
by the k-NS symmetry operators, the band struc- 
ture in the Bri l louin RP 

3 space displays the corre-
sponding symmetric relations, as evident from the 
iso-energy contour in Fig. 2 b, and panels c–e of
Fig. 2 depict the specific effects of the k-NS symme-
try operators (see the online supplementarymaterial
for a detailed analysis). Thus, the BZ partition in 
Fig. 1 d is further validated. In addition to the k-
NS reflection symmetries Ma and Pab , H(k) also 
retains the conventional inversion symmetry I = 

Mx My Mz (Fig. 2 f), and the chiral symmetry 
CH(kx , ky , kz ) C† = −H(kx , ky , kz ) . As shown in
Fig. 2 g and throughout Fig. 4 below, the energy 
bands appear in pairs at positive and negative ener- 
gies due to the chiral symmetry C of the system. See
the online supplementary material for the specific 
forms of symmetry operators and their effects on the
Hamiltonian. 

Figure 2 g shows the bulk energy spectrum of 
the open system as the ratio η = γ /λ varies. Note 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf137#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf137#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf137#supplementary-data
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Figure 2. Tight-binding model and the topological properties of the HOTI. (a) The lattice with 2 . 5 × 2 . 5 × 2 . 5 unit cells, featuring k -NS reflection 
symmetry M x . The chessboard π -flux configuration projectively changes the conventional reflection operator Ma into the k -NS one, which anti- 
commutes with the translation symmetries along the other two directions kb and kc . Solid and dashed lines indicate hoppings with positive and 
negative signs, respectively; blue lines and red lines represent intra-cell and inter-cell couplings, respectively. (b) Iso-energy contour at E = 4 for 
γ = 1 and λ = 3 . 3 . Gray contour lines on the kb − kc planes are the projections of the blue contour surface at ka = ±0 . 75 π . (c) The projection of 
the iso-energy contour in (b) at the kx = −0 . 75 π cross section. (d–f) The iso-energy contour modified by k -NS symmetry operators M y , P yz and the 
inversion symmetry operator I , respectively. (g) Bulk energy spectrum for a cubic lattice with isotropic coupling strengths and Nx = Ny = Nz = 10 . 
Corner states are highlighted by red lines. (h) Topological invariants calculated through nested Wilson loops. 

t  

|  

l  

n  

t
m  

u  

s  

a  

o  

N  

p  

S  

c

T
i
F  

l  

s  

p  

i  

a  

t  

t  

s  

t  

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/12/7/nw

af137/8109638 by U
niversity of H

ong Kong user on 08 August 2025
hat this parameter is isotropic in this case. When
 η| < 1 , in-gap modes emerge at zero energy (red
ines), which indicates the presence of octupole cor-
er states. To better understand and characterize
he topological properties of the 3D Bri l louin RP 

3 

odel, a topological invariant of 1/2 can be defined
sing the nested Wilson loop method [47 ,53 ], which
uggests a nontrivial topological phase for | η| < 1
nd a trivial phase for | η| > 1 (see Fig. 2 h and the
nline supplementary material). Because of the k-
S symmetry, the topological invariant can also be
erfectly defined in the reduced BZ (Fig. 3 b–d).
ee the online supplementary material for a detailed
alculation. 

he coexistence of extrinsic and 

ntrinsic HOTI features 
igure 3 a presents the phase diagram of edge po-
arization for the 3D RP 

3 HOTI, characterized by
urface polarizations (Pxy , Pyz , Pxz ) . A sphere in the
arameter space ( ηx , ηy , ηz ) with a radius of 

√ 

3
s divided into two distinct regions, colored blue
nd gray. Here, η represents the ratio of intra-cell
o inter-cell hopping strengths along the respec-
ive directions. The interior of the sphere repre-
ents a topologically nontrivial phase, while the ex-
erior is topologically trivial. By fixing the inter-
Page 4 of 10
cell coupling strengths to λx = λy = λz = 1 and 
performing band-structure calculations for different 
γx , γy , γz , we find that the gap of bulk bands closes
when the sum of the squares of the intra-cell hop- 
ping strengths equals that of the inter-cell hopping 
strengths, 

γ 2 
x + γ 2 

y + γ 2 
z = λ2 

x + λ2 
y + λ2 

z = 3 . (5) 

To demonstrate the coexistence of the extrinsic 
and intrinsic HOTI features, we consider a cylin- 
drical geometry with periodic boundary conditions 
(PBCs) in the x and y directions, and open boundary 
conditions (OBCs) in the z direction, and calculate 
the Wannier values (vxy , vyz , vxz ) and surface po- 
larizations (Pxy , Pyz , Pxz ) by Pab =

∑ Nc / 2 
rc =1 pa,b (rc ) , 

where pa,b (rc ) is the polarization at each site rc (see 
the Methods section below for a detailed calcula- 
tion) [47 ,58 ,59 ]. We select three points from the
parameter space (ηx , ηy , ηz ) : A (0.3, 0.4, 0.5), B
(1.1, 1.1, 0.3) and C (0.3, 0.4, 1.7). Point A be-
longs to the blue phase region, with surface polariza- 
tion (Pxy , Pyz , Pxz ) = (1 / 2 , 1 / 2 , 1 / 2) , indicating a
topologically nontrivial phase (Fig. 3 e). Point B falls 
within the gray phase region, with (Pxy , Pyz , Pxz ) = 

(0 , 1 / 2 , 1 / 2) (Fig. 3 f). The transition from points
A to B suggests that increasing the hopping strengths 
along the periodic directions and crossing the z 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf137#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf137#supplementary-data


Natl Sci Rev, 2025, Vol. 12, nwaf137

Figure 3. Topological properties of the RP 

3 HOTI. (a) Phase diagram of the RP 

3 HOTI. (b–d) The procedure for calculating the topological invariant 
in the reduced BZ involves three rounds of nested Wilson loops along kx , ky , kz , respectively ( γ = 1 ). (e–g) The cylindrical geometry with PBCs in the 
x and y directions, and OBCs in the z direction: Wannier values v j ab (upper panels) and surface polarization Pab (Lc ) (lower panels) in different phase 
diagram regions. Panels (e) and (f) correspond to regions (1 / 2 , 1 / 2 , 1 / 2) and (0 , 1 / 2 , 1 / 2) in the phase diagram, respectively, indicating the SOTP 
transition. Panel (g) corresponds to the region (0 , 0 , 0) , indicating the SPTP transition together with (e). 
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inges at | ηx | = | ηy | = 1 leads to surface gap clo-
ure, resulting in the SOTP transition. Panels e–g
f Fig. 3 collectively i l lustrate the SPTP transition:
oint C lies outside the 

√ 

3 sphere and is classified
s intrinsically topologically trivial (Fig. 3 g). Thus,
ransitioning from point A to point C results in bulk
ap closure and induces the SPTP transition. 
We further confirm that edge polarization phase

ransitions can occur through either bulk or edge
ap closures: varying the hopping strengths along
he periodic directions results in an edge gap clo-
ure, whereas tuning them along the open direction
eads to bulk gap closure. With OBCs in the z direc-
ion and PBCs in the x and y directions, both surface
tates (blue lines, in the y − z plane) and bulk states
gray lines) coexist, as shown in Fig. 4 a. Simultane-
us changes in hopping strengths along the two peri-
dic directions induce phase transitions; specifically,
ransitioning from the gray region to the blue region
cross the hinge at | ηy | = | ηz | = 1 results in the clo-
ure of the surface band gap (Fig. 4 b), and the surface
tates near zero energy vanish when the gap reopens
Fig. 4 c). However, adjusting the hopping strengths
long the open direction leads to bulk gap closure
Page 5 of 10
and an edge phase transition (Fig. 4 d–f), resulting 
in the disappearance of surface states. The bulk band 
closure induces an SPTP transition, as described in 
Equation ( 2 ), a hallmark of the intrinsic HOTI. 

Moreover, these insights into the phase transi- 
tions under mixed boundary conditions can be ex- 
tended to the fully open system. Specifically, crossing 
the point (ηx , ηy , ηz ) = (±1 , ±1 , ±1) from the
interior to the exterior of the sphere leads to the dis-
appearance of the corner states (Fig. 4 g–i). 

Implementation of the RP 

3 topological 
circuit 
The TB model in the quantum electronic system 

can be directly implemented in the electric circuit by 
mapping the TB Hamiltonian in Equation ( 4 ) onto
the circuit Laplacian. We realize the Z2 gauge con- 
nections in circuits by utilizing the opposite phases 
of the admittance in capacitors and inductors. Two 
pairs of capacitors and inductors (C1 , L1 ) and (C2 = 

λC1 , L1 = λL2 ) are employed as the intra-cell and 
inter-cell couplings in the circuit, respectively, as 
shown in Fig. 3 a. Note that the boundary circuit



Natl Sci Rev, 2025, Vol. 12, nwaf137

(1/2, 1/2, 1/2) (0, 1/2, 1/2)

(0, 0, 0)

a

(1/2, 1/2, 1/2)

Phase transition point

b c

d e f

(1/2, 1/2, 1/2) (0, 0, 0)

Phase transition point

SOTP

SPTP

g h i

ГГ X M

3

E

-3

ηx=0.90, ηy=0.90, ηz=0.30

ГГ X M ГГ X M

ηx=1.00, ηy=1.00, ηz=0.30 ηx=1.10, ηy=1.10, ηz=0.30

ηx=0.60, ηy=0.30, ηz=0.80 ηx=0.60, ηy=0.30, ηz=1.60 ηx=0.60, ηy=0.30, ηz=1.80

3

E

-3

ГГ X M ГГ X M ГГ X M

3

E

-3

3

E

-3

ηx=0.30, ηy=0.20, ηz=0.50

Mode index1 8000

y

1
5 10 15 20

z

1

5

10

15

20

1
5

10
15

20
x

Mode index1 8000

ηx=0.30, ηy=1.80, ηz=1.50

Figure 4. Intrinsic and extrinsic HOTI features of the RP 

3 HOTI. (a–c) SOTP transition induced by surface gap closure under 
PBCs in the x and y directions, and OBCs in the z direction. (d–f) SPTP transition induced by bulk gap closure under the same 
boundary conditions. (g–i) Phase transition induced by corner gap closure under full OBCs. The appearance of eight corner 
modes under full OBCs is shown in (h). 
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odes should be grounded with additional capaci-
ors and inductors to maintain the same resonant
requency as the bulk nodes, ω0 = 1 /

√ 

L1 C1 =
 /
√ 

L2 C2 (see the online supplementary material).
n this work, we specify C1 = 1 nF , C2 = 3 . 3 nF ,
1 = 3 . 3 μH , L2 = 1 μH . 
According to Kirchhoff’s current law, we can

erive the circuit Laplacian that characterizes the
ehavior of the circuit as J (ω) = iωC − i/ωW,
here C and W are the matrices of capacitance
nd inverse inductance, respectively. Note that, as
he admittance of the capacitor and inductor can-
el at ω0 , the diagonal terms of J (ω) vanish at ω0 .
onsequently, J (ω0 ) takes exactly the form of the
amiltonian of the quantum electronic system in
quation ( 4 ), up to a scaling factor of i

√ 

C1 /L1 .
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One can obtain the eigenfrequencies of the circuit 
by using the dynamical matrix D = C−1 / 2 WC−1 / 2 

[16 ,60 ]. 
To experimentally demonstrate the octupole cor- 

ner state induced by the 3D Bri l louin RP 

3 model,
we fabricated a 3D circuit with 2 . 5 × 2 . 5 × 2 . 5
unit cells by connecting five layers of printed circuit 
boards via copper wires (Fig. 5 a). Low dc resistance 
inductors with a maximum tolerance of 5% were se- 
lected for the experiment to improve the quality fac- 
tor of the circuit while maintaining sufficient preci- 
sion. In the eigenvalue spectrum of the circuit Lapla- 
cian (Fig. 5 b), the frequencies satisfying J (ω) = 0
represent the eigenfrequencies of the circuit system, 
as indicated by the intersections of the eigenvalue 
spectrum with the gray dashed line. This can be 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf137#supplementary-data
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bserved from the eigenfrequencies of the finite cir-
uit in Fig. 5 c, where an in-gap mode at the resonant
requency ω0 = 2 . 77MHz signifies the presence of
he octupole corner state. It has been suggested that
he eigenstates of the circuit can be accessed by mea-
uring the self-impedance across all circuit nodes at
0 , which is proportional to the square of the eigen-
tates in the TB Hamiltonian [61 ]. In the exper-
ment, we obtained the self-impedance spectra by
easuring the circuit’s scattering parameters using

 vector network analyzer (Tektronix TTR506A).
s depicted in the upper panel of Fig. 5 d and e, the
elf-impedance spectra obtained at all circuit nodes
upper panel) exhibit high consistency between the-
retical and experimental results. The spectrum
easured at the corner node reveals a prominent
eak at 2.77 MHz (red curve), signifying the pres-
nce of the topological corner state. This is further
alidated by the impedance distribution at the cor-
er mode frequency of 2.77 MHz across all circuit
odes, as shown in the lower panel of Fig. 5 d and
. Note that, due to the configuration with a half-
Page 7 of 10
integer number of unit cel ls in al l three dimensions,
the current circuit supports only one corner state, 
with an impedance peak localized at a single cor-
ner (Fig. 5 d and e). Additionally, the corner state is
equally localized in all spatial directions. The appar- 
ent localization in the z direction in the figure is sim-
ply for i l lustration, as the states are shown as slices
along the z axis. The results of the 3D RP 

3 topo-
logical circuit with an integer number of unit cells
are given in the online supplementary material. We 
also verify the phase transitions among the bulk, sur-
face, hinge and corner states of our 3D HOTI in the
circuit system by calculating the band structure and 
eigenstates of the circuit in both fully open and semi- 
open scenarios, which align with the results from the
electronic system shown in Fig. 4 (see the online
supplementary material). 

CONCLUSIONS 

In conclusion, we experimentally demonstrate a 
novel octupole topological insulating phase induced 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf137#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf137#supplementary-data
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y the 3D real projective space RP 

3 in momen-
um space. A π -flux chessboard pattern enforced
y the k-NS symmetries under the Z2 gauge field
s shown to give rise to the unconventional fea-
ures of the 3D RP 

3 HOTI, distinguishing it from
he first HOTI with all plaquettes enclosed by a
-flux [28 ,53 ]. Note that the current method for
mplementing the Z2 gauge field in electrical cir-
uits with inductors and capacitors allows the direct
apping of the Hamiltonian in the quantum elec-
ronic system only at the resonant frequency. This
revents us from measuring the eigenstates of the
ther modes (e.g. surface and hinge states). Alterna-
ive approaches for realizing the negative coupling
nclude the use of negative capacitors with nega-
ive impedance convertor [62 ], or employing a pair
f circuit nodes with twist connection [63 ]. Both
ethods enable access to all eigenstates. 

ETHODS 

opological invariant calculated in the 

educed BZ 

s shown in Fig. 3 b–d, the topological invariant
f the RP 

3 HOTI model can be effectively calcu-
ated in the reduced BZ, where kx ∈ (−π, 0) , ky ∈
−0 . 5 π, 0 . 5 π ) , kz ∈ (−0 . 5 π, 0 . 5 π ) . Under the
onstraints of the k-NS reflection symmetries, the
igenstates used to calculate the first-round nested
ilson loop will be modified as 

| un k 〉Mx = Mx | un k 〉 . (6)

imilarly, the recombined eigenstates |w+ , j 
x, k 〉 =

 Nocc 
n =1 |un k 〉 [v+ , j 

x, k ]
n used to calculated the second-

ound nested Wilson loop wi l l be modified as

|w+ , j 
x, k 〉 My 

= My 

Nocc ∑ 

n =1 

|un k 〉 [v+ , j 
x, k ]

n , (7)

nd the line elements of the third-round nested Wil-
on loop wi l l be modified as 

|w+x ,+y 
y, k 〉 Mz 

= Mz 

Nocc ∑ 

n =1 

|u±,n 
x, k 〉 [η+x , ±

y, k ]n . (8)

hus, by repeating the nested Wilson loop calcu-
ation steps in the online supplementary material,
hile restricting the integration range to the reduced
Z, we can obtain the results of nested Wilson loops.
y comparing Fig. 2 h and Fig. 3 d, we confirm that
he reduced BZ can be effectively used to calculate
he topological invariant of the RP 

3 HOTI. 
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Edge polarizations 
To calculate surface polarization of the RP 

3 HOTI 
and confirm the coexistence of SOTPs and SPTPs 
[45 ,47 ,59 ], a z -open cylinder geometry with Nx ×
Ny × Nz sites is considered. The surface polarization 
Pxy can be obtained by the following methods. 

1. Treat the z -open cylinder as a wide pseudo-2D 

structure by absorbing the labels rz ∈ 1 , . . . , Nz 
into the supercell lattice degrees of freedom, 
since there is no crystal momenta kz . 

2. Solve the eigenvectors | u 〉 n kx ,ky of the pseudo-2D 

k-space Hamiltonian, and first perform the Wil- 
son loop Wx along kx to obtain its eigenstates 
| v〉 j x,ky . 

3. Construct the Wannier states |v+ , j 
y,kx ,ky 〉 = ∑ Nocc 

n =1 |un kx ,ky 〉 [v
+ , j 
x,ky ]

n and use them to calculate 
the nested Wilson loop ˜ W+ x 

y along ky (see the 
online supplementary material). This allows us 
to obtain the eigenstates | η〉 n kx ,ky . We can now 

calculate the density of the hybrid Wannier 
function using the equation 

ρ j (rz ) = 1 
Nx Ny 

∑ 

kx ,ky ,α

∣∣∣∣ ∑ 

n 

[ vn 
kx ,ky ]

rz ,α[ η j 
kx ,ky ]

n 
∣∣∣∣
2 

, 

(9) 
where [ vn 

kx ,ky ]rz ,α is the corresponding compo- 

nent of the n th Wannier state, and [ η j 
kx ,ky ]

n is 
the n th component of the jth eigenstate | η〉 n kx ,ky . 
The polarization at each site rz is given by 

px,y (rz ) =
∑ 

j 

ρ j (rz ) η j 
x,y . (10) 

4. Finally, calculate the surface polarization by 
summing px,y (rz ) over half of the system along 
z : 

psurface x,y =
Nz / 2 ∑ 

rz =1 

px,y (rz ) . (11) 

Simulation and experiment 
The Agilent Design System software is employed for 
the numerical simulation of a circuit of 5 × 5 × 5 
unit cells, using the exact values of the components 
in the fabricated sample. The sample consists of five 
layers of PBCs, with each adjacent layer connected 
by high-temperature Teflon wires. To minimize ex- 
perimental deviations, the maximal tolerance for cir- 
cuit components is capped at 5% , and inductors are 
selected with minimal direct current resistance. 

The eigenstate of the circuit system can be ac- 
cessed through the self-impedance of each circuit 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf137#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf137#supplementary-data
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ode [61 ], as demonstrated below. According to
irchhoff ’s circuit laws in the frequency domain,
igenstate V and eigenfrequencies ω of the cir-
uit can be obtained by solving the eigenvalue
roblem 

HJ V = λV, (12)

here HJ takes exactly the form of the Hamilto-
ian of the TB model, with eigenvalue λ = (Wt −
2 Ct ) / (ω2 C) . The self-impedance of each circuit
ode is defined as 

Zaa (ω) = 

Va 
Ia 

= 1 
iωC 

(
1 

HJ − λ

)
aa 

= 

1 
iωC 

∑ 

n 

| V a 
n |2 

λn − λ
. (13)

Equation ( 13 ) indicates that, when λ equals the
 th mode of HJ , the denominator becomes zero, re-
ulting in divergences of the expression. For exam-
le, the impedance spectrum measured at the corner
odes is expected to show a prominent peak at the
orresponding frequency, indicating the presence of
he corner state. This suggests that Zaa (ω) scanned
cross all circuit nodes at the n th eigenfrequency ωn 
epresents the squared magnitudes | Vn |2 of the eigen-
tates associated with the n th mode of HJ up to a scal-
ng factor of 1 /iωC. 
In the circuit experiment, we employed the vector

etwork analyzer (Tektronix TTR506A) to measure
he S11 parameters of each node. The reflection coef-
cient S11 of the circuit can be transformed into the
elf-impedance using the formula 

Z11 = Z0 
1 + S11 
1 − S11 

, (14)

here Z0 represents the characteristic impedance. 

UPPLEMENTARY DATA 

upplementary data are available at NSR online. 

CKNOWLEDGEMENTS 

he authors thank Professor Shaojie Ma for fruitful discussions
nd Ruiwen Shao for experimental support. 

UNDING 

he authors acknowledge funding from the National Key Re-
earch and Development Program of China (2022YFA1404903
nd 2023YFB3811504), the National Natural Science Foun-
ation of China (U22A2001, 62201136, 62288101 and
Page 9 of 10
61905101), the start-up Research Fund of Southeast Univer- 
sity (RF1028623117) and the Natural Science Foundation of 
Shanghai (24ZR1453200). 

Conflict of interest statement. None declared. 

REFERENCES 

1. Franca S, van den Brink J, Fulga IC. An anomalous higher-order
topological insulator. Phys Rev B 2018; 98 : 201114. 

2. Xie BY, Wang HF, Wang HX et al. Second-order photonic topo-
logical insulator with corner states. Phys Rev B 2018; 98 : 
205147. 

3. Lumer Y, Plotnik Y, Rechtsman MC et al. Self-localized states 
in photonic topological insulators. Phys Rev Lett 2013; 111 : 
243905. 

4. Gao W, Lawrence M, Yang B et al. Topological photonic phase
in chiral hyperbolic metamaterials. Phys Rev Lett 2015; 114 : 
037402. 

5. Noh J, Huang S, Chen KP et al. Observation of photonic topolog-
ical valley Hall edge states. Phys Rev Lett 2018; 120 : 063902. 

6. Yang Z, Gao F, Shi X et al. Topological acoustics. Phys Rev Lett
2015; 114 : 114301. 

7. Xia BZ, Liu TT, Huang GL et al. Topological phononic insulator
with robust pseudospin-dependent transport. Phys Rev B 2017; 
96 : 094106. 

8. Deng Y, Ge H, Tian Y et al. Observation of zone folding induced
acoustic topological insulators and the role of spin-mixing de- 
fects. Phys Rev B 2017; 96 : 184305. 

9. Xue H, Yang Y, Liu G et al. Realization of an acoustic third-order
topological insulator. Phys Rev Lett 2019; 122 : 244301. 

10. Qi Y, Qiu C, Xiao M et al. Acoustic realization of quadrupole
topological insulators. Phys Rev Lett 2020; 124 : 206601. 

11. Rocklin DZ, Chen BGG, Falk M et al. Mechanical Weyl modes in
topological Maxwell lattices. Phys Rev Lett 2016; 116 : 135503. 

12. Chen H, Yao L, Nassar H et al. Mechanical quantum Hall effect
in time-modulated elastic materials. Phys Rev Appl 2019; 11 : 
044029. 

13. Yu R, Zhao YX, Schnyder AP. 4D spinless topological insulator
in a periodic electric circuit. Natl Sci Rev 2020; 7 : 1288–95. 

14. Li R, Lv B, Tao H et al. Ideal type-II Weyl points in topological
circuits. Natl Sci Rev 2021; 8 : nwaa192. 

15. Ezawa M. Higher-order topological electric circuits and topolog- 
ical corner resonance on the breathing kagome and pyrochlore 
lattices. Phys Rev B 2018; 98 : 201402. 

16. Imhof S, Berger C, Bayer F et al. Topolectrical-circuit realization
of topological corner modes. Nat Phys 2018; 14 : 925–9. 

17. Ezawa M. Non-Hermitian boundary and interface states in non- 
reciprocal higher-order topological metals and electrical cir- 
cuits. Phys Rev B 2019; 99 : 121411. 

18. Hofmann T, Helbig T, Schindler F et al. Reciprocal skin effect
and its realization in a topolectrical circuit. Phys Rev Res 2020; 
2 : 023265. 

19. Li CA, Fu B, Hu ZA et al. Topological phase transitions in disor-
dered electric quadrupole insulators. Phys Rev Lett 2020; 125 : 
166801. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf137#supplementary-data
http://dx.doi.org/10.1103/PhysRevB.98.201114
http://dx.doi.org/10.1103/PhysRevB.98.205147
http://dx.doi.org/10.1103/PhysRevLett.111.243905
http://dx.doi.org/10.1103/PhysRevLett.114.037402
http://dx.doi.org/10.1103/PhysRevLett.120.063902
http://dx.doi.org/10.1103/PhysRevLett.114.114301
http://dx.doi.org/10.1103/PhysRevB.96.094106
http://dx.doi.org/10.1103/PhysRevB.96.184305
http://dx.doi.org/10.1103/PhysRevLett.122.244301
http://dx.doi.org/10.1103/PhysRevLett.124.206601
http://dx.doi.org/10.1103/PhysRevLett.116.135503
http://dx.doi.org/10.1103/PhysRevApplied.11.044029
http://dx.doi.org/10.1093/nsr/nwaa065
http://dx.doi.org/10.1093/nsr/nwaa192
http://dx.doi.org/10.1103/PhysRevB.98.201402
http://dx.doi.org/10.1038/s41567-018-0246-1
http://dx.doi.org/10.1103/PhysRevB.99.121411
http://dx.doi.org/10.1103/PhysRevResearch.2.023265
http://dx.doi.org/10.1103/PhysRevLett.125.166801


Natl Sci Rev, 2025, Vol. 12, nwaf137

2 -order topolog- 

2 ur-dimensional 

2 avior in a one- 

2 sulating phase 
4047. 

2 ate nucleation 
circuits. arXiv: 

2 perbolic space 

2 rs in quasicrys- 

2 tor with topo- 
01. 

2 ensional topo- 

2 ed microwave 
. Nature 2018; 

3 bulk defects in 

3 er topology in 

3 . Phys Rev Lett

3 xion insulator 

3 l lattices on a 

3 perconductors. 

3 gical quantum 

3 rotected topo- 
; 90 : 205136. 

3  non-Hermitian 

3 r obstructions. 

4 etry protected 

4 nd novel topo- 

4 stalline insula- 
20. 

4 y and topology 

4 l gauge fields. 

4 tors and Dirac 

4 tive symmetry. 

4 ia momentum- 
3801. 

4 nd topological 
 

4 f-turn space in 

5 cal insulator in 
107. 

5  insulators and 
ev B 2018; 97 : 

5 ed topological 

5 ltipole insula- 

5  of anomalous 
. Nat Commun

5 e nonsymmor- 

5 . Nature 2016; 

5 metries. Phys

5 ents, topologi- 
line insulators. 

5 ed topological 

6  state in two- 
9 : 8609875. 

6 y hidden sym- 

6 C Press, 2009. 
6 rom projective 

©
C
w

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/12/7/nw

af137/8109638 by U
niversity of H

ong Kong user on 08 August 20
0. Zhang W, Zou D, Pei Q et al. Experimental observation of higher
ical Anderson insulators. Phys Rev Lett 2021; 126 : 146802. 

1. Wang Y, Price HM, Zhang B et al. Circuit implementation of a fo
topological insulator. Nat Commun 2020; 11 : 2356. 

2. Liu S, Ma S, Shao R et al. Edge state mimicking topological beh
dimensional electrical circuit. New J Phys 2021; 23 : 103005. 

3. Liu S, Ma S, Yang C et al. Gain- and loss-induced topological in
in a non-Hermitian electrical circuit. Phys Rev Appl 2020; 13 : 01

4. Stegmaier A, Fritzsche A, Sorbello R et al. Topological edge st
in frequency space and its realization with Floquet electrical 
2407.10191. 

5. Lenggenhager PM, Stegmaier A, Upreti LK et al. Simulating hy
on a circuit board. Nat Commun 2022; 13 : 4373. 

6. Chen R, Chen CZ, Gao JH et al. Higher-order topological insulato
tals. Phys Rev Lett 2020; 124 : 036803. 

7. Fan H, Xia B, Tong L et al. Elastic higher-order topological insula
logically protected corner states. Phys Rev Lett 2019; 122 : 2043

8. Liu S, Ma S, Zhang Q et al. Octupole corner state in a three-dim
logical circuit. Light: Sci Appl 2020; 9 : 145. 

9. Peterson CW, Benalcazar WA, Hughes TL et al. A quantiz
quadrupole insulator with topologically protected corner states
555 : 346–50. 

0. Peterson CW, Li T, Jiang W et al. Trapped fractional charges at 
topological insulators. Nature 2021; 589 : 376–80. 

1. Zhang RX, Wu F, Das Sarma S. Möbius insulator and higher-ord
MnBi 2 n Te 3 n +1 . Phys Rev Lett 2020; 124 : 136407. 

2. Wang HX, Lin ZK, Jiang B et al. Higher-order Weyl semimetals
2020; 125 : 146401. 

3. Xu Y, Song Z, Wang Z et al. Higher-order topology of the a
EuIn2 As2 . Phys Rev Lett 2019; 122 : 256402. 

4. Koh JM, Tai T, Lee CH. Realization of higher-order topologica
quantum computer. Nat Commun 2024; 15 : 5807. 

5. Shiozaki K and Sato M. Topology of crystalline insulators and su
Phys Rev B 2014; 90 : 165114. 

6. Chiu CK, Teo JCY, Schnyder AP et al. Classification of topolo
matter with symmetries. Rev Mod Phys 2016; 88 : 035005. 

7. Chiu CK and Schnyder AP. Classification of reflection-symmetry-p
logical semimetals and nodal superconductors. Phys Rev B 2014

8. Kawabata K, Shiozaki K, Ueda M et al. Symmetry and topology in
physics. Phys Rev X 2019; 9 : 041015. 

9. Po HC, Watanabe H, Vishwanath A. Fragile topology and Wannie
Phys Rev Lett 2018; 121 : 126402. 

0. Zhao YX, Huang YX, Yang SA. Z2 -projective translational symm
topological phases. Phys Rev B 2020; 102 : 161117. 

1. Shao LB, Liu Q, Xiao R et al. Gauge-field extended k · pmethod a
logical phases. Phys Rev Lett 2021; 127 : 076401. 
The Author(s) 2025. Published by Oxford University Press on behalf of China Science Publish
ommons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permit
ork is properly cited. 

Page 10 o

2

2. Shiozaki K, Sato M, Gomi K. Z2 topology in nonsymmorphic cry
tors: Möbius twist in surface states. Phys Rev B 2015; 91 : 1551

3. Xue H, Wang Z, Huang YX et al. Projectively enriched symmetr
in acoustic crystals. Phys Rev Lett 2022; 128 : 116802. 

4. Chen ZY, Yang SA, Zhao YX. Brillouin Klein bottle from artificia
Nat Commun 2022; 13 : 2215. 

5. Li CA, Sun J, Zhang SB et al. Klein-bottle quadrupole insula
semimetals. Phys Rev B 2023; 108 : 235412. 

6. Li T, Du J, Zhang Q et al. Acoustic Möbius insulators from projec
Phys Rev Lett 2022; 128 : 116803. 

7. Hu J, Zhuang S, Yang Y. Higher-order topological insulators v
space nonsymmorphic symmetries. Phys Rev Lett 2023; 132 : 21

8. Shang C, Liu S, Jiang C et al. Observation of a higher-order e
insulator in a real projective lattice. Adv Sci 2024; 11 : 2303222.

9. Zhenxiao Z, Linyun Y, Jien W et al. Brillouin Klein space and hal
three-dimensional acoustic crystals. Sci Bull 2024; 69 : 2050–8. 

0. Tao YL, Yan M, Peng M et al. Higher-order Klein bottle topologi
three-dimensional acoustic crystals. Phys Rev B 2024; 109 : 134

1. Geier M, Trifunovic L, Hoskam M et al. Second-order topological
superconductors with an order-two crystalline symmetry. Phys R
205135. 

2. Khalaf E, Benalcazar WA, Hughes TL et al. Boundary-obstruct
phases. Phys Rev Res 2021; 3 : 013239. 

3. Benalcazar WA, Bernevig BA, Hughes TL. Quantized electric mu
tors. Science 2017; 357 : 61–6. 

4. Zhang X, Lin ZK, Wang HX et al. Symmetry-protected hierarchy
multipole topological band gaps in nonsymmorphic metacrystals
2020; 11 : 65. 

5. Wieder BJ, Bradlyn B, Wang Z et al. Wallpaper fermions and th
phic Dirac insulator. Science 2018; 361 : 246–51. 

6. Wang Z, Alexandradinata A, Cava RJ et al. Hourglass fermions
532 : 189–94. 

7. Yang Y, Po HC, Liu V et al. Non-Abelian nonsymmorphic chiral sym
Rev B 2022; 106 : L161108. 

8. Benalcazar WA, Bernevig BA, Hughes TL. Electric multipole mom
cal multipole moment pumping, and chiral hinge states in crystal
Phys Rev B 2017; 96 : 245115. 

9. Du J, Li T, Fan X et al. Acoustic realization of surface-obstruct
insulators. Phys Rev Lett 2022; 128 : 224301. 

0. Shuo L, Wenlong G, Qian Z et al. Topologically protected edge
dimensional Su–Schrieffer–Heeger circuit. Research 2019; 201

1. Röntgen M, Chen X, Gao W et al. Topological states protected b
metry. Phys Rev B 2024; 110 : 035106. 

2. Chen WK. The Circuits and Filters Handbook . Boca Raton, FL: CR
3. Shao L, Chen Z, Wang K et al. Spinless mirror chern insulator f
symmetry algebra. Phys Rev B 2023; 108 : 205126. 
ing & Media Ltd. This is an Open Access article distributed under the terms of the Creative 
s unrestricted reuse, distribution, and reproduction in any medium, provided the original 

f 10

5

http://dx.doi.org/10.1103/PhysRevLett.126.146802
http://dx.doi.org/10.1038/s41467-020-15940-3
http://dx.doi.org/10.1088/1367-2630/ac2755
http://dx.doi.org/10.1103/PhysRevApplied.13.014047
http://dx.doi.org/10.1038/s41467-022-32042-4
http://dx.doi.org/10.1103/PhysRevLett.124.036803
http://dx.doi.org/10.1103/PhysRevLett.122.204301
http://dx.doi.org/10.1038/s41377-020-00381-w
http://dx.doi.org/10.1038/nature25777
http://dx.doi.org/10.1038/s41586-020-03117-3
http://dx.doi.org/10.1103/PhysRevLett.124.136407
http://dx.doi.org/10.1103/PhysRevLett.125.146401
http://dx.doi.org/10.1103/PhysRevLett.122.256402
http://dx.doi.org/10.1038/s41467-024-49648-5
http://dx.doi.org/10.1103/PhysRevB.90.165114
http://dx.doi.org/10.1103/RevModPhys.88.035005
http://dx.doi.org/10.1103/PhysRevB.90.205136
http://dx.doi.org/10.1103/PhysRevX.9.041015
http://dx.doi.org/10.1103/PhysRevLett.121.126402
http://dx.doi.org/10.1103/PhysRevB.102.161117
http://dx.doi.org/10.1103/PhysRevLett.127.076401
http://dx.doi.org/10.1103/PhysRevB.91.155120
http://dx.doi.org/10.1103/PhysRevLett.128.116802
http://dx.doi.org/10.1038/s41467-022-29953-7
http://dx.doi.org/10.1103/PhysRevB.108.235412
http://dx.doi.org/10.1103/PhysRevLett.128.116803
http://dx.doi.org/10.1103/PhysRevLett.132.213801
http://dx.doi.org/10.1002/advs.202303222
http://dx.doi.org/10.1016/j.scib.2024.05.003
http://dx.doi.org/10.1103/PhysRevB.109.134107
http://dx.doi.org/10.1103/PhysRevB.97.205135
http://dx.doi.org/10.1103/PhysRevResearch.3.013239
http://dx.doi.org/10.1126/science.aah6442
http://dx.doi.org/10.1038/s41467-019-13861-4
http://dx.doi.org/10.1126/science.aan2802
http://dx.doi.org/10.1038/nature17410
http://dx.doi.org/10.1103/PhysRevB.106.L161108
http://dx.doi.org/10.1103/PhysRevB.96.245115
http://dx.doi.org/10.1103/PhysRevLett.128.224301
http://dx.doi.org/10.1103/PhysRevB.110.035106
http://dx.doi.org/10.1103/PhysRevB.108.205126
https://creativecommons.org/licenses/by/4.0/

	INTRODUCTION
	RESULTS
	Brillouin real projective space
	Tight-binding model implementation
	The coexistence of extrinsic and intrinsic HOTI features
	Implementation of the topological circuit

	CONCLUSIONS
	METHODS
	Topological invariant calculated in the reduced BZ
	Edge polarizations
	Simulation and experiment

	SUPPLEMENTARY DATA
	ACKNOWLEDGEMENTS
	FUNDING
	REFERENCES

