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iBTC: An Image-assisting Binary and Triangle
Combined Descriptor for Place Recognition by

Fusing LiDAR and Camera Measurements
Zuhao Zou1, Chunran Zheng1, Chongjian Yuan1, Shunbo Zhou2, Kaiwen Xue2, Fu Zhang1

Abstract—In this work, we introduce a novel multimodal de-
scriptor, the image-assisting binary and triangle combined (iBTC)
descriptor, which fuses LiDAR (Light Detection and Ranging)
and camera measurements for 3D place recognition. The inherent
invariance of a triangle to rigid transformations inspires us to
design triangle-based descriptors. We first extract distinct 3D key
points from both LiDAR and camera measurements and organize
them into triplets to form triangles. By utilizing the lengths of the
sides of these triangles, we can create triangle descriptors, en-
abling the rapid retrieval of similar triangles from a database. By
encoding the geometric and visual details at the triangle vertices
into binary descriptors, we augment the triangle descriptors with
richer local information. This enrichment process empowers our
descriptors to reject mis-matched triangle pairs. Consequently,
the remaining matched triangle pairs yield accurate loop closure
place indices and relative poses.

In our experiments, we conduct a thorough comparison of our
proposed method with several SOTA methods across public and
self-collected datasets. The results demonstrate that our method
exhibits superior performance in place recognition and overcomes
the limitations associated with the unimodal methods like BTC,
RING++, ORB-DBoW2, and NetVLAD. Additionally, we perform
a time cost benchmark experiment and the result indicates that
our method’s time consumption is reasonable, compared with
baseline methods.

Index Terms—place recognition, loop detection, multimodal,
descriptor, LiDAR SLAM, visual SLAM.

I. INTRODUCTION

PLACE recognition, also called loop closure detection,
constitutes a fundamental technique within the realm

of robotic navigation and exploration. As robotic platforms
traverse diverse and expansive environments, simultaneous
localization and mapping (SLAM) systems become indispens-
able for real-time, precise robot localization and mapping of
the surroundings. Place recognition plays a pivotal role in
recognizing previous place during robot exploration, thereby
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Fig. 1. (a)∼(h) show that iBTC overcomes the limitations of the unimodal
methods like BTC [1] (LiDAR-based) and ORB-DBoW2 [2] (visual). (a)∼(d)
demonstrate iBTC’s success in identifying the correct loop closure in a
structurally similar scene, specifically a long corridor in the “iBTC hotel1”
sequence, while BTC fails. (a) and (b) depict matched triangle descriptors on
query key frame 259 (orange lines) and correctly detected key frame 11 (green
lines) on corresponding images, respectively. (c) confirms iBTC’s successful
matching of triangle descriptors presented with submap clouds, whereas (d)
highlights BTC’s inability, attributed to unstable key point extraction in such
scenes. (e)∼(h) illustrate iBTC’s accurate detection of key frame 800 for query
key frame 1773 in an illumination-varying scene within the “NCLT121201”
sequence. Conversely, ORB-DBoW2 produces an erroneous detection due to
illumination variation. Note the representation of detected salient points by
green circles in (a), (b), (e)∼(h), and detected 3D key points by red and blue
dots in (c) and (d).

facilitating system relocalization and addressing drift issues
inherent in SLAM systems. Moreover, it facilitates merging
maps constructed across disparate robot exploration sessions
into a unified map.

Given the diversity of sensors utilized in SLAM systems,
encompassing cameras, LiDAR, or both, place recognition
methods for different sensors have been developed. One cate-
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gory of place recognition methods relies on images captured
by cameras, exemplified by FAB-MAP [3], DBoW2 [2], and
SeqSLAM [4]. Another category leverages scans acquired
by LiDAR sensors, such as ScanContext [5], RING++ [6],
and BTC [1]. However, each method category exhibits its
own set of limitations. Visual (camera-based) methods are
susceptible to variations in illumination (e.g., plots (e)∼(h) of
Fig. 1), whereas LiDAR-based approaches struggle with envi-
ronments characterized by high structural similarity, such as
long corridors (e.g., plots (a)∼(d) of Fig. 1) and large plazas.
Consequently, multimodal methods incorporating both LiDAR
and camera sensors, such as CoRAL [7], MinkLoc++ [8],
and our proposed approach, emerge to mitigate the individual
limitations of unimodal methods.

As the combination of LiDARs and cameras becomes
widely used in autonomous vehicles, drones, and recon-
struction sensor suites, optimizing their use for robust place
recognition becomes crucial. Simply combining LiDAR and
visual place recognition methods without fusion leads to
two different output types: LiDAR methods provide precise
loop closure transformations between query and historical
point clouds, while visual methods offer relatively imprecise
transformations between query and historical camera poses
due to limited image resolution and incorrect visual descriptor
matches. By designing a fusion framework, we can integrate
these measurements to produce a unified output, facilitating
the place recognition usage in SLAM systems.

Despite the potential advantages offered by multimodal
methods for place recognition and relocalization, several chal-
lenges persist. Firstly, it is difficult to design a descriptor
that effectively exerts the potential of both sensor types and
conquers the limitations of unimodal methods. Secondly, it is
a challenge to ensure the efficiency and robust performance
of designed descriptors across different LiDAR (solid-state or
spinning), camera (RGB or gray) types, and different sensor
characteristics (e.g., Field Of View (FOV), resolution, and
range).

Building upon a state-of-the-art (SOTA) LiDAR-based
method - BTC, we introduce the image-assisting binary tri-
angle combined descriptor (iBTC). More specifically, BTC
extracts 3D key points from LiDAR point clouds and generates
triangles descriptors using triplets of key points. BTC encodes
the local geometrical distribution at triangle vertices as ge-
ometrical binary descriptors. In this work - iBTC, based on
BTC, we propose to also obtain 3D key points associated with
salient points (locally maximum intensity change pixels) on
images and form corresponding triangle descriptors. Moreover,
we propose to enrich the distinctiveness of triangle descriptors
by encoding image details at triangle vertices with visual
binary descriptors. In summary, our iBTC descriptors consist
of triangle descriptors, geometrical binary descriptors, and
visual binary descriptors.

Our method ensures that triangles extracted from both
LiDAR scans and images seamlessly collaborate in a unified
workflow. Moreover, our approach exerts the potential of both
sensor types and overcomes their individual limitations for
place recognition. The main contributions of this work are
summarized as follows.

1). iBTC descriptor. We propose a compound descriptor,
called iBTC, encoding global scene geometry, local point
cloud geometry, and local image detail. As a result, in the
experiment, our method performs reliably in structurally sim-
ilar scenes (difficult for LiDAR-based methods) and against
illumination changes (difficult for visual methods).

2). Extensive experiments benchmarking iBTC’s loop de-
tection performance and efficiency. We benchmark our place
recognition method with self-collected and public datasets,
different sensor types (solid-state and spinning LiDARs, RGB
and gray cameras), different scenes (indoor and outdoor, struc-
turally similar and illumination changing scenes), and different
platforms (cars, robots, handheld platforms, and flying drones).
The result shows that our method has superior performance
compared with SOTA LiDAR-based (BTC [1], RING++ [6]),
visual (ORB-DBow2 [2], [9], NetVLAD [10]), and multimodal
(CoRAL [7] and MinkLoc++ [8]) place recognition methods.
We also benchmark our method’s time cost and prove that
there is only a modest time cost increase for processing image
information, approximately 10 milliseconds, compared to the
original BTC time consumption of 13 milliseconds.

3). Open source codes and dataset. To share our find-
ings with the community and make our work reproducible,
we make our codes publicly available on our GitHub:
github.com/hku-mars/iBTC. We also make our self-collected
dataset publicly available and it is useful for peers to develop
their place recognition methods against structurally similar
scenes.

II. RELATED WORKS

A. Visual Place Recognition

The realm of handcrafted visual descriptors has reached
maturity, with representations such as SIFT [11], SURF [12],
and BRIEF [13] being prominent examples. These descriptors
encode local image details surrounding 2D key points into
floating-point or binary arrays, showcasing resilience against
various transformations. BRIEF, particularly sought after in
visual SLAM systems such as VINS-Mono [14] and ORB-
SLAM [15], stands out due to its efficiency. While SIFT and
SURF offer superior scale invariance, they entail significant
computational overhead due to the calculation of the Differ-
ence of Gaussians (DoG) across scale levels. Despite their
efficacy in capturing local image details, these descriptors
inherently lack robustness against illumination changes. It’s
noteworthy that handcrafted visual local descriptors necessitate
collaboration with other tools [2], [3] for loop closure retrieval.
FAB-MAP [3] utilizes these descriptors to construct a prob-
abilistic model and compute likelihood scores for candidate
image frames. DBow2 [2] maintains an online vocabulary
database to record words generated by handcrafted visual
descriptors and scores candidate image frames based on a
pre-loaded dictionary reflecting the uniqueness weights of
appearing words. DBoW2’s implementation is combined with
ORB [9] by default and thus we denote it as ORB-DBoW2 in
the rest of this paper standing out their combination.
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B. LiDAR-based Place Recognition

Initially inspired by sophisticated handcrafted 2D local
descriptors, early research on handcrafted 3D descriptors pri-
marily focused on encoding the local 3D geometry of point
clouds. This trend was partly due to the versatility and low cost
of short-range (≤10m) point cloud scanners like Kinect 1 and
2. As LiDAR sensors became more affordable and versatile,
the research topic shifted towards global descriptors to exert
the potential LiDARs’ long-range measurement capabilities
(≤300m). Global descriptors encapsulate all geometric infor-
mation into a single descriptor, giving more promising place
recognition performance. For instance, M2DP [16] projects
point clouds onto specific planes with fixed azimuth and ele-
vation angles and applies singular value decomposition (SVD)
on projected 2D point matrices, concatenating the SVD results
into a single descriptor. Similarly, Scan Context [5] discretizes
projected 2D points along the z-plane and encodes the heights
of discretized bins into a descriptor. Scan Context++ [17]
introduces Cartesian coordinates for space discretization to
improve Scan Context’s lateral invariance. It also introduces
sub-descriptors and topological place retrieval to highly ac-
celerate scan context’s loop retrieval. RING++ [6] removes
ground planes and projects non-plane point clouds along with
z-direction to generate bird’s eye view (BEV) images. It gen-
erates a roto-translation-invariant gram descriptor from BEV
images by Radom and Discrete Fourier Transformation. Com-
pared to local descriptors, global descriptors offer more reli-
able detection performance due to encoding more scene infor-
mation into a unified descriptor. However, these methods are
sensitive to sensor view pose changes due to their projection-
based nature. For example, when revisiting the same place,
significant changes in the robot’s pitch or roll angles will lead
to a significant difference of projected images along the z-
direction. BTC projects non-plane point clouds to adjacent
planes to extract 3D key points corresponding to maximum
counts of occupied voxel projection. BTC utilizes key point
triplets to generate triangles and encodes triangle side lengths
as triangle descriptors. Meanwhile, it encodes the triangle
vertices’ local geometrical information as binary descriptors
to increase distinctiveness. Compared with projection-based
methods, BTC has strong sensor view pose invariance across
all 6 DoF (degrees of freedom) because its projection is based
on the extract normals at the locally adjacent planes and its
triangle descriptors are invariant to rigid transformations. BTC
can handle not only 360 degrees LiDAR scan but also narrow
FOV (70 degrees) scan provided by solid-state LiDAR. A
recent work, SOLiD [18], pushes the loop detection methods’
FOV limit down to 60 degrees by importing an new spatial
representation encoding spatial occupancy along radial and
azimuth-elevation directions, re-weighted using vertical direc-
tion information. Unlike Convolution Neuron Network(CNN)-
based methods [19]–[21], BTC offers better adaptability to
various LiDAR types and environmental conditions. However,
in structurally similar scenes, such as long corridors, LiDAR-
based place recognition methods (including BTC) struggle to
extract unique geometrical information and generate distinct
descriptors effectively.

C. Multimodal Place Recognition

CoRAL [7] constructs an elevation image from input point
clouds and enhances it with projected RGB image features,
aggregated using a deep neural network-based NetVLAD [10]
layer. MinkLoc++ [8] utilizes designed point cloud and RGB
image feature extraction blocks to construct feature maps,
which are then aggregated into a unified multimodal descriptor
for loop retrieval. Compared with CoRAL and MinkLoc++,
CNN-based methods, our method has better adaptability to
various sensor types and environments, and it does not need a
training process and GPU acceleration for real-time execution.

III. METHODOLOGY

Our method’s pipeline is shown in Fig. 2. The workflow is
summarized as follows. The input of our method is registered
LiDAR scans and images which can provided by LiDAR-
visual-inertial SLAM systems [22], [23]. Subsequently, our
method extracts key points and generates iBTC descriptors.
After that, iBTC descriptors are used to retrieve matched
triangle descriptors and candidate place indices. Most of the
wrongly matched triangle descriptors are further rejected by
validating the geometrical or visual binary descriptors encoded
at the triangle vertices. Validated triangle matches provide 6
DoF loop closure pose guesses which will be subsequently
verified in the geometrical verification module. The best
candidate is the one with the highest score in the geometrical
verification, and its place index and 6 DoF pose (w.r.t. the
current submap pose) will be outputted as a result. Notably, the
descriptor generation of our method requires proper LiDAR-
camera extrinsic calibration (i.e., no significant mismatch in
LiDAR point-to-image projection validation), which can be
achieved by many existing calibration methods [24]–[26].

A. Key Points Extraction From LiDAR scans

The module of key point extraction from LiDAR scans is
adapted from BTC and it involves several key steps. First,
consecutive registered LiDAR scans are accumulated to create
a submap. This submap is voxelized, and plane voxels are
identified based on the ratio of on-plane points. These plane
voxels are then merged to form larger planes. Next, non-
plane voxels are projected onto adjacent planes using the
plane normals to create projection images. Key points are
extracted from these projection images by identifying pixels
with maximum projection counts of occupied voxels among
local image areas. We denote key points extracted from LiDAR
scans as Pg. We do not provide all the details of this module
here, and readers are encouraged to refer to BTC [1].

B. Salient Visual Points Extraction

During accumulating registered LiDAR scans, M registered
images are received (the corresponding camera poses esti-
mated from LiDAR-visual-inertial SLAM systems). For each
registered image, we need to extract salient visual points using
the image intensity gradient. Specifically, the first step is to
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Fig. 2. iBTC pipeline.

check if the image requires downsampling by computing a
downsampling level as follows:

s = floor(
w + h

1000
) (1)

Where w and h are image width and height. If s > 0, the
image is down-sampled by a scale of 2s and this step is
important to ensure the real-time execution of salient points
extraction module. The second step is to compute the image
intensity gradient matrix and HARRIS response matrix. The
HARRIS corner response function [27] is defined as follows:

R = a ∗ c− b2 − k ∗ (a+ c)2 (2)

Where a = dx ∗ dx, b = dx ∗ dy, and c = dy ∗ dy, dx
and dy denote Gaussian smoothed intensity gradient along
horizontal and vertical directions respectively, k is an empirical
parameter. Subsequently, we extract hundreds of raw visual
points that have R values higher than a certain threshold
for the image. We discretize the image space into certain
grids and force each grid to impose no more than one salient
point for efficiency and reliability purposes. As a result, the
number of salient points decreases from hundreds to dozens
for each image. Finally, we scale up the image coordinates
of salient points in the down-sampled image by a scale of
2s to roughly recover their coordinates in the original image.
The local patches centering at the recovered coordinate are
cropped, and we search the highest neighbouring R values
within the patches. We replace the recovered coordinate with
the image coordinate of the highest R value if they are not
the same. In this way, we avoid computing the gradient matrix
and R value matrix in the full resolution for salient point
extraction, significantly improving efficiency. After that, we
extract BRIEF descriptors for the extracted salient points.

C. Depth Estimation and Duplicate Removal

With the extracted salient points, we need to find their 3D
positions in the submap coordinate. A salient point may be
observed and extracted in multiple images of the current key
frame, and thus we also need to further merge them using
visual and spatial information to remove the duplicates. In
detail, for each image, we project the down-sampled submap
cloud to the registered image plane to generate a depth matrix.
We search the salient point’s depth within a local square area
centering at each salient point. The depth value is selected as

the one closest to the salient point. In this way, the 3d positions
of salient points (denoted as Pv) on all M images are found.
We iterate over all Pv and use KD-tree to search near points
with a range of 0.1 m. If the near point has a similar BRIEF
(similarity ≤ 0.95 by default) to that of the query point, we
increment the query point’s supporter counter. Finally, we sort
Pv according to their supporter counters in descending order
and only keep the top 30 of Pv for efficiency.

D. iBTC Descriptor Generation

The full iBTC is designed as a triangle descriptor combined
with three geometrical or visual binary descriptors at the
triangle vertices. Each triplet of extracted key points (Pg

or Pv) forms a triangle. The triangle descriptor consists of
three lengths representing the ascending edges of the triangle,
denoted as L = [l1, l2, l3] (l1 ≤ l2 ≤ l3).

The geometrical binary descriptor encodes the distribution
of occupied voxel along the plane normals (designed by BTC
[1]). The point cloud above the extracted 3D key points (see
III-A) are divided into certain layers. Starting from the bottom
layer, if a layer is occupied by points, the corresponding bit
of the geometrical binary descriptor is set to one, otherwise
zero (see Fig. 3).

Fig. 3. A triangle descriptor combined with geometrical binary descriptors.

The binary descriptor encodes the local image details. We
employ the OpenCV [28] implementation of BRIEF genera-
tion to encode the image patches centering at the extracted
salient points (see Fig. 4). We do not explain BRIEF gen-
eration process here due to limited space, and readers are
encouraged to refer to BRIEF [13]. The visual binary (i.e.,
BRIEF) descriptor is set to 256 dimensions. Considering a
salient point may involve multiple iBTC descriptors generation
of current key frame, if each iBTC descriptor has one copy
of the salient point’s visual binary descriptor, there will exist
extensive duplicate high dimensional descriptor copies causing
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the program to run out of memory quickly. Instead, we store
all extracted visual binary descriptors in a vector and just store
their corresponding vector indices in the iBTC descriptors.

Remark 1: We can also mix visual and LiDAR key points
for triangle generation, significantly increasing the number of
triangle descriptors. This method is beneficial when visual and
LiDAR key points are sparse. However, the extraction accuracy
levels of the two types of key points are significantly different,
leading to inconsistencies in the edge length accuracy of
the resultant mixed-type triangles. Finding reliable parameters
for mixed-type triangles, such as quantization resolution for
Hash table generation and triangle side length comparison
thresholds, is still an open problem. In this work, we do not
employ mixed-type triangles.

Fig. 4. A triangle descriptor combined with visual binary descriptors.

E. Database Maintenance

In the current key frame, we insert all generated iBTC
descriptors into a database (a Hash table) using the Hash key
generated from triangle side lengths L. We first quantize L as
follows:

l̄1 =
round(l1)

∆l
, l̄2 =

round(l2)

∆l
, l̄3 =

round(l3)

∆l
(3)

Where ∆l is a fixed resolution. Using quantized triangle side
lengths l̄1, l̄2, and l̄3, we generate the Hash key for the iBTC
descriptor.

Hash(L) = Mod(Mod((̄l3 ∗ p+ l̄2) ∗ p,B) + p,B) (4)

Where p is a large prime number to alleviate Hash collisions,
and B is a maximum value set to prevent out-of-bounds
indices.

The advantage of employing a hash key and hash table lies
in their ability to offer constant time complexity O(n) for both
inserting and retrieving n descriptors in the new submap. This
efficiency contrasts sharply with tree-based databases, such
as KD-trees, which necessitate frequent tree rebalancing for
insertions. The time required for tree rebalancing is linearly
proportional to the database size, making hash tables a more
time-efficient choice for managing large sets of descriptors.

F. Loop Detection

Given the current iBTC descriptors, we need to first find the
top K most voted candidates (previous key frame indices).
Specifically, we initialize a zeros vote vector of the size of

existing key frames and iterate over current iBTC descriptors.
If the Hash value of an iBTC descriptor’s triangle Hash(L)
successfully locates its position in the database, we will
iterative over all stored iBTC descriptors at the position and
increment the vote of the matched key frame by one. At the
same time, store the matched iBTC descriptor pairs. After all
current iBTC descriptors are iterated over, we only keep the
top K most voted candidates and corresponding matched iBTC
descriptor pairs.

There exist many wrongly matched iBTC descriptor pairs
requiring further validation. We validate the descriptor pairs
by comparing their geometrical or visual binary descriptors. If
the binary descriptors of a pair of matched iBTC descriptors
are not the same type, this pair will be rejected. If the
same type and the average similarity between three binary
descriptors is larger than a fixed similarity threshold (0.7 for
both geometrical and visual binary descriptors by default), this
pair will be accepted.

A pair of matched triangles naturally can provide a rough
transformation that aligns the query submap to the candidate
submap C

QTr ∈ SE(3) which brings our iBTC descriptor
the property of sensor pose invariance (mathematical detail
is provided in [1]). Among all estimated C

QTr using matched
triangles, we find out the most accurate one by employing
RANSAC [29] to find the transformation with the maximum
number of correctly matched vertices. At the final stage,
we examine C

QTr with plane-plane overlap ratio between
transformed query submap using C

QTr and candidate submap.
We find out how many planes are overlapping by checking
through all planes in the transformed query submap to see if
they have near (a fixed radius) and similar normal direction
(a fixed normal difference threshold) planes in the candidate
submap. The overlap ratio is defined as the ratio between the
overlapping plane number and the overall plane number of
the query submap. If one of the candidate frames scores an
overlap ratio larger than a pre-defined threshold δp, its place
index (i.e., frame index) and validated transformation C

QT will
be the output result. If multiples satisfy the condition, the place
index and C

QT of the one with the highest overlap ratio is
output as the result.

IV. EXPERIMENT

In this section, we benchmark our method’s detection per-
formance and efficiency across a range of public datasets such
as Newer College [30], NCLT [31], MARS-LVIG Dataset [32],
and KITTI [33], as well as our self-collected dataset. It is
worth noting that these datasets have very different sensor
platform setups as shown in Tab. I.

The requisite inputs of our method are the undistorted
LiDAR scans and images, and the estimated poses of LiDAR
and camera by LiDAR-visual-inertial SLAM systems (e.g.,
R3LIVE and FAST-LVIO [22], [23]). Our experiment platform
is a 2.90 GHz 16-cores Intel i7-10700 CPU and 15.5 GB
RAM.

A. Benchmarking Against Unimodal Methods
To evaluate our method, we change the overlap threshold

δp from 0.05 to 1 with an increment of 0.05 for each
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Fig. 5. Precision-Recall curve benchmark result.
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Fig. 6. Time benchmark result on sequence “iBTC mall”. The left plot shows
the overall time cost trends of methods against key frame ID or frame ID.
The right plot shows separate time costs of methods for building descriptor
and searching loop closure.

TABLE I
DATASET SENSOR PLATFORM SETUPS

Name Camera Detail LiDAR Detail Platform Detail
iBTC & R3LIVE RGB Solid-state Handheld platform

MARS-LVIG RGB Solid-state Flying drone
NewerCollege Gray (left) 64 lines spinning Handheld platform

NCLT RGB (front) 16 lines spinning Mobile robot
KITTI Gray (cam0) 64 lines spinning Car

sequence to generate the Precision-Recall (PR) curve. We
benchmark our method with BTC, RING++1, ORB-DBoW22,
and NetVLAD3, which are SOTA LiDAR-based and visual
loop detection methods. The result is shown in Fig. 5 and it
shows that our method outperforms the other four methods
in 13 sequences. Sequence information is shown as Tab.
II. BTC’s performance degenerates severely in structurally
similar scenes (e.g. the corridors in “iBTC hotel1”, “hotel2”,
“office”, and “R3LIVE HKU-MB”; the valley in MARS-LVIG
AMvalley03). The scenes lack local geometrical distribution
variation, making it inherently challenging for BTC to robustly

1retrieved from https://github.com/lus6-Jenny/RING on Aug. 2024. The
provided “evaluate.py” script serves as our base. We modify it to use the
same local submap accumulation policy and point cloud downsampling rate
as iBTC and BTC. The PR curve for RING++ is generated by altering the
correlation score between the query and matched TIRING vectors.

2retrieved from https://github.com/dorian3d/DBoW2 on Mar. 2024. The
provided “demo.cpp” is based on ORB. We modify it to load ORBSLAM’s
ORB vocabulary in advance and skip recent frames for loop detection. ORB-
DBoW2’s PR curve is generated by altering the threshold of QueryRe-
sults.begin().Score.

3retrieved from https://www.di.ens.fr/willow/research/netvlad/ on Aug.
2024. The provided “demo.m” is our base script. We modify it to load the
pre-trained network called “Off-the-shelf on Pitts30k + AlexNet + NetVLAD”
in advance and skip recent frames for loop detection. NetVLAD’s PR curve is
generated by altering the threshold of euclidean distance between query and
matched NetVLAD feature vectors.

extract key points (see Fig. 1) and to distinguish triangles with
similar geometrical binary descriptors. This also poses chal-
lenges for RING++ in robustly extracting distinct descriptors.
In contrast, our method employs image information in key
point extraction, descriptor generation, and triangle validation,
leading to better performance in these scenes. In the four
NCLT sequences, the illumination variation make the visual
loop detection methods ORB-DBoW2 and NetVLAD struggle
to detect loop closure robustly (see Fig. 1). Relying on not
only visual measurement but also LiDAR measurement, our
method has robust performance against illumination.

Additionally, we use the Recall@1 metric, defined as the
ratio of the top 1 true positive number to the total ground
truth positive number (also employed in [6]), to benchmark our
method against others. This metric differs from the PR-curve
as it focuses on recall aspect: the number of loops correctly
detected when the robot revisits historical places. The results,
shown in Tab. III, indicate that our method outperforms or is
very close to the best-performing methods in 13 sequences,
except R3LIVE HKU-MB. In this sequence, our method’s
Recall@1 is lower than NetVLAD. However, according to the
PR curve plot (Fig. 5), our method offers a better precision-
recall trade-off in this sequence.

TABLE II
DATASET SEQUENCES INFORMATION

Sequence Name Indoor or
Outdoor

Structurally
Similar Scene

Illumination
Varying

Self-collected
or Public Dataset

iBTC hotel1 Indoor Yes No Self-collected
iBTC hotel2 Indoor Yes No Self-collected
iBTC office Indoor Yes No Self-collected
iBTC mall Both No No Self-collected

R3LIVE HKU-MB Both Yes Yes Public
MARS-LVIG AMvalley03 Outdoor Yes No Public

NewerCollege park Outdoor No No Public
NewerCollege cloister Both No No Public

NCLT120115 Both No Yes Public
NCLT120526 Both No Yes Public
NCLT120820 Both No Yes Public
NCLT121201 Both No Yes Public

For a fair comparison, for the same type of LiDAR, we
employ the same configuration file to test iBTC. Meanwhile,
BTC uses the same configuration files as iBTC. However,
if the camera type varies, we will alter the camera-relevant
parameters for iBTC, i.e., image size and camera intrinsic pa-
rameters. In addition, we directly use the policy mentioned in
BTC experiment context to generate ground truth loop closure
information. The policy is based on the overlap percentages
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Fig. 7. SLAM result with loop closures obtained from iBTC on sequence “iBTC hotel1”.

TABLE III
RECALL@1 BENCHMARK RESULT

Sequence Name iBTC BTC ORB-DBoW2 NetVLAD RING++
iBTC hotel1 92.4 6.4 73.4 93.6 29.2
iBTC hotel2 90.9 4.6 69.6 72.5 29.4
iBTC office 89.4 38.5 81.6 90.14 50.0
iBTC mall 92.8 63.4 86.8 87.7 86.6

R3LIVE HKU-MB 33.3 21.4 34.1 44.9 18.6
MARS-LVIG AMvalley03 44.4 0.0 40.6 20.3 0.0

NewerCollege park 98.6 95.3 84.2 80.6 92.5
NewerCollege cloister 93.8 89.2 86.2 81.3 96.6

NCLT120115 76.5 75.5 7.0 27.4 65.4
NCLT120526 73.7 71.4 45.5 35.4 67.2
NCLT120820 66.9 63.0 4.2 8.5 56.1
NCLT121201 81.4 77.3 9.0 13.0 80.9

KITTI00 93.0 89.5 92.8 92.6 95.2

between ground truth submap point clouds registered in the
global coordinate frame. For the generation policy details,
readers can refer to BTC’s publication [1]. Unlike LiDAR-
based or hybrid methods, in the visual method, we only
consider the point cloud within the camera’s FOV for ground
truth generation.

B. Benchmarking Against Multimodal Methods
We benchmark our method with two SOTA multimodal

methods based on convolutional neural networks - CoRAL and
MinkLoc++. For a fair comparison, rather than self-adapting
and self-training multimodal methods for the sequences used
in the PR curve benchmark experiment, we directly compare
our result against the stated result in CoRAL’s and Min-
kLoc++’s publication [7], [8] on sequence KITTI00. We use
only the KITTI00 sequence, following the practice of CoRAL
and MinkLoc++ [7], [8], as it revisits the same locations
repeatedly, unlike other KITTI sequences. We directly use the
stated ground truth generation policy in [7], [8] to generate
ground truth and compute our method’s average recall within
top K candidates (K = 1% of total key frame number). The
metric is also called AR@1%. The result (see Tab. IV) shows
that our method outperforms other multimodal methods as well
as BTC in the KITTI00 sequence with AR@1% metric.

TABLE IV
AR@1% ON KITTI00

Modality AR@1%

CoRAL LiDAR+Camera 76.4
MinkLoc++ LiDAR+Camera 82.1
BTC LiDAR 83.8
iBTC LiDAR+Camera 91.6

C. Time Consumption
To evaluate the efficiency of our method, we record the time

costs of iBTC, BTC, and ORB-DBoW2 for building descrip-

tors and searching loop closure in “iBTC mall” sequence. The
record time costs are plotted against each key frame or each
frame and also plotted using a box plot (see Fig. 6). These
results show that, compared with BTC’s overall time cost, our
method increases the overall time cost due to the processing
of visual information. The introduced time cost increment for
processing visual information is approximately 10 millisec-
onds, which is reasonable compared with the overall time cost
of BTC, about 13 milliseconds. Furthermore, the overall time
cost of our method is smaller than that of ORB-DBoW2.

D. Application in SLAM systems

Our method allows SLAM systems to construct the map
of challenge scenes for LiDAR-based methods. An example
map is shown in Fig. 7. This example map is generated
using FAST-LVIO [23] and iBTC on “iBTC hotel1” sequence.
This sequence is structurally similar scene where LiDAR-
based methods like BTC and Scan Context struggle to provide
reliable loop closures for SLAM system.

Furthermore, we assess the map consistency difference
between the SLAM results (see Fig. 7) with and without
loop closure using iBTC, employing a conventional approach
[34]–[36]. Specifically, we voxelize the constructed maps and
count the voxel numbers. The resultant voxel numbers of
the SLAM results with and without loop closure using iBTC
are 2,280,174 and 3,292,374, respectively. The smaller voxel
number indicates that loop closure using iBTC significantly
improves the map consistency of SLAM results.

V. CONCLUSION

This paper proposes iBTC, a robust and efficient multimodal
3D place recognition method. iBTC is designed as a triangle
descriptor combined with three geometrical or visual binary
descriptors at the triangle vertices. In this way, iBTC is en-
coded with global scene geometry, local point cloud geometry,
and local image detail. In the experiment, iBTC shows that
it overcomes the limitations of the unimodal methods and
it outperforms other multimodal methods. Additionally, we
perform a time cost benchmark experiment to prove that
iBTC’s time consumption is reasonable.

Future improvements for iBTC include several planned
enhancements. First, mixing visual and LiDAR key points for
triangle generation to increase robustness when both key points
are sparse. Second, using point cloud normals to warp local
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image patches, thereby increasing the viewpoint invariance of
the visual binary descriptors.
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[2] D. Gálvez-López and J. D. Tardos, “Bags of binary words for fast place
recognition in image sequences,” IEEE Transactions on robotics, vol. 28,
no. 5, pp. 1188–1197, 2012.

[3] M. Cummins and P. Newman, “Fab-map: Probabilistic localization and
mapping in the space of appearance,” The International journal of robotics
research, vol. 27, no. 6, pp. 647–665, 2008.

[4] M. J. Milford and G. F. Wyeth, “Seqslam: Visual route-based navigation
for sunny summer days and stormy winter nights,” in 2012 IEEE
international conference on robotics and automation. IEEE, 2012, pp.
1643–1649.

[5] G. Kim and A. Kim, “Scan context: Egocentric spatial descriptor for place
recognition within 3D point cloud map,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Madrid, Oct.
2018.

[6] X. Xu, S. Lu, J. Wu, H. Lu, Q. Zhu, Y. Liao, R. Xiong, and Y. Wang,
“Ring++: Roto-translation-invariant gram for global localization on a
sparse scan map,” IEEE Transactions on Robotics, 2023.

[7] Y. Pan, X. Xu, W. Li, Y. Cui, Y. Wang, and R. Xiong, “Coral: Col-
ored structural representation for bi-modal place recognition,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2021, pp. 2084–2091.
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