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Abstract

The island of Sumatra within the Indonesian archipelago is home to over 130 active or potentially active volcanoes with
a history of explosive eruptions. Highly explosive eruptions with volcanic explosivity index (VEI) > 6 in Sumatra, such
as those originating from the massive Toba caldera, have been well-documented in the literature. However, moderately
explosive eruptions with VEI 3-5 have received inadequate attention due to their limited preservation within the proximal
stratigraphic record. This gap in knowledge hinders existing attempts to conduct hazard assessments for these potentially
impactful eruptions. In this study, we address this knowledge gap by presenting a combination of geochemical, geochrono-
logical and tephrochronological datasets associated with distal tephra layers sampled from deep-sea cores collected off the
coast of West Sumatra, as well as proximal pyroclastic deposits throughout central Sumatra. Our datasets reveal geochemical
and stratigraphic correlations between seven distal tephra layers and their proximal sources, allowing for the quantification
of their eruption ages and volumes. Notably, we identified the ~ 1.53 ka Lubuk King Tephra (LKT) eruption from Malintang
volcano that discharged > 1.4 km? dense-rock equivalent (DRE) of magma, representing the youngest known VEI 5 eruption
in Sumatra. In addition, we determined Tandikat volcano as the proximal source for a pair of temporally proximate (~ 580 yr
apart) VEI 5 eruptions (Tandikat IT and I Tephra, TDK II and I; ~4.36 and ~4.94 ka) that produced > 1.1 and >2.7 km?
DRE of magma, respectively. We also ascertained that at least two VEI 4 eruptions occurring within the last ~36 kyr can be
correlated to the active Marapi volcano. Furthermore, we traced distal tephra layers AB4 (~36.8 ka) and ABS5 (~41.0 ka)
to two distinct VEI > 5 eruptions at volcanic centres in neighbouring provinces (Ranau Tuff, RAN from South Sumatra;
Djudjun Tephra, DJT from Jambi). Volcanic source provenances for another six distal tephra layers remain unknown due to
the lack of known proximal correlatives. Overall, our study provides an improved tephrochronological framework for late
Pleistocene-Holocene explosive volcanism in central Sumatra that will help refine existing volcanic hazard assessments and
enhance the integration of terrestrial and marine palaecoenvironmental archives regionally.
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Introduction

Sumatra represents the western segment of the Sunda vol-
canic arc that formed due to the northward subduction of the
Indo-Australian plate beneath the Sunda plate (Hutching and
Mooney 2021). The western Sunda volcanic arc stretches
for~1700 km from Pulau Weh in the northwest to Sunda
Straits in the southeast and comprises at least 130 active
or potentially active volcanoes, corresponding to~ 18% of
volcanoes throughout Southeast Asia (Whelley et al. 2015).
According to the classification of Whelley et al. (2015),
Sumatra hosts about one-third of the large calderas (diam-
eter > 5 km) and well-plugged stratovolcanoes (crater diam-
eter: 2.5-5 km) in the region. Assuming the size of a caldera
or summit crater is proportional to the size of an eruption, it
is conceivable that moderately to highly explosive eruptions
with a volcanic explosivity index (VEI; Newhall and Self
1982) between 3 and 8 were relatively common in the recent
geological past. Correspondingly, the large quantity of tephra
layers sampled within deep-sea cores located hundreds to
thousands of kilometres from possible sources highlights
the probable frequent nature of explosive Sumatran erup-
tions during the Quaternary (e.g. Ninkovich 1979; Salisbury
et al. 2012; Phua 2022; Kutterolf et al. 2023). However, the
occurrence of explosive eruptions in Sumatra is poorly docu-
mented due to the lack of thorough stratigraphic reconstruc-
tions in the proximal record, underlining a significant knowl-
edge gap in our understanding of its eruptive history (Bouvet
de Maisonneuve and Bergal-Kuvikas 2020). This lack of
documentation is likely to impact greatly on the record of
moderately explosive eruptions (VEI 3-5), as they are typi-
cally under-represented in the proximal stratigraphic record
(Brown et al. 2014) relative to highly explosive eruptions
(VEI > 6) such as those associated with Toba (e.g. Chesner
et al. 1991; Szymanowski et al. 2023), Singkut (Forni et al.
2024), Maninjau (e.g. Alloway et al. 2004; Suhendro et al.
2022) and Ranau (Bellier et al. 1999; Natawidjaja et al.
2017) calderas. The sudden and violent awakening of
Sinabung in 2010 after > 400 years in dormancy (Hendrasto
et al. 2012) resulted in heightened awareness around the
hazards of Sumatran volcanoes and further underscores the
urgency and necessity for new studies aimed at improving
the eruptive history of this active, yet poorly studied region.
Given the limited preservation of proximal deposits, deep-
sea cores represent an essential archive of explosive Suma-
tran eruptions. The available distal tephra record indicates
the youngest explosive eruptions are likely sourced from the
central segment of Sumatra (Salisbury et al. 2012). Three
tephra layers (V-3, V-4 and V-5) were preserved in cores
collected ~ 300 km off the coast of West Sumatra, however,
the provenances of these distal tephra are unknown due to a
lack of proximal correlatives.
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In this study, we combine field observations and geo-
chemical and geochronological data of proximal pyroclastic
deposits from West Sumatra and nearby provinces (Jambi
and South Sumatra), along with tephrochronological data
from deep-sea cores retrieved by research cruise R/V Sonne
between 2005 and 2006 during the SO184 (Hebbeln et al.
2006) and SO189-2 (Wiedicke-Hombach et al. 2006) expedi-
tions. We use major and trace element glass compositions to
geochemically fingerprint distal tephra layers and correlate
them to their likely proximal sources. We also present new
eruption ages, volumes and sizes (VEI), as well as estimates
of eruption source parameters. These new findings combine
to enhance our knowledge of Sumatran eruptions in terms
of their frequency and size. Significantly, our study presents
an improved late Pleistocene-Holocene tephrochronological
framework for explosive volcanism from central Sumatra in
the western Sunda volcanic arc.

Volcanological background

West Sumatra, Jambi and South Sumatra are situated in the
central to southern segments of Sumatra and host a cluster of
volcanic centres that are pertinent to this study (Fig. 1). Most
information concerning these volcanic centres is derived
from the Global Volcanism Program database (Smithsonian
Institution 2024) as dedicated studies are scarce or missing
in the literature. A compilation of the calderas and volcanoes
from West Sumatra, as well as those of relevance in Jambi
and South Sumatra with available information, is summa-
rised in Table 1.

Of particular interest is West Sumatra where little is
known about the eruptive history of Malintang, Talak-
mau-Pasaman and Melintang. The most prominent vol-
canic feature in the province is the Maninjau caldera that
produced a VEI 7 caldera-forming eruption (~ 52 ka;
Alloway et al. 2004). The associated pyroclastic density
current (PDC) deposits (i.e. Maninjau Tuff, MJT) cover
a large expanse of West Sumatra with thicknesses > 100
m in various locations (Pribadi et al. 2007). Marapi and
Talang-Pasar Arbaa are the most active stratovolcanoes in
West Sumatra that have produced numerous small explo-
sive eruptions (VEI <2) historically. In comparison, only
three small historical eruptions (VEI 1) have been reported
for the active Tandikat-Singgalang stratovolcanoes. Addi-
tionally, Hosobuchi et al. (2021) and Suhendro (2024)
recognised widespread pyroclastic deposits in the valley
between Maninjau and Tandikat-Singgalang (i.e. Malalak
Tephra, MT) and attributed its source to Tandikat. The
MT is described as a pyroclastic succession composed
of an initial ash layer (F-0) overlain by five lapilli lay-
ers (F-1 to F-5; Suhendro 2024). All six MT units are
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Fig. 1 Geographical map of central Sumatra marked with Quater-
nary calderas (red stars) and volcanoes (red triangles) of interest in
the study. Deep-sea core locations are indicated by light blue circles
(cruise SO189-2), blue circles (cruise SO184) and purple circles
(cruise RRO705 from Salisbury et al. 2012). Map inset highlights
the area covered by the larger map (red shaded box) and the wider

stratigraphically younger than MJT. Apart from the MT,
no other deposits of explosive eruptions younger than MJT
have been reported in the proximal stratigraphic record.
This is contrary to the distal tephra record where evidence
for explosive volcanism from central Sumatra is preserved
(Salisbury et al. 2012). Tephra layers V-3, V-4 and V-5 of
unknown origins were previously identified within deep-
sea cores (Salisbury et al. 2012). V-3 is a 1.5 cm-thick
andesitic tephra layer found in two cores with a calibrated
age of 13,610+315 cal a (10), whilst V-4 is a 3.5 cm-thick
dacitic ash deposit identified in one core with a calibrated
age of 1930+ 85 cal a (15). V-5 is a dacitic to rhyolitic
ash layer that occurred within eight cores with thicknesses
ranging from 1 to 8 cm and calibrated ages that range
between 4690 + 50 and 4860 + 30 cal a (15). Tandikat has
been proposed by Suhendro (2024) as a potential source
for V-5 based on similarities in glass compositions with
the MT.
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Sumatra Island including the provinces of North Sumatra (yellow
dash line), West Sumatra (orange dash line), Jambi (red dash line),
South Sumatra (purple dash line) and Sumatran calderas (black stars)
and volcanoes (black triangles). Hillshade digital elevation model is
derived from SRTM 1 Arc-Second Global Dataset (U.S. Geological
Survey 2018)

Materials and methods
Proximal deposits

The search for proximal deposits in Sumatra is commonly
a challenging undertaking. This is due to a combination of
the westerly prevailing winds and the perennial high pre-
cipitation rates, which result in low preservation potential
of volcanic deposits. Furthermore, the dense tropical veg-
etation cover, as well as intensive and widespread agricul-
ture, impacts greatly on the accessibility and availability of
outcrops. In West Sumatra, occurrences of proximal depos-
its are sparse, except for deposits from the MJT eruption.
Despite limited outcrops, tephra fall deposits associated
with Malintang, Marapi and Tandikat, as well as a PDC
deposit located southeast of Talang, were sampled. Addi-
tionally, widely distributed pyroclastic successions sourced
from Jambi and South Sumatra were sampled as potential
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correlatives to the distal tephra layers acquired. General
descriptions, physical characteristics and sampling locations
of the proximal pyroclastic deposits are reported in Table S1
(Online Resource 1).

Distal tephra

Seventeen deep-sea cores collected by R/V Sonne during
the SO184 and SO189-2 expeditions were sub-sampled.
Fourteen cores from SO184 were sub-sampled at the Center
for Marine Environmental Sciences (MARUM) in Bremen,
Germany, whereas the remaining three cores from SO189-2
were sub-sampled at the Federal Institute for Geosciences
and Natural Resources (BGR) in Hannover, Germany. The
locations for these cores form three distinct clusters (Fig. 1):
(1) in the northern Mentawai basin, (2) in the central Men-
tawai basin, and (3) on the accretionary prism southwest of
Pulau Tanahbala. The only exception is core 42SL, located
in the Nias Basin.

For the description of distal tephra identified in the deep-
sea cores, we used the term ““ash bed” to define a continuous
and discrete ash horizon or ash pod that is predominantly
composed of volcanic ash characterised by a generally
homogeneous glass composition. Additionally, we utilised
the term “ash/tephra layer” to describe multiple ash beds
that are correlated between various coring sites, as well as
proximal deposits. Secondary (or reworked) ash beds are
ascertained based on a combination of characteristics includ-
ing irregular or disrupted appearances of tephra deposits in
which clear indications of bioturbation, mass flows and/or
turbidity currents exist, as well as heterogenous glass com-
positions. General information on the deep-sea cores col-
lected and the physical characteristics of the distal tephra
sampled are provided in Table S2 (Online Resource 1).

Geochemistry

Major element glass compositions were analysed with
a JEOL JXA-8530F field emission electron probe micro-
analyser (EPMA) at the Facility for Analysis, Characterisa-
tion, Testing and Simulation (FACTS), Nanyang Techno-
logical University, Singapore (NTU). Analytical conditions
were as follows: 15 kV acceleration voltage, 6 nA beam
current and 10 pm size defocused beam. Elements Na, K
and Cl were measured first to minimise alkali migration and
volatile loss during analysis. Analytical accuracy, precision
and instrumental drift were monitored through repeated
analysis of secondary standards from INTAV (Kuehn et al.
2011). The EPMA analytical set-up, a complete dataset of
major element glass compositions, and analytical accuracy
and precision data for the secondary standards, are given in
Tables S3-S5 (Online Resource 2).

Trace element glass compositions were measured by
laser ablation-inductively coupled plasma-mass spectrom-
etry (LA-ICP-MS) at the Asian School of the Environment
(ASE), NTU, using a Teledyne Photon Machines Analyte
G2, 193 nm laser ablation system coupled to a single col-
lector Thermo Scientific Element 2 ICP-MS. Analytical
conditions were as follows: 15 pm spot size (square), 8-Hz
repetition rate, 4 J cm™2 laser fluence, and 30-s ablation time.
Analytical accuracy, precision, data validation and instru-
mental drift were monitored via analyses of glass reference
standards ATHO-G, BCR-2G and T1-G (Jochum et al. 2005,
2006), as well as secondary standard INTAVC at regular
intervals. Data reduction was performed with Iolite 4.0
(Paton et al. 2011) using the trace element data reduction
scheme (Woodhead et al. 2007). The LA-ICP-MS analytical
set-up, a complete dataset of trace element glass compo-
sitions, and analytical accuracy and precision data for the
secondary standard are reported in Tables S6-S8 (Online
Resource 3).

Geochronology

Eruption ages for proximal deposits and distal tephra were
obtained using radiocarbon (!*C) dating. Hand-picked
planktonic foraminifera were sampled from deep-sea sedi-
ment directly below and/or within the tephra to determine
maximum age constraints. When this was not possible, the
sediment lying above the tephra was also sampled to derive
minimum age constraints. Additionally, terrestrial organic
material identified at the base of a proximal deposit was
sampled to constrain a maximum eruption age. Radiocarbon
ages of the foraminifera and organic material were measured
using the accelerator mass spectrometry (AMS) technique at
the Beta Analytic Testing Laboratory, USA. Conventional
radiocarbon ages ('*C yr BP) were calibrated with OxCal 4.4
(Bronk Ramsey 2009), using the Marine20 curve (Heaton
et al. 2020) for the foraminifera samples, supplemented by
a AR correction of — 117 + 70 years (Southon et al. 2002)
to account for the marine radiocarbon reservoir effect, and
the SHCal20 curve (Hogg et al. 2020) for the organic-rich
sample. Radiocarbon results were reported as conventional
radiocarbon ages—years before present (1“C yr BP), as well
as calibrated radiocarbon ages—calendar years before pre-
sent (cal a BP) in the form of median ages, 1 sigma (68.2%)
and 2 sigma (95.4%) probability calibrated age ranges.
Radiocarbon ages collated from published work (Natawid-
jaja et al. 2017; Salisbury et al. 2012) were recalibrated
using the appropriate curves (i.e. Marine20 and SHCal20)
to facilitate unbiased age comparisons. A compilation of
the measured and published radiocarbon ages is provided in
Table S9 (Online Resource 4).

For ash beds with no direct age constraints due to an
absence of foraminifera within sampled sediment intervals,

@ Springer
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we utilised a linear interpolation method based upon sedi-
ment accumulation rates (SAR) to estimate an eruption age.
The SAR is calculated based on the depth and age of a sedi-
ment interval (time marker) stratigraphically closest to the
ash bed of interest within the same core. This linear interpo-
lation method relies on the assumption that the SAR between
the time marker and ash bed within the core remained con-
stant over time. Despite the uncertainties associated with
this approach, it provides an estimated eruption age that is
relevant for the ash bed, particularly when none is available.
In addition, for a correlated ash/tephra layer with multiple
radiocarbon ages, we calculated a weighted mean age (and
preferred eruption age) using IsoplotR (Vermeesch 2018).
The complete dataset of eruption ages determined for the
ash beds/layers is given in Table S10 (Online Resource 4).

Tephra correlation

Inter-core and source-to-sink correlations of ash beds/layers
were established using information including glass compo-
sitions, eruption ages, relative stratigraphic relationships,
and textural characteristics. Furthermore, tephra correlation
procedures were conducted using a combination of graphi-
cal and statistical approaches to compare and match glass
compositions, quantify similarity (or dissimilarity) between
tephra layers and/or potential sources, and establish the valid-
ity of correlations (Lowe et al. 2017). The graphical approach
encompasses the use of bivariate plots of elements and ele-
mental ratios to identify inter-core correlations, as well as
correlations to likely sources. This is supported by the sta-
tistical approach that employs two statistical methods in tan-
dem including the principal component analysis (PCA) and
the multi-element hierarchical cluster analysis (MEHCA).
The FactoMineR package (L€ et al. 2008) in R was used to
perform the PCA and MEHCA analyses. PCA analyses were
conducted using multiple glass shard compositions for each
ash bed, whilst MEHCA analyses were performed with aver-
age glass shard compositions for each ash bed.

Tephra volumes and eruption source parameters

Tephra volumes were estimated for correlated ash/tephra layers
and ash beds with a known source. For the ash/tephra layers
with sufficient proximal and/or distal thickness data, volumes
were obtained by applying the empirical methods of integra-
tion including the exponential method of Pyle (1989) modi-
fied by Fierstein and Nathenson (1992), as well as the power
law (Bonadonna and Houghton 2005) and Weibull methods
(Bonadonna and Costa 2012), using the MATLAB package
TError (Biass et al. 2014a, 2014b) and the Excel spread-
sheets provided by Nathenson and Fierstein (2015) and Bona-
donna and Costa (2012). For the ash beds with insufficient
distal thickness data, minimum volumes were estimated with
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the single isopach method of Legros (2000) by assuming an
ellipse-shaped isopach with a downwind to crosswind ratio
of ~4:1. Eruptions were classified using the VEI scale based on
the calculated volumes. The complete isopach dataset, as well
as eruption volumes and sizes (VEI) for the ash beds/layers, is
reported in Table S11 (Online Resource 5).

Eruption source parameters (ESP) including plume height
(H), mass eruption rate (MER) and duration (D) were deter-
mined for an eruption with sufficient proximal thickness data
and clast diameter measurements, using TError (Biass et al.
2014a, 2014b). Isopleth maps required to characterise these
eruptive parameters were compiled by averaging the arithmetic
mean of the three main axes for the five largest lithic clasts
(Table S12 in Online Resource 5; Biass and Bonadonna 2011).
Maximum H was estimated by applying the MATLAB imple-
mentation of the Carey and Sparks (1986) model developed
by Biass et al. (2015), which quantifies H for an interpolated
range of clast sizes and densities. MER was calculated with the
empirical methods of Wilson and Walker (1987) and Mastin
et al. (2009) that utilises maximum H and entrainment constant
k values of 0.236 and 2, respectively. The method of Degruyter
and Bonadonna (2012) was also used to calculate MER. Mini-
mum D for the eruption was determined using the MER and
volume. ESP uncertainties were simultaneously assessed
using TError. For each reference input parameter, a relative
input uncertainty (RIU) is chosen, and then TError runs a
Monte Carlo simulation to generate an uncertainty distribu-
tion (Gaussian) symmetrically centred around the reference
value. Each ESP is subsequently expressed as the median of
its distribution. 20% RIU was chosen for each input parameter
and 10,000 iterations of Monte Carlo simulation were run for
each analysis. The complete dataset of TError input parameters
and output ESP is provided in Table S13 (Online Resource 5).

Results
Proximal stratigraphic record

Major and trace element glass chemistry and/or eruption
ages were obtained for proximal pyroclastic deposits asso-
ciated with five volcanic centres in West Sumatra, one in
Jambi and one in South Sumatra. Juvenile glass composi-
tions of the proximal deposits predominantly range from
dacitic to rhyolitic (Fig. 2a), except for the Marapi depos-
its, which reflect more diverse and alkali-rich composi-
tions (i.e. trachyandesitic to trachydacitic and high K,0O
rhyolitic; Fig. 2a). Overall, the various proximal sources
are best discriminated based on the K,O vs. CaO, La/Th
vs. Zr/Y, La/Yb vs. Zr/Nb and Rb/Y vs. Ba/La bivariate
plots (Fig. 3; Figs. S1 and S2 in Online Resource 6). The
representative juvenile glass compositions for the proximal
pyroclastic deposits are summarised in Table 2.
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Fig.2 Total alkali (Na,O+K,0 wt%) versus silica (SiO, wt%) bivar-
iate diagrams showing juvenile glass composition ranges of proximal
pyroclastic deposits and distal tephra layers (normalised on a volatile-
free basis) with the volcanic rock classification after Le Maitre et al.
(2002). a Juvenile glass compositions of proximal pyroclastic depos-
its from West Sumatra. b Juvenile glass compositions of correlated

Malintang

MLT20-01 and MLT20-02 were sampled ~ 20 km southwest
of the Malintang summit (Fig. 1; Table S1). MLT20-01 was

80

distal ash layers (C1-C3) and ash beds (AB1-AB10). The analysed
juvenile glass compositions indicated two geochemical trends: (1) a
high-alkali trend and (2) a low-alkali trend. Colours and symbols rep-
resenting each proximal pyroclastic deposit and distal tephra layer are
given in the legend

identified in a riverbed on the southwestern flank of Malintang
and comprises grey pumices <30 cm in diameter. MLT20-02
was obtained near the Lubuk King village (Fig. 4a) and con-
sists of a>70 cm-thick, coarse-grained, well sorted and dark
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bivariate plot. b Rb/Y versus Ba/La bivariate plot. ¢ Zt/Nb versus U/
Th bivariate plot. d La/Th versus Zr/Y. e La/Yb versus Zr/Nb bivari-
ate plot. f La/Sm versus Ba/La bivariate plot. Colours and symbols
representing each ash layer and ash bed are given in the legend
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«Fig. 4 Field photographs of key proximal pyroclastic deposits in
West Sumatra. a Lubuk King Tuff (LKT) deposit identified in the
riverbed of Sungai (River) Batang Bayang southwest of Malintang
summit. b Maninjau Tuff (MJT) deposit located along the coastline
west of the Maninjau caldera. ¢ Scoriaceous Marapi Fallout (MAR)
deposit sampled north of the Marapi summit. d Talang Diatas Tuff
(TADT) deposit identified south of Danau (Lake) Diatas. e Overview
and selected composite stratigraphic sections of TDKO1, TDKO8,
TDKO09, TDK20 and TDK25, as well as selected photographs of
Tandikat II Tephra (TDK II) and Tandikat I Tephra (TDK I) depos-
its from stratigraphic sections TDKO1, TDK20 and TDK25. Map
inset illustrates the locations of TDK II and TDK I outcrops around
Tandikat volcano. Nomenclature and classification of the lithofa-
cies scheme established for the key proximal pyroclastic deposits are
adopted from Schmid (1981) and Lucchi (2013)

diameter) were sampled from the lapilli tuft layer (DIA18-
01; hereafter labelled Talang Diatas Tuff, TADT). The min-
eral assemblage of the pumices is dominated by plagioclase,
quartz, biotite, Fe-Ti oxide, apatite and zircon. Talang is the
most likely source for TADT based on its proximity to the
outcrop and the absence of other potential sources in the
area. The rhyolitic TADT is compositionally like MJT, but
with lower K,O content, higher Ba/La and U/Th and lower
Zr/Nb ratios (Figs. 2a and 3; Table 2).

Tandikat

A prominent pyroclastic succession corresponding to the
MT previously described by Hosobuchi et al. (2021) and
Suhendro (2024) was recognised to the north, east and domi-
nantly to the south and southwest of Tandikat. Twenty-four
outcrops were sampled at distances between ~6 and 24 km
from the volcano (Fig. 1; Table S12) and were either a single
coarse-grained, well sorted and pumice-rich lapilli fallout/
tuff deposit (22 outcrops) or a succession of two distinct
coarse-grained, well-sorted and pumice-rich lapilli/tuff fall-
out deposits separated by an erosional surface (2 outcrops).
For some outcrops, the base of the deposit is marked by
a palaeosol. In other cases, the deposit rests unconform-
ably above the MJT (Fig. 4e). Hosobuchi et al. (2021) and
Suhendro (2024) described the MT as a single unit with
no distinction between the two lapilli fallout/tuff deposits.
Consequently, the MT is renamed as newly defined units of
Tandikat IT Tephra (TDK II) and Tandikat I Tephra (TDK I).
Both units are characterised by low-silica rhyolitic juvenile
glass that is similar in major and trace element composi-
tions and share the same mineral assemblage of plagioclase,
orthopyroxene, clinopyroxene, amphibole, Fe-Ti oxide and
apatite (Figs. 2a and 3; Table 2). However, TDK II and I can
be clearly distinguished based on the Al,O; content and FeO/
MgO ratio of amphibole crystals, which likely reflect differ-
ent magma storage conditions (Fig. S3 in Online Resource
6; Tables S14-S16 in Online Resource 7). Based on this
distinctive feature, most proximal outcrops were assigned

as TDK I, whereas TDK II only occurs south of Tandikat
(Fig. 4e; Table S1). In comparison to other West Sumatra
deposits, TDK II and I display higher Zr/Y and lower U/Th
ratios (Fig. 3; Table 2). Several centimetre-size pieces of
amber were found at the base of TDK II within a~5-20-cm-
thick, poorly sorted and heterolithologic tuffaceous siltstone
(reworked MJT; TDKO1; Fig. 4e). Radiocarbon dating of the
amber produced a median calibrated age of 4303 + 65 cal a
BP (1c; Fig. 6; Table S10) for TDK II.

Potential sources from neighbouring provinces

A pyroclastic succession was uncovered (hereafter labelled
Djudjun Tephra, DJT) south of Danau (Lake) Kerinci and
within the Lempur area in Jambi. The DJT identified around
Danau Kerinci consists of a~2-m-thick, coarse-grained, well
sorted and pumice-rich white lapilli tuff deposit (KR18-20;
Table S1), whereas the DJT located within the Lempur area
is characterised by a~ 1.7-m-thick succession of lapilli fall-
out and PDC deposits composed of white pumices and fine-
grained ash (KR18-41 and KR18-42; Table S1). The pumices
are crystal-poor and contain plagioclase, amphibole, orthopy-
roxene, Fe-Ti-oxide, apatite and zircon. The juvenile glass
composition is rhyolitic, with very distinct major and trace
element compositions (e.g. relatively low K,O content, as well
as high Rb/Y, Zr/Y and La/YDb ratios; Fig. S1; Table 2). The
provenance of this deposit is unknown; however, based on its
distribution, it is likely sourced from the nearby volcanoes of
Raja-Sabanda or Kunyit (Fig. S4 in Online Resource 6).

The Ranau Tuff (RAN) is a product of the caldera-forming
eruption at Ranau caldera located on the southernmost sector
of the Sumatran Fault. The associated pyroclastic succession
was recognised <70 km from the source with a thickness of
several metres in South Sumatra (Natawidjaja et al. 2017).
Deposits of the RAN were sampled ~ 17 km southeast of the
caldera (SSU19-08; Table S1). In this outcrop, the RAN con-
sists of ~ 15-m-thick, poorly sorted, pumice-rich PDC deposits
with crystal-rich white pumices <50 cm in diameter, set within a
coarse-grained ash matrix. The mineral assemblage is composed
of plagioclase, quartz, biotite, Fe-Ti-oxide, apatite and zircon,
whereas the juvenile glass composition is rhyolitic—similar in
major element composition to the MJT and TADT, but with
different trace element signatures (i.e. lower Rb/Y, as well as
higher La/Sm and Zr/Nb ratios; Fig. S1; Table 2). A proposed
eruption age of 34,011+ 177 cal a BP (1c; recalibrated median
age using SHCal20 curve; Table S9) was determined for RAN
via radiocarbon dating of organic material sampled at the base
of the proximal deposit (Natawidjaia et al. 2017).

Distal tephra record

Forty-six ash beds were sampled from 14 deep-sea cores. Out
of these, 31 primary ash beds characterised by homogeneous
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or zoned glass compositions were identified. The primary ash
beds are generally white, light to dark grey, black or “salt-and-
pepper” in colour. Textural characteristics of these ash beds
(i.e. well-sorted nature, sharp basal boundaries and diffusive
upper contacts) are typical of fallout deposits from subaerial
eruptions that settled rapidly within a water column, whilst
their grain sizes vary widely from fine to coarse-grained ash.
Volcanic glass shards associated with the white to light grey
ash beds are often clear and colourless and mainly intermedi-
ate to felsic in composition, whereas glass shards occurring
within the dark grey to black ash beds are generally light
brown to brown in colour and mostly intermediate to mafic
in composition. Glass shard morphologies span a wide range
including flat, blocky, curviplanar, fibrous and cuspate shapes,
with rounded to elongated vesicles. The remaining 15 second-
ary (or reworked) ash beds were characterised by heterogenous
glass compositions and exhibited clear signs of physical dis-
turbances (i.e. presence of burrow structures, as well as cha-
otic and mixed layers) that are attributable to re-sedimentation
processes such as bioturbation and turbidity currents.

Tephra correlations, provenances, volumes
and eruption ages

Thirty-one primary ash beds underwent tephra correlation
procedures that revealed three widespread ash layers (C1-3)
correlated across multiple coring locations and ten ash beds
(AB1-10) that were only present in singular cores. Correla-
tions established across the various core sites, as well as
their preferred eruption ages, volumes and sizes (VEI), are
summarised in Fig. 5. Glass chemistry of the correlated ash
beds/layers spans a wide range from andesitic to rhyolitic,
with most glass shards predominantly low-silica rhyolitic in
nature (Fig. 2b). The representative juvenile glass composi-
tions for each ash bed/layer are presented in Table 3.

a

C1 was identified in three cores (GeoB10022-5,
GeoB10024-4 and GeoB-10028-5) located in the northern
Mentawai basin and within one core (GeoB10009-2) situ-
ated on the accretionary prism southwest of Pulau Tanah-
bala (Fig. 1 and 5; Table S2). Cl is a vitric, fine-grained
and reddish-brown ash horizon characterised by dacitic to
low-silica rhyolitic juvenile glass that ranges in thickness
between 1 and 3 cm (Fig. 2b; Table 3). The stratigraphic
depth of C1, as well as the similarity in juvenile glass chem-
istry with V-4 (Salisbury et al. 2012; Fig. S2) and the proxi-
mal ash fallout deposit (MLT20-02), reveals a correlation
with the LKT (Fig. 3). These stratigraphic and geochemical
correlations are validated by the PCA and MEHCA analy-
ses as observed in Figs. 7 and 8. Radiocarbon median cali-
brated ages of 1581+ 110, 1569+ 110 and 1438 + 101 cal

a BP (1o) were obtained for C1 from cores GeoB10022-
5, GeoB10024-4 and GeoB10028-5 respectively (Fig. 6;
Tables S9 and S10). These radiocarbon ages, along with the
recalibrated interpolated age of 1539+ 117 cal a BP (1o)
from core RR0705-79PC (Salisbury et al. 2012), overlap
well within 2 sigma uncertainties (Fig. 6; Tables S9 and
S10). Correspondingly, a weighted mean age (and preferred
eruption age) of 1531 +55 a (1o; n=4) was obtained for C1
(LKT) (Figs. 5 and 6). Distal isopachs of 3 and 1 cm were
constructed using five thickness data points, with resulting
areas of ~ 1.7 x 10% and ~ 5.5 x 10* km?, respectively (Fig. 9a;
Table S11). A minimum volume range of ~1.9-2.0 km?, cor-
responding to a VEI 5 eruption, was calculated for C1 (LKT)
using the method of Legros (2000) (Fig. 5 and Table S11).

C2and C3

C2 and C3 were identified in tandem within six cores
(GeoB10022-5, GeoB10025-4, GeoB10026-3, GeoB10028-
5, 148SL and 39KL) from the northern Mentawai basin,
whereas either ash layer C2 or C3 were identified as a singu-
lar ash horizon within five other cores in the region (Figs. 1
and 5; Table S2). Specifically, only C2 was recognised in
core 42SL from the Nias basin, whilst only C3 was identified
within cores GeoB-10008-3, GeoB10023-4, GeoB10024-4
and GeoB10027-4 from the Mentawai basin (Figs. 1 and 5;
Table S2). C2 is a vitric, fine-grained and grey ash ranging
in thickness between 1 and 5 cm, whereas C3 is a vitric-
crystalline, coarse-grained and “salt-and-pepper” ash with a
thickness ranging from 1 to 8 cm (Table 3). Juvenile glasses
in C2 and C3 are low-silica rhyolites and significantly, their
major and trace element compositions are indistinguishable
from each other (Figs. 2b and 3; Table 3). These geochemi-
cal signatures overlap with the proximal TDK II and I depos-
its (supported by PCA and MEHCA analyses; Figs. 7, 8
and S2), as well as V-5 (Salisbury et al. 2012), for which
a median calibrated age range between 4215+ 109 and
4823+ 123 cal a BP (lo; recalibrated median ages using
Marine20 curve; Fig. 6; Table S10) was proposed.

Within cores where both ash layers are present, a median
calibrated age range between 4276+ 127 and 4570 + 125
cal a BP (1o) was obtained for C2 and a median calibrated
age range from 4665 + 120 to 5177 + 126 cal a BP (10) was
attained for C3 (Fig. 6; Table S10). In the cores where only
singular ash layers occur, derived median calibrated ages
mostly overlap with C3 (between 4858 + 131 and 5153 + 126
cal a BP (1o); cores GeoB10008-3, GeoB10023-4 and
GeoB10024-4), except for the median calibrated age of
4451+ 131 cal a BP (1o) from core 42SL that overlaps
well with C2 (Fig. 6; Table S10). A re-examination of the
radiocarbon ages provided by Salisbury et al. (2012) indi-
cates that C2 and C3 were likely misrepresented as a singu-
lar V-5 layer. It is likely that the recalibrated interpolated
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Fig.6 Calibrated radiocarbon
o) ages of sediment intervals
below and/or within distal

ash layers C1 to C3 as ranked
order plots. Deep-sea '“C ages
were calibrated using OxCal
4.4 (Bronk Ramsey 2009) with
the Marine20 calibration curve
(Heaton et al, 2020), along with
a AR correction of —117 + 70
years (Southon et al. 2002) to
account for the marine radio-
carbon reservoir effect. The
preferred eruption ages for C1
to C3 were determined based
on the weighted mean ages of
the calibrated '“C ages using
IsoplotR (Vermeesch 2018).
Weighted mean ages (grey
lines) and error ranges (1 sigma)
are indicated in light blue for
LKT (C1), light orange for
TDK II (C2), and red for TDK
1(C3). The calibrated 14C age
(using the SHCal20 calibration
curve; Hogg et al. 2020) for the
amber (dark red) sampled below
proximal TDK II overlaps well
with the weighted mean age of
C2. The age ranges for V-4 and
V-5 (Salisbury et al. 2012) were
recalibrated in the study. The
dark blue arrows are estimated
ages based on sediment accu-
mulation rates (SAR)
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Fig.7 PCA and loading plots of the three main principal compo-
nents (DIM.1, DIM.2 and DIM.3) based on the analysis of 37 major
and trace elements, which accounts for 70.6% of the total variation
in the dataset. a) DIM.2% versus DIM.1% PCA and loading plots.
b) DIM.3% versus DIM.1% PCA and loading plots. PCA fields for
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proximal deposits from West Sumatra, Jambi and South Sumatra are
shown for reference. The PCA successfully validates stratigraphic and
geochemical correlations between the proximal deposits and distal
tephra layers. Colours and symbols representing each ash layer and
ash bed are given in the legend
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Fig.8 Dendrogram of multi-
element hierarchical cluster
analysis (MEHCA; distance
metric: squared Euclidean dis-
tance; linkage method: Ward).
The 41 samples included in the
MEHCA are average glass com-
positions of 9 proximal deposits
and 32 distal tephra layers. The
MEHCA successfully verifies
most stratigraphic relationships
except for samples from Tandi-
kat (proximal deposits: TDK

II and TDK I; distal ash layers:
C2 and C3) that are too similar
compositionally to be discrimi-
nated clearly. Colours represent-
ing each proximal deposit and
distal tephra layer are given in
the legend of Figure 7

age of 4215+ 109 cal a BP (1o) for V-5 obtained from core
RRO0705-77PC corresponds to C2, whilst the recalibrated
median age of 4823 + 123 cal a BP (lo) for V-5 deter-
mined in core RR0705-79PC corresponds to C3 (Fig. 6;
Tables S9 and S10). Textural characteristics of C2 and C3
are analogous to those described for the proximal TDK II
and I. Specifically, TDK II deposits are generally finer-
grained compared to TDK I, and both deposits are often
separated by either heterolithologic tuffaceous siltstones/
mudstones (reworked deposits; TDKO09; Fig. 4e) or ero-
sional unconformities (TDK20; Fig. 4e). The radiocarbon
median calibrated age of 4303 +65 cal a BP (1o) for the
amber preserved in the sediments directly below TDK
II coincides with the median calibrated age range for C2
(Fig. 6; Tables S9 and S10), thus supporting the observed
field stratigraphic relationships (Fig. 4e). Weighted mean
ages (and preferred eruption ages) for C2 (TDK II) and C3
(TDKI) are 4364 +37 cal a BP (16; n=9) and 4937 + 56 cal
a BP (1o; n=10), respectively (Figs. 5 and 6).

Seventeen thickness data points including six obtained
from Salisbury et al. (2012) were utilised to produce the
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0] 0.5 1 1.5 2
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DJT (KR18-20)

DJT (KR18-41 & -42)

Djudjun (Jambi)

isopachs for C2 (TDK II) and C3 (TDK I) (Fig. 9a).
Isopachs of 3, 2 and 1 cm were constructed with areas
of ~8.5% 10, ~2.4x 10* and ~ 5.1 x 10* km? for TDK 1I,
as well as~1.7x10% ~3.8 x 10* and ~ 6.2 x 10* km? for
TDK I (Table S11). Minimum volume ranges obtained
for TDK II and I with the method of Legros (2000)
were ~0.9-1.9 and ~ 1.9-2.6 km?, respectively, whereas
volume ranges derived using the exponential and Weibull
methods were ~ 1.5-2.0 and ~ 1.9-2.5 km?, respectively.
The range of volumes estimated for TDK II and I based
on the distal dataset with the three methods is in good
agreement, corresponding to VEI 5 eruptions (Fig. 5 and
Table S11).

TDK I is the only eruption with sufficient proximal data
that allows for the estimation of ESP using TError (Table S13).
Twenty-two proximal stratigraphic sections (Fig. 4e;
Table S12) were investigated to reconstruct the isopach and
isopleth maps (Figs. 9b, c) required to characterise the erup-
tive conditions. Table 4 summarises the ESP for TDK I as
determined with the 0.5, 1.5 and 2.0 cm isopleth datasets by
using the median, 2nd and 98th percentile as the central value,
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Fig.9 Isopach and isopleth
maps illustrated for the deposits
of LKT (C1), TDK II (C2) and
TDK I (C3). a Isopach maps
for the distal ash layer C1 from
Malintang volcano, as well as
the distal ash layers C2 and

C3 from Tandikat volcano
(thickness measurements in
centimetres). b Isopach map for
the proximal deposits of TDK
II and TDK I from Tandikat
volcano (thickness measure-
ments in centimetres). ¢ Isopleth
map for the proximal deposit of
TDK I from Tandikat volcano
(average lithic clast diameter in
centimetres)
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Fig. 10 Distribution of selected eruption source parameters (ESP)
resulting from the TError analysis using the 1.5 cm isopleth data-
set. a, b Plume height and wind speed calculated with the method of
Carey and Sparks (1986). ¢ — e Mass eruption rates (MER) calculated
with the methods of W&WS87, Wilson and Walker (1987); MAQ9,
Mastin et al. (2009); and D&B12, Degruyter and Bonadonna (2012),
respectively. f — h Volumes calculated with the exponential (EXP)
method of Fierstein and Nathenson (1992), power law (PL) method

lower and upper bound, respectively, to account for 96% of the
population. Given the larger quantity of proximal data asso-
ciated with the 1.5 cm isopleth (i.e. greater confidence), the
corresponding ESP obtained for TDK I were preferred (see
distributions of selected ESP for TDK I in Fig. 10). TError
results indicated eruptive conditions for TDK I characterised
by a plume height of 25.93:2 km above sea level (a.s.l.); a
maximum wind speed of 21 3f2? m/s at the tropopause; a max-
imum MER of 1.8¥)2 x 10® kg/s; a volume between 3.7*)% and
5.32:‘11 km?, depending on the adopted method; and a duration
between 63 and 9iz hours (Degruyter and Bonadonna 2012).
TError-derived volume ranges for TDK I using the proximal
and distal datasets are comparatively larger than those obtained
with only the distal data, but the eruption remains classified as

VEI 5 (Fig. 5 and Table S11).

Volume WBL (km?3)

IN
S
S

Frequency

200

L L

6 7 8 9 200 400 600 800 1000
Duration D&B12-WBL (min)

1200

of Bonadonna and Houghton (2005) and Weibull (WBL) method of
Bonadonna and Costa (2012), respectively. i Duration is calculated as
the ratio between the mass (converted from the volume obtained with
the WBL method) (Bonadonna and Costa 2012) and MER (Degruyter
and Bonadonna 2012). ROD (%) refers to the relative output devia-
tions. Central value denotes the median and the lower and upper
boundaries represent the 2nd and 98th percentiles that describe 96%
of the population

AB1-AB10

ABI is a 2-cm-thick, vitric, fine-grained and black ash hori-
zon sampled in core GeoB10029-4 from the central Mentawai
basin (Figs. 1 and 5; Table S2). Juvenile glass in AB1 exhibits
a trachyandesitic composition with low Ba/La and high La/
Th ratios that do not correlate to any known proximal sources
(Figs. 2b and 3; Table 3). The radiocarbon median calibrated
age obtained for AB1 is 23,653 + 152 cal a BP (1o; Table S10).

AB2 is a vitric, fine-grained and black ash pod, whilst AB3
is a 4-cm-thick, vitric, medium-grained and light grey to black
ash horizon; these medium-grained ash beds were identified
in cores from the northern Mentawai basin (GeoB10024-4
and GeoB10027-4, respectively; Figs. 1 and 5; Table S2).
Juvenile glass compositions of AB2 and AB3 range from
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Table4 TDK I, Tandikat volcano: Characterisation of eruption
source parameters (ESP) describing 96% of the population, i.e. the
2nd —98th percentile range for the 0.5 cm, 1.5 cm and 2.0 cm isopleth
dataset

ESP Unit Interpercentile error ranges
05cm  15cm  2.0cm
Plume height (C&S86) km 26.2*_';:? 25.93:3 22.011:3
Wind speed (C&S86) m/s 248%¢ 213%%7 18.0%¢7
MER (W&W87) x10%kg/s 1.001% 0.98+0% 0474040
MER (MA09) x10%kg/s 0714970 0.69*070 0.30%03
MER (D&B12) x10°kg/s 1.70%0%0 1.8019%0 0.66+020
Volume (EXE) ST R R
Volume (L) SORETE ST R
Volume (WBL) km’ 40}t s3T) san
Mass (EXP) X10%ke 3700 3018 370447
Mass (PL) X102 ke 35028 3907070 350708
Mass (WBL) x10kg 400170 530+ 530+1%
Duration (W&W87-EXP) h 1()10 1 1J:é0 224:%}
Duration (W&W87-PL)  h 10j;0 1 ]t;O 234:%}
Duration (W&W87- h 1 1té1 1 5iré5 3]ﬁé
WBL)
Duration (MA09-EXP) h 1514 1515 334_-?3
Duration (MA09-PL) h 1571 16%1° 3343
Duration (MA0O9-WBL) h 16+ 51; 8 Zlﬁf 4 61”;2
Duration (D&B12-EXP)  h 63 643 16+
Duration (D&B12-PL) h 63 63 161
Duration (D&B12-WBL) h 7f‘2* 94:2 2F ;2

C&S86: Carey and Sparks (1986); W&WS87: Wilson and Walker
(1987); MAO09: Mastin et al. (2009); D&B12: Degruyter and Bona-
donna (2012); EXP, Fierstein and Nathenson (1992); PL, Bonadonna
and Houghton (2005); WBL, Bonadonna and Costa (2012)

trachyandesitic to trachydacitic (Fig. 2b; Table 3). Specifically,
their major element compositions overlap partially with the
proximal lapilli fall deposit from Marapi (MAR14-08), whilst
their trace element compositions overlap significantly (Figs. 2b
and 3; Table 3). In addition, the PCA and MEHCA analyses
indicate Marapi as a likely source for AB2 and AB3 (Figs. 7
and 8). The radiocarbon median calibrated ages determined for
AB2 and AB3 are 34,144+ 184 and 35,673 +214 cal a BP (1oc;
Table S10), respectively. A minimum volume of ~0.1 and ~0.6
km?® was estimated for AB2 and AB3, corresponding to VEI 4
eruptions, with the method of Legros (2000).

AB4 and ABS5 occur as 2- and 6-cm-thick, vitric, fine-
grained and white ash horizons within cores GeoB10025-4
and GeoB10010-2, respectively. Juvenile glass compositions
for these ash beds are rhyolitic and can be clearly differenti-
ated in terms of major and trace element contents (Figs. 2b
and 3; Table 3). Although no robust geochemical correlation
with proximal deposits from West Sumatra is identified, clear
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compositional overlaps are observed between AB4 and RAN
from Sumatra and between ABS5 and DJT from Jambi (Fig. S1).
These geochemical correlations are further validated by PCA
and MEHCA analyses (Figs. 7 and 8). Radiocarbon median cal-
ibrated ages established for AB4 and ABS are 36,761 +286 and
41,031 +283 cal a BP (1o; Tables S10), respectively. Notably,
the radiocarbon age obtained for AB4 is older than the proposed
RAN eruption age of 34,012+ 178 cal a BP (1c; Natawidjaja
etal. 2017; Table S9). However, we note that Natawidjaja et al.
(2017) excluded three of four dated samples due to modern
carbon contamination and assumed the remaining sample was
the least affected. Due to the uncertainties of these ages, we
consider the radiocarbon age for AB4, a more reliable eruption
age estimate for the RAN. A minimum volume of ~4.0 and 7.3
km? was obtained for AB4 and ABS5, equivalent to VEI 5 erup-
tions, using the method of Legros (2000).

AB6, AB7 and ABS occur as 2-, 2.5- and 9-cm-thick,
vitric, fine to coarse-grained and white ash horizons within
cores GeoB10027-4, GeoB10027-4 and GeoB10025-4,
respectively, from the northern Mentawai basin (Figs. 1 and
5; Table S2). Juvenile glass from ash beds AB6-ABS are rhy-
olitic, but differences are discernible in both major and trace
element contents (Figs. 2b and 3; Table 3). These ash beds
do not correlate geochemically with any known proximal
deposits. The radiocarbon median calibrated ages obtained
for AB6, AB7 and ABS8 are 41,614 +235, 39,048 +235 and
45,119+518 cal a BP (1o; Table S10), respectively.

ABO9 is a 3-cm-thick, vitric, fine-grained and dark grey ash
horizon, whereas AB10 is a vitric, fine-grained and black ash
pod; both ash beds were sampled in core GeoB-10029—4 from
the central Mentawai basin (Figs. 1 and 5; Table S2). Juvenile
glass from AB9 and AB10 is trachydacitic (Fig. 2b; Table 3).
Significantly, trace element glass compositions of AB9 dem-
onstrate similarities to AB1 (i.e. low Ba/La, Rb/Y and La/
Sm, as well as high La/Th ratios), whilst those from AB10
partially overlap with Tandikat (Fig. 3; Table 3). However,
PCA and MEHCA analyses do not indicate any correlation
with known proximal sources (Figs. 8 and 9). Age constraints
are unavailable for these ash beds as radiocarbon dating of
sampled foraminifera exceeded the limits of the method.

Discussion

Explosive eruptions from central Sumatra
and regionally far-travelled eruptions

Malintang
Correlation between C1, V-4 and proximal LKT established

Malintang volcano as the source of the youngest (~ 1.53 ka),
moderately explosive VEI 5 eruption (~1.9-2.0 km?) with
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origins in central Sumatra during the late Holocene. Despite
its relatively young age and substantial volume, the proximal
footprint for this eruption is almost absent on the coastal
plain downwind from Malintang. Pumices sampled in a
riverbed south of Malintang (MLT20-01) provided further
evidence for past explosive activity at the volcano. How-
ever, as no associated primary outcrops have been uncovered
yet, our knowledge about this eruption is limited beyond
its geochemical characteristics. Considering the dominant
prevailing winds, which commonly transport volcanic ash
to regions currently under-represented in the distal tephra
record (e.g. northwest of Malintang), it is unsurprising that
LKT is the only Malintang eruption identified.

Marapi

A comparison of proximal and distal tephra records
yielded important information about explosive eruptions
from the Marapi volcano. Specifically, our datasets indi-
cated a correlation between a Marapi scoria fall deposit
(MAR14-08) and V-3. Notably, we did not identify V-3
in any of our cores; however, the missing tephra record
could be attributed to a discrepancy between the disper-
sal direction and the core locations (i.e. our selection of
cores failed to capture the distal footprint). Salisbury et al.
(2012) proposed Marapi as the source for V-3 and cal-
culated a minimum volume of 0.6 km?, equivalent to a
VEI 4 eruption. The provenance of AB2 and AB3 (~34.1
and ~ 35.7 ka) were attributed to Marapi based on distinct
geochemical and statistical correlations. Additionally,
AB2 and AB3 are likely sourced from sub-Plinian to Plin-
ian VEI 4 eruptions based on their minimum eruptive vol-
umes (~0.1 and ~0.6 km?). Significantly, the distal tephra
record demonstrates that Marapi is not only capable of
frequent small (VEI < 2) eruptions as represented histori-
cally but also produced at least two VEI 4 eruptions in the
past~ 36 kyr.

Tandikat

Correlation between C2 and C3, V-5 and proximal TDK
IT and I established Tandikat volcano as the source of two
widely dispersed, young (~4.36 and ~4.94 ka) and mod-
erately explosive VEI 5 eruptions (~1.5-2.0 and ~3.7-5.3
km?) originating from central Sumatra during the Holo-
cene. Significantly, these eruptions are temporally proxi-
mate (only ~0.58 kyr apart), which raises important
petrological questions about the pre-eruptive magmatic
conditions that led to these explosive eruptions in quick
succession. Additionally, the widespread nature, distinc-
tive glass chemistry and well-defined ages of the TDK II

and I highlight their potential as regional tephrochrono-
logical markers.

TDK I is a well-exposed pyroclastic deposit that is per-
vasive proximally and distally throughout central Suma-
tra. Field observations and TError quantification of ESP
indicate TDK I is likely formed due to a single Plinian-
type eruption with a WSW dispersal axis, which indicates
an eruption during an easterly wind-dominated phase of
the quasi-biennial oscillation (Baldwin et al. 2001) with a
plume height of 25.93:8 km and a maximum wind speed
of 21.3f2:f m/s that is consistent with modern wind speeds
above the tropopause in Sumatra during easterly wind
phases (Kalnay et al. 1996). The moderately sorted units
near the base of the proximal pyroclastic successions are
interpreted as the result of a less stable plume that charac-
terised the initial phase of vent opening (e.g. Sulpizio et al.
2010). The rare occurrence of TDK II proximally lim-
its potential interpretations about its eruption processes.
However, the analogous stratigraphic characteristics of
TDK II and I deposits, coupled with the smaller median
grain size of TDK II deposits, might indicate a TDK II
eruption with lower plume height and wind speed, higher
degree of fragmentation or a combination of these factors.

Ranau and Djudjun

AB4 and AB5 (~36.8 and ~41.0 ka) were correlated to the
RAN in South Sumatra and the DJT in Jambi, respectively,
and are likely distal limits for two of the most far-travelled
eruptions in the distal tephra record (>700 and > 400 km
from respective sources). AB4 and ABS5 are products of
large VEI 5 eruptions based on their minimum eruptive
volumes (~4.0 and 7.3 km?®). According to these estimates,
the eruptive volume for the RAN is underestimated consid-
ering it is the product of a caldera-forming eruption, whilst
the DJT represents one of the largest moderately explosive
eruptions regionally over the last~40 kyr.

Conclusions

This study presents a late Pleistocene-Holocene record of
explosive volcanism from central Sumatra based on a combi-
nation of geochemical, geochronological and tephrochrono-
logical datasets associated with distal tephra layers collected
from deep-sea cores, as well as proximal pyroclastic deposits
sampled throughout Sumatra. This improved tephrochro-
nological framework helps strengthen our knowledge of
lesser-known, moderately explosive Sumatran eruptions,
refine existing volcanic hazards assessments essential for the
mitigation of future Sumatran volcanic activity and enhance
the integration of terrestrial and marine paleoenvironmental
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archives regionally. The key findings from this study are
summarised as follows:

(1) Thirteen ash beds/layers were identified in the distal
tephra record. Five were correlated to West Sumatra
volcanoes including three VEI 5 eruptions within the
last ~5 kyr and two VEI 4 eruptions related to Marapi
volcano in the past ~36 kyr; two were correlated to
eruptions originating from Jambi and South Sumatra;
and the remaining six are tephra deposits with unknown
source provenances.

(2) The ~1.53 ka LKT from Malintang volcano is the
youngest VEI 5 eruption from central Sumatra. The
almost complete absence of LKT in the proximal
record demonstrates the challenges associated with the
preservation and identification of volcanic deposits in
the equatorial region and underscores the importance
of distal tephra archives in reconstructing the eruptive
histories of Sumatran volcanic centres.

(3) The ~4.36 and ~4.94 ka TDK II and I from Tandikat
volcano are two temporally proximate VEI 5 eruptions
(only ~580 yr apart). The pervasiveness, distinctive
chemistry and well-constrained ages of TDK II and I,
highlights their potential as regional tephrochronologi-
cal markers.

(4) A quantification of the ESP for TDK I indicates a
single Plinian-type eruption with a plume height
of 25.93:3 km a.s.l.; a maximum wind speed of
21.37%% m/s; a maximum MER of 1.8 x 108 kg/s; a

—0.5

tephra volume between 3.7+% and 5.37 1 km?; and an

eruption duration between 67 and 9> h

(5) The ~41 ka DJT was identified >400 km northwest of
its source area and is likely associated with a large vol-
ume VEI 5 eruption. This represents the first evidence
for late Pleistocene explosive activity in Jambi within
the last ~40 kyr.
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