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This paper proposes a novel machine learning paradigm called the generative adversarial tri-model 
(GAT) to incorporate analytical knowledge into neural networks through a unique positive-sum game 
strategy. The motivation is to solve the problem that pure machine learning models fail to obey 
the fundamental governing laws of physics in engineering fields. The GAT method is successfully 
implemented to solve ODE (ordinary differential equation) problems with various constraints. A strict 
error bound is proven for initial-constraint problems, which certifies its reliability. The real-world 
significance of the GAT method is reflected by its application to a human body oscillation recovery 
problem, based on balance sensor measurements, which is critical for human balancing evaluation, 
yet unresolved after massive precedent research work. Further human experiment results prove the 
effectiveness of the GAT method. Both theoretical and experimental studies demonstrate that the 
GAT method is useful and reliable. It envisions great scalability for wider applications and adaptions 
prospect.
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Human balance is defined as the body’s ability to maintain its center of gravity within the base of support formed 
by feet1, which is a basic physiological function. Being able to keep balance is fundamental for us to perform 
daily activities, such as standing and walking. Maintaining balance requires sensory inputs from our visual 
system, proprioceptive system and vestibular system2, as well as the coordination within our motion control 
system comprised of brain, spine, muscle, etc. Lots of factors can lead to deterioration of balance ability, such as 
aging3, alcohol4, drugs5, limb pain6 and brain injury7. Poor balance can make our everyday life difficult and even 
induce falls, which account for a variety of injuries and disabilities. Especially for the elderly, falls incur billions 
of medical cost every year8.

Balance test has been widely used to evaluate human balance ability in medical diagnosis activities which 
can check for potential balance disorders, and what is causing it. For example, it can act as a non-invasive tool 
to provide important information for diagnosing neural diseases, such as Parkinson’s disease9 and stroke10. For 
other diseases diagnosis like migraine11, Meniere’s disease12 and so on, it can play a helpful role as well. In 
addition, it can assist in detecting mild cerebral injury13 without obvious physical lesion like concussion14 which 
cannot be diagnosed with CT scan. The detection of subtle abnormalities in balance ability is necessary not only 
for early diagnosis but for accurate assessment of rehabilitation progress15. Apart from medical usages, balance 
test can also be used in law-enforcement scenarios, like identifying drunk drivers and drug addicts16. When it 
comes to sports, balance test can also serve many purposes, such as risk identification of ankle sprains17 and 
sports talent identification and selection18.

With all these benefits of balance test, researchers have already developed various balancing evaluation 
methods, which can be roughly categorized as either human-scoring or machine-scoring. Typical human-
scoring methods include Romberg test19,20, OLST method21, Tinetti test22 and so on. A common characteristic of 
these methods is that there must be a human evaluator to give scores for testees’ performance on each task, so the 
result is hard to avoid being subjective. Machine-scoring methods are based on balance testers which originate 
from 197623. With a balance tester, the pressure distribution under feet can be recorded when testee standing. 
Traditionally, most human balancing evaluations are based on CoP (center of pressure) measurements24, such as 
the mean velocity and root mean square distance of CoP displacements, as recommended by the International 
Society of Posturography25. However, the CoP variations do not directly reflect the mechanical motion of human 
body. Hence, some researchers have tried to measure the CoG (center of gravity) variations of human body 
using methods like cinematography and optoelectrical imaging systems, etc.26 However, these methods are also 
indirect and involve anthropometric approximations27. Some researchers even tried to estimate CoG from CoP, 
such as by filtering the time history data of CoP28. Nevertheless, these methods fail to consider the kinetic 
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properties of the human body. To fill this research gap, this paper proposes a new approach called the GAT 
method to recover the CoG motion process from CoP measurements, without losing the kinetic properties of 
human body.

In fact, a standing human body can be regarded as an inverted pendulum29 which is under control from the 
cerebellum for keeping balance30. Therefore, this paper simplifies a standing human body as a nonlinear two-
degree-of-freedom inverted pendulum and establishes its dynamic model, which consists of two second-order 
nonlinear ODEs. The inputs of these equations are the CoP measurements from a balance sensor. If given proper 
constraints, it should be able to numerically solve the human body motion and hence the CoG motion process 
from this dynamic model. Traditionally, there are lots of methods to generate numerical solutions for ODEs, 
such as the well-known Euler method and Runge–Kutta method, but they only work for initial/boundary-
constraint problems. Other classical methods include the finite difference method and shooting method, but 
they only work for linear problems. Unfortunately, no initial constraint can be found for solving human body 
motion from the established nonlinear dynamic equations. Instead, a set of integral constraints can be obtained 
heuristically. For nonlinear integral-constraint problems, the weighted residual method can be used, but the 
constraints cannot be strictly satisfied.

Interestingly, from a novel perspective, an ODE solving problem can be treated as a function fitting task, 
where the target function is its solution. Therefore, it can be solved through machine learning methods like 
neural networks. Physics-informed neural networks (PINN)31 methods approximate ODE solutions with deep 
neural networks. During training, its loss function includes two terms, which respectively measure the residual 
of differential equations and the residual of constraints. However, the constraints cannot be strictly satisfied, 
either. Moreover, competitive loss terms during network training can lead to conflicting gradients32, which may 
impair training stability and cause PINN hard to accurately learn the underlying ODE solution.

Exact constraint satisfaction is very important for a variety of problems in scientific domains, particularly when 
confidence in the constraint information is high33. For example, the constraints may imply certain symmetries 
or conservation laws34. Theory of functional connections (TFC) methods derive constrained expressions as 
trial solutions of ODE problems, which contain a free function and always satisfy a set of linear constraints 
no matter what the free function is35. Optimization methods are then leveraged to determine the unknown 
parameters in the free function. TFC methods can solve both linear and nonlinear differential Eqs. 36,37 subject 
to initial, boundary and multi-value constraints. The free function used in TFC methods can either be a linear 
combination of orthogonal basis functions, or extreme learning machines38, or deep neural networks33,39,40. 
However, integral-constraint differential equations can only be solved by TFC methods based on the first two 
kinds of free functions41,42, while TFC with deep neural networks can only solve initial/boundary-constraint 
problems. Another limitation of the TFC methods is that they cannot tackle nonlinear constraints.

Although solving ODE problems with neural networks offer potential benefits compared with traditional 
numerical methods, they still face the challenge of very limited convergence theory. In addition, the PINN 
methods and TFC methods pose ODE problems as optimization problems, so they inevitably share all the 
difficulties with optimization problems, with the major one being getting stuck in local optima43. Furthermore, 
current optimization-based methods can only solve ODE problems from scratch. They cannot take advantage of 
approximate solutions from other methods.

There lacks of a unified framework which can solve both linear and nonlinear ODE problems with arbitrary 
constraints. More importantly, it must guarantee exact satisfaction of all constraints and provide convergence 
theory. Besides, it would be preferable if it can leverage approximate solutions from other methods and provide 
mechanisms to jump out of local optima. The GAT method is able to fill this research gap, which ingeniously 
decouples the trial solutions with constraints and treats the constraints as extra analytical knowledge that the 
trial solutions generated by neural networks should further satisfy. This idea leads to a two-stage positive-sum 
strategy, which is the essence of the GAT method. The GAT method not only can solve ODE problems with 
arbitrary constraints. In fact, it is a general framework to fuse two originally mutual-exclusive ways to describe 
the world, i.e., data-driven connectionism and traditional symbolism.

Results
Concept of the GAT method
Schematic diagram of the GAT method is shown in Fig. 1. Explicitly, there are two types of models, namely the 
machine learning model and analytical model. The machine learning model is always used to represent some 
functional relationship and can be independently trained. But the generated result may be unsatisfactory or fail 
to conform to some necessary constraints because the training data and loss function may not contain all the 
necessary information to describe the desired function. However, if some extra knowledge can be obtained to 
describe the desired function, such as some physical equation, it can be used to adjust the machine learning 
outputs. Here the analytical model represents a mathematical description of the extra knowledge. But this 
analytical model must also be inadequate to determine the desired function. Otherwise, there will be no need to 
apply machine learning models. Therefore, the adjusted outputs must be further refined in the machine learning 
model. The method is to re-initialize the machine learning model based on the adjusted outputs and train it 
again. The whole process forms a loop and will converge when the machine learning model outputs conform to 
the analytical model to some acceptable level or vice versa.

In the GAT method, the desired functional relationship is the ultimate purpose, which is generated by the 
machine learning model, so the machine learning model acts as a generator, represented by the “G” letter. The 
machine learning model and analytical model can optimize the desired function in turn in an adversarial way, 
which is the meaning of the “A” letter. The two models are in competition because the machine learning model 
wants its generated function to conform to its training data and loss function in terms of minimal loss value, 
while the analytical model wants its adjusted function to be closer to its contained knowledge. However, this 
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competition is positive-sum rather than zero-sum as what is in the GAN model44, because at the convergence 
moment, the generated function is expected to conform to both the loss function and analytical model. In fact, 
there is another model implied in the running process of the GAT method. Its state transitions during running 
can be described by a DEDS (discrete event dynamic system) model45, which is a logic model built upon non-
deterministic finite automata. The machine learning model, analytical model and DEDS model construct the 
tri-model, denoted by the “T” letter. The most vital conjunction point in the GAT method is how to re-initialize 
the machine learning model with adjusted outputs. This paper provides a feasible approach with respect to 
connectionist models, i.e., neural networks.

Realization of the GAT method with neural networks
It is well-known that fully connected neural networks with just one hidden layer can approximate all continuous 
functions, regardless of whether the activation function is sigmoid46,47 or ReLU48. Therefore, ReLU-activated 
fully connected neural networks with one hidden layer are employed to realize the GAT method, as shown in 
Fig. 2a. These networks can approximately reproduce any function in a very simple procedure, as illustrated in 
Fig. 2b. For an arbitrary function (indicated by the blue curve), a series of points (0, y0), (x1, y1), (x2, y2) 

Fig. 2.  Elaboration of the neural networks used to realize the GAT method. (a) The weights of the hidden layer 
and output layer are represented by w[1] and w[2], respectively. The biases of the hidden layer and output layer 
are represented by b[1] and b[2], respectively. The functional relationship of these networks can be expressed 

as y =
n∑

i=1

[
w

[2]
i ReLU

(
w

[1]
i x + b

[1]
i

)]
+ b[2]. (b) Illustration of the procedure to reproduce an arbitrary 

function with these networks.

 

Fig. 1.  Schematic diagram of the GAT method.
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and (x3, y3) can be sampled from it. The original function can be approximated by a piecewise linear function 
consisting of the line segments connecting every two adjacent points. The prolongations of these line segments 
are represented by l1, l2 and l3. For the specific case in Fig. 2b, the piecewise linear function can be expressed by 
l1 + ReLU (l2 − l1) − ReLU (l2 − l3), which naturally conforms to the functional relationship represented 
by these networks.

For a general case, if the sampled data points are (x0, y0) , (x1, y1) , . . . , (xn, yn), a formulaic algorithm 
has been developed to set every parameter in a network with n hidden nodes, allowing it to reproduce the 
piecewise linear function connecting these sampled points. This algorithm, named as “Algorithm 1”, is expressed 
with pseudocode as follows, where sgn (·) is the sign function.
Algorithm 1:

	

w
[1]
1 ←

∣∣∣ y1 − y0

x1 − x0

∣∣∣
b

[1]
1 ← −w

[1]
1 · x0

w
[2]
1 ← sgn

(
y1 − y0

x1 − x0

)

for i from 2 to n

w
[1]
i ←

∣∣∣∣
yi − yi−1

xi − xi−1
− yi−1 − yi−2

xi−1 − xi−2

∣∣∣∣
b

[1]
i ← −w

[1]
i · xi−1

w
[2]
i ← sgn

(
yi − yi−1

xi − xi−1
− yi−1 − yi−2

xi−1 − xi−2

)

end

b[2] ← y0

The process of running “Algorithm 1” to make the network reproduce the piecewise linear function connecting 
those sampled points can be vividly described with the following metaphor. Assume there is a wire which 
initially coincides with the x-axis. The problem is how to bend and move this wire so that it can coincide with 
the piecewise linear function. The first step is to bend this wire at position x0 so that the wire segment within 
[x0, x1] is parallel to the first line segment of the piecewise function. The second step is to further bend this wire 
at position x1 so that the wire segement within [x1, x2] is parellel to the second line segment of the piecewise 
function. This process continues until the wire segment within [xn-1, xn] is parallel to the last line segment of 
the piecewise function. Lastly, the wire is vertically moved as a whole, with moving distance being y0. The final 
shape and position of the wire will exactly coincide with the piecewise linear function from x0 to xn. The network 
output includes a summation of a series of ReLU activated linear functions, which can be used to imitate this 
sequential bending process. Specifically, the bending angles are indicated with the elements of w[1], while the 
elements of b[1] are determined accordingly so as to ensure the bending positions are exactly x0, x1, x2, …, xn-1. 
The bending directions are indicated with the elements of w[2], where +1 means bending upward and −1 means 
bending downward. The final vertical movement is indicated with the value of b[2]. With the “Algorithm 1”, any 
adjusted outputs from analytical models can be used to re-initialize the neural network so that the adjusted 
outputs can be refined with further training.

The idea of the GAT method has already been proven to be effective in sensors calibration48,49, which are 
supervised learning problems. Neural networks were used to fit the desired sensor property functions. However, 
experiment data was hard to obtain, hence the amount of data was rather noisy and deficient. Direct training 
on the limited dataset gave very poor results. At the same time, extra qualitative physical models describing the 
sensor property functions were established under ideal assumptions. Although they diverge from reality, the 
physical knowledge they contain greatly helped the network converge from both the perspective of speed and 
accuracy.

Adaption of the GAT method for solving ODEs
Here, the GAT method is applied to unsupervised learning problems. Specifically, it is adapted to numerically 
solve ODEs. Using the GAT method to solve an ODE problem, the differential equation and its constraint will be 
decoupled. The neural network in the GAT method only focuses on decreasing the residual of the corresponding 
difference equations of the original differential equation, while the analytical model guarantees the constraint 
being satisfied. All kinds of constraints can be handled by this paradigm.

Given an ODE problem, suppose the differential equation and constraint are expressed with Eq. (1), where 
Ψ [·] denotes a functional of the solution y (x). If numerical solutions of x within [0, 1] are considered, step size 
h is used to discretize the interval [0, 1] and the number of hidden nodes n in the neural network is set to 1/h. 
The inputs of the network are 0, h, 2h, · · · , 1 and the corresponding outputs of the network are denoted 
with Y0, Y1, Y2, . . . , Yn, which are regarded as the numerical solutions of the ODE problem. Therefore, the 
constraint with respect to these numerical solutions should be rephrased as Eq. (2). Two types of loss functions 
are designed, which are called Euler loss function and Runge–Kutta loss function, respectively, as expressed by 
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Eqs. (3) and (4). What the loss functions actually calculate is the mean square residual in different orders of the 
corresponding difference equations of the original differential equation.

	

{
dy

dx
= f (x, y)

Ψ [y (x)] = 0
� (1)

	 Ψ (Y0, Y1, Y2, . . . , Yn) = 0� (2)

	
LEuler = h

n−1∑
i=0

[
Yi+1 − Yi

h
− f (ih, Yi)

]2
� (3)

	
LRK = h

n−1∑
i=0

[
Yi+1 − Yi

h
− 1

6 (ki1 + 2ki2 + 2ki3 + ki4)
]2

� (4)

	

where ki1 = f (ih, Yi)

ki2 = f
(

ih + h

2 , Yi + h

2 ki1

)

ki3 = f
(

ih + h

2 , Yi + h

2 ki2

)

ki4 = f (ih + h, Yi + hki3)

The whole running process of the GAT method for solving the above ODE problem is illustrated in Fig. 3. The 
neural network can either be initialized randomly or with the “Algorithm 1” to reproduce approximate numerical 
solutions generated by other methods, such as the finite difference method. With inputs and loss function 
definitions, the network can now be trained with back propagation until convergence to minimize the loss value. 
After convergence, the network outputs Y0, Y1, Y2, . . . , Yn may not satisfy the constraint Eq. (2). Then, in the 
analytical model, translation and scaling can be used to adjust these outputs to make Eq. (2) satisfied. In a general 
way, this can be achieved by solving an optimization problem so that the modification to network outputs can be 
minimized, as expressed by Eq. (5), where C1 and C2 denote the scaling parameter and translation parameter, 
respectively, and C1Y0 + C2, C1Y1 + C2, . . . , C1Yn + C2 are the adjusted network outputs. However, the 
constraint is not always convex, so this optimization problem may not be solved conveniently. In many cases, 
it is not necessary to solve Eq. (5), but heuristic methods can be used to directly generate a pair of C1 and C2, 
without much influence on the running of the GAT method.

	

min
C1, C2

n∑
i=0

(C1Yi + C2 − Yi)2

s.t. Ψ (C1Y0 + C2, C1Y1 + C2, . . . , C1Yn + C2) = 0

� (5)

A new loss value can be calculated for these adjusted network outputs, and if it is less than a preset threshold ε, 
the original ODE problem can be considered solved, and these adjusted network outputs are the corresponding 

Fig. 3.  Adaption of the GAT method for solving ODEs.
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numerical solutions. Otherwise, the “Algorithm 1” can be used to re-initialize the network to reproduce 
(0, C1Y0 + C2) , (h, C1Y1 + C2) , · · · , (1, C1Yn + C2) so that the neural network can jump out of local 
optima and be trained again to lower the loss value. In ideal circumstances, the GAT method will converge to 
a series of outputs that both give zero loss value and satisfy the constraint. If an initial constraint and the Euler 
loss function are used, it can be easily proven that the GAT method outputs at the ideal convergence moment 
are the same as the numerical solutions generated by Euler method. If the Runge–Kutta loss function is used, 
the outputs will be the same as those generated by Runge–Kutta method50. Hence, these two loss functions are 
named as such. Besides, a “MAX” value is preset to limit the loop number between the neural network and 
analytical model to avoid a dead loop.

Notably, the reason to use translation and scaling for adjustments is that these two operations do not change 
the relative relationships between adjacent numerical solutions, so they can retain the knowledge of derivatives 
learned from differential equations. Meanwhile, translation and scaling towards meeting constraints will further 
add the knowledge of constraints to numerical solutions. That is the reason why the GAT method is positive-sum. 
This positive-sum characteristic of GAT method will finally aggregate all the knowledge contained in differential 
equations and constraints into numerical solutions, which means the eventual convergence of the GAT method. 
Now that both the neural network and analytical model tend to modulate the GAT method outputs towards the 
unique convergence state, the GAT method will naturally tend to converge, which means it is intrinsically stable.

For the network outputs, two indexes can be defined as follows: whether the gradients of the network 
parameters in the loss function are zero (or whether the network converges), and whether the constraint Eq. (2) 
is satisfied. The two indexes can form three states. In state 1, the gradients of network parameters are not zero 
and the constraint is not satisfied, which corresponds to the state after network initialization and during network 
training. In state 2, the gradients of network parameters are zero, but the constraint is not satisfied, which 
corresponds to the state after network convergence. In state 3, the gradients of network parameters are not zero, 
but the constraint is satisfied, which corresponds to the state after network being re-initialized by the “Algorithm 
1”. The end of the GAT method is defined as state 4. The state transitions between the four states are triggered 
by different events. The above description is exactly a DEDS model45, as illustrated in Fig. 4, where event α 
represents that convergence is achieved during network training; event β represents that the “Algorithm 1” is run 
to make network outputs satisfy the constraint; event γ represents training the network; event η represents that 
the GAT method is terminated. Here, event γ and η are controllable according to a criterion u, which represents 
that the loss value ≤ ε or loop number ≥ MAX. Event η happens when u is satisfied. Otherwise, event γ happens.

The formal definitions of the quadruple and functions in the above DEDS model are detailed as follows: 
X = {state 1, state 2, state 3, state 4} is the finite set of states. Σ = {α, β, γ, η} is the finite set of possible events. U = {γ, 
η} is the set of admissible control inputs, which is a subset of Σ. Γ = {α, β, γ, η} is the set of observable events. The 
functions that specify the set of possible events at each state are d(state 1) = {α}, d(state 2) = {β}, d(state 3) = {γ, η}, 
d(state 4) = Ø. The functions that specify the set of events that cannot be disabled at each state are e(state 1) = {α}, 
e(state 2) = {β}. The state transition functions are f(state 1, α) = {state 2}, f(state 2, β) = {state 3}, f(state 3, γ) = {state 
1}, f(state 3, η) = {state 4}. Here, in order to ensure there is no dead loop, state 4 is identified as the “good” state 
E in the DEDS model. Since the loop number is restricted by “MAX”, state 4 will definitely be reached, which 
means the DEDS model is stable.

As there is only one neural network and one analytical model in the ODE solving case, the DEDS model 
seems trivial here. However, the GAT method has great scalability. For example, multi machine learning models 
and analytical models could be involved. Evaluating the outputs of the GAT method may involve lots of indexes, 
and hence, lots of states. The state transitions between these states will become very complex. Under such 
circumstance, a helpful tool like the DEDS model is necessary to analyze the running process of the GAT method 
and control its stability. The operation that the GAT method takes different actions in some states according 
to certain criteria resembles the policy iterator in learning automata or reinforcement learning. However, the 
GAT method is different since it involves no Markov stochastic process and there is no reward from outside 
environment for updating policy. The GAT method is a closed system that runs independently with a preset 
policy.

Application of the GAT method in solving ODEs
Five examples are given to demonstrate the ability of GAT method to solve ODE problems with various constraints, 
including two initial-constraint problems, one boundary-constraint problem, one integral-constraint problem 
and one nonlinear-constraint problem. Each example has its analytical solution for reference purpose. In all five 

Fig. 4.  DEDS description of the state transitions in the GAT method for solving ODEs.
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examples, neural networks are used in the GAT method to give numerical solutions with a step size being 0.01, 
which are initialized randomly and trained under both the Euler loss function and Runge–Kutta loss function. 
For comparison purpose, PINN method is also employed to solve these five examples. For the sake of fairness, 
the networks used in the PINN method are the same as those used in the GAT method. The Euler and Runge–
Kutta loss functions are also used to measure the residual of differential equations, as part of the PINN loss 
functions. The GAT method and PINN method share the same convergence criteria during network training.

	
Problem 1 :

{
dy

dx
= − xy

x + 2 , x ∈ [0, 1]

y (0) = 4

	

Problem 2 :




dy1

dx
= −2y1 + 4y2, x ∈ [0, 1]

dy2

dx
= −y1 + 3y2

y1 (0) = 5
y2 (0) = 2

	
Problem 3 :

{
dy

dx
= 1 − y sin x

cos x
, x ∈ [0, 1]

y (1) − y (0) = sin 1 + cos 1 − 1

	

Problem 4 :




dy

dx
= y ln y

x + 1 , x ∈ [0, 1]
∫ 1

0
y (x) dx = e2 − e

	

Problem 5 :





dy

dx
= y2 − y, x ∈ [0, 1]

∫ 1

0

1
y (x)dx = e3 − e2 + 1

The analytical solutions for the five problems are y = e−x (x + 2)2, 
{

y1 = e2x + 4e−x

y2 = e2x + e−x
, y = sin x + cos x, 

y = ex+1 and y = 1
1+ex+2 , respectively. To illustrate the running process of the GAT method for solving ODE 

problems, the state transitions in the first three loops for solving Problem 1 are illustrated (refer to Supplementary 
Materials Section S1). The generated numerical solutions by both methods with both loss functions are depicted 
in Fig.  5. The final numerical solutions by the GAT method are found to be very accurate for all kinds of 
constraints. For initial-constraint problems, it is also found that the performance of Runge–Kutta loss function 
is slightly superior to that of Euler loss function. This is unsurprising since the error bound of the GAT method 
with Runge–Kutta loss function is tighter than that with Euler loss function for the same loss value (refer to 
the following theorem and corollary). It is clear that the GAT method can generally generate more accurate 
and smoother results than PINN method. This is because the training of PINN is prone to getting stuck in 
local optima. Fortunately, in the GAT method, once networks converge to local optima, which means the GAT 
method reaches state 2, the “Algorithm 1” will be run to re-initialize networks to make their outputs conform 
to constraints. An amazing byproduct of this procedure is that it can help networks jump out of local optima. 
Meanwhile, the drawback of PINN methods that they cannot strictly satisfy constraints is obvious from the 
results of the first two initial-constraint problems. In contrast, the solutions generated by the GAT method can 
always strictly satisfy constraints. Note that the GAT method can solve multiple first-order differential equations 
like the Problem 2. It must also be able to solve higher order ODEs, because an n-order differential equation can 
be transformed into n first-order differential equations.

It is worth emphasizing that on top of being able to surpass PINN methods, the concept of GAT method is 
not confined to just being an ODE solver. Because PINN methods choose to incorporate physical knowledge 
through manipulating loss functions, the physical knowledge must be quantitative. However, the GAT method 
can even handle qualitative physical knowledge with unknown parameters, as has been demonstrated by its 
applications in sensors calibration48,49. The GAT method characterizes an interaction process between machine 
learning models and analytical models. The knowledge contained in experiment data and analytical models can 
both be incomplete on their own, but the GAT method is able to aggregate all the knowledge together to reach 
an optimal result.
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Fig. 5.  Results of the ODE examples solved by both the GAT method and PINN method. The numerical 
solutions are drawn on the left, in comparison to every analytical solution. The absolute errors of numerical 
solutions with respect to analytical solutions are drawn on the right. The Euler and Runge–Kutta loss functions 
are employed in both methods for comparison.
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Error bound of the GAT method for initial-constraint ODE problems

For an ODE problem 

{
dy

dx
= f (x, y)

y (0) = Y0

, x ∈ [0, 1], the step size is chosen to be h. n = 1/h and 

xi = ih, i = 0, 1, . . . , n. Yi is used to approximate the value of y (xi). Assume there is a method F  of order 

m that satisfies 
∣∣∣ y(xi)−y(xi−1)

h
− F [xi, h, y (xi−1)]

∣∣∣ ≤ O (hm). The used numerical method is Yi ≈ Yi−1

+hF (xi, h, Yi−1) . Consider the loss value given by L2 norm L =
n∑

i=1
h

[
Yi−Yi−1

h
− F (xi, h, Yi−1)

]2
. The 

following theorem can be proven.

Theorem:  Let {Yi}n
i=0 satisfy Y0 = y (0) and L =

n∑
i=1

h
[

Yi−Yi−1
h

− F (xi, h, Yi−1)
]2

, then 

|Yi − y (xi)| ≤ eM1 M2hm + eM1
√

L, where Yi ≈ Yi−1 + hF (xi, h, Yi−1) with F  being a method of order 
m. M1 and M2 are two constants.

Corollary:  As is known, m = 1 for the Euler method, and m = 4 for the Runge–Kutta method50. Therefore, if 
the Euler loss function is used in the GAT method, the error bound is eM1 M2h + eM1

√
L. Alternatively, if the 

Runge–Kutta loss function is used, the error bound is eM1 M2h4 + eM1
√

L. As h → 0 and L → 0, the error 
also converges to zero. If the loss value decreases to zero, it can be found that the order of the error bounds of the 
GAT method stay consistent with the Euler and Runge–Kutta methods.

Proof of the error bound for initial-constraint ODE problems
Let gi = Yi−Yi−1

h
− F (xi, h, Yi−1) so that

	 Yi − Yi−1 = hF (xi, h, Yi−1) + hgi 1

Note that

	 y (xi) − y (xi−1) = hF [xi, h, y (xi−1)] + Cih
m+1 2

Let εi = Yi − y (xi), ①–② yields

	

εi − εi−1 = h {F (xi, h, Yi−1) − F [xi, h, y (xi−1)]} − Cih
m+1 + hgi

= hFy (xi, h, ωi) εi−1 − Cih
m+1 + hgi

3

Here the mean value theorem F (xi, h, Yi−1) − F [xi, h, y (xi−1)] = Fy (xi, h, ωi) εi−1 with 
ωi ∈ [y (xi−1) , Yi−1] is used. Let βi = Fy (xi, h, ωi), ③ can be rewritten as.

	 εi = (1 + hβi) εi−1 − Cih
m+1 + hgi, i = 1, 2, . . . , n 4

Assume |βi| ≤ M1 and |Ci| ≤ M2 for all i = 1, 2, · · · , n, so that

	

|εi| ≤ (1 + hM1) |εi−1| + M2hm+1 + h |gi|
≤ (1 + hM1)

[
(1 + hM1) |εi−2| + M2hm+1 + h |gi−1|

]
+ M2hm+1 + h |gi|

= M2hm+1 [1 + (1 + hM1)] + h [|gi| + (1 + hM1) |gi−1|] + (1 + hM1)2 |εi−2|

Continue this process and use ε0 = 0, the following estimate can be derived.

	
|εi| ≤ M2hm+1

i−1∑
j=0

(1 + hM1)j + h

i−1∑
j=0

|gi−j | (1 + hM1)j 5

Next, for any j = 0, 1, . . . , n − 1, (1 + hM1)j = ej ln(1+hM1) ≤ ejhM1 ≤ eM1 , ⑤ can be estimated by
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|εi| ≤ ieM1 M2hm+1 + eM1 h

i∑
j=1

|gj |

≤ eM1 M2hm + eM1 h

√√√√
i∑

j=1

|gj |2

√√√√
i∑

j=1

1 (Cauchy’s inequality)

= eM1 M2hm + eM1
√

ih

√√√√h

i∑
j=1

|gj |2

≤ eM1 M2hm + eM1
√

L

The proof of error bound for initial-constraint ODE problems is provided as an example to demonstrate the 
mathematical rigor of the GAT method. In fact, the proof method can also be extended to other constraint 
types. The problem setting is similar except only the constraint is different. Because the GAT method can 
always guarantee exact satisfaction of constraints for numerical solutions, various constraints can thereby be 
transformed into corresponding relationships between each εi based on the definition εi = Yi − y (xi). For 
example, initial constraints like the one in Problem 1 can be transformed into ε0 = 0. Boundary constraints like 
the one in Problem 3 can be transformed into ε0 = εn. Integral constraints like the one in Problem 4 can be 

transformed into 
n−1∑
i=0

εi +
n∑

i=1
εi = 0. If only the relationships between each εi can be properly used, the proof 

of error bound for other constraint types can be derived accordingly.

Application of the GAT method in human balancing evaluation
For a standing person, a coordinate system is established, as shown in Fig. 6. The human body is approximated 
by three rigid hinged bars, with the hip joints and ankles considered as hinges. When viewed from the back, the 
trunk and arms are considered as a single bar which always keeps upright. The two legs are considered as two 
bars which can swing in the xz-plane. The rotation of the two legs in the xz-plane are always the same. When 
viewed from the right side, the body can swing in the yz-plane as a whole. The rotation of the trunk and the 
two legs in the yz-plane are always the same. The corresponding dynamic equations describing the human body 
motion during standing are shown in Eq. (6), with the establishment process of this dynamic model reported 
in Supplementary Materials Section S2. The right sides of the equations are related to CoP variations during 
standing. A balance sensor has been developed based on the principle of frustrated total internal reflection51. 
This balance sensor can record high-resolution pressure distribution variations under human feet in video form. 
The sensor properties between pressure and pixel intensities were calibrated48,49, so the pressure distribution 
variations can be quantitatively determined, and from which, CoP variations can be calculated.

Fig. 6.  Mechanical model of human body. The mass of the human body is m. It is approximately considered 
3m/5 for the trunk and m/5 for each leg. The human height is h, with approximately h/2 for each leg and the 
trunk. The whole model has two degrees of freedom. The first is θ1, indicating body rotation in the yz-plane, 
with positive direction being anti-clockwise. The second is θ2, indicating rotation of both legs in the xz-plane, 
with positive direction being clockwise under right-hand rule. The trunk always keeps upright. The pressure 
distribution under human feet is represented by p(x, y), which can be measured by the balance sensor.
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


23
60

h2

g
θ̈1 − 31

60
h2

g
θ̇1θ̇2θ2 − 11

20hθ1 = COPy − y0

11
60

h2

g
θ̈2 + 31

120
h2

g
θ̇2

1θ2 − 2
5hθ2 = COPx − x0

� (6)

Here, g is the gravitational acceleration. (x0, y0) is defined as the coordinate of the middle point between two ankles, 

and (CoPx, CoPy) is defined as the coordinate of the CoP under feet, namely, 
(�

p(x,y)xdxdy�
p(x,y)dxdy

,
�

p(x,y)ydxdy�
p(x,y)dxdy

)
. 

Because the swing of human body is around its equilibrium position, (x0, y0) can be approximated by the mean 
value of (CoPx, CoPy) across a long period of measurement by the balance sensor24.

Equation  (6) is a nonlinear ODE problem, without analytical solutions. Even though only numerical 
solutions are considered, there still lacks constraints. Fortunately, hueuristic constraints can be obtained from 
the knowledge that people do not fall during standing on the balance sensor. This means that θ1 and θ2 must 
always oscillate around 0. The angular velocities θ̇1 and θ̇2 must also always oscillate around 0. Therefore, across 
a long period [0, T], Eq. (7) is approximately satisfied, which can be used as the integral constraints for solving 
Eq. (6).

	




∫ T

0
θ1dt = 0

∫ T

0
θ2dt = 0

∫ T

0
θ̇1dt = 0

∫ T

0
θ̇2dt = 0

� (7)

Even though the real human body motion does not exactly satisfy Eq. (7), it can be argued that using Eq. (7) 
as constraints for solving Eq. (6) can still generate very accurate solutions for most of the measurement period 
(refer to Supplementary Materials Section S3). This conclusion is further validated by the following experiment.

In order to verify whether the GAT method can solve human body motion from Eq. (6) with constraints 
being Eq.  (7), two experiments were conducted using the balance sensor. In the first experiment, the testee 
swung front and back deliberately when standing on the balance sensor. In the second experiment, the testee 
swung left and right during standing. For each experiment, data was collected for 10 s with sampling frequency 
being 30 Hz. Human body motion is successfully solved with the GAT method. The coordinate of CoG can be 
calculated from the solved θ1 and θ2 by (CoGx, CoGy) =

(
− 2

5 hθ2, − 11
20 hθ1

)
 according to the human body 

model. The variations of CoP and CoG in the two experiments are shown in Fig. 7a,b. The trajectories of CoP 
and CoG variations are shown in Fig. 7c. It can be found that when the testee swung front and back, the solved 
CoG also has larger amplitude in the direction of front and back. When the testee swung left and right, the solved 
CoG also oscillates left and right. The solved CoG synchronizes perfectly with CoP, which proves the correctness 
of the solutions generated by the GAT method. The phenomenon that the excursions of CoP oscillate to either 
side of the CoG excursions and have higher amplitude and frequency also coincides with the results from other 
researchers52,53.

Now that the human body oscillations during standing can be solved from Eq. (6) with Eq. (7) using the 
GAT method, human balance ability can now be assessed based on CoG variations. Another six experiments 
were further conducted to verify the balancing evaluation ability of the balance sensor with the help of the GAT 
method. The six experiments were conducted for three testees in their normal and drunk states, respectively. 
These testees kept standing still on the balance sensor without any intentional motion this time. Data was also 
collected for 10 s with sampling frequency being 30 Hz. The GAT method is used to solve their body oscillations, 
with the results shown in Fig. 8. It is obvious that the amplitudes of body oscillations in drunk states greatly 
exceed that in normal states for both directions. Quantitatively, the CoG trajectories length of the three testees in 
drunk states magnified by 9.1, 15.6 and 3.5 times, respectively, compared to their normal states. All these indexes 
clearly indicate the deterioration of their balance abilities after drinking.

Discussion
This paper proposes a new machine learning framework called the GAT method. It can take advantage of 
analytical knowledge to enhance machine learning outputs through a positive-sum game strategy. Fully 
connected neural networks are employed to realize the GAT method and it is demonstrated by solving ODE 
problems. Two types of loss functions are designed, namely the Euler and Runge–Kutta loss functions. The GAT 
method successfully extends the ability of classical Euler method, Runge–Kutta method and finite difference 
method to ODE problems with arbitrary constraints. Traditionally, loss value is only qualitatively related to the 
accuracy of network predictions. Everyone knows smaller loss value means higher prediction accuracy, but no 
one knows how small the loss value should be for a desired accuracy. However, for ODE solving problems using 
the GAT method, at least for initial-constraint problems, the loss value is now proven to be explicitly related 
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to the accuracy of network outputs, thereby providing greater transparency into the network performance and 
reducing its “black box” nature for these problems.

Furthermore, now the human body oscillations during standing can be solved using the GAT method, which 
can more convincingly reflect human balance ability. By referring to those CoP-based measures24 and replacing 
CoP with CoG, a series of CoG-based measures can be created, which brings a new perspective for human 
balancing evaluation. Since the CoG variations represent the actual physical oscillations of human body, while 
CoP can be considered as the control force applied from human body to maintain balance, the variations of 
CoP and CoG can be compared to further analyze the balance control ability of human body, which is a direct 
indicator of the physiological ability to keep balance.

The GAT method has seen great success in sensors calibration and solving ODEs. It still shows much broader 
applications prospect. For example, it is natural to consider solving partial differential equations (PDEs) using 
the GAT method. If taking the solving process of differential equations as a special case of sequential data 
generation, the GAT method is potential to be applied to more general sequential data generation tasks. The 
most difficult problem is how to adapt the GAT method for various application cases. Moreover, currently the 
GAT method can only be implemented for regression tasks using shallow neural networks. The future research 
will also target to integrate deep neural networks into the GAT method and extend it to more diverse tasks.

Methods
Five examples have been provided to demonstrate the ODE solving ability of the GAT method for different kinds 
of constraints. The step size is chosen to be 0.01 for all five examples. For Problem 1, after network convergence, 
translation is used heuristically to make its initial constraint satisfied. Specifically, C1 is chosen to be 1 and C2 
is chosen to be 4 − Y0. For Problem 2, two neural networks are used to output the numerical solutions of y1 
and y2, respectively, which are trained jointly. The loss functions are still in the form of Eqs. (3) and (4), except 
that Yi and f (ih, Yi) become two-dimensional vectors. After network convergence, translation can also be 
used heuristically to make its initial constraints satisfied. For Problem 3, after network convergence, translation 
and scaling are used jointly and heuristically to make its boundary constraint satisfied. Specifically, C1 is 
chosen to be sin 1+cos 1−1

Y100−Y0
 and C2 is chosen to be 

(
1 − sin 1+cos 1−1

Y100−Y0

)
Y0+Y100

2 . For Problem 4, after network 
convergence, scaling is used heuristically to make its integral constraint satisfied. Specifically, C1 is chosen to be 

Fig. 7.  Human experiment results. (a) Variations of CoP and CoG when the testee swung front and back. (b) 
Variations of CoP and CoG when the testee swung left and right. (c) Trajectories of CoP and CoG in the two 
swing experiments.
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Fig. 8.  Human experiment results. (a1) (a2) (a3) Lateral variations of CoP and CoG for testee 1, 2, 3 in normal 
and drunk states. (b1) (b2) (b3) Longitudinal variations of CoP and CoG for testee 1, 2, 3 in normal and drunk 
states. (c1) (c2) (c3) Trajectories of CoP and CoG for testee 1, 2, 3 in normal and drunk states.

 

Scientific Reports |        (2025) 15:22385 13| https://doi.org/10.1038/s41598-025-05320-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


e2−e(
99∑

i=0

Yi+
100∑
i=1

Yi

)
× 0.01

2

 and C2 is chosen to be 0. For Problem 5, after network convergence, scaling is also used 

heuristically to make its nonlinear constraint satisfied. Specifically, C1 is chosen to be 

(
99∑

i=0

1
Yi

+
100∑
i=1

1
Yi

)
× 0.01

2

e3−e2+1  

and C2 is chosen to be 0.
Ethics approval was obtained for all human experiments from the Human Research Ethics Committee 

(HREC) of The University of Hong Kong. The HREC’s reference number is EA1904010. All experiments were 
conducted in accordance with relevant named guidelines and regulations. Informed consents were obtained 
from all participants.

When using the GAT method to solve human body motion, Eq. (6) is first transformed into four first-order 
ODEs and four neural networks with 300 hidden nodes for each are employed to output the numerical solutions 
of θ1, θ2, θ̇1, θ̇2, respectively, which are then trained jointly using the Runge–Kutta loss function. The step size is 
chosen to be 1/30. After network convergence, translation is used heuristically to make Eq. (7) satisfied. In order 
to help the GAT method converge, these networks are initialized with approximate solutions generated by the 
finite difference method, rather than random initialization. Specifically, Eq. (6) is approximately linearized by 
directly discarding those nonlinear terms so that its finite difference equations can be linearly solved very easily 
to get approximate solutions for network initialization.

Data availability
The raw data from human experiments and all related source codes can be found in the GitHub repository (​h​t​
t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​s​w​a​​​n​g​-​l​i​b​​​r​a​/​G​e​​n​e​r​a​t​​i​​v​e​_​A​d​​v​e​r​s​a​r​​i​a​l​​_​T​r​i​-​M​o​d​e​l). There is no restriction on data availability.

Received: 24 July 2024; Accepted: 2 June 2025

References
	 1.	 Shumway-Cook, A., Anson, D. & Haller, S. Postural sway biofeedback: its effect on reestablishing stance stability in hemiplegic 

patients. Arch. Phys. Med. Rehabil. 69, 395–400 (1988).
	 2.	 Gribble, P. A. & Hertel, J. Effect of lower-extremity muscle fatigue on postural control. Arch. Phys. Med. Rehabil. 85, 589–592 

(2004).
	 3.	 Chui, K. K. & Schmitz, T. Examination of sensory function. Phys. Rehabil. 87, 64 (2013).
	 4.	 Cho, S.-H. & Choi, Y.-S. The effects of alcohol on static balance in university students. J. Phys. Ther. Sci. 24, 1195–1197 (2012).
	 5.	 Mets, M. A., Berend, L. M. D. S. D., Olivier, E. R. V. & Verster, J. C. Effects of hypnotic drugs on body balance and standing 

steadiness. Sleep Disord. 5, 513–537 (2008).
	 6.	 Kim, D., Park, G., Kuo, L.-T. & Park, W. The effects of pain on quadriceps strength, joint proprioception and dynamic balance 

among women aged 65 to 75 years with knee osteoarthritis. BMC Geriatr. 18, 1–6 (2018).
	 7.	 Lee, J.-Y. & Roh, H.-L. Comparison of balance ability between stable and unstable surfaces for chronic stroke patients. J. Korea 

Acad. Ind. Cooper. Soc. 12, 3587–3593 (2011).
	 8.	 Stevens, J. A., Corso, P. S., Finkelstein, E. A. & Miller, T. R. The costs of fatal and non-fatal falls among older adults. Inj. Prev. 12, 

290–295 (2006).
	 9.	 Dibble, L. E., Christensen, J., Ballard, D. J. & Foreman, K. B. Diagnosis of fall risk in Parkinson disease: An analysis of individual 

and collective clinical balance test interpretation. Phys. Ther. 88, 323–332 (2008).
	10.	 Hill, K. D., Bernhardt, J., McGann, A. M., Maltese, D. & Berkovits, D. A new test of dynamic standing balance for stroke patients: 

Reliability, validity and comparison with healthy elderly. Physiother. Can. 48, 257–262 (1996).
	11.	 Carvalho, G. F. et al. Balance impairments in different subgroups of patients with migraine. Headache J. Head Face Pain 57, 

363–374 (2017).
	12.	 Havia, M., Kentala, E. & Pyykkö, I. Postural instability in Meniere’s disease. J. Vestib. Res. 14, 37–46 (2004).
	13.	 Riemann, B. L. & Guskiewicz, K. M. Effects of mild head injury on postural stability as measured through clinical balance testing. 

J. Athlet. Train 35, 19–25 (2000).
	14.	 Guskiewicz, K. M. Balance assessment in the management of sport-related concussion. Clin. Sports Med. 30, 89–102 (2011).
	15.	 De Aune, W., Jackson, R. T. & Epstein, C. M. The enhancement of balance testing. J. Rehabil. Res. Dev. 30, 303 (1994).
	16.	 Tzambazis, K. & Stough, C. The SFST and driving ability. Are they related? In Proceedings International Council on Alcohol, Drugs 

and Traffic Safety Conference 2002, 397–400 (2002).
	17.	 Trojian, T. H. & McKeag, D. B. Single leg balance test to identify risk of ankle sprains. Br. J. Sports Med. 40, 610–613. ​h​t​t​p​s​:​/​/​d​o​i​.​o​

r​g​/​1​0​.​1​1​3​6​/​b​j​s​m​.​2​0​0​5​.​0​2​4​3​5​6​​​​ (2006).
	18.	 Ko, B. Sports talent identification and selection in Korea. Int. J. Appl. Sports Sci. 26, 2 (2014).
	19.	 Black, F. O., Wall, C. III., Rockette, H. E. Jr. & Kitch, R. Normal subject postural sway during the Romberg test. Am. J. Otolaryngol. 

3, 309–318 (1982).
	20.	 Agrawal, Y., Carey, J. P., Hoffman, H. J., Sklare, D. A. & Schubert, M. C. The modified Romberg balance test: Normative data in US 

adults. Otol. Neurotol. 32, 1309–1311 (2011).
	21.	 Michikawa, T., Nishiwaki, Y., Takebayashi, T. & Toyama, Y. One-leg standing test for elderly populations. J. Orthop. Sci. 14, 675–

685 (2009).
	22.	 Köpke, S. & Meyer, G. D. Tinetti-test–Babylon Im geriatrischen assessment: Babylon in geriatric assessment. Z. Gerontol. Geriatr. 

39, 288–291 (2006).
	23.	 Terekhov, Y. Stabilometry as a diagnostic tool in clinical medicine. Can. Med. Assoc. J. 115, 631 (1976).
	24.	 Prieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G. & Myklebust, B. M. Measures of postural steadiness: Differences 

between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 43, 956–966 (1996).
	25.	 Directions, I. Standardization in platform stabilometry being a part of posturography. Agressologie 24, 321–326 (1983).
	26.	 Hasan, S. S., Robin, D. W. & Shiavi, R. G. Drugs and postural sway: Quantifying balance as a tool to measure drug effects. IEEE 

Eng. Med. Biol. Mag. 11, 35–41 (1992).
	27.	 Riley, P. O., Mann, R. W. & Hodge, W. A. Modelling of the biomechanics of posture and balance. J. Biomech. 23, 503–506 (1990).
	28.	 Benda, B. J., Riley, P. O. & Krebs, D. E. Biomechanical relationship between center of gravity and center of pressure during standing. 

IEEE Trans. Rehabil. Eng. 2, 3–10 (1994).
	29.	 Gage, W. H., Winter, D. A., Frank, J. S. & Adkin, A. L. Kinematic and kinetic validity of the inverted pendulum model in quiet 

standing. Gait Posture 19, 124–132 (2004).
	30.	 Ghez, C. & Fahn, S. The cerebellum. In Kandek, E. R. & Schwartz, J. H. Principles of Neural Science 502–552 (1985).

Scientific Reports |        (2025) 15:22385 14| https://doi.org/10.1038/s41598-025-05320-6

www.nature.com/scientificreports/

https://github.com/swang-libra/Generative_Adversarial_Tri-Model
https://github.com/swang-libra/Generative_Adversarial_Tri-Model
https://doi.org/10.1136/bjsm.2005.024356
https://doi.org/10.1136/bjsm.2005.024356
http://www.nature.com/scientificreports


	31.	 Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward 
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

	32.	 Yu, T. et al. Gradient surgery for multi-task learning. Adv. Neural. Inf. Process. Syst. 33, 5824–5836 (2020).
	33.	 Leake, C. & Mortari, D. Deep theory of functional connections: A new method for estimating the solutions of partial differential 

equations. Mach. Learn. Knowl. Extract. 2, 37–55 (2020).
	34.	 Wang, S., Teng, Y. & Perdikaris, P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks. 

SIAM J. Sci. Comput. 43, A3055–A3081 (2021).
	35.	 Mortari, D. The theory of connections: Connecting points. Mathematics 5, 57 (2017).
	36.	 Mortari, D. Least-squares solution of linear differential equations. Mathematics 5, 48 (2017).
	37.	 Mortari, D., Johnston, H. & Smith, L. High accuracy least-squares solutions of nonlinear differential equations. J. Comput. Appl. 

Math. 352, 293–307 (2019).
	38.	 Schiassi, E. et al. Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary 

and partial differential equations. Neurocomputing 457, 334–356 (2021).
	39.	 Lagaris, I. E., Likas, A. & Fotiadis, D. I. Artificial neural networks for solving ordinary and partial differential equations. IEEE 

Trans. Neural Netw. 9, 987–1000 (1998).
	40.	 Chiaramonte, M. & Kiener, M. Solving differential equations using neural networks. Mach. Learn. Project 1, 23 (2013).
	41.	 Johnston, H. & Mortari, D. In Proceedings of the 2018 AAS/AIAA Astrodynamics Specialist Conference, Snowbird, UT, USA 19–23.
	42.	 De Florio, M., Schiassi, E., D’Ambrosio, A., Mortari, D. & Furfaro, R. Theory of functional connections applied to linear ODEs 

subject to integral constraints and linear ordinary integro-differential equations. Math. Comput. Appl. 26, 65 (2021).
	43.	 Rout, S., Dwivedi, V. & Srinivasan, B. Numerical approximation in CFD problems using physics informed machine learning. arXiv 

preprint arXiv:2111.02987 (2021).
	44.	 Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).
	45.	 Sobh, T. M. Discrete event dynamic systems: An overview. Technical Reports (CIS) 388 (1991).
	46.	 Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314 (1989).
	47.	 Funahashi, K.-I. On the approximate realization of continuous mappings by neural networks. Neural Netw. 2, 183–192 (1989).
	48.	 Wang, S. & Xi, N. Calibration of haptic sensors using transfer learning. IEEE Sens. J. 21, 2003–2012 (2020).
	49.	 Wang, S. & Xi, N. In 2019 IEEE Sensors 1–4. (IEEE).
	50.	 Sewell, G. The Numerical Solution of Ordinary and Partial Differential Equations Vol. 75 (Wiley, 2005).
	51.	 Wang, S. & Xi, N. In 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent 

Systems (CYBER) 807–812. (IEEE).
	52.	 Winter, D. A., Prince, F., Frank, J. S., Powell, C. & Zabjek, K. F. Unified theory regarding A/P and M/L balance in quiet stance. J. 

Neurophysiol. 75, 2334–2343 (1996).
	53.	 Winter, D. A. Human balance and posture control during standing and walking. Gait Posture 3, 193–214 (1995).

Acknowledgements
The work described in this paper was partially supported by a grant from the Research Grants Council of 
the Hong Kong Special Administrative Region, China (Project No. T42-717/20-R, C7174-20G, C7100-22G, 
17209521, 17212922, 17207323).

Author contributions
Song Wang is mainly responsible for conceptualization, data curation, formal analysis, investigation, methodol-
ogy, software, visualization and writing the original draft. Ning Xi is partially responsible for the conceptualiza-
tion and mainly responsible for funding acquisition, project administration, resources, supervision, review and 
editing of the original draft. Zhengfang Zhou is mainly responsible for the generation of the theorem in “Error 
bound of the GAT method for initial-constraint ODE problems” section and its corresponding proof in “Proof 
of the error bound for initial-constraint ODE problems” section.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​0​5​3​2​0​-​6​​​​​.​​

Correspondence and requests for materials should be addressed to S.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:22385 15| https://doi.org/10.1038/s41598-025-05320-6

www.nature.com/scientificreports/

http://arxiv.org/abs/2111.02987
https://doi.org/10.1038/s41598-025-05320-6
https://doi.org/10.1038/s41598-025-05320-6
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Machine learning based on a generative adversarial tri-model
	﻿Results
	﻿Concept of the GAT method
	﻿Realization of the GAT method with neural networks
	﻿Adaption of the GAT method for solving ODEs
	﻿Application of the GAT method in solving ODEs
	﻿Error bound of the GAT method for initial-constraint ODE problems
	﻿﻿Proof of the error bound for initial-constraint ODE problems
	﻿Application of the GAT method in human balancing evaluation

	﻿Discussion
	﻿﻿Methods
	﻿References


