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A framework for detecting causal effects of risk factors at an
individual level based on principles of Mendelian
randomisation: applications to modelling individualised
effects of lipids on coronary artery disease
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Summary

Background Mendelian Randomisation (MR) has been widely used to study the causal effects of risk factors. However,
almost all MR studies concentrate on the population’s average causal effects. With the advent of precision medicine,
the individualised treatment effect (ITE) is often of greater interest. For instance, certain risk factors may pose a
higher risk to some individuals than others, and the benefits of treatments may vary across individuals. This study
proposes a framework for estimating individualised causal effects in large-scale observational studies where
unobserved confounding factors may be present.

Methods We propose a framework (MR-ITE) that expands the scope of MR from estimating average causal effects to
individualised causal effects. We present several approaches for estimating ITEs within this MR framework, primarily
grounded on the principles of the “R-learner”. To evaluate the presence of causal effect heterogeneity, we also
proposed two permutation testing methods. We employed polygenic risk score (PRS) as instruments and proposed
methods to improve the accuracy of ITE estimates by removal of potentially pleiotropic single nucleotide poly-
morphisms (SNPs). The validity of our approach was substantiated through comprehensive simulations. The pro-
posed framework also allows the identification of important effect modifiers contributing to individualised
differences in treatment effects. We applied our framework to study the individualised causal effects of various lipid
traits, including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C),
triglycerides (TG), and total cholesterol (TC), on the risk of coronary artery disease (CAD) based on the UK-
Biobank (UKBB). We also studied the ITE of C-reactive protein (CRP) and insulin-like growth factor 1 (IGF-1) on
CAD as secondary analyses.

Findings Simulation studies demonstrated that MR-ITE outperformed traditional causal forest approaches in
identifying ITEs when unobserved confounders were present. The integration of the contamination mixture
(ConMix) approach to remove invalid pleiotropic SNPs further enhanced MR-ITE’s performance. In real-world
applications, we identified positive causal associations between CAD and several factors (LDL-C, Total Cholesterol,
and IGF-1 levels). Our permutation tests revealed significant heterogeneity in these causal associations across
individuals. Using Shapley value analysis, we identified the top effect modifiers contributing to this heterogeneity.

Interpretation We introduced a new framework, MR-ITE, capable of inferring individualised causal effects in
observational studies based on the MR approach, utilizing PRS as instruments. MR-ITE extends the application of
MR from estimating the average treatment effect to individualised treatment effects. Our real-world application of
MR-ITE underscores the importance of identifying ITEs in the context of precision medicine.
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Research in context

Evidence before this study

Traditionally, epidemiologists have primarily focused on
studying the average causal effect of interventions in
populations, often overlooking the significance of population
heterogeneity. However, mounting evidence suggests that
treatment effects often vary among individuals, with the
same intervention yielding different benefits across
subpopulations. For example, metformin has been shown to
have varying effects on diabetes mellitus (DM) among
patients with impaired glucose metabolism. These findings
underscore the importance of estimating individualised
treatment effects (ITEs) for advancing precision medicine.
There were limited methods available to infer ITEs in large-
scale observational studies that account for both observed
and unobserved confounding factors. In addition, no previous
studies have integrated ITE estimation with Mendelian
randomisation (MR) principles with real-world clinical
applications.

Added value of this study

We developed MR-ITE, a framework that leverages Mendelian
Randomisation with polygenic risk score (PRS) as instruments
to infer individualised causal effects in observational studies.
We also proposed employing a contamination mixture

Introduction

The rising incidence and mortality rates of chronic
diseases have imposed a significant burden on
numerous countries over the past decades.! Conse-
quently, identifying potential causal risk factors and
designing appropriate interventions have emerged as
top priorities. In the past, epidemiologists focused pri-
marily on studying the average causal effect of in-
terventions in the population, thereby overlooking the
importance of population heterogeneity. The presence
of heterogeneity suggests that individuals may derive
varying benefits from the same intervention. For
instance, a randomized controlled trial (RCT) demon-
strated that metformin could have a heterogeneous
impact on diabetes mellitus (DM) prevention among
patients with impaired glucose metabolism?’; patients at
a higher risk of diabetes might experience a more sub-
stantial absolute risk reduction than those at lower risk.

approach to exclude potentially pleiotropic single nucleotide
polymorphisms (SNPs) before PRS calculation. We developed
two permutation tests to rigorously evaluate the presence of
effect heterogeneity within MR-ITE. Additionally, we
proposed the use of Shapley value (SHapley Additive
exPlanations) analysis to identify key effect modifiers
contributing to this heterogeneity. These innovations make
MR-ITE a powerful tool for uncovering treatment effect
heterogeneity and the underlying mechanisms. The proposed
approach may also have the potential to inform the design of
personalized combination therapies to optimize clinical
outcomes.

Implications of all the available evidence

This study presents a framework for estimating individualised
treatment effects leveraging MR, offering a new avenue for
exploring the causal influence of specific risk factors on
disease outcomes in large-scale observational datasets.
Crucially, this approach accommodates both observed and
unobserved confounders, advancing the limitation of existing
ITE estimation approaches. By facilitating a more precise
understanding of treatment effect variability, MR-ITE could
significantly contribute to the development of personalized
therapies, ultimately improving patient outcomes.

This study underscores the importance of estimating
individualised treatment effects (ITEs). To optimize
intervention efficiency across the population and mini-
mize costs, it is important to estimate the potential
benefit a specific patient may gain from an intervention
(or risk factor prevention). In this study, we aimed to
estimate the individualised causal treatment effect of a
given intervention to individual patients, leveraging the
principles of Mendelian randomisation (MR).

We wish to highlight that our work is different from
conventional statistical/machine learning (ML) predic-
tion models, which are focused on predicting a clinical
phenotype/outcome based on covariates. Our work, on
the other hand, is designed for estimating/predicting the
causal and individualised treatment effect. Briefly, we ask
the following question: how would the outcome change
if a person receives the treatment (or exposed to a risk
factor), vs. the case that the person does not receive it?
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This is also known as a ‘counterfactual’ argument. Our
work falls under the “causal ML” area, as opposed to
conventional ML models, as reviewed elsewhere.*

It is widely accepted that the most accurate approach to
estimate the causal effect is via an RCT, in which both
known and unknown confounding factors can be
controlled for by treatment randomisation.” However,
RCTs are often prohibitively expensive, limited by ethical
considerations or logistical constraints, and may lack
generalizability due to strict inclusion/exclusion criteria.*”
Consequently, researchers frequently resort to observa-
tional studies to estimate causal effects. Unlike RCTs, a
major concern with observational studies is that unmea-
sured confounding may influence causal inference. Men-
delian Randomisation (MR) serves as a valuable approach
to mitigate the risk of unmeasured confounding and is
largely immune to reverse causality. In MR, genetic vari-
ants are utilized as instruments to represent the exposure.®

Following years of development and innovation, a
variety of statistical methods have been established for
MR analyses, including the Wald ratio method, two-
stage least squares, MR-IVW, MR-Egger, weighted
median etc.” Although these methods are robust and
flexible, they still have limitations. An important one is
that they can only estimate an average causal effect
without considering the heterogeneity of the population,
and there is a lack of innovations regarding the esti-
mation of individualised treatment (or risk factor) effects.

Our main contribution is the introduction of a
framework, MR-ITE, capable of inferring individualised
causal effects in observational studies based on the MR
approach, utilizing the polygenic risk score (PRS) as an
instrument. We proposed several ITE estimation
methodologies within the MR framework, grounded on
the principles of “R-learners”.'” These methods offer
high flexibility as they leverage supervised machine
learning (ML) approaches for modelling, imposing
virtually no restrictions on the type of ML models
employed. Our other contributions to the MR-ITE
framework include: (1) To mitigate the risks of bias
from invalid instruments, we proposed the use of the
contamination mixture approach to eliminate potential
pleiotropic single nucleotide polymorphisms (SNPs)
prior to calculating the PRS'"; (2) we presented
permutation-based approaches to test for the presence
of heterogeneity under MR-ITE; (3) we proposed
methods to identify important effect modifiers contrib-
uting to effect heterogeneity, for instance by employing
Shapley values. The identification of potential bio-
markers modulating the effect of exposures is important
as it sheds light on the mechanisms underlying effect
heterogeneity, and practically, it may contribute to the
design of combination therapies to improve individu-
alised treatment effects. (4) we applied our proposed
framework to study the individualised (causal) effects of
lipids on risks of coronary artery disease (CAD). Our
findings indicate that low-density lipoprotein cholesterol
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(LDL-C) and total cholesterol (TC) may exert heteroge-
neous causal effects on CAD risks, and we also uncov-
ered the major effect modifiers; In addition to lipid
traits, as an additional analysis, we also studied the ef-
fects of two other proteins, namely C-reactive protein
(CRP) and insulin-like growth factor 1 (IGF-1), on CAD.
Both have also been reported to be associated with
obesity'** but are less polygenic than lipid traits. We
identified heterogeneous causal effects of IGF-1 on
coronary artery disease (CAD) risk, while no significant
causal effect was found with CRP. (5) Furthermore, we
also discussed and presented potential clinical implica-
tions, such as disease subtyping or subgrouping patients
with divergent treatment responses.

To summarize, our study represents a pioneering
effort to expand the scope of MR from estimating
average causal effects to individualised causal effects.

Methods
Set-up and notation
Rubin’s causal model
A causal model needs to be formalized first. A well-
established and popular choice is the Neyman-Rubin
causal model, also called the potential outcome (coun-
terfactual) framework.”” We consider a dataset with N
units, indexed by i = 1, .., N. Following the potential
outcome framework, we define the potential outcome
for unit i in treatment and control status as Y;; and Yj,
respectively. For each unit, we let X; be a vector con-
sisting of M covariates and Z; be a continuous instru-
ment variable. We further define W; € {0, 1} as a binary
indicator for the treatment, where W; = 0 means that
the unit i does not receive any treatment and W; =1
means that the unit i is receiving the treatment. Given
the formalization above, our data can be regarded as a
set of quadruple data point (Yismms, W, X;, Z;) units,
indexed from 1 to N. In this case, we further define the
unit-level causal effect as the difference between two
potential outcomes Y;; and Y, T; =
The framework discussed above is under a binary
treatment setting. However, in many epidemiology
studies, the risk factors are continuous variables, and it
may be difficult to define an arbitrary cutoff to partition
the population into treatment and control groups. In
this case, the unit-level causal effect is defined as the

effect of unit increment of treatment on the outcome,
_ yWHAW _ yW
T =Y, .

i1— Y.

Assumptions of instrumental variables

As we regard our approach as an extension of the MR
framework, we also require similar assumptions that the
MR framework needs to achieve a consistent estimation
of the causal effect. Theoretically, the instrument must
satisfy three distinct assumptions to be valid: the rele-
vance assumption, the exclusion restriction assumption,
and the independence assumption.
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The relevance assumption necessitates a genuine as-
sociation between the instrument and the exposure,
which is the only assumption that can be easily directly
tested.'® We evaluate the strength of the instrument using
F-statistics; in general, an F-statistic greater than 10 in-
dicates that the instrument meets the relevance criterion.

The exclusion restriction assumption stipulates that
the instrument is independent of the outcome given the
exposure and possible confounders. The independence
assumption requires that the instrument is not corre-
lated with any factors that may confound the exposure—
outcome relationship.'”'* However, unlike the relevance
assumption, these two assumptions are difficult to be
fully verified."** Given the challenges in directly
testing the exclusion restriction and independence as-
sumptions, our approach involves meticulous selection
of SNPs that are likely to comply with these criteria. We
employ a contamination mixture model" (ConMix) to
identify SNPs that are unlikely to breach these as-
sumptions. Only SNPs retained by the ConMix
approach are included in our PRS calculations. Of note,
the ConMix model has been widely employed in MR
studies, and as shown in simulations, it is able to tackle
both horizontal and correlated pleiotropy (i.e., pleiotropy
via confounders) well with low type I error inflation and
good power."

Estimating the individualised treatment effect

We provide two different methods to estimating the
individualised treatment effect, including Generalized
Random Forest (GRF) and Double Robustness Instru-
ment Variable estimator (DRIV). The GRF, introduced
by Athey et al., extends Breiman’s random forests to
estimate any quantity 6(x) through local moment con-
ditions.” This flexibility allows the GRF to adapt to
various scenarios, ranging from basic regression prob-
lems to complex causal inference studies. In this
framework, we employ an instrumental causal forest
(IV-GRF), an important application of the GRF. Unlike
the standard causal forest, IV-GRF modifies the

gradient-based labeling formula to p; = (Z; - Z,)((Yi -

Y,) - (Wi — W,)7,), where Y,, Z, and W, stand for the
average of Y, Z and W over the parent node P. IV-GRF
then performs a standard CART regression split, aiming
to maximize the heterogeneity of the in-sample 0-esti-
mates, using the criterion:

X 2
A(C, C)= D > Pi)
=

1
1 X € Cj}‘ ({i:&eq-}

The second methodology, the double robustness
instrumental variable estimator (DRIV), innovates by
designing a loss function that enables the use of general
machine learning methods for minimization, rather than
modifying existing algorithms.”> The DRIV process is
bifurcated into a preliminary individualised treatment

effect (ITE) estimation step, termed double machine
learning IV (DMLIV), followed by a doubly robust esti-
mation step named DRIV. Detailed comparisons be-
tween these steps and additional implementation details
are available in the supplementary notes and the original
DRIV paper.

Polygenic risk score construction

Polygenic risk score (PRS) as instrument

In our framework, we utilize polygenic risk score (PRS)
as the instrument to perform the individualised MR
analysis. The PRS summarizes the estimated effects of
multiple trait-associated genetic variants on an in-
dividual’s phenotype, typically defined as a weighted
sum of trait-associated risk alleles across multiple ge-
netic loci.”” PRS has been commonly employed as an
instrumental variable (IV) for MR analyses.*"*

There are several reasons for our choice of PRS as an
instrumental variable within our analytical framework.
Firstly, the ITE estimation method employed in our
framework, including DRIV and GRF, are originally
optimized for scenarios involving a single instrument.
On the other hand, using a single genetic variant as
instrument in MR could suffer from low statistical po-
wer and susceptibility to weak instrument bias. One
may however employ PRS, which aggregates the effects
of multiple genetic variants, to serve as the instrument
to improve power and instrument strength.*

Secondly, Burgess et al. has shown that MR analyses
using PRS or summary statistics (inverse-variance
weighted, IVW) methods in general produce very
similar results.”” In addition, the above study showed
that estimates obtained from the summary statistics
method with external weights tend to be biased toward
the null, when those weights are imprecisely estimated
(e.g. when GWAS (Genome-wide association study)
sample size of the exposure trait is not large). In
contrast, allele score (i.e., PRS) estimates remain unbi-
ased. In our study, we employed external weights to
derive PRS of exposures; as such, the use of allelic
scores as instruments might enjoy the advantage of
producing less biased causal effect estimates. Burgess
et al. also showed that when using equal or external
weights, both methods provide valid tests of the null
hypothesis of no causal effect, even when there are
many potentially weak instruments. In other words, the
type I error rates are controlled using either method.

Thirdly, we may theoretically employ a single genetic
variant as an instrument, perform MR-ITE analysis with
DRIV or instrumental GRF approach each time, and
combine the causal estimates from each variant in a
second step (similar to the IVW approach). However,
since both DRIV or instrumental GRF are machine
learning models, this approach would necessitate fitting
multiple models independently, which could be
exceedingly time-consuming especially if a large num-
ber of variants is involved.
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Given these considerations, we have chosen to use
the PRS of the exposure as an instrumental variable in
our framework. This decision is grounded in both the
established validity of PRS as a robust instrument in
genetic epidemiology and the practical benefits in our
analysis. However, a significant concern with using an
allelic score as an IV in MR is the potential violation of
IV assumptions due to the inclusion of pleiotropic
SNPs. To address this, we apply the contamination
mixture (ConMix) approach to pre-identify and exclude
potential pleiotropic SNPs, thereby ensuring the validity
of the PRS as an instrument.

The contamination mixture (ConMix) approach

The ConMix method is based on a likelihood function
tailored to variant-specific causal estimates. It classifies
SNPs into two categories, each following a distinct normal
distribution: valid SNPs are normally distributed around
the true causal effect value, while invalid SNPs follow a
normal distribution centred around zero with a larger
standard deviation. This differentiation allows the likeli-
hood function to incorporate a two-component mixture
distribution for each variant. By maximizing this function,
we can discern each genetic variant’s contribution to the
likelihood, and classify each variant as either ‘valid’ or
‘invalid’. This facilitates the exclusion of invalid SNPs in
subsequent PRS calculations. Detailed descriptions of the
algorithm are available in the supplementary notes.

Methods for calculating PRS

With the validated SNPs, we employed two methods to
calculate PRS for further analysis: PRSice-2 (as the pri-
mary approach) and LDPred2 (as an additional method).
PRSice-2 is an efficient PRS calculation software that
automates PRS analyses.” LDPred2, an advanced
version of LDPred, is a Bayesian approach that estimates
posterior mean causal effect sizes using GWAS sum-
mary statistics, assuming a prior for genetic architecture
and leveraging linkage disequilibrium (LD) information
from a reference panel.”® LDPred2 addresses several
limitations inherent in the original LDPred, offering an
alternative to PRSice-2 for estimating PRS in our study.
Please also refer to the supplementary text for further
details.

Assessing the presence of treatment effect
heterogeneity

In addition to estimating the individualised treatment ef-
fect (ITE), we introduce two permutation-based methods to
evaluate heterogeneity among the estimated treatment ef-
fects. Heterogeneity of treatment effect typically refers to
non-random, explainable variability in ITE.” Another
perspective views heterogeneity as whether the predicted
treatment effects deviate significantly from the average
effect, beyond what would be expected by chance.” These
conceptualizations guide the development of methods
both to estimate ITE and to assess heterogeneity. For
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example, within each split, a causal tree aims to maximize
the variance of the estimated treatment effect across its
leaves while also penalizing the uncertainty of these esti-
mates.”" If covariates do not contribute to heterogeneity,
the variance of the predicted ITE across leaves will be
smaller compared to when splitting on covariates that do
contribute to heterogeneity. This observation inspired the
development of our heterogeneity testing methods based
on covariate permutation.

We present two such permutation-based methods: the
permutation-variance test and the permutation-t-risk test,
to determine if heterogeneity is statistically significant.
While these principles are also applicable to standard
Heterogeneity of Treatment Effects (HTE) models (ref®,
Chapter 4), our tests are specifically tailored for our
framework involving instrumental variables, particularly
for the modification in the t-risk test. The primary
distinction between these methods lies in the target
function of interest we used to compare models trained
on raw covariates against those trained on permuted
covariates. Specifically, one method focuses on the vari-
ance of the estimated individualised treatment effect,
while the other assesses the improvement in t-risk. The
t-risk improvement is defined as follows:

Timprove :%Z([(Yi - E[Yi|X:]) = (W; - E[Wi|X:1)2()1(Zi - E[ZiIXi]))

—%Z([(Yi - E[Yi|X\]) - (Wi - E[WiIX:)Z(O)I(Zi - ELZi|X:]))?

where 7(X;) represents the average treatment effect (i.e.,
assume no heterogeneity in treatment effects), and 7{X;}
represents the individualised treatment effect. The details
of the two permutation methods can be found in the
supplement notes.

Measuring variable importance

In addition to identifying the ITE, we also wish to
identify which covariate may contribute to the hetero-
geneity. In other words, we identify important effect
modifiers that lead to differential treatment effects
across individuals.

We mainly used two approaches to achieve the goal.
The first approach is the split-frequency based approach,
which is mainly designed for the generalized random
forest algorithm since it calculates the variable impor-
tance based on the split frequencies. The other approach
is the SHAP (SHapley Additive exPlanations) approach,
which allows us to capture the features’ contribution for
each individual’s ITE predictions or for the whole
sample with considering the rest of the features.

Summary of the individualised treatment effect
estimation framework

To summarize the above, we present a causal analytic
framework, MR-ITE, to study the causal effect of risk
factors at an individual level. The workflow for MR-ITE
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is summarized in Fig. 1. The proposed framework in-
tegrates the idea of Mendelian Randomisation (MR) to
identify individualised treatment effects (ITEs), which
reduces the risks of unmeasured confounding and
reverse causality.

The MR-ITE framework comprises several main steps.
First, we identify valid SNPs associated with the exposure
of interest, while minimizing the risk of pleiotropic ef-
fects. Second, using the identified SNPs, we estimate a
polygenic risk score (PRS) that serves as an instrumental
variable. Third, we employ two approaches, including
GRF and DRIV, to estimate the ITEs. These methods can
potentially handle nonlinear relationships and high-
dimensional data, making them suitable for estimating
the ITEs in large-scale datasets. Finally, we propose
permutation-based methods to test for the presence of
heterogeneity in treatment effects across individuals.

Simulation study
We conducted two simulations to assess the performance
of our proposed framework in estimating ITEs and the
power of our proposed heterogeneity testing methods.
We set up a simulation study with different pleiotropic
scenarios to compare our proposed framework’s perfor-
mance with the regular causal forest (which does not
employ instruments). We also compared individualised vs.
constant treatment effects to demonstrate the importance
of inferring individualised effects when heterogeneity is
present. Overall, three different pleiotropic scenarios were
included in our simulations, similar to ref':

1. Balanced pleiotropy: some genetic variants directly
affect the outcome, with pleiotropic effects that are a
mixture of positive and negative effects averaging to
zero.

2. Directional pleiotropy: some genetic variants
directly affect the outcome, with all pleiotropic ef-
fects being positive.

3. Correlated Pleiotropy: some genetic variants affect
the outcome via a confounder. In this case, the In-
strument Strength Independent of Direct Effect
(InSIDE) assumption is violated.

The simulation is set up following a similar idea from
Burgess et al.'' and the data is generated as follows:

J
U= z éjGij +€ui
j=1
J
W, = ZYjGij + Ui+ ex
Jj=1
J
Y, = z (XjG,'j +T(X,')Wi + U; + €y;
j=1
where,

Gjj~iiqBinomial(2, 0.3)
€ui» €xi> €vi~iiaN(0, 1)
¥j~iia Uniform(0.03, 0.1).

Here, U represents the confounders that contribute
to both the treatment W and outcome Y. We simulated
X as potential effect modifiers and it only contributes to
the ITE (z(X;)). We incorporated eight different treat-
ment effect functions 7z(X;) to simulate the treatment
effect t; details can be found in Section 4, Appendix, of
the Supplementary Methods.” We simulated 100 ge-
netic variants Gj,j =1,-,100 in each scenario and

of Lipid Traits (LDL etc.)

[GWAS Summary Statistics J [Genotype-Phenotype-Outcome

data from UK-BioBank

1. SNPs Preselection.

PRS Analysis

PRSICe-2| Galculate PRS for each lipid trait

Use PRS score as instrument.

Causal Effect Analysis
Estimating Individual Treatment Effects
(ITEs)

IV-CF/DRIV

2. Pleiotropy Removal (Contamination Mixture)

Clinical Covariates

Identifying effect modifiers and .
evaluating their effects .

SHAP analysis
Segmented
Regression

Evaluate the presence of treatment | .

Perm-Variance Test

effect heterogeneity +  Perm-z-risk Test

Fig. 1: Workflow for the MR-ITE framework. The figure presents the workflow for the MR-ITE framework, and the details of the method can

be found in section 2.6 of main text and the supplement notes.
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considered three cases with 20, 40, and 60 invalid in-
struments. We simulated two types of effect modifier X,
including continuous (standard normal) and binary
(binomial with probability 0.5) variables. Following the
setting from Powers et al.,”* we simulated 50 X, for
scenario 1 and 2, 40 X; for scenarios 3 and 4, 30 X; for
scenarios 5-6 and 20 X; for scenarios 7-8. Among these
X;, half were simulated as continuous variables, and
another half as binary variables.

We set o; and & to 0 for valid instruments. For
invalid instruments, o; and §; were set differently for
different scenarios. In the balanced pleiotropy scenario
(scenario 1), a;j was simulated from uniform (0.1, 0.1),
and the §; was set to 0. For the directional pleiotropy
scenario (scenario 2), o; was simulated from uniform (0,
0.1), and we set §; to 0. In scenario 3 (Correlated plei-
otropy), o; were set to 0 and §; were drawn from uniform
(-0.1, 0.1). We fit a regression forest to model the
relationship between exposure and instruments, and
used the prediction from the regression forest model as
the instrument in the simulation.** The simulation was
repeated 50 times in each scenario. The sample size was
set at 10,000. We assume that the SNP-exposure asso-
ciations were derived from an independent dataset from
the SNP-outcome data. In addition, the performance of
our proposed HTE-testing methods was evaluated
through simulations. We set up the simulation data
following similar approaches discussed above, but only
40 invalid SNPs were included. Similarly, we repeated
the simulation 50 times for each scenario. Furthermore,
we conducted two additional simulations with varying
configurations. First, we increased the sample size to
50,000. Next, we conducted simulations with the same
sample size of 50,000 but included a total of 500 variants
to assess our framework’s ability to manage both larger
sample sizes and a higher number of variants.

To evaluate the performance of our proposed frame-
work in ITE estimation, we compared the estimated ITE
with the true ITE and computed the mean squared error
(MSE). Lower MSE indicates better performance. In
addition, we examined the bias of the proposed ap-
proaches in estimating the ITE for individuals with true
ITE ranked at the top 10% (considering the absolute
value). We did not consider the bias considering the
whole population, as treatment effects for those with
large ITE tends to be underestimated, and vice versa; as
such the positive and negative bias may cancel out each
other. In addition, it is often more clinically relevant to
focus on subjects with more extreme ITEs.

Applications to real data: heterogeneous effects of
lipid traits on coronary artery disease risk

Overall analytic strategy

Using data from the UK-Biobank (UKBB) study, we
applied our framework to study the heterogeneous
treatment effect for several lipid-related risk factors on
coronary artery disease (CAD). UK-Biobank is a large-
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scale cohort consisting of genetic and clinical data
from ~500,000 participants. We selected white partici-
pants with data available for principal component anal-
ysis, to minimize risks of population stratification.

Exposure

The main exposure is lipid levels including LDL-C,
HDL-C, triglyceride, and total cholesterol. They were
extracted from the UKBB, detailed can be found in the
GitHub repository.

Outcome and covariates

CAD diagnosis was determined by International Clas-
sification of Diseases, Tenth Revision (ICD-10) code 125
in field 41202-0.0 and date in field 41262-0.0. We only
considered those CAD patients with CAD diagnosis af-
ter the date of the biomarker assessment.

For covariates, we selected clinical variables likely
influencing both outcomes and exposure, which can be
roughly classified into three groups: biomarkers, medi-
cal history and lifestyle history (detailed in Table S1). We
converted discrete variables to dummy variables, and
missing data was imputed by the missRanger package.”

We trained two models with different covariates sets.
For covariate model 1, we only included age and sex as
covariates; this mimics practical applications when there
is only limited covariate information. For covariate
model 2, we additionally adjusted for multiple bio-
markers and socio-demographic covariates (Table S1).
With the incorporation of a larger set of covariates, we
hope to identify covariates contributing to potential
heterogeneity of the effect of lipids on CAD risks.

Genetic instruments

The GWAS summary statistics for lipid traits was ob-
tained from the Global Lipids Genetics Consortium.*
We also obtained CAD summary statistics dataset
from CARDIoGRAMplusC4D Consortium.” In addi-
tion, we also checked that the summary statistics dataset
used for PRS calculations had no overlap with the UKBB
cohort.

Considering that we are using polygenic risk score as
an instrument, additional quality control of genetic data
is required. We followed the recommended quality con-
trol pipeline of PRSice-2 to ensure target data meets
GWAS standards. Specifically, we removed SNPs with
low genotyping rate (-geno 0.01), low minor allele fre-
quency (-maf 0.001), and individuals with the low geno-
typing rate (-mind 0.01) following the default settings.”**
Only variants strongly associated with the exposure were
included for subsequent analysis (P-value < 5e-8).

ITE analysis

Overall, the main study included 276,054 subjects of
European ancestry, among whom 13,010 were identified
as having coronary artery disease (CAD) which occurred
after Dbiomarker measurements. Additionally, we
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included 2559 African and 6254 South Asian subjects in
a supplementary analysis to explore the impact of
ancestry on ITE estimates.

The main outcome is the development of coronary
artery disease (CAD) after the measurement of lipid
levels. In our application, we also compared IV-GRF and
DRIV approaches with a more standard (non-instru-
mental) approach, causal forest (CF, implemented in the
R package GRF), in which the risk factor was directly
modelled without genetic instruments.

Since so far ML-based ITE models are mainly
developed for linear outcomes, we model the outcome
(CAD) also as a continuous outcome, hence the treat-
ment effects are on a linear probability scale (i.e., it re-
flects the changes in absolute risk or incidence of CAD
per unit change of the exposure/treatment). In fact, it is
not uncommon to employ linear models for binary
outcomes in GWAS studies,” and such use may be
justified by the observation that linear model is a first
order Taylor approximation to a generalized linear
model."

As for the “treatment” variable, we considered two
cases: lipid levels as a continuous and a binary treatment.
In the former case of a continuous ‘treatment’, the ITE
reflects the change in the absolute risk of CAD per unit
increase of lipid level; whereas for a binary treatment, the
ITE is the change in absolute risk of CAD for a change
from dyslipidaemia (LDL-C>130 mg/dL*; TC > 220 mg/
dL*; HDL-C <46 mg/dL*; TG > 150 mg/dL**) to normal
levels.

Additional analysis with CRP and IGF-1 as
exposures

We also investigated C-reactive protein (CRP) and
Insulin-like growth factor-1 (IGF-1) as potential causal
risk factors for coronary artery disease (CAD), beyond
lipid traits. These inflammatory and metabolic markers
were selected due to their associations with CAD risk
factors and lower risk of pleiotropy in MR analysis. Their
causal roles and heterogeneous treatment effects on CAD
remain unclear. Please refer to the supplementary text
(Supplementary Notes, Section 2.2) for details.

Subgroup analysis and clinical implications for
patient/disease subtyping

Due to the lack of a comparable external dataset, we
propose a subgroup analysis to provide support to our
heterogeneity findings. We first trained an ITE estima-
tion model using a generalized random forest, and
selected the ‘best representative tree’ (the tree with the
lowest R-loss) as the final model to partition people into
different subgroups. This model, trained on a fraction of
the data, was applied to the remaining samples to
identify subgroups with significantly different local
average causal treatment effects (LATE). This analysis
also suggests an important clinical application of the
MR-ITE framework, namely identifying distinct

subgroups of individuals with diverse responses to
treatment or risk factors. For details, please also refer to
the supplementary text (Supplementary Notes, Section
1.8).

Role of funders

The study sponsors did not play a role in manuscript
design, data collection, data analysis, interpretation, or
in the writing of the manuscript.

Results

Simulation study

Fig. 2 presents the simulation results for various treat-
ment effect scenarios, considering different counts of
invalid SNPs. In the balanced pleiotropy scenario, the
Instrumental Causal Forest (IV-CF) significantly out-
performed the regular Causal Forest (CF), as evidenced
by a substantially lower Mean Squared Error (MSE)
(Fig. 2a, b, c). Under balanced pleiotropy, the removal of
invalid pleiotropic SNPs did not appear to influence the
performance of the estimator; there was no significant
difference between methods that keep or remove the
pleiotropic SNPs.

We now turned to the scenarios of directional
pleiotropy and correlated pleiotropy. As expected, IV-
CF outperformed ordinary CF across all treatment ef-
fect scenarios, although the degree of improvement
gradually diminished with an increase in the count of
invalid SNPs. Contrary to the balanced pleiotropy sce-
narios, the removal of invalid pleiotropic SNPs signif-
icantly enhanced the performance of IV-CF (Fig. 2d-i)
under directional pleiotropy or correlated pleiotropy.
These simulation results underscored the importance
of incorporating an appropriate step for the removal of
invalid pleiotropic SNPs within our framework. We
further evaluated the efficacy of the ConMix approach
in eliminating invalid SNPs. We found that the Con-
Mix approach could detect invalid SNPs with an accu-
racy of approximately 80% in our simulations
(Table S2).

To highlight the importance of inferring individu-
alised treatment effects, we also compared the perfor-
mance of the ATE and ITE estimators. ATE represents
the average treatment effect, which assumes a constant
treatment effect across all individuals, while ITE allows
the treatment effects to differ by individual.

Under heterogeneous treatment effect scenarios
(scenarios 2-8), the MSE of ATE are notably higher
(worse) than those of ITE, in comparisons of ITE vs.
ATE or MR-ITE (pleiotropy removed) vs. MR-ATE
(pleiotropy removed). On the contrary, under the ho-
mogeneous treatment effect scenario (scenario 1), no
significant difference is observed when ATE was
compared to ITE. These findings emphasize the
importance of inferring individualised treatment effects
in the presence of heterogeneity.
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Fig. 2: Simulation results across different methods to evaluate causal treatment effects. The figure presents the simulation results across 8
different treatment effect scenarios, 3 pleiotropy scenarios and 3 invalid SNPs scenarios. For details of the generating distribution and scenarios,
see section 2.7 of main text. The 6 estimators being evaluated as follows: ATE = average treatment effect (without using instruments);
ITE = individualised treatment effect (without using instruments); MR-ATE (keep pleiotropy) = MR-based average treatment effect with the
presence of pleiotropy; MR-ITE (keep pleiotropy) = MR-based individualised treatment effect with the presence of pleiotropy; MR-ATE (remove
pleiotropy) = MR-based average treatment effect with pleiotropic instruments removal; MR-ITE (remove pleiotropy) = MR-based individualised
treatment effect with pleiotropic instruments removal. All results presented in the figure are estimated using the generalized random forest
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(i.e., causal/instrumental forest) approach. We presented paired one-tailed t-test results on the following 3 comparison sets (from the lowest

position to the highest position above each scenario): (1) MR-ATE (keep pleiotropy) vs. MR-ITE (keep pleiotropy); (2) MR-ATE (remove plei-

otropy) vs. MR-ITE (remove pleiotropy); (3) MR-ITE (keep pleiotropy) vs. MR-ITE (remove pleiotropy). We hypothesized that MR-ITE methods
performed better than MR-ATE (that ignores treatment effect heterogeneity), and that methods removing pleiotropic variants performed
better. (“****": P-value < 0.0001; "***": 0.0001 < P-value < 0.001; “**": 0.001 < P-value < 0.01; “*": 0.01 < P-value < 0.05; “ns": P-value > 0.05;
Paired T-test).

We also plotted the bias, and observed that our pro-
posed MR-ITE approach exhibits superior bias control
compared to conventional methods in our simulations
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(Fig. S1). Here we focused on the bias of subjects having
the highest 10% of true ITEs, as the positive and
negative bias of ITE may cancel out if we calculate the
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average bias from all subjects. Also note that our sim-
ulations yielded predominantly negative ITEs, such that
a positive bias is expected when comparing the true
ITEs of those having the strongest 10% ITE to the ATE
(which would be closer to zero). We also performed a
comparison of the DRIV and IV-CF MR-ITE approaches
(Figs. S2 and S3); there is no single method that uni-
formly dominated the other in all scenarios, suggesting
that it may be useful to present both approaches in real
data applications.

Furthermore, we conducted two additional simula-
tions with different settings. First, we increased the
sample size to 50,000 to explore our proposed frame-
work’s performance in handling larger datasets. We
found that MR-ITE with pleiotropy removal achieved
significantly better performance than its competitors
(Figs. S4 and S5). Under larger sample sizes, the MSE
and bias in general were lower for all approaches
including MR-ITE. Additionally, we performed simula-
tions with a sample size of 50,000 and a total of 500
variants to explore our framework’s capability in
handling situations with both larger numbers of vari-
ants and increased sample size (Figs. S6 and S7). Note
that the number of invalid SNPs was also increased to
100, 200 and 300 correspondingly. The results demon-
strated that our proposed framework is applicable under
these more complex scenarios. We found that MR-ITE
with pleiotropy removal still achieved the smallest
MSE and bias compared to other methods. As a whole,
these additional simulations demonstrate the robust-
ness of our proposed approach in handling larger and
more complex datasets.

In addition to benchmarking the performance of
applying PRS as an instrument in inferring heteroge-
neous treatment effects, we conducted a simulation to
validate our proposed heterogeneity-detecting methods.
The results, summarized in Table 1, reveal that both
methods maintain good type 1 error control in a sce-
nario with no heterogeneity (scenario 1). They also

demonstrate good power in several scenarios (scenarios
2, 3, 5), where the ITE functions (z(-)) are simple linear
combinations of the same types of covariates or exhibit
weak nonlinear effects without interaction between
different types of covariates. However, the permutation
zrisk test outperforms the permutation-variance test
when an interaction between different types of cova-
riates is present (Scenarios 4, 6). Interestingly, the
permutation-variance test exhibits low power in scenario
7, where a strong nonlinear effect exists in the z(-),
while the permutation r-risk test maintains relatively
good power in this scenario.

We also recorded the time and memory re-
quirements for each simulation replicate under the
simulation scenarios with 50,000 samples and 500 var-
iants (Table S3), which provide a reference for esti-
mating the running time and memory requirement in
real applications.

Treatment effect of lipid-related traits on coronary
artery disease

Baseline characteristics of included participants

The baseline characteristics of the study’s continuous
and categorical covariates are summarized in the
Supplementary Materials. We conducted a partial F-test
to evaluate the strength of the polygenic risk score as an
instrument.* The F-statistics significantly exceeded 10
across all models (Table S4), indicating that the poly-
genic risk score can be considered a strong instrument.
The covariates included for various lipid-related traits
models are also outlined in the Supplemental Materials
(Table S1). We also compared the estimate of overall
treatment effect based on a standard regression against
that from an instrumental regression, using the Wu—
Hausman test as implemented in IVreg.* If the null
hypothesis is rejected, it indicates that the explanatory
variable is endogenous. In this case, the IV estimator is
consistent, while the standard regression estimator is
not. Conversely, if the null hypothesis is not rejected,

Pleiotropy Perm-Variance test Perm-z-risk test
scenario Balanced Directional Correlated Balanced Directional Correlated
pleiotropy pleiotropy pleiotropy pleiotropy pleiotropy pleiotropy
Scenario 1 0.00 0.00 0.00 0.04 0.04 0.04
Scenario 2 0.28 0.28 0.56 0.88 0.92 0.98
Scenario 3 0.64 0.68 0.88 0.98 1.00 1.00
Scenario 4 0.12 018 0.42 0.92 0.98 0.98
Scenario 5 0.44 0.52 0.86 1.00 0.98 1.00
Scenario 6 0.12 0.28 0.32 0.88 0.86 0.96
Scenario 7 0.02 0.04 0.00 0.42 0.54 0.50
Scenario 8 0.36 0.54 0.68 1.00 1.00 1.00

The table shows the simulation results of two permutation-based heterogeneity testing methods, the permutation-variance test, and the permutation-z-risk test. Scenario
1 is a scenario with homogeneous treatment effect, and the results refer to the type | error of the method. The rest of the scenarios show heterogeneous treatment effect,
and the results reflect the power of the test in detecting the presence of heterogeneity.

Table 1: Simulation results for two permutation-based heterogeneity testing methods.
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the IV and the ordinary regression estimator are
considered to be both consistent, although the IV esti-
mator has a larger variance. The original regression
estimator is preferred in this case. Our results suggest
that the IV estimator is preferred in the studies of LDL-
C, total cholesterol and IGF-1 (Table S4). Consequently,
we focus our discussion primarily on the findings from
these three instrumental variable models.

LDL-C

LDL-C imposes heterogeneous effects on CAD. We uti-
lized our MR-ITE framework to investigate the causal
association between LDL-C and CAD risk under both
continuous and binary exposure scenarios. The findings
reaffirmed that elevated LDL-C level is causally linked to
an increased risk of CAD. This association was consis-
tently observed across two distinct covariate models
(Fig. 3a and b, and Fig. S8a and b).

In our study on CAD, we observed that IV-GRF,
DRIV, and causal forest (CF) predicted positive treat-
ment effects for all participants. Notably, IV-GRF and
DRIV yielded higher predictions of treatment effects
than CF in Model 2. Additionally, DRIV detected a less
significant treatment effect compared to IV-GRF. Note
that for the CF approach, we simply modelled the
original risk factors without using instruments, as pre-
viously described.

In covariate Model 1 (‘reduced’ model; only age/sex
included), the CF approach failed to detect a significant
treatment effect for most patients (especially under bi-
nary treatment setting), with ITE centred around zero
(Table S5). We hypothesize that this may be due to the
inclusion of only two covariates, leading to a failure in
controlling for potential confounders (model 1 is
designed to mimic the case when only very limited in-
formation on confounders is available). This contrasts
with the established finding that higher LDL-C increases
CAD risk. We note that the IV-based methods reported
substantially larger treatment effects under model 1,
suggesting better ability to handle unmeasured
confounding.

In Model 2 (full covariate model), analyses using IV-
GRF and DRIV indicate that a per unit (1 mg/dL)
increment of LDL-C increases the individual absolute
CAD risk by approximately 0.03%. In contrast, for CF,
the average risk increase was less than 0.02% (Fig. 3a
LDL-C and Table 2). Under a ‘binary treatment’ scenario
(normal lipid levels vs. dyslipidaemia; modelling drug
treatment effects), IV-GRF/DRIV also yielded higher
treatment effect predictions. Reducing LDL-C levels to a
normal range below the optimal cutoff (130 mg/dL) was
estimated to reduce CAD incidence by ~3% based on
the MR-ITE model (Table 3).

Intriguingly, we found that the CF only detects an
average CAD risk reduction of approximately 0.5% un-
der the ‘binary treatment’ setting. This is significantly
less than what is detected in the MR-ITE framework
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(Fig. 3b and Table 3), probably owing to unmodelled
confounding factors. The Wu-Hausman test also indi-
cated significant differences between the non-
instrument and the IV estimates. Our findings are
largely consistent with previous studies. For instance,
Brian et al. reported an absolute risk reduction in
Atherosclerotic  Cardiovascular Disease (ASCVD)
ranging from 2.1% to 8.6% for patients whose LDL-C
levels were controlled under 100 mg/dL following
LDL-C reduction therapy.”® Notably, compared to ordi-
nary MR methods, our proposed MR-ITE framework
enables the estimation of a causal effect for each
individual.

We further evaluated the heterogeneity of treatment
effects using our proposed permutation-based tests. Our
findings indicate that LDL-C modification results in
heterogeneous effects on CAD in both continuous and
binary treatment settings (Table 4). We also observed a
considerable variability in the ITE estimates, as indi-
cated by a large (absolute) percentage difference be-
tween different quantiles. Specifically, the percentage
difference was >50% when comparing the 5th vs. the
95th, and the 10th vs. the 90th percentiles under a
continuous treatment setting (Table 5) and was >30%
under a binary treatment setting (Table 6).

Additionally, our findings of heterogeneity were
supported by the subgroup analysis. We observed sig-
nificant differences in the mean treatment effects across
the derived subgroups, in both binary and continuous
treatment settings (Continuous Model: ANOVA P-
value = 0.0096; Binary Model: ANOVA P-value = 0.0138)
(Tables S14 and S16).

Another issue addressed in our study is the appli-
cability of PRS developed for ancestries other than Eu-
ropean. To explore this, we conducted additional
analyses on participants of African and South Asian
descent from the UK Biobank (UKBB) cohorts. Our
results indicate that the results for African ancestry are
comparable to those for European ancestry (Fig. S15).
However, due to much smaller sample sizes of both
ethnic groups in the UKBB compared to Europeans, and
the smaller sample sizes used to derive the GWAS
summary statistics for LDL-C,”" we did not observe
significant ITE (P < 0.05) for either ethnic group. For
Africans, we observed positive ITEs for the majority of
subjects (Fig. S15), while the pattern was less clear for
South Asians.

In addition to ancestry, we further explored the
application of other PRS construction algorithms within
our framework. Specifically, we additionally employed
LDPred? to calculate the PRS for LDL-C and conducted
ITE estimation using the LDPred2 PRS as the instru-
ment. Our results indicated that the ITEs estimated
from LDPred2-derived PRS and PRSice-2-derived PRS
were comparable (Fig. S14), adding to the robustness of
our findings. However, we observed that the number of
observations with significant ITEs identified using
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Fig. 3: Predicted treatment effect of LDL-C and total cholesterol on CAD (Model 2). The figure presents the histogram results of the
individualised causal effect estimation of LDL-C/Total Cholesterol on CAD using DRIV, IVCF, and CF methods, incorporating covariate set 2 (full
model). a: individualised causal effect estimation in the continuous treatment setting. b: individualised causal effect estimation in the binary
treatment setting. For continuous treatment settings, the ITE reflects changes in absolute risk of CAD per unit increase in lipids; for binary
treatment settings, the ITE reflects the effect of having normal lipid levels vs. dyslipidaemia (the latter as baseline), analogous to the effect of
receiving a treatment for dyslipidaemia (the same principles apply to figures below).

LDPred2-derived PRS is substantially smaller than those
identified using PRSice-derived PRS. This discrepancy
may possibly be due to the large set of instrument SNPs
with linkage disequilibrium (LD) used for LDpred2
input. It should be noted that the ConMix approach was
developed to handle independent SNPs. Consequently,
the inclusion of pleiotropic SNPs may compromise
the validity of the PRS, introducing additional bias into
the ITE estimation process. Please also refer to the

supplementary text (Supplementary Notes, Section
1.2.2.2) for further discussions.

Clinical features that contribute to the heterogeneity of LDL-
Con CAD. Beyond the identification of heterogeneity
concerning the impact of LDL-C on CAD, our interest
extends to the covariates that contribute to this hetero-
geneity. Fig. 4a and 1 depict the Shapley value (SHAP)
patterns of the top 10 most important clinical features,
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2.558E-05
2.775E-05

1.897E-05 2.193E-05 2.553E-05 2.915E-05 3.226E-05  3.407E-05 4.666E-05
1.117E-06 2.224E-04

1.734E-05

CF 100.00% 80.98% 65.32% 5.382E-06

Triglyceride

-3.960E-05 -2.401E-05 2.826E-05  5.489E-05  7.895E-05  9.342E-05
-6.616E-05

-7.762E-05

-1.593E-04
-1.590E-04

0.00%
0.13%

0.00%
0.58%

75.86%
21.99%

DRIV
IVCF

1.097E-04  -2.490E-05

2.835E-05

-3.096E-06  1.658E-05

-2.502E-05

-4.677E-05

The table summarizes the estimated individualised treatment effects (ITE) for different lipid traits to CAD risk, treating lipid as a continuous predictor. The model (referred to as ‘Model 2" in the main text) was trained using all available information,

including sex, age and other clinical measured covariates. Tau indicates the change in the probability of outcome (i.e., absolute risk of CAD) for every one-unit (10 mg/dL) increase of the lipid level.

Table 2: Summary of the individualised treatment effect (tau), where lipid is treated as a continuous trait.
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as identified through the DRIV model of LDL-C’s in-
fluence on CAD. These patterns are presented under
both continuous and binary treatment settings, uti-
lizing a beeswarm plot for visualization. Furthermore,
we segmented the population into deciles based on the
corresponding feature values, enabling the visualiza-
tion of potential effect modifiers.

We discovered that the body fat percentage was
the most significant variable under both settings
(Fig. 4a, 1). Patients with higher body fat showed
weaker CAD protection from LDL-C reduction vs.
those with lower fat. This pattern was also seen in
other obesity indicators such as BMI (Fig. S9e, j).
These findings align with several studies that high-
light the robust relationship between obesity and
CAD. For example, Sandfort et al. demonstrated that
obese patients with hyperlipidaemia experience more
severe atheroma progression despite optimized statin
therapy.”” This is largely consistent with our obser-
vation that obese patients may derive less benefit
from LDL-C reduction. Our results suggest that a
combination treatment of both obesity and elevated
LDL-C may achieve a more substantial protective ef-
fect against CAD.

Additionally, systolic blood pressure (SBP)
emerged as an important variable, akin to the obesity-
related covariates previously mentioned, in both
continuous and binary treatment settings (Fig. 4n and
s, Fig. S9a, f). Numerous studies have established
hypertension as one of the most potent risk factors for
cardiovascular diseases, including CAD.”** Our
research suggests that hypertension may act as an ef-
fect modifier of LDL-C’s impact on CAD. We note a
reduced protective treatment effect in the population
with SBP in the top 10% (Fig. S9f), and the SHAP
analysis yields a positive SHAP estimation (negative
SHAP indicates protective effects) for SBP exceeding
150 in the binary model. These findings imply that
hypertension could significantly weaken the protective
effect of LDL-C lowering against CAD. Our results also
corroborate with a study finding that combination
therapy of LDL-C and blood pressure-lowering agents
was associated with a lower risk of CAD compared to
monotherapy.”

Testosterone exhibits a similar pattern to age
(Fig. 4d and i), suggesting males may receive a larger
protective effect against CAD with the decrease of
LDL-C to a normal range. Of note, Petretta et al. re-
ported that statin therapy significantly reduced the risk
of CHD events in men without prior cardiovascular
disease, while its effect on women was less signifi-
cant.’® In addition, another large-scale meta-analysis of
RCTs reported that the absolute risk reduction of
cardiovascular events was larger in men than women
(absolute number of vascular events reduced per 1000
treated was 12 in men vs. 9 in women, for those with
low Dbaseline risks).”
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Traits Methods Negative  Tau with Tau with  Min 5% 10% 25% Median 75% 90% 95% Max Mean
Tau P-value <0.1  P-value
<0.05
LDL-C CF 100.00% 100.00% 99.97% -1.076E-02  -9.056E-03 -8.748E-03 -8.156E-03 -7.464E-03 -6.879E-03 -6.430E-03 -6.173E-03 -3.996E-03 -7.529E-03
DRIV 100.00% 73.81% 47.48% -4.568E-02 -3.304E-02 -3.126E-02  -2.829E-02 -2.508E-02 -2.192E-02 -1.910E-02 -1.743E-02 -4.850E-03 -2.513E-02
IVCF 100.00% 96.63% 91.32% -4.283E-02 -3.265E-02  -3.124E-02  -2.891E-02 -2.627E-02 -2.358E-02 -2.117E-02 -1.979E-02 -1.082E-02  -2.625E-02
HDL-C CF 0.00% 100.00% 99.98% 5.405E-03 6.774E-03 7.040E-03 7.568E-03 8.186E-03 8.759E-03 9.232E-03 9.495E-03 1.120E-02 8.162E-03
DRIV 13.16% 0.88% 0.07% -1.595E-02 -2.571E-03 -8.170E-04  2.292E-03 6.029E-03 1.000E-02 1.363E-02 1.572E-02 2.929E-02 6.226E-03
IVCF 10.19% 0.86% 0.21% -2.978E-02  -3.843E-03 -1.080E-04 6.368E-03 1.400E-02 2.228E-02 3.018E-02 3.512E-02 7.274E-02 1.462E-02
Total Cholesterol  CF 100.00% 97.14% 90.91% -8.263E-03 -6.291E-03  -5.992E-03  -5.439E-03 -4.809E-03 -4.259E-03  -3.849E-03 -3.628E-03 -2.170E-03  -4.869E-03
DRIV 100.00% 68.25% 45.63% -3338E-02 -2.473E-02  -2.339E-02  -2.091E-02 -1.783E-02 -1.455E-02 -1.167E-02 -1.003E-02 -1.001E-04 -1.766E-02
IVCF 100.00% 82.87% 68.88%  -4.498E-02 -3.111E-02 -2.968E-02 -2726E-02 -2.453E-02 -2177E-02 -1.931E-02 -1783E-02 -8.020E-03 -2.451E-02
Triglyceride CF 100.00% 70.43% 53.96% -6.121E-03  -4.517E-03  -4.279E-03  -3.865E-03 -3.386E-03  -2.883E-03  -2.421E-03  -2.148E-03 -2.828E-04 -3.365E-03
DRIV 40.30% 0.87% 0.13% -2.541E-02  -8.080E-03  -5.941E-03  -2.438E-03  1.408E-03 5.478E-03 9.837E-03 1.298E-02 3.648E-02 1.750E-03
IVCF 11.76% 0.38% 0.07% -1.815E-02  -2.860E-03  -5.994E-04 3.219E-03 7.529E-03 1.183E-02 1.562E-02 1.780E-02 3.223E-02 7.513E-03
The table summarizes the estimated individualised treatment effects for different lipid-trait to disease models under binary treatment setting in model 2. Model 2 is trained using available information, including sex, age, and other clinical
measured covariates. Tau indicates the increase in probability of outcome for controlling the lipid level under the optimal threshold, in other words, we compare a favourable lipid profile (coded as 1) vs. an unfavourable lipid profile (coded as 0),
analogous to having received a treatment to improve dyslipidaemia. Therefore, the direction of tau is reversed compared to the continuous treatment setting. Tau indicates the change in the probability of outcome (i.e., absolute risk of CAD)
comparing normal vs. abnormal lipid profiles.
Table 3: Summary of the individualised treatment effect (tau), where lipid is treated as a binary trait (normal lipid levels vs. dyslipidaemia with the latter as baseline, analogous to the effect of receiving a treatment
for dyslipidaemia).
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Traits Methods 50% Inter-quartile 80% Inter-percentile 90% Inter-percentile Absolute % Absolute % Absolute %
range (25% vs. 75%)  range (10% vs. 90%) range (5% vs. 95%) difference (25% vs.  difference (10% vs.  difference (5% vs.
75%) 90%) 95%)
LDL-C CF 3.226E-04 5.267E-04 6.275E-04 20.34% 35.18% 43.17%
DRIV 1.013E-03 1.943E-03 2.486E-03 34.01% 77.25% 110.93%
IVCF 6.634E-04 1.248E-03 1.590E-03 24.44% 51.50% 70.51%
Total Cholesterol CF 1.552E-04 2.973E-04 3.810E-04 23.23% 49.05% 66.85%
DRIV 6.207E-04 1.168E-03 1.487E-03 36.15% 83.24% 122.86%
IVCF 5.168E-04 9.728E-04 1.239E-03 24.57% 51.97% 71.41%
The table summarizes the inter-percentile ranges of several selected percentiles, and the absolute percentage differences. The inter-percentile range is defined as |zay - 7g%|. The absolute percentage
difference is defined as Mxloo% A and B denote a specific quantile (percentile).
TB%
Table 5: Inter-percentile ranges and (absolute) percentage differences of ITE across percentiles, where lipid is treated as a continuous trait.

address this limitation, we introduce a framework, MR-
ITE, that integrates MR and machine learning meth-
odologies to estimate individualised causal treatment
effects. Under this framework, we also present two
permutation-based tests to assess the presence of effect
heterogeneity. The validity of the MR-ITE framework is
supported by extensive simulations. Importantly, we
also demonstrate the applicability of our proposed MR-
ITE framework in realistic scenarios likely involving
unobserved confounders.

As a proof-of-concept example, we applied our
framework to study the individualised causal effects of
several lipid-related traits on CAD, including LDL-C,
HDL-C, triglyceride, and TC using the UKBB cohort,
one of the largest biobank cohorts of the world, consist-
ing of approximately 500,000 participants. We conducted
rigorous data cleaning and limited the analysis to in-
dividuals of European ancestry, retaining ~300,000 sub-
jects for formal analysis. This substantial sample size
enhances the robustness and generalizability of our
findings within European populations. Additionally, prior
studies support the broader generalizability of exposure-
outcome associations detected in the UKBB across
other cohorts. For instance, Batty et al. demonstrated
strong consistency in associations between risk factors

and mortality endpoints when comparing the UKBB
cohort with pooled data from the Health Surveys for
England (HSE) and the Scottish Health Surveys (SHS),*
highlighting the generalizability of UKBB findings to
other cohorts. Similarly, Lin et al. evaluated the predictive
power of combining biomarker-based PRS with standard
PRS for CAD across two nationwide cohorts, UKBB and
FinnGen, and observed consistent effect directions
despite minor differences in effect sizes.* These findings
further support the transferability of risk factor associa-
tions identified in the UKBB to other European cohorts.

Our analysis revealed evidence of effect heterogene-
ity, particularly for LDL-C and TC’s effect on CAD.
Using Shapley value analysis, we identified key clinical
features that may modify the effects of LDL-C and TC on
CAD.

On the other hand, our MR-ITE model did not detect
significant causal effects of HDL-C and triglycerides,
aligning with previous findings. For instance, Holmes
et al. conducted an MR analysis using PRS as in-
struments, similar to our approach. They found no
significant causal relationships between HDL-C or tri-
glycerides and CAD,” particularly in results based on a
more rigorous ‘restricted’ PRS (which filtered out SNPs
associated with other lipid traits), or those based on the

8 o TA% ~TB%
difference is defined as o7 |

x100%. A and B denote a specific quantile (percentile).

Traits Methods 50% Inter-quartile 80% Inter-percentile 90% Inter-percentile Absolute % Absolute % Absolute %
range (25% vs. 75%)  range (10% vs. 90%) range (5% Vs. 95%) difference (25% vs.  difference (10% vs.  difference (5% vs.
75%) 90%) 95%)
LDL-C CF 1.277E-03 2.318E-03 2.882E-03 15.66% 26.50% 31.83%
DRIV 6.372E-03 1.215E-02 1.561E-02 22.52% 38.88% 47.25%
IVCF 5.334E-03 1.007E-02 1.285E-02 18.45% 32.23% 39.37%
Total cholesterol CF 1.180E-03 2.142E-03 2.664E-03 21.69% 35.76% 42.34%
DRIV 6.366E-03 1.172E-02 1.470E-02 30.44% 50.10% 59.43%
IVCF 5.489E-03 1.037E-02 1.328E-02 20.14% 34.94% 42.68%

The table summarizes the inter-percentile ranges of several selected percentiles, and the absolute percentage differences. The inter-percentile range is defined as |zay - 7s%|. The absolute percentage

Table 6: Inter-percentile ranges and (absolute) percentage differences of ITE across percentiles, where lipid is treated as a binary trait (normal lipid levels vs. dyslipidaemia with the
latter as baseline, analogous to receiving a treatment for dyslipidaemia).
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Fig. 4: Top important variables identified with LDL-C as risk factor on CAD in continuous/binary treatment setting. a, |: Beeswarmplot of
top 10 important covariates identified under continuous trait and binary trait scenarios with SHAP analysis b, ¢, d, e, f, m, n, o, p, q: Scatterplots
of SHAP value (y-axis) vs. observed value (x-axis) of top 5 important covariates identified under continuous/binary treatment scenario (LDL-C as
risk factor and CAD as the outcome of interest). (b, ¢, d, e, f: Continuous Trait; m, n, o, p, q: Binary Trait) g, h, i, j, k, 1, s, t, u, v: Boxplots of
estimated individualised treatment effects (y-axis) vs. observed value (x-axis) of top 5 important covariates identified under continuous/binary
treatment scenario where LDL-C serves as risk factor and CAD as the outcome of interest. In the boxplots, the x-axis represents the deciles of the

feature. (g, h, i, j, k: Continuous Trait; r, s, t, u, v: Binary Trait).

unrestricted score with adjustment of statin use and
other lipid traits. Similarly, Uribe et al. reported no
significant association between genetically determined
HDL-C and CAD.”*® Another MR study based on a
Korean population also failed to find a clear significant
causal link between HDL-C or TG with CAD.®

In addition to lipid traits, we analysed two proteins
potentially linked to cardiometabolic disorders, namely
CRP and IGF-1. We showed that the CRP is not causally
associated with the risk of CAD, which agrees with
findings from previous studies. For example, the C-
Reactive Protein Coronary Heart Disease Genetics
Collaboration (CCGC) conducted an MR analysis of
individual-level data, which indicated that CRP concen-
trations are unlikely to be a significant causal factor in
CAD.” Similarly, Kuppa et al. reported no causal re-
lationships between CRP and various cardiovascular
diseases through a two-sample bidirectional MR study.”!

In contrast, we found that higher IGF-1 is associated
with increased CAD risks, and the effect showed sig-
nificant heterogeneity across individuals. Notably, Lars-
son et al. performed an MR analysis that explored the
causal role of IGF-1 in cardiometabolic diseases, and
found that elevated serum IGF-1 levels were associated
with higher risks of CAD, although this effect was
attenuated after adjustment for diabetes.”” In a meta-
analysis of observational studies, Jing et al. reported

that both low and high IGF-I levels were associated with
elevated risks of cardiovascular disease (CVD) (when
compared to the middle category of IGF-1 levels),
especially in males.”” The exact relationship between
IGF-1 and CVD and the underlying mechanisms may
warrant further studies.

Our application of the MR-ITE framework to UKBB
underscores the utility of our approach, and the findings
may have important clinical implications. Firstly, our
study uncovered important insights that could help
optimize the management of dyslipidemia and reduce
CAD risk. By characterizing ITE and deriving an ML
model to predict ITE, we could identify patients who
may experience a more pronounced adverse impact of
dyslipidemia on CAD risk. These high-risk individuals
may be prioritized for more intensive lifestyle and
pharmacological interventions aimed at treating dysli-
pidemia. Targeting treatments to those predicted to
derive the greatest risk reduction from lipid control may
maximize the efficiency of limited healthcare resources.

Secondly, our analysis revealed several clinical fac-
tors (effect modifiers) associated with differential re-
sponses to lipid-modifying therapies. Understanding
such sources of treatment heterogeneity can guide
clinical decision-making and more personalized pre-
scription. For instance, we observed that obese patients
may benefit less from lipid control; weight control in
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addition to lipid-modifying drugs may lead to more
pronounced benefit in terms of CAD prevention.

Moreover, we also uncovered several potential bio-
markers (e.g. cystatin C, SHBG, GGT etc.) that may help
differentiate patients with varying responses to lipid-
modifying therapies. The identification of such effect
modifiers may help in the development of combination
therapies. For example, one may combine lipid-lowering
drugs with another medication that target the effect
modifier(s).

Finally, as described earlier, our proposed MR-ITE
may also be employed for identifying patient sub-
groups with differential responses to treatment or risk
factors.

Our study possesses several notable strengths. To the
best of our knowledge, this is the first study aiming to
estimate individualised causal treatment effects
leveraging the principles of MR. Although it is possible
for researchers to study ITE under an RCT setting, the
inherent difficulties and substantial costs associated
with RCTs often make such designs impractical. Our
approach offers an alternative, enabling the inference of
individualised treatment effects using genetic in-
struments. This method is considerably less susceptible
to unknown confounders and reverse causality
compared to observational studies. This key advantage
could further expedite the progress of precision medi-
cine, as interventions on risk factors can be customized
for each individual based on the predicted ITE.
Furthermore, our ITE estimation strategies are predi-
cated on machine learning (ML) methods, which allow
flexible modelling of complex relationships. In addition,
the DRIV approach also allows virtually any ML model
to be used, thereby enhancing the flexibility and appli-
cability of our approach.

Moreover, our simulation results demonstrate that
the proposed heterogeneity testing methods exhibited
reasonable performance in the majority of scenarios. In
addition, the integration of SHAP analysis within our
framework helps to identify the primary variables
contributing to ITEs. This not only facilitates more
comprehensive model explanations but also potentially
assists in patient sub-grouping or disease subtyping in
practical applications.

Our study has several limitations that provide op-
portunities for future work. For instance, our simulation
results show that the permutation variance test may not
perform optimally in complex scenarios, such as those
involving strong nonlinear treatment effects or in-
teractions between different types of confounders.
Additionally, unlike most MR studies which leveraged
GWAS summary statistics only, MR-ITE requires
individual-level data; however, the PRS may be derived
from external summary data to minimize overfitting.
Our study primarily focuses on estimating (individu-
alised) absolute risk reduction (ARR) or changes as the
target estimate; the study of ITE in terms of risk ratio

www.thelancet.com Vol 113 March, 2025

(RR) will be considered as a topic for future studies.
Another limitation is the absence of an independent
external dataset for validating our results. It is relatively
challenging to find a large-sample, phenotype-rich
dataset with genotype information akin to the UK Bio-
bank. Apart from the above, general limitations of MR
may also apply’*”; for example, genetically predicted
lipid levels may reflect long-term effects of lipid
changes, and may not fully mimic the short-term effects
of statins or other lipid-modifying drugs. Further repli-
cations and studies are also required to validate our
findings regarding the effects of lipids on CAD risk.

Despite these limitations, the estimated ITEs are
reasonable, and their range aligns with estimates from
previous RCTs of lipid-lowering agents. We also note
that our framework primarily considers a linear effect of
the exposure, though nonlinear causal effects may be
present in practical scenarios.”®

Regarding the two MR-ITE approaches, we observed
that the DRIV method did not yield as many statistically
significant ITEs as IV-GRF, although the ITEs estimated
from both methods are significantly correlated
(Table S23). We speculate that one potential reason is
that DRIV requires modelling the covariance between
the exposure and the instrument conditional on the
covariates, and this term needs to be included in the
denominator (please refer to supplementary text for
details and relevant formulas); this may lead to higher
variance of DRIV estimates compared to IV-GRF. In
practice, to determine which approach is preferred, we
recommend comparing the modified R-loss (as defined
in formula (6) in Supplementary Notes, Section 1.4.2)
between DRIV and IV-GRF. If the difference is signifi-
cant, the method with the smaller R-loss is considered
more reliable. Otherwise, IV-GRF may be preferred due
to its tendency to produce estimates with lower variance
compared to DRIV. Future research may focus on
further enhancing the performance of DRIV, particu-
larly in scenarios where the instrument exhibits weak
influence on the exposure within certain covariate
regions.

We also acknowledge that the limited sample sizes
(both for the exposure and outcome) of other ancestry
populations, such as South Asians and Africans, raise
concerns about the statistical power. In addition, South
Asian and African participants were recruited in En-
gland rather than their regions of origin. Consequently,
differences in environmental exposures and lifestyles, as
well as variations in genetic backgrounds driven by
factors such as the founder effect and gene flow, make it
challenging to generalize the findings to populations in
their ancestral homelands. As such, the results may not
be as reliable as those estimated from European sub-
jects. We hope to further investigate this issue with
larger and more diverse datasets in the future.

In conclusion, we have developed a MR framework
capable of estimating individualised causal effects in
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observational studies. We have estimated the ITEs of
lipid traits on CAD, and unveiled important clinical
features that contribute to effect heterogeneity. It is our
hope that our work will pioneer a new direction and
paradigm for MR studies by providing a new method for
identifying ITEs. We hope these insights will ultimately
translate to clinical practice, informing more personal-
ized treatment plans.
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