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Abstract

Background Floral nectar typically functions as a pollinator reward in mutualistic flower-pollinator interactions,
with this mutualism sometimes strengthened when plants provide the pollinators with brood sites and larval food
as rewards. The functional and molecular mechanisms underpinning such rewards remain unclear.

Results We present strong circumstantial evidence supporting a fungus-mediated plant-pollinator mutualism

in a beetle-pollinated early-divergent angiosperm, Monoon laui (Annonaceae), which has flowers that produce
exudates on both the stigmas and inner petals, with fungi that develop on the inner petals subsequently consumed
by insect larvae. The identities of the pollinators and larvae, as well as the fungal communities borne on the pol-
linators and petals, indicate that the pollinators disperse fungi while ovipositing on the petals. The nutritional value
of the two exudates reveals that the stigmatic exudate is sugar-rich, whereas the inner petal exudate has a greater
amino acid content. Transcriptomic and proteomic comparisons between the two organs and their exudates cor-
roborate the nutritional profiles, with a stronger immune response on stigmas.

Conclusions Both stigmatic exudate and petal nectar of Monoon laui function as a pollinator reward, while petals
with their nectar are moreover critical in the fungus-mediated plant-pollinator mutualism, as they are likely to be
closely adapted to the requirements of the pollinators by providing them with brood sites and larval food, thereby
increasing their population size during the flowering season and promoting pollination success.

Keywords Stigmatic exudate, Petal nectar, Plant-pollinator mutualism, Fungi, Sugar, Amino acid, Proteome,
Transcriptome, Plant immune response, Annonaceae

Background

The diversification of flowering plants is heavily influ-
enced by their interaction with animal pollinators, often
achieved via co-evolution and specialisation within eco-
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reactive oxygen species (ROS), reactive nitrogen species
(RNS), and other constituents in relatively low concen-
trations [4, 5]. Secreted by nectaries, floral nectar can
occur on various organs, including the receptacle, peri-
anth, androecium, and gynoecium [4]. Sugars, which are
the main components of floral nectar, are dominated by
sucrose, glucose, and fructose. As the major constitu-
ents in floral nectar, sugar concentration has a signifi-
cant impact on the osmolarity of the solution and has
been suggested to affect the evaporative rate and pollen
germination success [4, 6]. Free AAs are also important
components that are ubiquitous to floral nectar, although
the concentrations are tiny compared to sugars. Free AAs
in floral nectar can be of nutritional value to the pollina-
tors, and the composition of AAs has been demonstrated
to affect taste perception by insects through the stimula-
tion or inhibition of chemoreceptor cells [7]. Nutritious
floral nectar also creates a favourable medium for fungal
growth on plant tissues, however [8]. Floral nectar has
also been shown to contain secondary metabolites and
proteins that defend against pathogens, including patho-
genesis-related (PR) proteins from different families [9].

In some specialised cases, the plant-pollinator mutu-
alism can be reinforced when the flowers provide brood
sites for the pollinators, with the insect pollinators copu-
lating and ovipositing on floral organs where the larvae
subsequently develop. Sakai [10] summarised three types
of brood-site pollination mutualism according to differ-
ences in oviposition sites and food sources. The first two
types are associated with ovules and pollen as larval food,
while the third is correlated with fungi and decaying
flowers or inflorescences that abscise after anthesis. The
third type mutualism generally occurs in tropical species,
for which beetles and flies are the primary pollinators
[10]. Studies have shown that flowers often host a diverse
fungal community, with yeasts the most commonly
reported [3, 8], although moulds are also occasionally
observed [11]. Moist weather conditions in tropical for-
ests can facilitate fungal development, thereby generat-
ing abundant food source for the beetles and flies. The
presence of extra-stigmatic nectars and other tissues that
enable the development of fungi and insect larvae during
and after anthesis might be necessary to achieve the third
type of mutualism, which can also be termed as fungus-
mediated plant-pollinator mutualism. This type of brood-
site mutualism also benefits from the rather short life
cycle of the insects, which enables several generations to
breed within the flowering seasons of their host plants.
The increased number of pollinators, as a result, can
greatly enhance the pollination and reproductive success
of plants.

Monoon laui (Merr) B.Xue & R.M.K.Saunders
(Annonaceae) is a tree species that is native to lowland
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monsoonal forests in Hainan, growing up to 25 m in
height. As with other members of the Annonaceae, M.
laui has flowers that exhibit two whorls of petals, numer-
ous densely packed stamens, and multiple free carpels,
along with protogyny (in which the female phase pre-
cedes the male phase). The yellowish flowers are likely to
exhibit the third type of brood-site pollination mutualism
(sensu [10]), as they are commonly visited by beetles and
flies, with insect larvae found on abscised petals on the
ground, consuming the decomposing petals and fungal
hyphae (Fig. 1A-]). This putative fungus-mediated mutu-
alism is probably associated with the production of inner
petal exudate (Fig. 1D) in addition to stigmatic exudate
during anthesis, considering that the inner petals with
exudate exposed to the air serve as suitable sites for the
growth of fungi and insect larvae. In flowering plants
such as Annonaceae, Winteraceae, and Orchidaceae,
stigmatic exudate can provide nutritional rewards to
pollinators [6, 12, 13]. This ecological role has also been
proposed for petal exudate, acting as an alternative nutri-
tional reward for stigmatic exudate, and also as a defence
against microbes [14-16].

Previous studies on a potentially fungus-associated
brood-site pollination mutualism have been primar-
ily descriptive [10], such as that of Artocarpus integer
(Thunb.) Merr. [17], lacking a clear understanding of the
associated molecular mechanisms and functional regu-
lation (e.g., nutritional composition of the extra sources
of nectars, and plant immune system control of micro-
bial multiplication). Most previous studies involving the
determination of nectar composition and proteomes
only focused on stigmatic exudate, and very few have
comprehensively compared stigmatic exudate with other
sources of floral nectars. Proteomic studies on stigmatic
exudate, for example, have been conducted in Zea mays
L. and Nicotiana tabacum L. [18], as well as Lilium
longiflorum Thunb. and Olea europaea L. [19], with that
of petal nectar conducted in Liriodendron tulipifera L.
[14] and Cucurbita maxima Wall. [20], which only cat-
egorised different proteins by functions and seldom
analysed the proteins in the molecular pathways. Our
investigation of inner petal nectar in M. laui therefore
aims to address these research gaps by assessing the
transcriptional (RNA of nectaries) and post-transcrip-
tional (protein of nectar) machineries underpinning the
regulation of fungus-mediated plant-pollinator mutual-
istic interactions.

This study initially recorded the floral phenology of M.
laui and the behaviours of floral visitors through field
observations, with the identification of associated insects
and fungi. We hypothesise that the larvae are conspe-
cific with the adult floral visitors that also function as
vectors for the dispersal of fungi between flowers. We
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Fig. 1 Flowers, floral exudates, fungi, floral visitors, larvae, and nectaries of Monoon laui. A Pistillate-phase flower with floral visitors. B

Staminate-phase flower. C Stigmas secreting exudate during pistillate phase. D Petals secreting exudate during pistillate phase. E Fungi on the inner
petal. F Beetles resting at the base of the floral chamber, as well as between gaps among the inner petals of a pistillate-phase flower. G Epuraea
ocularis, visiting a staminate-phase flower with dehisced pollen. H Copulation of two E. ocularis on the inner petals of a pistillate-phase flower. I Eggs
on the adaxial surface of an inner petal. J Larvae of . ocularis eating fungi on the inner petals. K Scanning electron micrographs of the trichome
nectaries on the stigmas. L, Scanning electron micrographs of the mesophyll nectaries on the adaxial surface of the inner petals (Photos: A, F, H-J: B.

Xue; B-E, G, K, L: Y. Chen)

additionally investigate the functions of both inner petal
and stigmatic exudates by comparing their chemical com-
positions, including sugars, AAs, as well as their tran-
scriptomic and proteomic profiles. Through both direct
and circumstantial evidence, we infer that the inner petal
exudate of M. laui likely functions in maintaining polli-
nator populations during the flowering season, thereby
enhancing the reproductive success of M. laui.

Results

Floral phenology

Flowers of Monoon laui are bisexual and protogynous.
The pistillate phase usually begins in the morning, as
indicated by copious stigmatic exudate that forms a con-
tinuous layer over the stigmas (Fig. 1C). During the pistil-
late phase, the three inner petals loosely converge to form
a floral chamber, providing a shaded and protected area
for small floral visitors (Fig. 1A). There is an aperture at
the apex of the floral chamber, through which floral visi-
tors can enter and leave the flower unimpeded. Petal exu-
date forms at the base of the adaxial surface of the inner
petals (Fig. 1D), largely coincident with stigmatic exudate

formation; the inner petal exudate is less viscous and
dries more quickly than the stigmatic exudate.

The stigmas possess trichome nectaries (Fig. 1K),
whereas those on the inner petals are mesophyll nec-
taries (Fig. 1L). Fungal hyphae were observed during
late-pistillate and staminate phases on the inner pet-
als where the nectar formed (Figs. 1E). The staminate
phase normally begins around noon on the second
day and ends in the evening. Stigmatic exudate usu-
ally dries prior to the onset of the staminate phase,
but sometimes remains viscous until the end of the
anthesis, obscuring the existence of an interim phase.
Toward the end of the staminate phase, the petals grad-
ually open further, exposing the pollen from dehisced
anthers (Fig. 1B). The staminate phase ends as the sta-
mens and petals abscise. No floral scent was detected
during the pistillate phase, although a mild scent of fer-
menting fruit was emitted during the staminate phase.
The flowers open asynchronously, with the overall flow-
ering period of one individual tree usually extending
over 1.5-2 months, with the flowering period of differ-
ent individuals within the same population overlapping.
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Floral visitors and pollinators

Numerous floral visitors were observed on the stigmas
and petals when the exudates formed during the pistil-
late phase (Fig. 1A, D, F). They repeatedly entered and
left the floral chamber through the apical aperture and
were observed to move between pistillate- and stami-
nate-phase flowers (Fig. 1F, G). Fruit flies commonly
rested on the upper part of the petals (Fig. 1A), while
beetles typically rested at the base of the floral cham-
bers (Fig. 1F). Visits by beetles and fruit flies continued
until stamen and petal abscission, with pollen found on
the bodies of beetles. Not only were the floral visitors
observed to copulate on the flowers (Fig. 1H), but eggs
and larvae were also found on the inner petals (Fig. 11,
J), with larvae only occurring after petal abscission.
Beetle and fruit fly larvae have been recorded to con-
sume fungi on the petals (Fig. 1J). Experimental rear-
ing of these larvae revealed that beetle larvae developed
into adults in around 3 weeks, whereas fruit fly larvae
matured over two to three weeks.

Nine morphologically distinct floral visitors were
discovered in the flowers of Monoon laui (Fig. 2A):
eight were beetles (six Nitidulidae and two Staphyli-
nidae), while the remaining morphospecies was a
fruit fly (Drosophilidae). Three morphologically dis-
tinct larvae were found on the abscised petals, two of
which were identified as beetles and one as a fruit fly.
Adult floral visitors and larvae were further identified
to species level using DNA barcoding. As indicated by
the UPGMA dendrogram constructed using COI and
28S sequences, each larval species—Epuraea ocularis,
Carpophilus cf. pallipennis, and Drosophila cf. bipecti-
nata—is clustered with one of the observed adult floral
visitors (Fig. 2A). There is no evidence of sexual repro-
duction for the other species of floral visitors since
their larvae were not discovered on the petals.

In the field surveys of the composition of floral visi-
tors and larvae, 103 floral visitors were retrieved from
18 flowers, among which the top five commonest flo-
ral visitors were Epuraea ocularis (31.07%), Aleochari-
nae sp. (26.21%), Epuraea sp. (19.42%), Omaliinae sp.
(7.77%), and Drosophila sp. (6.80%) (Fig. 2B). A total
of 48 larvae were collected from 15 flowers, with the
most abundant larvae belonging to Epuraea ocularis
(68.75%), followed by Drosophila sp. (29.17%) and Car-
pophilus cf. pallipennis (2.08%) (Fig. 2B). Since more
than one species was found in the genus of Drosophila
according to molecular sequencing data, and since it
was difficult to differentiate species in this genus based
solely on morphology, the “Drosophila sp” here refers
to any species in the genus. Epuraea ocularis was the
most abundant species among the floral visitors and
larvae.
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Comparison of fungal communities

78,766 + 869 (mean + SE) clean ITS reads were generated
from each fungal community sample (average length
245 + 3 bp; Additional file 1: Table S1). Rarefaction analy-
sis indicated sufficient sequencing coverage (Additional
file 1: Fig. S1A). The saturated richness of fungal OTUs
varied between the two groups, with around 70-80 on
petals and 20-30 on insect bodies (Additional file 1:
Fig. S1A). Analysis of similarities (Anosim) based on the
Binary-Jaccard (R=1, p=0.012) distances indicated sta-
tistically greater differences between than within groups
(Additional file 1: Fig. S1B).

The majority of fungal OTUs from insect bodies were
also discovered on petals. Around 51% of fungal OTUs
on the petals were present on the bodies of floral visitors
(Fig. 3A). Fifty-one and 14 fungal OTUs that were com-
mon among the replicates in each group were detected
on the petals and insect bodies separately (Fig. 3B, C).
The 20 most abundant fungal OTUs detected on inner
petals and floral visitor bodies are listed in Additional
file 1: Table S2. The diversity of the fungal community on
petals was higher than that of the insect bodies at all six
taxonomic ranks. The dominant phylum in both groups
was Ascomycota, with a small proportion of Basidiomy-
cota only present on petals (Fig. 3D). Kurtzmaniella quer-
citrusa was the most abundant species identified in both
groups, which accounted for 22.24% of the fungal com-
munity on petals and 47.24% of that on the insect bodies
(Fig. 3D, Additional file 1: Table S2). The major discrep-
ancy between the two groups was the presence of OTUs
in the genera Cladosporium and Penicillium on petals,
contributing 28.83% and 13.15% of the fungal commu-
nity, respectively (Fig. 3D, Additional file 1: Table S2).

Transcriptomes of stigmas and inner petal nectaries

A total of 132,639,943 paired-end clean reads and 39.67
Gigabyte (Gb) of clean data (Q30>93.38%) were gener-
ated in transcriptome sequencing of the six samples
(Additional file 1: Table S3). Stigmas showed a greater
number of unique transcripts as well as more highly
expressed shared transcripts compared to inner petal
nectaries (Additional file 1: Fig. S2A, D). Greater varia-
tions in the transcript expression patterns were found
between than within the two organs, as revealed by the
principal component analysis (PCA) (Additional file 1:
Fig. S2B) and pairwise Pearson’s correlation coefficient
(PCC) heatmap (Additional file 1: Fig. S2C). Fifty-three
thousand two hundred eighty-eight unigenes were
obtained from Trinity assembly, the N50 length of which
was 1792. Totally 35,113 unigenes were functionally
annotated. The number of differentially expressed genes
(DEGS) discovered in the comparison between stigmatic
and inner petal nectaries was 7020, consisting of 3184
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Fig. 2 Community composition of the floral visitors and larvae retrieved from flowers of Monoon laui. A UPGMA dendrogram of COl and 28S
sequences of the adult floral visitors and larvae, showing the values of branch lengths. Adult floral visitors are shown in black font and larvae
in blue, together with their morphologies. B Relative proportion of adult floral visitors and larvae retrieved from the flowers. Abbreviation:
UPGMA =Unweighted Pair Group Method with Arithmetic mean
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Fig. 3 Fungal community composition on the floral visitor bodies and the inner petals of Monoon laui. A Venn graph showing the number
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of the fungal community on petals. C Venn graph showing the comparison among the five biological replicates of the fungal community on insect
bodies. D Stacked bar charts revealing the composition of fungal communities at different taxonomic levels: phylum, class, order, family, genus,
and species. Abbreviations: PF =samples collected from inner petals; IF =samples collected from insect bodies

upregulated and 3836 downregulated DEGs in inner
petal nectaries compared to stigmas (Additional file 1:
Fig. S3A, B). Several pathways of interest in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
contained more upregulated DEGs than downregulated
ones in inner petal nectaries compared to stigmas, viz.
carbon metabolism (ID: ko01200) and biosynthesis of
AAs (ID: ko01230) (Additional file 1: Fig. S2E). In con-
trast, a few pathways of interest consisted of more down-
regulated DEGs in inner petal nectaries, including plant
hormone signal transduction (ID: ko04075) and plant-
pathogen interaction (ID: ko04626) (Additional file 1: Fig.
S2E). The result of the KEGG enrichment analysis of the

DEGs between stigmas and inner petal nectaries based
on hypergeometric tests showed that the plant hormone
signal transduction (ID: ko04075, 53 DEGs, ¢<0.005)
and the starch and sucrose metabolism (ID: ko00500, 74
DEGs, q<0.005) were included in the five most enriched
pathways (Additional file 1: Fig. S2F).

Proteomes of stigmatic and inner petal exudates

A total of 3121 proteins were found in the concatenated
floral exudates. The two exudates shared 1669 proteins in
common, with 1008 exclusively existing in the stigmatic
exudate and 444 solely in inner petal exudate (Addi-
tional file 1: Fig. S4A), demonstrating that proteins were
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more abundant in stigmatic exudate than in inner petal
exudate. PCA and PCC heatmap showed that the three
replicates in each organ were very similar, with greater
difference between the two organs (Additional file 1: Fig.
S4B, C). A total of 849 differentially expressed proteins
(DEPs) were identified, among which 215 were upregu-
lated and 634 downregulated in inner petal exudate com-
pared to stigmatic exudate (Additional file 1: Fig. S3C, D).
The number of downregulated proteins was higher than
those that were upregulated in inner petal exudate when
compared to stigmatic exudate (Additional file 1: Fig.
S$4D). The number of DEPs annotated in the KEGG data-
base was 439, among which ribosome (ID: ko03010), bio-
synthesis of AAs (ID: ko01230) and carbon metabolism
(ID: ko01200) were the three most frequently annotated
pathways (Additional file 1: Fig. S4E). DEPs that were cat-
egorised into broad classifications of cellular processes,
genetic information processing and organismal systems
were generally downregulated in inner petal exudate
compared to stigmatic exudate. In particular, DEPs that
were classified under plant-pathogen interaction (ID:
ko04626) were all downregulated in inner petal exudate,
whereas DEPs were upregulated in many pathways under
the category of metabolism. Many pathways that are
associated with AA metabolism contained more upregu-
lated than downregulated proteins in inner petal exudate,
such as the biosynthesis of AAs (ID: ko01230), alanine,
aspartate and glutamate metabolism (ID: ko00250), argi-
nine and proline metabolism (ID: ko00330), and argi-
nine biosynthesis (ID: ko00220). The KEGG enrichment
analysis on the DEPs showed that the proteasome (ID:
ko03050, 17 DEPs, ¢ <0.05), phagosome (ID: ko04145, 21
DEPs), and protein processing in endoplasmic reticulum
(ID: ko04141, 39 DEPs) were the three most enriched
pathways (Additional file 1: Fig. S4F), with the proteins
in which mostly downregulated in inner petal exudate
(Additional file 1: Fig. S4E).

Sugar composition and associated pathways

The concentrations and the corresponding proportions
of fructose, glucose, and sucrose in stigmatic and inner
petal exudates are shown in Fig. 4A, B and Additional
file 1: Table S4. The glucose concentration and the overall
sugar concentration were statistically significantly higher
(p<0.05) in stigmatic exudate relative to inner petal exu-
date (Fig. 4A). The variances of the concentrations of total
sugar (F,3=165.72, p<0.005), fructose (F,3;=937.40,
p<0.0005), glucose (F,;=181.00, p<0.005), and sucrose
(Fy3=29.50, p<0.05) were significantly higher in inner
petal exudate than that in stigmatic exudate (Additional
file 1: Table S4). Fructose and glucose are both common
hexose sugars in floral nectar. The sucrose/hexose ratio
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in stigmatic exudate was 0.4823, while that in inner petal
exudate was 0.6803 (Fig. 4B).

The regulation and expression levels of transcripts and
proteins that were closely associated with glucose con-
centration in the KEGG pathway of starch and sucrose
metabolism are visualised in Fig. 4C. Transcripts and
proteins that can produce and increase the concentra-
tion of glucose, including trehalase (EC: 3.2.1.28), glucan
endo-1,3-beta-glucosidase (EC: 3.2.1.39), and beta-glu-
cosidase (EC: 3.2.1.21), were generally downregulated in
inner petal nectaries or exudate, whereas beta-fructo-
furanosidases (EC: 3.2.1.26) were upregulated in both
transcriptomic and proteomic levels on petals. 4-alpha-
glucanotransferase DPE2 (EC: 2.4.1.25) was upregulated
at the transcriptomic level, but downregulated at the pro-
teomic level. Hexokinases (EC: 2.7.1.1) that can decom-
pose D-glucose were moreover upregulated in inner petal
nectaries and exudate.

Amino acid composition and associated pathways
Stigmatic and inner petal exudates contained nine essen-
tial and 26 non-essential AAs. The AA profiles were very
diverse in both stigmatic and inner petal exudates, but
more abundant in the latter (Additional file 1: Table S5).
Figure 5A shows the concentration of the 10 most abun-
dant AAs in the secretions in descending order: the
most abundant was arginine, followed by glutamic acid
and hydroxyproline. Arginine accounted for 22.44 and
49.97% of the total AAs in stigmatic exudate and inner
petal nectar, respectively. The concentrations of argi-
nine (p<0.05) and cystine (p<0.05) were significantly
higher in inner petal exudate than in stigmatic exudate,
while the concentrations of aspartic acid (p<0.001) and
proline (p<0.05) were significantly lower in inner petal
exudate (Fig. 5A). The higher concentration of arginine
largely accounts for the higher total AA content in inner
petal exudate. The proportion of arginine was also much
higher in inner petal exudate than in stigmatic exudate
(Fig. 5B).

Fragments from the pathways of arginine biosynthesis,
arginine and proline metabolism, and alanine, aspartate,
and glutamate metabolism are connected and collectively
illustrated in Fig. 6 to disclose the regulation and expres-
sion levels of the associated transcripts and proteins.
The expression of the transcripts and proteins related to
aspartic acid consumption was more activated on petals
than on stigmas. Pathways that provide substrates for the
urea cycle, including the reactions catalysed by arginino-
succinate synthase (EC: 6.3.4.5), acetylornithine deacety-
lase (EC: 3.5.1.16), acetylornithine aminotransferase (EC:
2.6.1.11), glutamate N-acetyltransferase (EC: 2.3.1.35),
and aminoacylase (EC: 3.5.1.14), were upregulated in
inner petal nectaries and exudate, providing greater
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exudate of M. laui; MIP =inner petal nectaries or exudate of M. laui

feedstock for arginine synthesis. Expression of argini-
nosuccinate lyase (EC: 4.3.2.1) was suppressed on petals
compared to stigmas, while the expression of arginase
(EC: 3.5.3.1) was also downregulated, showing less direct

synthesis and consumption of arginine. Pyrroline-5-car-
boxylate reductase (EC: 1.5.1.2), which catalyses the last
step of proline biosynthesis, was downregulated at both
transcriptomic and proteomic levels on petals.
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Defence responses and plant-pathogen interactions
Transcripts and proteins related to plant-pathogen
interaction, plant hormone signal transduction, and
proteasome were selected, with their regulation and
expression levels shown in Fig. 7. Several transcripts
associated with the recognition of pathogen invasion
were downregulated on petals, including CERK1 and
CNGCs. Transcripts involved in the PAMP-triggered
immunity (PTI) response were generally upregulated
on petals at the transcriptomic level, including CDPK,
Rboh, CaM/CML, and FLS2, which were downregu-
lated at the proteomic level. Conversely, the expression
of transcripts and proteins required for the effector-
triggered immunity (ETI) response was largely sup-
pressed on petals, including Pti6, PR1, RPM1, RPS2,
SGT1, and HSP90. Transcripts and proteins in the plant
hormone signal transduction pathways, such as jas-
monic acid (JA) and salicylic acid (SA), were shown to
be generally downregulated on petals compared to stig-
mas. Proteasome was the most significantly enriched
pathway at the proteomic level (Additional File 1: Fig.
S4F). DEPs in the proteasome were all downregulated
on petals compared to stigmas, and the corresponding
transcripts at the transcriptomic level mainly showed
lower expression on petals as well.

Discussion

Evidence of a putative fungus-mediated plant-pollinator
mutualism

Our study provides evidence of an intimate association
among the flowers of Monoon laui, pollinators, and fungi.
The protogynous flowers of M. laui are visited by numer-
ous small beetles and fruit flies that consume stigmatic
and inner petal exudates, copulate, and oviposit. After
anthesis, the petals abscise with eggs that subsequently
develop into larvae and consume the fungi generated on
the dehydrated inner petal exudate. In approximately two
to three weeks, the larvae pupate and emerge as adults,
possibly helping promote further pollination of M. laui
by boosting the pollinator population size. This process is
mutualistic, with insects pollinating M. laui flowers, and
with the petals simultaneously providing a brood site for
the insects that rely on fungi and decomposed organic
matter as a larval food source. This cycle can therefore be
interpreted as a fungus-mediated plant-pollinator mutu-
alism (Fig. 8).

Flowers of Monoon laui not only produce copious stig-
matic exudate, but also abundant inner petal exudate.
Similar phenomena of petal exudate production have
been observed in other Annonaceae flowers, including
Pseuduvaria froggattii (F.Muell.) Jessup [21], Asimina
obovata (Willd.) Nash, A. pygmaea (W.Bartram) Dunal
[22], Xylopia aromatica (Lam.) Mart. [23], and Alphonsea
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glandulosa YH.Tan & B.Xue [15]. Flowers of Pseudu-
varia froggattii, for example, possess large dark globose
nectary glands on the adaxial surface of the inner petals,
with the nectar shown to be consumed by fruit flies, sap
beetles, and click beetles [21]. Petal nectar has been dem-
onstrated in many cases to be consumed by floral visi-
tors, and one of its functions is therefore clearly as a food
reward for pollinators. The longevity of the inner petal
nectar in M. laui is shorter than that of stigmatic exudate,
however, suggesting that the inner petal exudate might

not function as an alternative food reward after drying
of the stigmas. The production of inner petal nectar is
nevertheless likely to provide enhanced food rewards to
pollinators due to an increase in the total volume of the
exudates generated in a single flower.

Insect visitors to M. laui undertake diverse activities
on the inner petals, including foraging, resting, copula-
tion, and oviposition. The most abundant larva found on
the petals was Epuraea ocularis (Nitidulidae), which was
congruent with the most common floral visitors. Epuraea
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ocularis can be regarded as an effective pollinator of M.
laui, as pollen was deposited on their bodies and they
were observed to visit both pistillate- and staminate-
phase flowers. Widespread over tropical and subtropical
areas, E. ocularis feeds on fermenting sap and oviposits
on flowers and fruits, the larvae of which subsequently

develop on the decaying plant tissues [24]. In our study,
E. ocularis larvae were observed feeding on fungal
hyphae that had multiplied on the inner petals of M. laui,
as well as decomposed organic matter. Epuraea ocularis
larvae typically leave the plant tissues and pupate on ven-
tilated soil [24]; abscission of petals of M. laui onto the
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soil therefore favours pupation. Development of E. ocula-
ris from eggs to adults is reported to be 17-24 days [24],
which is consistent with the results of our rearing experi-
ments. Since larval development is shorter than the flow-
ering season of M. laui, the newly pupated generations
are able to pollinate other flowers within the same plant
population.

Insect copulation and oviposition on petals have been
reported from many beetle- and fly-pollinated plants,
indicating that the petals are potential brood sites. Bee-
tle-associated examples can be found in the Annonaceae,
such as Dasymaschalon trichophorum Merr., Friesodiel-
sia borneensis (Miq.) Steenis, Goniothalamus tapisoides
Mat-Salleh (X. Guo, J. Y. Y. Lau & R. M. K. Saunders,
unpublished data; [16]), and Meiogyne heteropetala

(FEMuell.) D.C.Thomas, Chaowasku & R.M.K.Saunders
[25]. This phenomenon has also been recorded in vari-
ous fly-pollinated species, such as Artocarpus integer
(Moraceae; [17]), Aristolochia maxima Jacq., and A.
inflata Kunth (Aristolochiaceae; [26]). In our study, Dros-
ophila fruit flies (Drosophilidae) also use the petals of
M. laui as brood sites. More than one species of fruit fly
is likely to visit M. laui flowers, with at least two mor-
phospecies identified among floral visitors and larvae.
Although there is no evidence for pollen deposition on
fruit flies, they might nevertheless serve as effective pol-
linators of M. laui as they visit both pistillate- and stami-
nate-phase flowers and are very common.

Beetle and fruit fly larvae were significantly observed
to eat fungal hyphae growing on the adaxial surface of



Chen et al. BMC Biology (2025) 23:206

the M. laui petals after dehydration of the exudate. Our
comparisons of fungal communities indicate that floral
visitors are likely to have acted as vectors for dispersing
fungi between flowers, since approximately 89% of the
fungi OTUs they carried are components of the fungal
community on petals, accounting for 51% of fungi on
petals. Among the fungal OTUs shared between the two
communities, the most common species was Kurtzman-
iella quercitrusa, a budding yeast that has been isolated
from flowers, fruits, sap beetles, and insect frass in pre-
vious studies (as “Candida quercitrusa”) [27, 28], sug-
gesting that K. quercitrusa might be dispersed among
flowers by beetles and the larvae can feed on this fungus.
In addition to K. quercitrus, many saccharomycetes were
also common to the two communities. The dispersal of
budding yeasts among flowers is largely reliant on insect
vectors, since saccharomycete spores are not suited for
wind dispersal [29]. Our findings reveal that M. laui
emits a fungal fermentation-like odour during its stami-
nate stage. It has been shown that the volatile compounds
generated by yeasts during the fermentation of plant sug-
ars are highly likely to act as attractants for Carpophilus
species [30, 31], indicating that the fermenting scent of
M. laui might also attract floral visitors.

Nearly 49% of the fungal OTUs occurred exclusively
on petals, which might therefore have been dispersed
by abiotic means. Cladosporium was the most abundant
genus among these, followed by Penicillium, collectively
accounting for nearly 42% of the petal fungal community
(Additional file 1: Table S2). Cladosporium is primarily
dispersed by wind or rain-splash, with conidia that can
erupt and release numerous spores into the air [32]. Fila-
mentous Penicillium fungi also produce airborne spores
and are likely to share a similar dispersal strategy. Since
the inner petal nectar of M. laui is exposed to open
air, spores are easily captured by the petal surfaces and
develop on them. Fungi in these two genera have also
been reported from other floral nectars [33]. Given the
aerial dispersal of mould spores, Cladosporium and Peni-
cillium are rarely found on floral visitors, as these fungi
primarily rely on abiotic dispersal mechanisms rather
than biotic vectors for propagation.

Sugar composition and associated pathways

Our evaluation of sugar content reveals that the con-
centration of glucose and total sugars were significantly
higher in stigmatic exudate than in inner petal nectar.
The evaporation of hexose (glucose and/or fructose) solu-
tions is slower than that of sucrose solutions of equiva-
lent mass concentration due to higher osmolality in the
former [4]. A larger proportion of hexose and a higher
concentration of total sugar in stigmatic exudate could
therefore potentially lead to a higher osmolality and a

Page 13 of 20

longer retention time than inner petal nectar, which is
consistent with our field observations. It was noted that
the fluctuation of the concentration of all sugar types was
significantly higher in inner petal nectar than in stigmatic
exudate, which might also be associated with sugar con-
centrations. Since the osmolality of inner petal nectar
was generally lower, its evaporation rate might be more
easily affected by ambient humidity. The greater longev-
ity of stigmatic exudate is beneficial since extending stig-
matic receptivity can potentially increase opportunities
for fertilisation.

A higher total sugar concentration also implies an
enhanced energy and nutritive value of stigmatic exu-
date compared to inner petal nectar. Glucose is a mono-
saccharide that serves as a direct substrate for a series of
energy-producing metabolic processes in insect bodies,
including glycolysis, the tricarboxylic acid cycle and oxi-
dative phosphorylation. Energy is stored as ATP, which
can possibly support diverse insect activities such as
flight, copulation, and oviposition. Energy production
from fructose and sucrose is less direct as both sugars
need to be converted to glucose before glycolysis. Moreo-
ver, glucose is easily digested by insects since its structure
is relatively simple. Exudates with higher concentration
of glucose might therefore possess greater nutritional
value. Assuming that foraging floral visitors are initially
retained by the nectar on the inner petals, they are then
possibly guided deeper into the flower to consume the
more sugar-rich stigmatic exudate, promoting pollen
deposition on the stigmas.

The primary source of sugars in floral nectar comes
from the phloem sap and the parenchyma that can photo-
synthesise or store starch [34]. The main sugar in phloem
sap is sucrose, the hydrolysis of which produces equiva-
lent proportions of glucose and fructose molecules, and
therefore an unequal proportion of the two hexose sug-
ars might be influenced by other metabolisms related to
carbohydrates [3]. The relative proportion of sucrose,
glucose, and fructose can be modified by enzymes in
the nectaries and nectar [4]. The synthesis of glucose
on petals was suppressed while the utilisation of glu-
cose was facilitated at the transcriptomic and proteomic
levels: the proportion and regulation of glucose at the
molecular level were therefore consistent. Beta-fructo-
furanosidases (EC: 3.2.1.26), which are invertases that
can hydrolyse the non-reducing terminal beta-fructo-
furanoside residues [35], were specifically upregulated in
inner petal nectaries and nectar. Trehalase (EC: 3.2.1.28),
glucan endo-1,3-beta-glucosidase (EC: 3.2.1.39), and
beta-glucosidase (EC: 3.2.1.21) can hydrolyse trehalose,
1,3-beta-D-glucans, and the non-reducing terminal beta-
D-glucosyl residues, respectively, to produce D-glucose
[36-38], the regulation of which were mostly suppressed
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in inner petal nectaries and nectar. Free glucose can also
be released from the glucosyl-transferring reactions cata-
lysed by 4-alpha-glucanotransferase (EC: 2.4.1.25) [39],
the transcript and protein of which were regulated in
opposite directions, with the protein being downregu-
lated in inner petal nectar. In addition to the suppressed
production of D-glucose on petals, its consumption rose
on petals, which can be indicated from the upregula-
tion of the transcripts and proteins of hexokinase (EC:
2.7.1.1), an enzyme that can phosphorylate D-glucose for
the down-stream steps of glycolysis or the pentose phos-
phate pathway [40].

Amino acid composition and associated pathways
Arginine was the most copious AA in both stigmatic and
inner petal exudates, with concentrations significantly
higher in the latter (p <0.05). Different AAs can stimu-
late different chemoreceptors on the insect labella and
cause variant responses, with arginine classified as a class
II AA with high concentrations inhibiting chemorecep-
tor cells [7]. As an essential AA [41], arginine provides
crucial nutritional and energetic values to both adult and
larval insects. For example, L-arginine can be reversibly
catalysed by arginine kinase and engaged in the phos-
phagen system, supporting rapid and intense energy-
demanding tissues, such as the flight muscles [42]. The
arginine kinase phosphagen system can be critical to
the development of insect larvae, as the activity of argi-
nine kinase increases notably during the prepupal and
eclosion periods in Drosophila melanogaster [43]. Argi-
nine is moreover a precursor to the synthesis of proline,
a non-essential AA that can be synthesised by insects
themselves. Arginine can be catalysed by arginase, and
further by ornithine aminotransferase and pyrroline-
5-carboxylate reductase, to yield proline in insect bod-
ies [44]. Proline can be utilised by insects as fuel for the
initiation of flight, because its rapid catabolism releases
a large amount of ATD, supporting the burst of muscular
activity during take-off and providing ATP to the primary
steps of glucose metabolism for long-distance flight [45].
The concentration of arginine in plants is directly
affected by the activities of argininosuccinate lyase (EC:
4.3.2.1) and arginase (EC: 3.5.3.1), which have opposing
influence on the concentration: argininosuccinate lyase
catabolises argininosuccinate to generate arginine and
fumarate, whereas arginase hydrolyses arginine to form
ornithine and urea [46]. The regulation of both enzymes
was downregulated on petals, suggesting that the for-
mation and consumption of arginine was lower in inner
petal nectaries and nectar. The biosynthesis and metab-
olism of arginine are closely correlated with other AAs,
such as aspartic acid, glutamate, citrulline, ornithine,
and proline, and hence regulation of the metabolism of
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the associated AAs was also compared between the two
floral organs. The concentration of aspartic acid was sig-
nificantly higher in stigmatic exudate than in inner petal
nectar (p<0.001). At the transcriptomic and proteomic
levels, the enzymes associated with the reversible and
irreversible consumption of aspartic acid were upregu-
lated on petals relative to stigmas, possibly accounting
for the higher concentration of aspartic acid in stigmatic
exudate. Among those upregulated enzymes, arginino-
succinate synthase (EC: 6.3.4.5) can participate in a step
prior to the synthesis of arginine from aspartic acid and
citrulline in the urea cycle [46]. In addition to aspartic
acid and citrulline, ornithine is also a precursor of the
biosynthesis of arginine in the urea cycle. The enzymes
involved in the irreversible formation of ornithine were
upregulated in inner petal nectaries and nectar. The over-
all upregulated biosynthesis of the reactants in the urea
cycle (Fig. 6) might accord with an increase in the argi-
nine concentration on petals. The downregulation of pyr-
roline-5-carboxylate reductase on petals, which catalyses
the synthesis of proline in plants, was furthermore con-
sistent with the lower concentration of proline on petals.

Defence responses and plant-pathogen interactions

Due to different longevities and functions of stigmas
and petals of M. laui, their responses to pathogens
might differ at the molecular level. Plant immune sys-
tems can react promptly to infections and restrict
microbial colonisation in two ways, viz. PAMP (path-
ogen-associated molecular pattern)-triggered immu-
nity (PTI) and the effector-triggered immunity (ETI)
[47]. Our results indicate a higher regulation of res-
piratory burst in PTI response on petals than on stig-
mas, although with a generally suppressed regulation
of ETI response on petals at the transcriptomic level.
PTI response functions when the pattern recognition
receptors (PRRs) on the surfaces of plant cells detect
the PAMPs, which are conserved structures shared by
many microbes such as the chitin on fungi or the flagel-
lin on bacteria [48]. Compared to PTI, ETI response
is stimulated by pathogen effectors, which are more
specific molecules, causing accelerated and intensi-
fied plant responses [47]. Even though PTI and ETI are
triggered by variant molecules and react in different
intensities, they can lead to many common downstream
reactions, such as the stimulation of mitogen-acti-
vated protein kinase (MAPK) signalling pathways and
hypersensitive response (HR) [48]. In the pathogenic
defence of M. laui, the expression of the disease resist-
ance proteins RPM1 and RPS2 was suppressed on pet-
als, negatively influencing the downstream HR. The
expression of pathogenesis-related protein 1 (PR1)
furthermore declined on petals at both transcriptomic
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and proteomic levels. PR1 can exhibit antifungal activi-
ties, which might also be associated with the systemic
acquired resistance (SAR) response that can expand the
immune reaction to a larger scale [49, 50].

Plant defence against pathogens can be regulated by
plant hormones, especially salicylic acid (SA) and jas-
monic acid (JA), which have been jointly regarded as
the backbone of the plant immune signalling network
[51]. SA has been considered as a signalling molecule
positively associated with resistance against biotrophic
pathogens, which can serve as a key regulator in the
immune responses of SAR, PT1, and ETI [48, 52, 53]. The
SA signalling pathway in the petals of M. laui was down-
regulated compared to stigmas, which was implied by
the downregulation of a transcription factor TGA and an
SAR marker protein PR1 [54]. Transcripts of the helix-
loop-helix transcription factor MYC2 were less acti-
vated on petals, which indicated suppressed JA-regulated
defence response on petals.

A high plasticity of the proteome is vital for the plant
PTI and ETI responses, possibly involving the degra-
dation of proteins by the ubiquitin—proteasome sys-
tem [55]. Proteasome is the most significantly enriched
KEGG pathway at the proteomic level, with all proteins
engaged being downregulated on petals compared to
stigmas. It has been demonstrated previously that the
subunits of the proteasome play important roles in the
plant immune response: for instance, the Rpnl subunit
on the 19S regulatory particles has been demonstrated
to be positively correlated with resistance against fungal
pathogens by affecting the regulation of several regula-
tors, such as PR1 and the resistance (R) proteins, with the
latter recognising the pathogen effectors in ETI response
[56]. The expression of the subunits a3, a6, and B1 can be
activated by the fungal elicitor cryptogein, with p1 play-
ing important roles in the oxidative burst [57]. The ubiq-
uitin—proteasome system has moreover been shown to
participate in the degradation of FLS2, NPR1, and many
other proteins in PTI response and plant defensive sig-
nal transduction [55, 58, 59]. Among the subunits men-
tioned above, the regulation of Rpnl, a6, and p1 were all
downregulated on petals compared to stigmas, indicating
stronger protein degradation activities on stigmas, which
might be advantageous to the defence against pathogens.

Collectively, the immune responses of stigmas tended
to be stronger and more effective compared to petals as
shown by the transcriptomic and proteomic pathways.
Less active defence of petals might not harm the plants,
since the petals will abscise after anthesis. The accumu-
lation of fungi on petals can furthermore provide food
source for the development of insect larvae, which is an
important premise for a “type three” brood-site pollina-
tion mutualism.
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Implications, limitations, and future research

Our findings on Monoon laui may extend to other sys-
tems where plants offer decaying floral tissues as rewards
to sustain mutualistic relationships. Examples include
Artocarpus integer (Thunb.) Merr. [17], Balanophora
tobiracola Makino [60], Gastrodia foetida Koidz. [61],
Arisaema thunbergii Blume [62], and Arisaema urashima
H.Hara [63], all of which involve fungal participation
in pollination process. While this study highlights the
potential ecological significance of fungi in mediating
plant-pollinator dynamics, several limitations should be
noted. First, it remains unclear whether fungi are essen-
tial for maintaining the symbiotic relationship between
plants and pollinators. Second, even in the present study,
the dietary preferences of insects—whether they primar-
ily consume fungal or plant tissues—have yet to be fully
elucidated.

Future studies are needed to address these limitations
by employing stable isotope analysis to directly deter-
mine insect dietary preferences. Because fungi are het-
erotrophic, their isotopic signatures exhibit significant
enrichments in *H, 3C, and/or N compared to their
substrates and coexisting autotrophic plants [64—66].
This makes stable isotope analysis a powerful tool for
differentiating between nutritional sources derived from
fungi and plants. Furthermore, the transcriptomic and
proteomic approaches utilised in this study exhibit broad
applicability for investigating plant-pollinator interac-
tions. These methods can be further deployed to uncover
changes in plant product chemistry and function, offer-
ing deeper insights into the mechanisms underpinning
mutualistic relationships across diverse systems.

Conclusions

The present study provides compelling circumstantial
evidence for a fungus-mediated plant-pollinator mutu-
alism (Fig. 8) in Monoon laui, a common woody species
in the evergreen broad-leaf forests in China, supported
by associated transcriptomic and proteomic regulation.
The protogynous flowers of M. laui are used as brood
sites by their pollinators, especially the inner petals, the
nutritional value of the exudate on which has the poten-
tial to support the growth of insect larvae, with exudate
nutrition notably affected by the expression of a series of
transcripts and proteins involved in sugar and AA metab-
olism. Apart from air-borne fungi, adult floral visitors
also carry many fungi between flowers, which act as a
food source for their larvae. The presence of nutrient-rich
inner petal nectar provides a favourable environment for
fungal growth. The defence response on the plant tissues
impacts the survival of fungi, although this is more evi-
dent on stigmas than inner petals. It was assumed that
the comparatively weak defence on petals might benefit
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the mutualism through the preservation and growth of
some fungi on the petals. Given that the pollinators
and fungi have distinct life histories and habitat prefer-
ences, M. laui might accommodate their characteristics
and achieve this fungus-mediated brood-site mutualism
through molecular regulation of the nutritional composi-
tion and defence response. In this context, petal nectar
not only functions as an alternative nutritional resource
to stigmatic exudate for pollinators, but also strengthens
the connection between the plant and successive genera-
tions of pollinators. This interaction likely enhances the
reproductive success and the overall fitness of the plant.

Methods

Floral phenology and nectary structure of Monoon laui

A general floral phenological study of Monoon laui was
conducted in the South China National Botanical Garden
in Guangzhou, with 71 flowers monitored during April—
June in 2017, 2020, and 2021. Each flower was observed
and recorded three times per day to obtain an approxi-
mate floral phenology, with photos taken to record their
morphology and interactions with pollinators.

Fresh floral materials were collected, fixed in forma-
lin-acetic acid-alcohol (FAA) solution for 24 h and pre-
served in 70% ethanol. Samples were dehydrated through
a graded ethanol series and then critical-point dried.
After coated with Au/Pd, the external morphology of the
stigmatic and inner petal nectaries was visualised using
a Hitachi S-4800 FEG Scanning Electron Microscope
(Hitachi, Tokyo, Japan).

Floral visitors and pollinators

Field surveys of the community composition of floral
visitors and larvae were conducted from April to May
in 2017 and 2021. Petals with insect eggs were collected
during the late staminate phase before abscission and the
larvae were then reared in the laboratory. The foraging
behaviour of larvae was filmed with a Leica EZ4W Ster-
eomicroscope (Wetzlar, Germany). A combination of
morphological and molecular data was used to confirm
the identity of floral visitors and larvae. Collected insects
were sorted into different morphospecies, with the num-
ber of individuals of each recorded and their proportion
among adults or larvae calculated. The specimens of the
floral visitors have been deposited in The University of
Hong Kong Herbarium (HKU).

DNA barcoding was employed to confirm the taxo-
nomic identity of floral visitors and larvae. Detailed
experimental procedures are provided in Addi-
tional File 2 [67, 68]. Partial sequences of mitochon-
drial cytochrome c oxidase subunit I (COI) and large

Page 16 of 20

subunit (28S) ribosomal DNA regions were amplified,
sequenced, and BLAST (Basic Local Alignment Search
Tool) searched against the National Center for Biotech-
nology and Information (NCBI) nucleotide and the Bar-
code of Life Data (BOLD) Systems databases. To reveal
the genetic relationship between the floral visitors and
larvae, COI and 28S sequences of the same species
were assembled and aligned, which were then used to
construct a dendrogram in MEGA11 ver. 11.0.10 (www.
megasoftware.net) applying the UPGMA (unweighted
pair group method with arithmetic mean) algorithm.

Comparison of fungal communities

Fungal communities on the adaxial surface of inner
petals and the bodies of floral visitors were sampled at
random. Inner petals were collected at the staminate
phase prior to abscission and preserved in sterile Petri
dishes for 5 days to enable fungal growth without con-
tamination. Floral visitors were collected directly from
the flowers and placed into sterile Sabouraud dextrose
agar plates for 3 days. The inoculated agar plates were
then incubated for ten more days to generate a sufficient
volume of fungi for DNA metabarcoding. A total of five
fungal community replicates were collected respectively
from the inner petals and the agar plates inoculated by
floral visitors using sterile swabs. Total genomic DNA
was extracted from each sample using a Magnetic Soil
and Stool DNA Kit (TIANGEN, Beijing, China) fol-
lowing the manufacturer’s instructions. The internal
transcribed spacer (ITS) region of the nuclear ribo-
some was amplified using the primers ITS1F and ITS4.
DNA libraries were prepared using purified and quanti-
fied PCR products with a SMRTbell Template Prep Kit
(PacBio, Menlo Park, USA), which were subsequently
sequenced on a PacBio Sequel II system (PacBio, Menlo
Park, USA) by Biomarker Technologies (Beijing, China).
Further details on the experimental procedures are pro-
vided in Additional File 2 [69, 70]. The shared and exclu-
sive fungal operational taxonomic units (OTUs) among
samples were assessed, with the reads of different OTUs
used to represent their abundance in different fungal
communities. Analysis of similarities (Anosim) between
and within the two fungal communities based on the
Binary-Jaccard distances were performed using the
package vegan ver. 2.6—4 in R ver. 3.6.1 (R Foundation
for Statistical Computing, Vienna, Austria). The differ-
ence in the abundance of each genus between the two
fungal communities was compared using the Student’s
t test based on the OTU abundance.
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Sample collection for the examination of exudate
chemistry, transcriptomes, and proteomes

Stigmatic and inner petal nectaries and exudates were
collected from pistillate-phase flowers using sterile razors
and micropipettes, respectively. A constant humidity was
maintained to avoid climatic variation and the flowers
were bagged prior to anthesis to minimise the contami-
nation of free AAs derived from stray pollen [6]. Nectary
tissues from five flowers and exudates from 20 flowers of
the same organ were combined as a single sample, snap
frozen with liquid nitrogen in the field, and then trans-
ferred to a—80 °C freezer for longer-term preservation.
For exudate chemistry analysis, at least three replicates
of exudate in each organ were examined for sugar and
AA composition using a HPLC system and an AA ana-
lyser, respectively. For the transcriptomic and proteomic
studies, a total of six samples were collected, with three
replicates each of stigmatic and inner petal nectaries/
exudates.

Transcriptomes of stigmas and inner petal nectaries

Total RNA in the stigmas and inner petal nectaries was
extracted using the RNAprep Pure Plant Kit (Tiangen,
Beijing, China) according to the manufacturer’s pro-
tocol. The concentration and integrity of RNA were
checked for each sample, with samples meeting the
following standards selected for library preparation
and sequencing: 1.7 <ODy,/OD,g,<2.5; 0.5<OD,4,/
OD,3,<2.5; RIN>6.5; 285/185>1. More than 1 pug
RNA from each sample with a minimum concentration
of 20 ng/pL was used to set up the cDNA libraries with
a VAHTS mRNA-seq V3 Library Prep Kit (Vazyme Bio-
tech, Nanjing, China). cDNA libraries were sequenced
on an Illumina NovaSeq 6000 platform (Illumina, CA,
USA) by Biomarker Technologies (Beijing, China) to
generate raw data, subject to quality control. Clean
reads were obtained from raw data by removing the
adaptors and filtering the low-quality reads and those
with poly-N.

Clean reads were pooled from all samples and assem-
bled de novo using Trinity ver. 2.5.1 [71] with default
settings (k-mer=25). Contigs smaller than 200 bp were
discarded. The longest isoform was selected for each
gene. Clean reads in each sample were mapped onto the
assembled unigenes, with the expression level of each
gene quantified as fragments per kilobase of transcript
per million mapped reads (FPKM). PCC values were cal-
culated, and a PCA was conducted with the expression
data. Differential expression analysis of the transcrip-
tome was performed in R using the package DESeq?2 ver.
1.6.0 [72]. Transcripts were identified as differentially
expressed genes when the corrected p value<0.01 and
the fold change (FC) value >2 or<0.5.
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Transcriptomic annotation was conducted using
BLAST ver. 2.2.31 [73] to search against the following
databases: NR (NCBI non-redundant protein sequence),
UniProt, GO (Gene Ontology), COG (Cluster of Ortholo-
gous Groups of proteins), KOG (Eukaryotic Orthologous
Groups of proteins), and KEGG (Kyoto Encyclopedia of
Genes and Genomes). The threshold e-value for BLAST
search results was set at < 1le—5. KOBAS ver. 2.0 [74] was
used to discover significantly enriched KEGG pathways.

Proteomes of stigmatic and inner petal exudates
Protein extraction and mass-spectrometry were per-
formed by Biomarker Technologies (Beijing, China).
Total proteins in each sample were extracted using a
Plant Total Protein Extraction Reagent Kit (Bangfei Bio-
sciences, Beijing, China), with a sample volume of 100
pL for protein extraction. The Bradford method [75] was
adopted for measuring protein concentration. Standard
sodium dodecyl sulphate polyacrylamide gel electropho-
resis (SDS-PAGE) was conducted to examine the molec-
ular weight of proteins in each sample. Proteins were
cleaved into peptides after trypsin digestion. Peptides
in each sample were separated using a nanoElute liquid
chromatography system (Bruker Daltonics Inc., Bremen,
Germany), which was coupled to a CaptiveSpray nano
ion source installed in a trapped ion mobility spectrome-
try quadrupole time-of-flight (timsTOF) mass spectrom-
eter (Bruker Daltonics Inc., Bremen, Germany).
Proteomic data analysis was performed using Max-
Quant ver. 1.6.17 (http://maxquant.org). Raw data were
searched against the transcriptome of M. laui, with the
proteomic annotation results directly extracted from
those of the transcriptomic annotation. Protein quanti-
fication was implemented using the MaxLFQ algorithm
[76] embedded in the MaxQuant software, which allows
label-free quantification. Proteins that were differentially
expressed between stigmatic and inner petal exudates
were identified if the fold change (FC) value>2 or<0.5,
as well as the false discovery rate (FDR)/corrected p value
of the statistical ¢-test < 0.05.
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