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Abstract 

Optimizing traffic signal control is crucial for improving efficiency in congested urban 

environments. Current adaptive signal control systems predominantly rely on on-road detectors, which 

entail significant capital and maintenance costs, thereby hindering widespread implementation. In this 

paper, a novel connected vehicle (CV)-based adaptive signal control (CVASC) framework is proposed 

that optimizes signal plans on a cycle-by-cycle basis without the need for on-road detectors, leveraging 

partial CV data. The framework comprises a consequential system delay (CSD) model, deterministic 

penetration rate control (DPRC), and stochastic penetration rate control (SPRC). The CSD model 

analytically estimates vehicle arrival rates and, consequently, the total junction delay, utilizing CV 

penetration rates as essential inputs. Employing the CSD model without considering CV penetration 

rate uncertainty results in fixed vehicle arrival rates and leads to DPRC. On the other hand, 

incorporating CV penetration rate uncertainty accounts for uncertain vehicle arrival rates, establishing 

SPRC, which poses a high-dimensional, non-convex, and stochastic optimization problem. An 

analytical stochastic delay model using generalized polynomial chaos expansion is proposed to 

efficiently and accurately estimate the mean, variance, and their gradients for the CSD model within 

SPRC. To solve DPRC and SPRC, a gradient-guided golden section search algorithm is introduced. 

Comprehensive numerical experiments and VISSIM simulations demonstrate the effectiveness of the 

CVASC framework, emphasizing the importance of accounting for CV penetration rate uncertainty and 

uncertain vehicle arrival rates in achieving optimal solutions for adaptive signal optimizations. 
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1. Introduction 

The advent of fifth-generation (5G) mobile communication technologies has facilitated the 

development of connected vehicle (CV) systems. These vehicles can exchange real-time traffic 

information (including time, speed, and location) among themselves as CV data. This presents 

promising opportunities for developing novel solutions to complex transportation challenges. However, 

as such connectivity is still in its early stage, only a fraction of vehicles on the road are equipped with 

CV capabilities. This partial connectivity is anticipated to persist for an extended period owing to 
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diverse technological, societal, and ethical factors. During this prolonged transition period toward full 

CV deployment, accurately estimating the CV penetration rate, defined as the ratio of CV volume to 

the total traffic volume, is crucial for the effective planning and implementation of CV-based 

transportation applications. 

Links with on-road detectors can directly provide total traffic volume; however, many links 

within a network lack such detectors, making accurate CV penetration rate estimation challenging. 

Furthermore, even in the presence of detectors, intermittent maintenance or technical issues may 

compromise their reliability. Several approaches have been explored to estimate CV penetration rates 

on links without detectors. One approach entails using the average of the CV penetration rate 

distribution, derived from CV penetration rates sampled from nearby links with detectors, as an 

estimation (Wong and Wong, 2015, 2016a, 2019; Wong, Wong, and Liu, 2019). However, this method 

relies on the assumption of independent and identically distributed CV penetration rates. Meng et al. 

(2017a) developed an empirical model to explain the spatial variance by leveraging land-use properties, 

although the model depends on locally collected data. In contrast, a more promising approach involves 

estimating the CV penetration rate solely using CV data. For example, under the assumption of Poisson 

arrival, Comert (2016) derived multiple analytical models for estimating the CV penetration rate. To 

address the limitations associated with Poisson arrival assumptions, Wong et al. (2019) proposed the 

single-source data penetration rate estimator (SSDPRE) to unbiasedly estimate the CV penetration rate 

regardless of arrival patterns. Additionally, other methods based on the maximum likelihood approach 

and leveraging the distribution of the stopping positions of vehicles in queues have been developed for 

estimating CV penetration rates (Zhao et al., 2019a, 2019b, 2022). Nevertheless, these estimates are 

point estimators, meaning that they do not account for the uncertainty in the CV penetration rate. 

Utilizing point estimators for transport modeling and system optimization may result in biased models 

and suboptimal solutions (Yin, 2008; Wong and Wong, 2015, 2016, 2019; Wong, Wong, and Liu, 2019). 

Building upon the SSDPRE, Jia et al. (2023) derived the probabilistic penetration rate (PPR) 

model to explicitly model the uncertainty in the CV penetration rate. This work represents a significant 

paradigm shift from deterministic analysis to stochastic analysis in CV penetration rate estimation. It 

provides a robust probabilistic analysis framework for stochastic modeling and optimization in CV-

based transportation systems, offering valuable insights into various CV-related challenges. 

Additionally, further considering complex residual-vehicle effects, Jia et al. (2024a, 2024b) proposed a 

Markov-constrained queue length (MCQL) model for accurately estimating constrained queue length, 

which is an essential input for the PPR model. This development ensures that the PPR model can 

effectively handle all under-saturation scenarios regardless of the presence of residual vehicles. 

The aforementioned methods for estimating the CV penetration rate have paved the way for 

numerous beneficial applications. For example, Comert and Cetin (2009, 2011), Comert (2013), and 

Hao et al. (2014) have utilized the CV penetration rate as input to develop a range of methods for 

estimating queue length. Recovering traffic information for non-CVs using CV signals, such as 
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locations, speeds, and travel times, is extremely important for optimal traffic operations and has thus 

been extensively investigated (Jenelius et al., 2013, 2015; Rahmani et al., 2015; Khan et al., 2017; Iqbal 

et al., 2018). Other relevant applications include traffic flow and density estimation (Geroliminis and 

Daganzo, 2008; Ambühl and Menendez, 2016; Du et al., 2016; Wong and Wong, 2016c; Wong, Wong, 

and Liu, 2021), origin–destination estimation (Yang et al., 2017; Wang et al., 2020; Cao et al., 2021), 

and traffic incident impact evaluation (Wong and Wong, 2016b).  

Among various applications, CV-based adaptive signal control (CVASC) has received 

considerable attention over the past decade. Feng et al. (2015) proposed a phase allocation algorithm to 

dynamically adjust signal sequences and timings in a connected environment. This approach involves 

dividing the problem into two sub-problems: a dynamic programming problem for signal sequence 

determination and a utility minimization problem for phase duration optimization. The proposed 

approach requires the availability of a complete arrival table, which must be estimated using the 

accessible CV data. To enhance the performance of adaptive signal control in scenarios with low CV 

penetration rates, dedicated models utilizing only a few CV trajectories have been developed to 

accurately estimate traffic delay and arrival information (Feng et al., 2018; Wang et al., 2021). In 

addition, multi-mode adaptive traffic signal control systems that leverage both CV data and existing 

detector data have been explored (Rafter et al., 2020; Al Islam et al., 2020). Liang et al. (2020a) 

proposed a real-time traffic control scheme to balance efficiency and equity (measured by average and 

maximum vehicle delays, respectively) using CV data. Mo et al. (2022) investigated the application of 

reinforcement learning to traffic signal control based on CV data. Despite these advancements, current 

research in adaptive signal control based on CV data has predominantly relied on deterministic models, 

overlooking uncertainties in traffic state estimation. Given the nonlinear and time-varying nature of 

transportation systems, deterministic optimization that does not consider variability can lead to 

suboptimal solutions in traffic signal control (Yin, 2008; Jia et al., 2023, 2024a, 2024b). Therefore, 

incorporating uncertainties in traffic state estimations is essential for achieving optimal solutions in 

adaptive signal control within a connected environment. 

The present paper proposes a novel CVASC framework that optimizes signal plans on a cycle-

by-cycle basis to minimize total junction delay using only available partial CV data. To analytically 

estimate vehicle arrival rates, and hence total junction delay, a consequential system delay (CSD) model 

with CV penetration rates as essential inputs is derived. However, the estimated CV penetration rates 

are subject to uncertainty. Ignoring this uncertainty yields fixed vehicle arrival rates and deterministic 

penetration rate control (DPRC). In contrast, incorporating the uncertainty associated with the CV 

penetration rate accounts for uncertain vehicle arrival rates and establishes stochastic penetration rate 

control (SPRC). Given the high-dimensional, non-convex, and stochastic nature of SPRC, efficiently 

solving such an optimization problem poses significant challenges. To address this, an analytical 

stochastic delay (ASD) model integrating generalized polynomial chaos expansion (gPCE) (Xiu, 2010) 

is proposed to accurately estimate the mean and variance of total junction delay and their gradients in 
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SPRC. Subsequently, an efficient gradient-guided golden section search (G3S2) algorithm is introduced 

as the solution method. Extensive numerical experiments and VISSIM simulations based on a real-

world intersection layout extracted from the Next Generation Simulation (NGSIM) dataset (Federal 

Highway Administration, 2006) demonstrate the applicability and efficiency of the proposed models 

and the significance of incorporating CV penetration rate uncertainty and uncertain vehicle arrival rates 

into adaptive signal control. 

The remainder of this paper is structured as follows. Section 2 defines the problem. Section 3 

systematically presents the CVASC framework. Sections 4 and 5 detail the derivations of the ASD 

model and the G3S2 algorithm, respectively. Section 6 provides a comprehensive set of realistic 

simulations. Finally, Section 7 concludes the paper. 

 

2. Problem Statement 

Consider a signalized isolated intersection with an arbitrary number of approaches, all without 

any detectors. Each approach consists of a specific number of lanes leading to the junction. The total 

number of approaching lanes for the intersection, denoted as 𝑙𝑙, is the sum of the lanes in all of the 

approaches. The numbers of traffic and pedestrian groups are 𝑁𝑁𝑇𝑇  and 𝑁𝑁𝑃𝑃 , respectively. Given the 

geometric details of the junction, let 𝛀𝛀 ∈ ℝ(𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃)×(𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃)  and 𝚻𝚻 ∈ ℝ(𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃)×(𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃)  be the 

successor matrix and the clearance time matrix, respectively. Ω𝑖𝑖𝑖𝑖 is the element at the 𝑖𝑖𝑡𝑡ℎ row and the 

𝑗𝑗𝑡𝑡ℎ column in 𝛀𝛀, where  

Ω𝑖𝑖𝑖𝑖 = �0    𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑗𝑗
1                                      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

. (1) 

Additionally, 𝑡𝑡𝑖𝑖𝑖𝑖 is the element at the 𝑖𝑖𝑡𝑡ℎ row and the 𝑗𝑗𝑡𝑡ℎ column in 𝚻𝚻, and it indicates the minimum 

clearance time during a transition from signal group 𝑖𝑖 to 𝑗𝑗. The set of incompatible signal group pairs is 

denoted as 𝚿𝚿. A sample intersection with two traffic groups and one pedestrian group is used to illustrate 

the above definitions (Figure 1). In the transition period of a mixed driving environment involving both 

CVs and non-CVs within the network, only CV data are available. Given the aforementioned settings 

and constraints, this paper aims to develop a CVASC framework that optimizes cycle-by-cycle adaptive 

signal control by minimizing the total junction delay solely using the available partial CV data. 

 
Figure 1. Illustration of definitions using a sample intersection. 
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The total junction delay, denoted as 𝐷𝐷, is the sum of traffic delays across all lanes. At the end 

of cycle 𝑘𝑘, the total junction delay for cycle 𝑘𝑘 + 1 has to be estimated. The vehicle arrival rate in lane 

𝑚𝑚 in cycle 𝑘𝑘 + 1, denoted as 𝑞𝑞𝑚𝑚,𝑘𝑘+1, is the essential input for estimating the traffic delay in lane 𝑚𝑚 in 

cycle 𝑘𝑘 + 1, ∀𝑚𝑚 ∈ [1, 𝑙𝑙]. With the assumption of similar traffic demands between consecutive cycles 

and an identical average arrival rate in lane 𝑚𝑚 in cycle 𝑘𝑘 + 1 to that in cycle 𝑘𝑘, 𝑞𝑞𝑚𝑚,𝑘𝑘+1 can be estimated 

as follows: 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 =
𝑛𝑛𝑚𝑚,𝑘𝑘

𝐶𝐶𝑘𝑘
+ 𝑞𝑞�𝑚𝑚,𝑘𝑘�1− 𝑝𝑝𝑚𝑚,𝑘𝑘�,∀𝑚𝑚 ∈ [1, 𝑙𝑙], (2) 

where 𝑛𝑛𝑚𝑚,𝑘𝑘, 𝐶𝐶𝑘𝑘, 𝑞𝑞�𝑚𝑚,𝑘𝑘, and 𝑝𝑝𝑚𝑚,𝑘𝑘 represent the number of CVs in lane 𝑚𝑚 in cycle 𝑘𝑘, length of cycle 𝑘𝑘, 

average arrival rate in lane 𝑚𝑚 estimated at the end of cycle 𝑘𝑘, and CV penetration rate in lane 𝑚𝑚 in cycle 

𝑘𝑘, respectively (Jia et al., 2023, 2024a, 2024b). While 𝑛𝑛𝑚𝑚,𝑘𝑘, 𝐶𝐶𝑘𝑘, and 𝑞𝑞�𝑚𝑚,𝑘𝑘 are constants, the estimated 

𝑝𝑝𝑚𝑚,𝑘𝑘 could be subject to uncertainty. The CV penetration rate is defined as the ratio of the number of 

CVs in a cycle to the total number of vehicles in that cycle. Wong et al. (2019) proposed a novel 

SSDPRE method to unbiasedly estimate the CV penetration rate based on the number of CVs and the 

total number of vehicles in a constrained queue deduced from the stopping location of the last CV. The 

variance of the estimator quantifies the uncertainty in CV penetration rate and thus serves as an indicator 

of its variation range. CV penetration rate uncertainty can generally be attributed to one of the following 

four key factors: (1) variations in the total number of vehicles, (2) variations in the number of CVs, (3) 

permutations of CVs and non-CVs, and (4) the presence of residual vehicles from previous cycles. Jia 

et al. (2023) analytically quantified CV penetration rate uncertainty due to (1) variations in the total 

number of vehicles, (2) variations in the number of CVs, and (3) permutations of CVs and non-CVs. 

Subsequently, Jia et al. (2024a, 2024b) extended their analysis by further quantifying CV penetration 

rate uncertainty due to (4) the residual vehicles from the previous cycles. In general, CV penetration 

rate uncertainty decreases as volume-to-capacity (V/C) ratio increases, due to the richer information 

available from partially observed constrained queues. Additionally, when the underlying CV penetration 

rate is either very low or very high, the uncertainty approaches zero due to the near absence or 

abundance of observed CVs, respectively. As the total junction delay 𝐷𝐷 is a function of 𝑞𝑞𝑚𝑚,𝑘𝑘+1, which 

itself depends on 𝑝𝑝𝑚𝑚,𝑘𝑘 , 𝐷𝐷  is inherently subject to uncertainty associated with 𝑝𝑝𝑚𝑚,𝑘𝑘 . Ignoring other 

constants, the abstract form of 𝐷𝐷, dependent on a set of group-based control variables, can be written 

as  

𝐷𝐷 = 𝑓𝑓�𝜃𝜃1, … ,𝜃𝜃𝑖𝑖, … ,𝜃𝜃𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙1, … ,𝜙𝜙𝑖𝑖, … ,𝜙𝜙𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁�𝑝𝑝1,𝑘𝑘, … ,𝑝𝑝𝑚𝑚,𝑘𝑘 , … ,𝑝𝑝𝑙𝑙,𝑘𝑘), (3) 

where 𝜃𝜃𝑖𝑖,∀𝑖𝑖 ∈ [1,𝑁𝑁𝑇𝑇 + 𝑁𝑁𝑃𝑃] represents the time from the cycle origin to the start of an actual green 

signal for control group 𝑖𝑖 divided by the cycle time, 𝜙𝜙𝑖𝑖,∀𝑖𝑖 ∈ [1,𝑁𝑁𝑇𝑇 + 𝑁𝑁𝑃𝑃] represents the duration of 

the actual green signal for control group 𝑖𝑖 divided by the cycle time, and 𝜁𝜁 is the reciprocal of the cycle 

length (Wong, 1996; Silcock, 1997; Lee et al., 2017a, 2017b). 
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It is important to emphasize that the total junction delay, 𝐷𝐷, largely depends on vehicle arrival 

rates, which in turn are influenced by the CV penetration rates. Evaluating 𝐷𝐷 and optimizing signal 

plans are straightforward if 𝑝𝑝𝑚𝑚,𝑘𝑘 ,∀𝑚𝑚 ∈ [1, 𝑙𝑙],  is taken as a point estimator without considering its 

variability, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝𝑚𝑚,𝑘𝑘). In this case, the estimated vehicle arrival rates are fixed and Eq. (3) simplifies 

into a deterministic model. However, deterministic models can be biased and may lead to suboptimal 

solutions in system optimizations (Yin, 2008; Wong and Wong, 2015, 2016a, 2019; Jia et al., 2023, 

2024a, 2024b). In a simulation study of a simple two-approach intersection, Jia et al. (2023) 

demonstrated that incorporating the uncertainty of the CV penetration rate into a CV-based adaptive 

signal optimization problem could result in significant improvements. Specifically, a 15.1% reduction 

in average delay, a 15.3% decrease in maximum delay, and a substantial 45.5% drop in delay variance 

were observed. Considering both the mean and uncertainty of 𝑝𝑝𝑚𝑚,𝑘𝑘  turns it into a random variable, 

accounting for uncertain vehicle arrival rates and making Eq. (3) a stochastic model. With numerous 

control variables and traffic lanes for a complex intersection, efficiently evaluating 𝐸𝐸(𝐷𝐷) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) 

for cycle-by-cycle adaptive signal control becomes challenging. Furthermore, obtaining the partial 

derivatives of 𝐸𝐸(𝐷𝐷) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) for developing gradient-based optimization algorithms increases the 

complexity. While Monte Carlo sampling (MCS) is convenient for diverse evaluations, its low 

computational efficiency hinders real-time applications. Thus, the key research problem of this paper is 

to develop a CVASC framework with models that can efficiently estimate 𝐸𝐸(𝐷𝐷), 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷), and their 

partial derivatives to achieve cycle-by-cycle adaptive signal control solely using CV data. In addition 

to the terminology and notation defined above, a glossary and a table of symbols are provided in 

Appendix A. 

 

3. CV-based Adaptive Signal Control (CVASC) Framework 

This section presents the formulation of the CV-based adaptive signal control (CVASC) 

framework, starting with the consequential system delay (CSD) model that estimates the total junction 

delay. A set of constraints is introduced for signal optimization. Lastly, the deterministic penetration 

rate control (DPRC) and stochastic penetration rate control (SPRC) models are developed.  

Developing the CVASC framework under uncertain CV penetration rates requires estimating 

several critical quantities, including the uncertainty of the CV penetration rate in lane 𝑚𝑚 in cycle 𝑘𝑘, 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝𝑚𝑚,𝑘𝑘), the average arrival rate in lane 𝑚𝑚 in cycle 𝑘𝑘, 𝑞𝑞�𝑚𝑚,𝑘𝑘, and the number of holding vehicles in 

lane 𝑚𝑚  in cycle 𝑘𝑘 , 𝑅𝑅𝑚𝑚,𝑘𝑘 , where holding vehicles represent vehicles that, based on their projected 

trajectories using cruise speed, should have been discharged but are instead held by the system and 

remain undischarged at the end of a cycle (Jia et al., 2024c). Previous studies by Wong et al. (2019) and 

Jia et al. (2023, 2024a, 2024b, 2024c) have demonstrated that these quantities can be estimated in 

situations with partial CV trajectories. Thus, they are considered known inputs for the proposed 
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framework in this study. Appendix B provides concise overviews of the estimation methods for these 

essential quantities. 

In addition, Figure 2 provides a step-by-step flowchart summarizing the implementation 

procedure of the proposed CVASC framework. In Step 1, CV trajectories are extracted from real-time 

traffic data. In Step 2, these CV trajectories are used to estimate essential traffic parameters. In Step 3, 

the delay estimation model is established (Section 3.1). In Steps 4 and 5, the optimization constraints 

are determined and the control schemes are defined, respectively (Sections 3.2–3.4). Finally, in Step 6, 

the signal optimization problem is solved (Sections 4 and 5), and the optimized signal plan is 

implemented in the traffic system. In practice, this process is continuously repeated throughout the 

control period. 

 
Figure 2. Flowchart illustrating the process of CVASC framework implementation. 

 

3.1. Consequential system delay model 

The CSD model estimates both the traffic delay in cycle 𝑘𝑘 + 1 and the consequential delay 

induced by the holding vehicles at the end of cycle 𝑘𝑘 + 1 , as presented in Propositions 1 and 2, 

respectively. The estimated delay is determined by the area enclosed between the cumulative arrival 

curve and the cumulative departure curve. Typically, the cumulative departure curve is closely modeled 

by a straight line with a slope equal to the saturation flow rate, representing the maximum discharge 

rate of queued vehicles. The cumulative arrival curve, on the other hand, depends on the vehicle arrival 

rate and the specific vehicle arrival pattern. The estimated delay is mainly governed by the vehicle 

arrival rate, which dictates the overall slope of the cumulative arrival curve and largely determines the 

total number of arriving vehicles in a cycle. As illustrated in Eq. (2), the estimated vehicle arrival rate 

depends on the CV penetration rate. Ignoring the CV penetration rate uncertainty results in fixed vehicle 

arrival rates and DPRC. Considering the crucial role of the vehicle arrival rate in estimating delay, 

incorporating CV penetration rate uncertainty accounts for the uncertainty in vehicle arrival rates and, 

consequently, the uncertainty in the overall slope of the cumulative arrival curve, leading to the 

establishment of SPRC. In comparison, the impact of the specific vehicle arrival pattern on the estimated 

delay is relatively minor compared to the vehicle arrival rate, as the total number of arriving vehicles is 
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already largely governed by the vehicle arrival rate. In the absence of the detailed vehicle arrival pattern, 

particularly for non-CVs, assuming a uniform vehicle arrival pattern serves as a reasonable and accurate 

first-order approximation. Proposition 1 provides the traffic delay for any lane 𝑚𝑚  in cycle 𝑘𝑘 + 1 , 

denoted as 𝑑𝑑𝑚𝑚,𝑘𝑘+1. 

 

Proposition 1. Under the assumption of a uniform vehicle arrival pattern, the traffic delay for any lane 

𝑚𝑚 in cycle 𝑘𝑘 + 1, denoted as 𝑑𝑑𝑚𝑚,𝑘𝑘+1, is estimated as 𝑑𝑑𝑚𝑚,𝑘𝑘+1
(1)  or 𝑑𝑑𝑚𝑚,𝑘𝑘+1

(2)  depending on whether the lane 

is controlled by a signal group ending with effective red or green, respectively. 𝑑𝑑𝑚𝑚,𝑘𝑘+1
(1)   and 𝑑𝑑𝑚𝑚,𝑘𝑘+1

(2)  

under different conditions are detailed in Tables 1 and 2, and the parameters 𝐶𝐶, 𝑟𝑟 , 𝑟𝑟1, 𝑟𝑟2, 𝑔𝑔, 𝑔𝑔1, and 𝑔𝑔2 

in Eqs. (4)–(10) respectively represent the cycle length, total effective red, effective red before effective 

green, effective red after effective green, total effective green, effective green before effective red, and 

effective green after effective red for the associated signal group controlling lane 𝑚𝑚. 

Table 1. Analytical formulae for 𝑑𝑑𝑚𝑚,𝑘𝑘+1
(1) . 

Conditions 𝒅𝒅𝒎𝒎,𝒌𝒌+𝟏𝟏
(𝟏𝟏)  

𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤
𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑟𝑟1 + 𝑔𝑔
 1

2
(2𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟1)𝑟𝑟1 +

(𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟1)2

2(𝑠𝑠 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1)
+

1
2
𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟22 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑟𝑟1 + 𝑔𝑔
 

1
2

(2𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝐶𝐶)𝐶𝐶 −
1
2

(2𝐶𝐶 − 𝑔𝑔 − 2𝑟𝑟1)𝑠𝑠𝑠𝑠 

 

Table 2. Analytical formulae for 𝑑𝑑𝑚𝑚,𝑘𝑘+1
(2) . 

Conditions 𝒅𝒅𝒎𝒎,𝒌𝒌+𝟏𝟏
(𝟐𝟐)  

𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤
𝑠𝑠𝑔𝑔1 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑔𝑔1
, 𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤

𝑠𝑠𝑔𝑔2
𝑟𝑟 + 𝑔𝑔2

  𝑅𝑅𝑚𝑚,𝑘𝑘
2 + 𝑠𝑠𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟2

2�𝑠𝑠 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1�
 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤
𝑠𝑠𝑔𝑔1 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑔𝑔1
, 𝑞𝑞𝑚𝑚,𝑘𝑘+1 >

𝑠𝑠𝑔𝑔2
𝑟𝑟 + 𝑔𝑔2

 𝑅𝑅𝑚𝑚,𝑘𝑘
2

2�𝑠𝑠 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1�
+
𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟2

2

+
𝑔𝑔2�2𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑔𝑔2 − 𝑠𝑠𝑔𝑔2�

2
 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑔𝑔1 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑔𝑔1
, 𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤

𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝐶𝐶
 �2𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑔𝑔1 − 𝑠𝑠𝑔𝑔1�𝑔𝑔1

2
 

+𝑟𝑟 �𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑔𝑔1 +
1
2
𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟 − 𝑠𝑠𝑔𝑔1� 

+
�𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑔𝑔1 − 𝑠𝑠𝑔𝑔1 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟�

2

2�𝑠𝑠 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1�
 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑔𝑔1 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑔𝑔1
, 𝑞𝑞𝑚𝑚,𝑘𝑘+1 >

𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝐶𝐶
 �2𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑔𝑔1 − 𝑠𝑠𝑔𝑔1�𝑔𝑔1

2
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+𝑟𝑟 �𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑔𝑔1 +
1
2
𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟 − 𝑠𝑠𝑔𝑔1� 

+
1
2
𝑔𝑔2�2𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1(𝑟𝑟 + 𝑔𝑔1 + 𝐶𝐶)

− 𝑠𝑠(2𝑔𝑔1 + 𝑔𝑔2)� 

 

𝐶𝐶 =
1
𝜁𝜁

. (4) 

𝑔𝑔 =
𝜙𝜙𝑖𝑖 + 𝜁𝜁
𝜁𝜁

,∀ 𝑖𝑖 ∈ [1,𝑁𝑁𝑇𝑇]. (5) 

𝑟𝑟1 =
𝜃𝜃𝑖𝑖
𝜁𝜁

,∀ 𝑖𝑖 ∈ [1,𝑁𝑁𝑇𝑇]. (6) 

𝑟𝑟2 =
1 − 𝜃𝜃𝑖𝑖 − 𝜙𝜙𝑖𝑖 − 𝜁𝜁

𝜁𝜁
,∀ 𝑖𝑖 ∈ [1,𝑁𝑁𝑇𝑇]. (7) 

𝑟𝑟 =
1 − 𝜙𝜙𝑖𝑖 − 𝜁𝜁

𝜁𝜁
,∀ 𝑖𝑖 ∈ [1,𝑁𝑁𝑇𝑇]. (8) 

𝑔𝑔1 =
𝜃𝜃𝑖𝑖 + 𝜙𝜙𝑖𝑖 + 𝜁𝜁 − 1

𝜁𝜁
,∀ 𝑖𝑖 ∈ [1,𝑁𝑁𝑇𝑇]. (9) 

𝑔𝑔2 =
1 − 𝜃𝜃𝑖𝑖
𝜁𝜁

,∀ 𝑖𝑖 ∈ [1,𝑁𝑁𝑇𝑇]. (10) 

Proof. Under a uniform vehicle arrival pattern, traffic delay can be represented as the area of the 

polygon formed between the cumulative arrival and departure lines, as illustrated in Figure 3. Different 

demand levels form distinct polygons. This determines the various conditions and their corresponding 

formulae for estimating traffic delays, as shown in Tables 1 and 2. The detailed proof is provided in 

Appendix C.  
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Figure 3. Estimation of traffic delays for lane 𝑚𝑚 in cycle 𝑘𝑘 + 1. Cases 1 and 2 represent a signal group 

ending with an effective red and green, respectively. 

∎ 

Proposition 1 provides a generic and analytical model for estimating traffic delay under any 

signal plan. However, it only focuses on the traffic delay in cycle 𝑘𝑘 + 1  and fails to consider the 

potential impact caused by holding vehicles at the end of cycle 𝑘𝑘 + 1. In an ideal scenario, an effective 

signal plan should ensure that all arrivals are cleared within the same cycle, avoiding holding vehicles 

at the end of the green period. Failure to achieve this could result in significant delays for holding 

vehicles and subsequent arrivals, potentially causing congestion propagation in the local transportation 

system, particularly in situations with temporarily high V/C ratios. Proposition 2 is introduced to model 

such consequential delays.  

 

Proposition 2. Under the assumption that the temporarily high arrival rate returns to the average arrival 

rate 𝑞𝑞�𝑚𝑚,𝑘𝑘  after cycle 𝑘𝑘 + 1 , the consequential delay for any lane 𝑚𝑚  in cycle 𝑘𝑘 + 1 , 𝑑𝑑𝑚𝑚,𝑘𝑘+1
𝑐𝑐  , can be 

estimated as 

𝑑𝑑𝑚𝑚,𝑘𝑘+1
𝑐𝑐 = 𝛾𝛾1𝑅𝑅𝑚𝑚,𝑘𝑘+1

′ 2 + 𝛾𝛾2𝑅𝑅𝑚𝑚,𝑘𝑘+1
′,∀𝑚𝑚 ∈ [1, 𝑙𝑙], (11) 

where 
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𝛾𝛾1 =
1
𝑙𝑙
�

𝐶𝐶0
2�𝑠𝑠𝑔𝑔𝑚𝑚,0 − 𝐶𝐶0𝑞𝑞�𝑚𝑚,𝑘𝑘�

𝑙𝑙

𝑚𝑚=1

; (12) 

𝛾𝛾2 =
1
𝑙𝑙
�

𝑟𝑟𝑚𝑚,0𝑠𝑠
2(𝑠𝑠 − 𝑞𝑞�𝑚𝑚,𝑘𝑘)

𝑙𝑙

𝑚𝑚=1

; (13) 

𝑅𝑅𝑚𝑚,𝑘𝑘+1
′ represents the projected number of holding vehicles at the end of the nearest green period, and 

𝐶𝐶0 , 𝑔𝑔𝑚𝑚,0 , and 𝑟𝑟𝑚𝑚,0  respectively denote the cycle length, effective green duration, and effective red 

duration of a selected signal plan used for analysis. 𝑅𝑅𝑚𝑚,𝑘𝑘+1
′  can be estimated as either 𝑅𝑅𝑚𝑚,𝑘𝑘+1

(1) ′
  or 

𝑅𝑅𝑚𝑚,𝑘𝑘+1
(2) ′

 depending on whether the lane is controlled by a signal group ending with effective red or 

green, as detailed in Tables 3 and 4. 

Table 3. Analytical formulae for 𝑅𝑅𝑚𝑚,𝑘𝑘+1
(1) ′

. 

Conditions 𝑹𝑹𝒎𝒎,𝒌𝒌+𝟏𝟏
(𝟏𝟏) ′

 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤
𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑟𝑟1 + 𝑔𝑔
, 𝑞𝑞�𝑚𝑚,𝑘𝑘 >

𝑠𝑠𝑠𝑠 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟2
𝑟𝑟1 + 𝑔𝑔

 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟2 + 𝑞𝑞�𝑚𝑚,𝑘𝑘(𝑟𝑟1 + 𝑔𝑔) − 𝑠𝑠𝑠𝑠 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑟𝑟1 + 𝑔𝑔
, 𝑞𝑞�𝑚𝑚,𝑘𝑘 >

2𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝐶𝐶
𝑟𝑟1 + 𝑔𝑔

 𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝐶𝐶 + 𝑞𝑞�𝑚𝑚,𝑘𝑘(𝑟𝑟1 + 𝑔𝑔) − 2𝑠𝑠𝑠𝑠 

Otherwise 0 

 

Table 4 Analytical formulae for 𝑅𝑅𝑚𝑚,𝑘𝑘+1
(2) ′

. 

Conditions 𝑹𝑹𝒎𝒎,𝒌𝒌+𝟏𝟏
(𝟐𝟐) ′

 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤
𝑠𝑠𝑔𝑔1 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑔𝑔1
, 𝑞𝑞𝑚𝑚,𝑘𝑘+1 >

𝑠𝑠𝑔𝑔2
𝑟𝑟 + 𝑔𝑔2

, 

𝑞𝑞�𝑚𝑚,𝑘𝑘 >
𝑠𝑠𝑠𝑠 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1(𝑟𝑟 + 𝑔𝑔2)

𝑔𝑔1
 

𝑞𝑞𝑚𝑚,𝑘𝑘+1(𝑟𝑟 + 𝑔𝑔2) − 𝑠𝑠𝑠𝑠 + 𝑞𝑞�𝑚𝑚,𝑘𝑘𝑔𝑔1 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑔𝑔1 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑔𝑔1
, 𝑞𝑞𝑚𝑚,𝑘𝑘+1 >

𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝐶𝐶
, 

𝑞𝑞�𝑚𝑚,𝑘𝑘 >
𝑠𝑠(𝑔𝑔1 + 𝑔𝑔) − 𝑅𝑅𝑚𝑚,𝑘𝑘 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝐶𝐶

𝑔𝑔1
 

𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝐶𝐶 − 𝑠𝑠𝑠𝑠 + (𝑞𝑞�𝑚𝑚,𝑘𝑘 − 𝑠𝑠)𝑔𝑔1 

Otherwise 0 

 

Proof. The existence of holding vehicles will delay all newly arrived vehicles owing to the first-come-

first-served nature of the transportation system, resulting in extra delay except for the regular delay 

experienced by a system without holding vehicles. This additional delay is estimated as the 

consequential delay. A detailed proof is presented in Appendix D. 

∎ 
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Proposition 2 reveals a quadratic relationship between 𝑑𝑑𝑚𝑚,𝑘𝑘+1
𝑐𝑐  and 𝑅𝑅𝑚𝑚,𝑘𝑘+1

′. To determine 𝛾𝛾1 

and 𝛾𝛾2, a straightforward yet effective approach is to use the optimal fixed-time signal plan derived 

from average traffic demands as the selected analysis signal plan. With both Propositions 1 and 2, the 

total junction delay in cycle 𝑘𝑘 + 1 can be explicitly expressed as 

𝐷𝐷 = 𝑓𝑓�𝜃𝜃1, … ,𝜃𝜃𝑖𝑖 , … , 𝜃𝜃𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙1, … ,𝜙𝜙𝑖𝑖 , … ,𝜙𝜙𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁�𝑝𝑝1,𝑘𝑘 , … , 𝑝𝑝𝑙𝑙,𝑘𝑘) = ��𝑑𝑑𝑚𝑚,𝑘𝑘+1 + 𝑑𝑑𝑚𝑚,𝑘𝑘+1
𝑐𝑐 �

𝑙𝑙

𝑚𝑚=1

. (14) 

 

3.2. Constraints for signal optimization 

This subsection summarizes a set of constraints for signal optimization. First, the definitions of 

the control variables imply the following constraints: 

0 ≤ 𝜃𝜃𝑖𝑖 ≤ 1,∀𝑖𝑖 ∈ [1,𝑁𝑁𝑇𝑇 + 𝑁𝑁𝑃𝑃]; (15) 

0 ≤ 𝜙𝜙𝑖𝑖 ≤ 1,∀𝑖𝑖 ∈ [1,𝑁𝑁𝑇𝑇 + 𝑁𝑁𝑃𝑃]. (16) 

Considering the maximum cycle length 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 gives  

𝜁𝜁 ≥
1

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
. (17) 

For traffic groups, the minimum signal group duration is denoted as 𝑔𝑔𝑇𝑇, meaning that  

𝜙𝜙𝑖𝑖 ≥ 𝑔𝑔𝑇𝑇𝜁𝜁,∀𝑖𝑖 ∈ [1,𝑁𝑁𝑇𝑇]. (18) 

For pedestrian groups,  

𝜙𝜙𝑖𝑖 ≥ 𝑔𝑔𝑃𝑃𝜁𝜁,∀𝑖𝑖 ∈ [𝑁𝑁𝑇𝑇 + 1,𝑁𝑁𝑇𝑇 + 𝑁𝑁𝑃𝑃], (19) 

where the minimum signal group duration, 𝑔𝑔𝑃𝑃, is set to 𝜌𝜌𝜌𝜌/𝑣𝑣𝑃𝑃; 𝜌𝜌 = 1.5 represents the provision being 

50% higher than the minimum curb-to-curb crossing time; 𝑤𝑤 is the width of the crossing in m; and 

𝑣𝑣𝑃𝑃 = 1.2 is the average walking speed in m/s. For safety, the clearance time constraints must be satisfied: 

𝜃𝜃𝑖𝑖 + 𝜙𝜙𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖𝜁𝜁 ≤ 𝜃𝜃𝑗𝑗 + Ω𝑖𝑖𝑖𝑖 ,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝚿𝚿. (20) 

In addition, in practical scenarios, the start or end of green for certain groups can be further 

constrained as follows: 

𝜃𝜃𝑖𝑖 = ∆𝑖𝑖𝜁𝜁,∀𝑖𝑖 ∈ 𝚾𝚾𝟏𝟏, (21) 

𝜃𝜃𝑖𝑖 + 𝜙𝜙𝑖𝑖 ≥ 𝜎𝜎𝑖𝑖𝜁𝜁,∀𝑖𝑖 ∈ 𝚾𝚾𝟐𝟐, (22) 

where ∆𝑖𝑖  and 𝜎𝜎𝑖𝑖  are user-defined parameters and 𝚾𝚾𝟏𝟏  and 𝚾𝚾𝟐𝟐  represent sets of groups that need to 

constrain the start and end of green, respectively. For instance, Eq. (21) can be used to set the start of 

green for a certain group as the beginning of a cycle. Equation (22) can be used to allocate computation 

time for optimization purposes.  

 

3.3. Deterministic penetration rate control model 

The objective function of the CVASC framework can be formulated as the minimization of the 

total junction delay, 𝐷𝐷, which is a function of the CV penetration rates. Given the uncertainty in the CV 

penetration rates, 𝑝𝑝𝑚𝑚,𝑘𝑘 ,∀𝑚𝑚 ∈ [1, 𝑙𝑙] , the objective function is also subject to uncertainty. One 
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straightforward approach for evaluating 𝐷𝐷 involves disregarding the uncertainty in 𝑝𝑝𝑚𝑚,𝑘𝑘 and replacing 

it with the estimated average and fixed CV penetration rate 𝑝̅𝑝𝑚𝑚,𝑘𝑘. Treating all of the input parameters as 

constants converts 𝐷𝐷  into a deterministic model. Minimizing this deterministic delay, subject to the 

optimization constraints outlined in Section 3.2, results in the following formulation of the DPRC model: 

min
{𝜃𝜃𝑖𝑖,𝜙𝜙𝑖𝑖,𝑖𝑖∈[1,𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃]},𝜁𝜁

𝐽𝐽𝐷𝐷 = 𝐷𝐷, 

𝑠𝑠. 𝑡𝑡.𝐷𝐷 = 𝑓𝑓�𝜃𝜃1, … ,𝜃𝜃𝑖𝑖, … ,𝜃𝜃𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙1, … ,𝜙𝜙𝑖𝑖 , … ,𝜙𝜙𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁�𝑝̅𝑝1,𝑘𝑘, … , 𝑝̅𝑝𝑚𝑚,𝑘𝑘 , … , 𝑝̅𝑝𝑙𝑙,𝑘𝑘), 

                 and Eqs. (15) to (22). 

(23) 

Given the analytical and deterministic form of 𝐽𝐽𝐷𝐷 , substituting the analysis signal plan of 

interest into the function 𝑓𝑓  provides a straightforward evaluation of the total junction delay. 

Furthermore, the gradient of 𝐽𝐽𝐷𝐷 is given as follows: 

𝜕𝜕𝐽𝐽𝐷𝐷
𝜕𝜕𝜕𝜕

= � �
𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1

𝑐𝑐

𝜕𝜕𝜕𝜕 �
𝑙𝑙

𝑚𝑚=1

,∀𝑥𝑥 ∈ 𝕍𝕍, (24) 

where 𝕍𝕍 = �𝜃𝜃1, … ,𝜃𝜃𝑖𝑖, … , 𝜃𝜃𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙1, … ,𝜙𝜙𝑖𝑖, … ,𝜙𝜙𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁�  is the control variable set. Thus, the 

problem reduces to the derivation of the gradients of 𝑑𝑑𝑚𝑚,𝑘𝑘+1  and 𝑑𝑑𝑚𝑚,𝑘𝑘+1
𝑐𝑐  , which are respectively 

presented in Appendices E and F. Substituting the gradients of 𝑑𝑑𝑚𝑚,𝑘𝑘+1  and 𝑑𝑑𝑚𝑚,𝑘𝑘+1
𝑐𝑐   into Eq. (24) 

provides the gradient of 𝐽𝐽𝐷𝐷. 

 

3.4. Stochastic penetration rate control model 

While the above deterministic model is straightforward, it does not consider the uncertainty in 

the CV penetration rate, and hence the uncertainty in vehicle arrival rate. In the context of the stochastic 

and dynamic nature of transportation systems, optimizing the system without accounting for this 

uncertainty may result in suboptimal solutions and unsatisfactory performance. To potentially achieve 

optimal solutions in adaptive signal control, incorporating the uncertainty of CV penetration rates in the 

estimation of 𝐷𝐷 is imperative. As 𝑝𝑝𝑚𝑚,𝑘𝑘 ranges from 0 to 1 by definition, it is assumed to follow a beta 

distribution with a mean of 𝑝̅𝑝𝑚𝑚,𝑘𝑘  and a variance of 𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝𝑚𝑚,𝑘𝑘)  (Jia et al., 2023, 2024a, 2024b). 

Consequently, the problem is reformulated into the following SPRC model: 

min
{𝜃𝜃𝑖𝑖,𝜙𝜙𝑖𝑖,𝑖𝑖∈[1,𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃]},𝜁𝜁

𝐽𝐽𝑆𝑆 = 𝐸𝐸(𝐷𝐷) + 𝜔𝜔�𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷), 

𝑠𝑠. 𝑡𝑡.𝐷𝐷 = 𝑓𝑓�𝜃𝜃1, … ,𝜃𝜃𝑖𝑖, … , 𝜃𝜃𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙1, … ,𝜙𝜙𝑖𝑖, … ,𝜙𝜙𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁�𝑝𝑝1,𝑘𝑘, … , 𝑝𝑝𝑚𝑚,𝑘𝑘 , … ,𝑝𝑝𝑙𝑙,𝑘𝑘) 

                  and Eqs. (15) to (22), 

(25) 

where 𝜔𝜔 is a user-defined parameter representing the trade-off between efficiency and stability. 

𝑝𝑝𝑚𝑚,𝑘𝑘~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ��
𝑝̅𝑝𝑚𝑚,𝑘𝑘�1− 𝑝̅𝑝𝑚𝑚,𝑘𝑘�
𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝𝑚𝑚,𝑘𝑘�

− 1� 𝑝̅𝑝𝑚𝑚,𝑘𝑘 , �
𝑝̅𝑝𝑚𝑚,𝑘𝑘�1 − 𝑝̅𝑝𝑚𝑚,𝑘𝑘�
𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝𝑚𝑚,𝑘𝑘�

− 1� �1 − 𝑝̅𝑝𝑚𝑚,𝑘𝑘�� ,∀𝑚𝑚 ∈ [1, 𝑙𝑙]. (26) 

The inclusion of parameters with uncertainties in the objective function presents challenges in 

both evaluation and optimization. While the MCS method is a convenient option, it is time-consuming 
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and impractical for real-time applications. Moreover, obtaining the gradient of this objective function, 

which is essential for developing high-efficiency gradient-based solution algorithms, is an even more 

challenging task. 

 

4. Analytical Stochastic Delay Model 

This section introduces the analytical stochastic delay (ASD) model, which is designed to 

accurately estimate the stochastic quantity 𝐽𝐽𝑆𝑆 and its gradient using efficient analytical models. Before 

the estimations of 𝐽𝐽𝑆𝑆  and its gradient are presented, the independence of 𝑝𝑝𝑚𝑚,𝑘𝑘 , ∀𝑚𝑚 ∈ [1, 𝑙𝑙] , is 

established, as it is essential for the subsequent derivations. 

 

4.1 Independence of 𝒑𝒑𝒎𝒎,𝒌𝒌 

4.1.1 Model derivation 

The independence of 𝑝𝑝𝑚𝑚,𝑘𝑘, ∀𝑚𝑚 ∈ [1, 𝑙𝑙], is stated in Lemma 1.  

Lemma 1. With the assumption that a super source demand 𝑞𝑞  follows a Poisson distribution, i.e., 

𝑞𝑞~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆), which generates demands for all lanes, each vehicle is randomly determined to be a CV or 

a non-CV according to an underlying CV penetration rate. Additionally, each vehicle has an equal 

probability 𝛼𝛼𝑚𝑚  of selecting lane 𝑚𝑚 , where ∑ 𝛼𝛼𝑚𝑚𝑙𝑙
𝑚𝑚=1 = 1 . Furthermore, the random variables 𝑝𝑝𝑚𝑚,𝑘𝑘 , 

∀𝑚𝑚 ∈ [1, 𝑙𝑙], are independent of each other. 

Proof. Detailed proof of Lemma 1 is provided in Appendix G. 

∎ 

4.1.2. Numerical experiments 

To examine the independence of 𝑝𝑝𝑚𝑚,𝑘𝑘 , a series of numerical experiments is conducted. An 

approach with two arbitrary lanes connected to an intersection is considered. The total demand in each 

cycle is assumed to follow a Poisson distribution with a mean arrival of 𝜆𝜆, i.e., 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆). Every vehicle 

is randomly assigned to be either a CV or a non-CV according to the underlying CV penetration rate 𝑝𝑝. 

In addition, each vehicle has an equal probability of selecting either lane 1 or lane 2, as represented by 

𝛼𝛼1 and 𝛼𝛼2, respectively, where 𝛼𝛼1 + 𝛼𝛼2 = 1. For simplicity, a vertical queue assumption and a 50% red 

and 50% green signal plan are adopted. Various combinations of 𝜆𝜆 , 𝛼𝛼1 , and 𝑝𝑝  are tested. For each 

combination, 10,000 cycles are simulated. In each cycle, the SSDPRE method is applied separately to 

the two lanes. This process generates 10,000 samples of 𝑝𝑝𝑚𝑚,𝑘𝑘 for each lane. The correlation coefficient 

between 𝑝𝑝1,𝑘𝑘  and 𝑝𝑝2,𝑘𝑘  is then evaluated according to these samples. The correlation coefficients 

between 𝑝𝑝1,𝑘𝑘  and 𝑝𝑝2,𝑘𝑘  are very close to 0 across different combinations of 𝜆𝜆 , 𝛼𝛼1 , and 𝑝𝑝 . Thus, the 

numerical experiments validate Lemma 1. Detailed analysis and results can be found in Appendix H. 
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4.2. Estimation of 𝑱𝑱𝑺𝑺 

4.2.1. Model derivation 

The objective function 𝐽𝐽𝑆𝑆  in the SPRC model relies on both 𝐸𝐸(𝐷𝐷)  and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) , where 𝐷𝐷  is 

dependent on uncertain parameters, 𝑝𝑝𝑚𝑚,𝑘𝑘, ∀𝑚𝑚 ∈ [1, 𝑙𝑙]. Leveraging the independence property of 𝑝𝑝𝑚𝑚,𝑘𝑘, 

Proposition 3 is introduced for efficient estimations of 𝐸𝐸(𝐷𝐷) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷). 

 

Proposition 3. For any given signal plan 

�𝜃𝜃1 = 𝜃𝜃�1, … , 𝜃𝜃𝑖𝑖 = 𝜃𝜃�𝑖𝑖, … , 𝜃𝜃𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 = 𝜃𝜃�𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙1 = 𝜙𝜙�1, … ,𝜙𝜙𝑖𝑖 = 𝜙𝜙�𝑖𝑖 , … ,𝜙𝜙𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 = 𝜙𝜙�𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁 = 𝜁𝜁�, (27) 

with a stochastic model featuring distributed and independent parameters 𝑝𝑝𝑚𝑚,𝑘𝑘, ∀𝑚𝑚 ∈ [1, 𝑙𝑙], 

𝐷𝐷� = 𝑓𝑓�𝜃𝜃�1, … , 𝜃𝜃�𝑖𝑖, … ,𝜃𝜃�𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙�1, … ,𝜙𝜙�𝑖𝑖, … ,𝜙𝜙�𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁�𝑝𝑝1,𝑘𝑘, … ,𝑝𝑝𝑚𝑚,𝑘𝑘 , … , 𝑝𝑝𝑙𝑙,𝑘𝑘), (28) 

and a 𝛫𝛫𝑡𝑡ℎ-order gPCE for 𝐷𝐷�, 

𝐷𝐷� = � 𝑐𝑐𝒌𝒌

 

|𝒌𝒌|≤𝛫𝛫

Φ𝒌𝒌(𝒁𝒁),𝒁𝒁 = (𝑍𝑍1, … ,𝑍𝑍𝑚𝑚, … ,𝑍𝑍𝑙𝑙), (29) 

𝐸𝐸(𝐷𝐷�) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷�) can be estimated as follows: 

𝐸𝐸(𝐷𝐷�) = 𝑐𝑐𝟎𝟎, (30) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷�) = � 𝑐𝑐𝒌𝒌2
 

0<|𝒌𝒌|≤Κ

, (31) 

where {𝑍𝑍1, … ,𝑍𝑍𝑚𝑚, … ,𝑍𝑍𝑙𝑙} is a set of independent random variables determined by the original random 

variables �𝑝𝑝1,𝑘𝑘, … ,𝑝𝑝𝑚𝑚,𝑘𝑘, … ,𝑝𝑝𝑙𝑙,𝑘𝑘� , �Φ𝒌𝒌(𝒁𝒁) = ∏ Φ𝑘𝑘𝑚𝑚(𝑍𝑍𝑚𝑚)𝑙𝑙
𝑚𝑚=1 ,∀|𝒌𝒌| ≤ 𝛫𝛫�  is a set of multivariate 

orthonormal polynomials, �Φ𝑘𝑘𝑚𝑚(𝑍𝑍𝑚𝑚),∀𝑘𝑘𝑚𝑚 ≤ 𝛫𝛫�,∀𝑚𝑚 ∈ [1, 𝑙𝑙]  are sets of univariate orthonormal 

polynomials determined by the distribution of 𝑍𝑍𝑚𝑚,∀𝑚𝑚 ∈ [1, 𝑙𝑙] , 𝑐𝑐𝒌𝒌,∀|𝒌𝒌| ≤ 𝛫𝛫  is the coefficient 

of Φ𝒌𝒌(𝒁𝒁) , 𝒌𝒌 = (𝑘𝑘1,𝑘𝑘2, … ,𝑘𝑘𝑙𝑙)  is a multi-index with |𝒌𝒌| = ∑ 𝑘𝑘𝑗𝑗𝑙𝑙
𝑗𝑗=1  , and 𝛫𝛫  is the maximum order of 

gPCE. 

Proof. Detailed proof of Proposition 3 is provided in Appendix I. 

∎ 

Proposition 3 offers a fully analytical and efficient method to evaluate 𝐸𝐸(𝐷𝐷)  and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) 

according to gPCE. Knowing the coefficients of gPCE is essential for evaluating 𝐸𝐸(𝐷𝐷) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷). 

Proposition 4 is proposed for estimating these essential coefficients. 

 

Proposition 4. Given the gPCE for 𝐷𝐷� , the set of 𝜉𝜉  samples for 𝑝𝑝𝑚𝑚,𝑘𝑘 ,∀𝑚𝑚 ∈ [1, 𝑙𝑙] , �𝒑𝒑(𝑖𝑖) =

�𝑝𝑝1,𝑘𝑘
(𝑖𝑖) , … ,𝑝𝑝𝑙𝑙,𝑘𝑘

(𝑖𝑖)� ,∀𝑖𝑖 ∈ [1, 𝜉𝜉]� , the set of associated 𝜉𝜉  samples for 𝒁𝒁 , �𝒁𝒁(𝑖𝑖),∀𝑖𝑖 ∈ [1, 𝜉𝜉]� , and the total 

number of cases for |𝒌𝒌| ≤ 𝛫𝛫 being ℚ, the coefficients 𝑐𝑐𝒌𝒌, ∀|𝒌𝒌| ≤ 𝛫𝛫 can be analytically estimated as 

follows: 

𝒄𝒄 = (𝑨𝑨𝑨𝑨T)−1𝑨𝑨𝑨𝑨, (32) 
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where  

𝒄𝒄 = �𝑐𝑐𝒌𝒌1 , … , 𝑐𝑐𝒌𝒌ℚ�
T

,ℚ = �
𝑙𝑙 + 𝛫𝛫
𝛫𝛫

�, (33) 

𝑨𝑨 = �
Φ𝒌𝒌1�𝒁𝒁

(1)� ⋯ Φ𝒌𝒌1�𝒁𝒁
(𝜉𝜉)�

⋮ ⋱ ⋮
Φ𝒌𝒌ℚ�𝒁𝒁

(1)� ⋯ Φ𝒌𝒌ℚ�𝒁𝒁
(𝜉𝜉)�

�, (34) 

𝒃𝒃 = �
𝑓𝑓�𝜃𝜃�1, … ,𝜃𝜃�𝑖𝑖, … ,𝜃𝜃�𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙�1, … ,𝜙𝜙�𝑖𝑖, … ,𝜙𝜙�𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁�𝒑𝒑(1))

…
𝑓𝑓�𝜃𝜃�1, … ,𝜃𝜃�𝑖𝑖, … ,𝜃𝜃�𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙�1, … ,𝜙𝜙�𝑖𝑖 , … ,𝜙𝜙�𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁�𝒑𝒑(𝜉𝜉))

�. (35) 

Proof. Detailed proof of Proposition 4 is provided in Appendix J. 

∎ 

With Proposition 4, the coefficients 𝑐𝑐𝒌𝒌 , ∀|𝒌𝒌| ≤ 𝛫𝛫  can be efficiently obtained using only a 

small number of samples. Typically, the number of samples 𝜉𝜉  is set to 𝜇𝜇ℚ , where 𝜇𝜇  represents the 

oversampling rate, and it is commonly set to 2 or 3 (𝜇𝜇 = 2  is used in this paper). To ensure the 

reproducibility of the experiment and improve convergence speed in coefficient estimation, the samples 

𝒑𝒑(𝑖𝑖) = �𝑝𝑝1,𝑘𝑘
(𝑖𝑖) ,𝑝𝑝2,𝑘𝑘

(𝑖𝑖) , … ,𝑝𝑝𝑙𝑙,𝑘𝑘
(𝑖𝑖)� ,∀𝑖𝑖 ∈ [1, 𝜉𝜉] are generated using quasi-random and low-discrepancy Sobol 

sequences. Notably, the selected distribution for 𝑍𝑍𝑚𝑚,∀𝑚𝑚 ∈ [1, 𝑙𝑙]  and the associated orthonormal 

polynomials are dependent on the original distribution 𝑝𝑝𝑚𝑚,𝑘𝑘 ,∀𝑚𝑚 ∈ [1, 𝑙𝑙]. In this study, 𝑝𝑝𝑚𝑚,𝑘𝑘 is assumed 

to follow a beta distribution; hence, Jacobi polynomials are used. Given that Jacobi polynomials are 

formulated using Rodrigues’s formula, the support of the associated weighting function is [−1,1] rather 

than the standard beta distribution defined on [0,1]. Therefore, necessary transformations are required 

between 𝑝𝑝𝑚𝑚,𝑘𝑘 and 𝑍𝑍𝑚𝑚. Detailed derivation is provided in Appendix K. 

4.2.2. Numerical experiments 

This subsection presents a series of numerical experiments aimed at comparing the efficiency 

of the MCS method and Propositions 3 and 4 in evaluating 𝐸𝐸(𝐷𝐷) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷). Consider the real-world 

four-arm intersection depicted in Figure 5 in Section 6. Given a total of 13 approaching lanes connected 

to the intersection, the total junction delay 𝐷𝐷 depends not only on parameters such as the signal plan 

parameters but also on the 13 uncertain CV penetration rate parameters 𝑝𝑝𝑚𝑚,𝑘𝑘 , ∀𝑚𝑚 ∈ [1,13] . These 

random variables greatly complicate the task of evaluating 𝐸𝐸(𝐷𝐷)  and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) . The MCS method 

estimates 𝐸𝐸(𝐷𝐷) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) by sampling uncertain parameters from the assumed distributions. Despite 

its simplicity, this method typically requires millions of samples to converge and may lack 

reproducibility. In contrast, the proposed Proposition 4 requires only a small number of samples to 

estimate the essential inputs of Proposition 3, making it much more efficient. 

The numerical experiment results indicate that when the MCS method is used, the estimates 

converge as the number of samples gradually increases from 10 to 107 at a growth rate of 10. With a 

negligible difference observed between the estimates obtained using sample sizes of 106 and 107, the 

estimates derived from the MCS method with 107  samples are considered the ground-truth values, 
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requiring a computation time of ~24 s. In contrast, when 𝛫𝛫 in Proposition 4 is set to 1, only 28 samples 

are required, and Proposition 3 achieves absolute percentage errors (APEs) of 0% and 28.9% in 

estimating 𝐸𝐸(𝐷𝐷)  and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) , respectively, with negligible computational cost. Increasing the 

approximation order 𝛫𝛫  to 2 and 3 reduces the APE of estimated 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷)  to 3.2% and 0.09%, 

respectively, while the APE of estimated 𝐸𝐸(𝐷𝐷)  is maintained within 0.07%. Considering both 

approximation accuracy and computational complexity, 𝛫𝛫 = 2 is chosen. With this choice, only as few 

as 210 samples are required for estimation, and thus the approach is several orders of magnitude more 

efficient than the MCS method. The computation time for Propositions 3 and 4 is only 0.08 s, 

approximately 300 times more efficient than the MCS method. These results consistently indicate the 

superiority and efficiency of Propositions 3 and 4. More details of the numerical experiment are 

presented in Appendix L. 

 

4.3. Gradient estimation of 𝑱𝑱𝑺𝑺 

4.3.1. Model derivation 

According to Eq. (32), the gradient of 𝐽𝐽𝑆𝑆 is expressed as  

𝜕𝜕𝐽𝐽𝑆𝑆
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝐸𝐸(𝐷𝐷)
𝜕𝜕𝜕𝜕

+
𝜔𝜔

2�𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷)
𝜕𝜕𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷)

𝜕𝜕𝜕𝜕
,∀𝑥𝑥 ∈ 𝕍𝕍. (36) 

Therefore, estimating the gradients of 𝐸𝐸(𝐷𝐷)  and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷)  is imperative; the estimation is detailed in 

Proposition 5. 

 

Proposition 5. Given 𝐷𝐷 as defined in Eq. (25), 𝑐𝑐𝒌𝒌1 = 𝑐𝑐𝟎𝟎 in Eq. (33),  

𝔸𝔸 = (𝑨𝑨𝑨𝑨T)−1𝑨𝑨 = �
𝑎𝑎11 ⋯ 𝑎𝑎1𝜉𝜉
⋮ ⋱ ⋮

𝑎𝑎ℚ1 ⋯ 𝑎𝑎ℚ𝜉𝜉
� = �

𝔸𝔸1
…
𝔸𝔸ℚ

�, (37) 

and the other notation consistent with that in Proposition 4, the gradients of 𝐸𝐸(𝐷𝐷) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) are 

respectively expressed as follows: 

𝜕𝜕𝜕𝜕(𝐷𝐷)
𝜕𝜕𝑥𝑥

= 𝔸𝔸1𝒃𝒃′,∀𝑥𝑥 ∈ 𝕍𝕍, (38) 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝐷𝐷)
𝜕𝜕𝜕𝜕

= �2𝑐𝑐𝒌𝒌𝑖𝑖𝔸𝔸𝑖𝑖𝒃𝒃
′

ℚ

𝑖𝑖=2

,∀𝑥𝑥 ∈ 𝕍𝕍, (39) 

where  

𝒃𝒃′ = �
𝑓𝑓𝑥𝑥′�𝜃𝜃1, … ,𝜃𝜃𝑖𝑖, … ,𝜃𝜃𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙1, … ,𝜙𝜙𝑖𝑖, … ,𝜙𝜙𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁|𝒑𝒑(1)�

…
𝑓𝑓𝑥𝑥′�𝜃𝜃1, … ,𝜃𝜃𝑖𝑖, … ,𝜃𝜃𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙1, … ,𝜙𝜙𝑖𝑖 , … ,𝜙𝜙𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁|𝒑𝒑(𝜉𝜉)�

�. (40) 

Proof. Detailed proof of Proposition 5 is provided in Appendix M. 

∎ 
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Proposition 5 completes the ASD model, indicating that the gradients of 𝐸𝐸(𝐷𝐷) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) 

can be theoretically estimated according to the gPCE and gradients of the corresponding deterministic 

models. This crucial finding enables the development of efficient gradient-based algorithms for 

addressing stochastic optimization problems. 

4.3.2. Numerical experiments 

This subsection validates the effectiveness of Proposition 5 in estimating the gradients of 𝐸𝐸(𝐷𝐷) 

and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷)  through a series of numerical experiments. The experiments are conducted using the 

settings and parameters outlined in Section 4.2.2. The gradients of 𝐸𝐸(𝐷𝐷) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) are first estimated 

through a numerical differentiation method, and the values serve as the ground truth for evaluation. 

Subsequently, with 𝛫𝛫 = 2 , the analytical models proposed in Proposition 5 are used to efficiently 

estimate the gradients using only 210 samples. 

The results of estimates obtained using Proposition 5 indicate that the maximum APE, average 

APE, and variance in APE of the estimated partial derivatives of 𝐸𝐸(𝐷𝐷) are 0.99%, 0.14%, and 0.08%, 

respectively. These near-zero metrics confirm the accuracy of Proposition 5 in estimating the gradient 

of 𝐸𝐸(𝐷𝐷). Similarly, the maximum APE, average APE, and variance in APE of the estimated partial 

derivatives of 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷)  are 4.21%, 2.56%, and 1.51%, respectively. Given the inherently greater 

complexity of estimating 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) and its gradient, these errors are slightly larger than those of 𝐸𝐸(𝐷𝐷), 

as expected. Nonetheless, the maximum APE among all partial derivatives remains below 5%, with an 

average APE of only ~3%. Moreover, the computation time for Proposition 5 is only 0.08 s, 

significantly shorter than that required by the numerical differentiation method (525.42 s). These results 

consistently demonstrate the superiority of Proposition 5. Further details are provided in Appendix N. 

 

5. Gradient-guided Golden Section Search Algorithm 

The gradient-based method optimizes the signals along the most efficient direction but may 

become trapped in a local minimum. The golden section search method searches for solutions along a 

specific line spanning the entire feasible region, but randomly selecting the search line can significantly 

degrade efficiency. This section proposes an efficient gradient-guided golden section search (G3S2) 

algorithm that leverages the strengths of both approaches to dynamically optimize the signal plan.  

Let 𝐽𝐽(∙) represent the objective function, which can be either 𝐽𝐽𝐷𝐷 or 𝐽𝐽𝑆𝑆. The G3S2 algorithm is 

tailored for sequential optimization problems and uses the optimized signal plan for cycle 𝑘𝑘 (denoted 

as 𝕍𝕍(𝑘𝑘,∗)) as the initial solution to optimize the signal plan for cycle 𝑘𝑘 + 1, as depicted in Algorithm 1. 

For the initial cycle when 𝑘𝑘 = 0, 𝕍𝕍(0,∗) can be either randomly generated or manually set according to 

prior knowledge. In step 1, the random signal generation algorithm, denoted by 𝔾𝔾�𝕍𝕍(𝑘𝑘,∗),𝑁𝑁𝑅𝑅� and 

detailed in Algorithm 2, is applied. The algorithm uses the optimized signal plan for cycle 𝑘𝑘, 𝕍𝕍(𝑘𝑘,∗) as 

input to generate 𝑁𝑁𝑅𝑅 additional random signals. This process helps to avoid poor local minima and aims 

to search for better solutions. Subsequently, the G3S2 procedure is applied separately to 𝑁𝑁𝑅𝑅 + 1 initial 
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signal plans, resulting in 𝑁𝑁𝑅𝑅 + 1 candidate signal plans. The optimized signal plan for cycle 𝑘𝑘 + 1 is 

selected as the best signal plan among the candidate signal plans according to their objective function 

values. Rather than randomly selecting a direction for the golden section search, the gradient direction 

is used to accelerate convergence, as demonstrated in steps 5 and 6 in Algorithm 1. Additionally, linear 

programming (LP) problems are involved in step 6 of Algorithm 1 and step 4 of Algorithm 2, which 

can be efficiently solved through the simplex method. Applying the proposed algorithms at the end of 

each cycle enables cycle-by-cycle adaptive signal control. Figure 4 illustrates the G3S2 algorithm. 

Algorithm 1. Gradient-guided golden section search (G3S2) algorithm. 

Input: Optimized signal plan for cycle 𝑘𝑘 , 𝕍𝕍(𝑘𝑘,∗) =

�𝜃𝜃1
(𝑘𝑘,∗), … ,𝜃𝜃𝑖𝑖

(𝑘𝑘,∗), …𝜃𝜃𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃
(𝑘𝑘,∗) ,𝜙𝜙1

(𝑘𝑘,∗), … ,𝜙𝜙𝑖𝑖
(𝑘𝑘,∗), …𝜙𝜙𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃

(𝑘𝑘,∗) , 𝜁𝜁(𝑘𝑘,∗)�,  where 𝑘𝑘 ≥ 0 , 𝑁𝑁𝑅𝑅 is the number of 

random signal plans, 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 is the maximum iterations of gradient computation, 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 is the maximum 

iterations of golden section search under each gradient direction, and 𝕡𝕡 = √5−1
2

 is the golden section 

number. 

Output: Optimized signal plan for cycle 𝑘𝑘 + 1 , 𝕍𝕍(𝑘𝑘+1,∗) =

�𝜃𝜃0
(𝑘𝑘+1,∗), … ,𝜃𝜃𝑖𝑖

(𝑘𝑘+1,∗), …𝜃𝜃𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃
(𝑘𝑘+1,∗),𝜙𝜙0

(𝑘𝑘+1,∗), … ,𝜙𝜙𝑖𝑖
(𝑘𝑘+1,∗), … ,𝜙𝜙𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃

(𝑘𝑘+1,∗), 𝜁𝜁(𝑘𝑘+1,∗)�. 

Initialization: 𝑆𝑆𝐷𝐷∗ ← {}, 𝑆𝑆𝕍𝕍∗ ← {} 

1:  for 𝕍𝕍� in 𝔾𝔾�𝕍𝕍(𝑘𝑘,∗),𝑁𝑁𝑅𝑅� do 

2:        𝕍𝕍∗ ← 𝕍𝕍�  

3:       for 𝑖𝑖 = 1, 2, … ,𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 do 

4:            𝕍𝕍� ← 𝕍𝕍∗ 

5:            Compute gradient ∆𝕍𝕍� = �𝐽𝐽𝜃𝜃0
′ �

𝕍𝕍�
, … , 𝐽𝐽𝜃𝜃𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃

′ �
𝕍𝕍�

, 𝐽𝐽𝜙𝜙0
′ �

𝕍𝕍�
, … , 𝐽𝐽𝜙𝜙𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃

′ �
𝕍𝕍�

, 𝐽𝐽𝜁𝜁′ �𝕍𝕍�� 

6:            Find 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 by substituting 𝕍𝕍 ← 𝕍𝕍� − 𝜂𝜂∆𝕍𝕍� into Eqs. (15) to (22), i.e., 

𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 = arg max 𝜂𝜂                                                                                                  

𝑠𝑠. 𝑡𝑡. 𝜁𝜁 − 𝜂𝜂𝐽𝐽𝜁𝜁′ �𝕍𝕍� ≥
1

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
                                                                                                          

0 ≤ 𝜃𝜃�𝑗𝑗 − 𝜂𝜂 𝐽𝐽𝜃𝜃𝑗𝑗
′ �

𝕍𝕍�
≤ 1,∀𝑗𝑗 ∈ [1,𝑁𝑁𝑇𝑇 + 𝑁𝑁𝑃𝑃]                                                          

0 ≤ 𝜙𝜙�𝑗𝑗 − 𝜂𝜂 𝐽𝐽𝜙𝜙𝑗𝑗
′ �

𝕍𝕍�
≤ 1,∀𝑗𝑗 ∈ [1,𝑁𝑁𝑇𝑇 + 𝑁𝑁𝑃𝑃]                                                         

𝜙𝜙�𝑗𝑗 − 𝜂𝜂 𝐽𝐽𝜙𝜙𝑗𝑗
′ �

𝕍𝕍�
≥ 𝑔𝑔𝑇𝑇 �𝜁𝜁 − 𝜂𝜂𝐽𝐽𝜁𝜁′ �𝕍𝕍�� ,∀𝑗𝑗 ∈ [1,𝑁𝑁𝑇𝑇]                                                   

𝜙𝜙�𝑗𝑗 − 𝜂𝜂 𝐽𝐽𝜙𝜙𝑗𝑗
′ �

𝕍𝕍�
≥ 𝑔𝑔𝑃𝑃 �𝜁𝜁 − 𝜂𝜂𝐽𝐽𝜁𝜁′ �𝕍𝕍�� ,∀𝑗𝑗 ∈ [𝑁𝑁𝑇𝑇 + 1,𝑁𝑁𝑇𝑇 + 𝑁𝑁𝑃𝑃]                              

                 𝜃𝜃�𝑢𝑢 − 𝜂𝜂𝐽𝐽𝜃𝜃𝑢𝑢
′ �

𝕍𝕍�
+ 𝜙𝜙�𝑢𝑢 − 𝜂𝜂𝐽𝐽𝜙𝜙𝑢𝑢

′ �
𝕍𝕍�

+ 𝑡𝑡𝑢𝑢𝑢𝑢 �𝜁𝜁 − 𝜂𝜂𝐽𝐽𝜁𝜁′ �𝕍𝕍�� ≤ 𝜃𝜃�𝑣𝑣 − 𝜂𝜂𝐽𝐽𝜃𝜃𝑣𝑣
′ �

𝕍𝕍�
+ Ω𝑢𝑢𝑢𝑢 ,∀(𝑢𝑢, 𝑣𝑣) ∈ Ψ 

𝜃𝜃�𝑗𝑗 − 𝜂𝜂 𝐽𝐽𝜃𝜃𝑗𝑗
′ �

𝕍𝕍�
= ∆𝑗𝑗 �𝜁𝜁 − 𝜂𝜂𝐽𝐽𝜁𝜁′ �𝕍𝕍�� ,∀𝑗𝑗 ∈ Χ1                                                             
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𝜃𝜃�𝑗𝑗 − 𝜂𝜂 𝐽𝐽𝜃𝜃𝑗𝑗
′ �

𝕍𝕍�
+ 𝜙𝜙�𝑗𝑗 − 𝜂𝜂 𝐽𝐽𝜙𝜙𝑗𝑗

′ �
𝕍𝕍�
≥ 𝜎𝜎𝑗𝑗 �𝜁𝜁 − 𝜂𝜂𝐽𝐽𝜁𝜁′ �𝕍𝕍�� ,∀𝑗𝑗 ∈ Χ2                                 

7:              𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 = 0  

8:             for 𝑚𝑚 = 1, 2, … ,𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 do 

9:                   𝜂𝜂1 ← 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 + (1 − 𝕡𝕡)(𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚) 

10:                 𝜂𝜂2 ← 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 + 𝕡𝕡(𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚) 

11:                 𝜂𝜂∗ ← arg min 𝐽𝐽�𝕍𝕍� − 𝜂𝜂∇𝕍𝕍��  𝑠𝑠. 𝑡𝑡. 𝜂𝜂 ∈ [𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝜂𝜂1,𝜂𝜂2, 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚] 

12:                 if 𝜂𝜂∗ in [𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝜂𝜂1] then 

13:                      𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 ← 𝜂𝜂2 

14:                 else 

15:                      𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 ← 𝜂𝜂1 

16:                 𝕍𝕍∗ ← 𝕍𝕍� − 𝜂𝜂∗∆𝕍𝕍� 

17:                   𝐷𝐷∗ = 𝐽𝐽�𝕍𝕍� − 𝜂𝜂∗∆𝕍𝕍�� 

18:      𝑆𝑆𝐷𝐷∗ ← 𝑆𝑆𝐷𝐷∗ + {𝐷𝐷∗}  

19:      𝑆𝑆𝕍𝕍∗ ← 𝑆𝑆𝕍𝕍∗ + {𝕍𝕍∗}  

20: 𝕍𝕍(𝑘𝑘+1,∗) = 𝑆𝑆𝕍𝕍∗[arg min(𝑆𝑆𝐷𝐷∗)] 

 

Algorithm 2. Random signal generation algorithm. 

Input: Optimized signal plan for cycle 𝑘𝑘 , 𝕍𝕍(𝑘𝑘,∗) =

�𝜃𝜃1
(𝑘𝑘,∗), … ,𝜃𝜃𝑖𝑖

(𝑘𝑘,∗), …𝜃𝜃𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃
(𝑘𝑘,∗) ,𝜙𝜙1

(𝑘𝑘,∗), … ,𝜙𝜙𝑖𝑖
(𝑘𝑘,∗), …𝜙𝜙𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃

(𝑘𝑘,∗) , 𝜁𝜁(𝑘𝑘,∗)�, where 𝑘𝑘 ≥ 0 and 𝑁𝑁𝑅𝑅  is the number 

of random signal plans. 

Output: A set of starting signal plans 𝑆𝑆𝕍𝕍 = 𝔾𝔾�𝕍𝕍(𝑘𝑘,∗),𝑁𝑁𝑅𝑅�. 

Initialization: 𝑆𝑆𝕍𝕍 ← {} 

1:  𝑆𝑆𝕍𝕍 ← 𝑆𝑆𝕍𝕍 + �𝕍𝕍(𝑘𝑘,∗)� 

2:  for 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑅𝑅 do 

3:        Randomly generate a direction �𝜖𝜖1, … , 𝜖𝜖2(𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃)+1�, 𝜖𝜖𝑗𝑗~𝑈𝑈(−1,1),∀𝑗𝑗 ∈ [1,2(𝑁𝑁𝑇𝑇 +𝑁𝑁𝑃𝑃) + 1]. 

4:       Solve the following LP problems: 

𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 = arg min𝜂𝜂  𝑎𝑎𝑎𝑎𝑎𝑎 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 = arg max 𝜂𝜂                                                                                     

𝑠𝑠. 𝑡𝑡. 𝜁𝜁(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖2(𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃)+1 ≥
1

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
                                                                                                                   

0 ≤ 𝜃𝜃𝑗𝑗
(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖𝑗𝑗 ≤ 1,∀𝑗𝑗 ∈ [1,𝑁𝑁𝑇𝑇 + 𝑁𝑁𝑃𝑃]                                                                                          

0 ≤ 𝜙𝜙𝑗𝑗
(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖𝑗𝑗 ≤ 1,∀𝑗𝑗 ∈ [1,𝑁𝑁𝑇𝑇 + 𝑁𝑁𝑃𝑃]                                                                                          

𝜙𝜙𝑗𝑗
(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖𝑗𝑗 ≥ 𝑔𝑔𝑇𝑇�𝜁𝜁(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖2(𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃)+1�,∀𝑗𝑗 ∈ [1,𝑁𝑁𝑇𝑇]                                                              

𝜙𝜙𝑗𝑗
(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖𝑗𝑗 ≥ 𝑔𝑔𝑃𝑃�𝜁𝜁(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖2(𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃)+1�,∀𝑗𝑗 ∈ [𝑁𝑁𝑇𝑇 + 1,𝑁𝑁𝑇𝑇 + 𝑁𝑁𝑃𝑃]                                         
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        𝜃𝜃𝑢𝑢
(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖𝑢𝑢 + 𝜙𝜙𝑢𝑢

(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖𝑢𝑢 + 𝑡𝑡𝑢𝑢𝑢𝑢�𝜁𝜁(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖2(𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃)+1� ≤ 𝜃𝜃𝑣𝑣
(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖𝑣𝑣 + Ω𝑢𝑢𝑢𝑢 ,∀(𝑢𝑢, 𝑣𝑣) ∈ Ψ 

 𝜃𝜃𝑗𝑗
(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖𝑗𝑗 = ∆𝑗𝑗�𝜁𝜁(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖2(𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃)+1�,∀𝑗𝑗 ∈ Χ1                                                                         

 𝜃𝜃𝑗𝑗
(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖𝑗𝑗 + 𝜙𝜙𝑗𝑗

(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖𝑗𝑗 ≥ 𝜎𝜎𝑗𝑗�𝜁𝜁(𝑘𝑘,∗) − 𝜂𝜂𝜖𝜖2(𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃)+1�,∀𝑗𝑗 ∈ Χ2                                              

5:       Randomly generate a number 𝜗𝜗~𝑈𝑈(0,1) 

6:       𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜗𝜗(𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚) 

7:       𝑆𝑆𝕍𝕍 ← 𝑆𝑆𝕍𝕍 + �𝕍𝕍(𝑘𝑘,∗) − 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚�𝜖𝜖1, … , 𝜖𝜖2(𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃)+1�� 

 

 
Figure 4. Illustration of the G3S2 algorithm. 

 

6. Realistic Simulations 

This section presents a comprehensive and realistic simulation study to demonstrate the 

applicability and efficiency of the proposed CVASC framework and its solution methods.  

 

6.1. General settings 

Simulations were performed using a VISSIM platform in a Windows 10 environment on a 

machine equipped with an Intel Core i7-10700 CPU. Intersection 1 in the next-generation simulation 

(NGSIM) dataset, a real-world intersection at the junction of Peachtree Street and 10th Street in Atlanta, 

Georgia, USA, was selected for the simulation study. The original layout of the intersection did not 

include any pedestrian crossings. However, given the crucial role that pedestrians play at intersections, 

many studies have specifically considered pedestrians in intersection control (e.g., Liang et al., 2020b; 

Yin et al., 2021). To demonstrate the versatility of the proposed framework, two pedestrian crossings 

were introduced. The modified intersection layout and the corresponding groups are illustrated in 
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Figures 5 and 6, respectively. Additionally, the actual demands and turning proportions between 12:45 

and 13:00 on November 8, 2006 were extracted and are provided in Table O1 in Appendix O. 

  
Figure 5. Modified Intersection 1. Figure 6. Corresponding signal groups. 

Various simulation cases were constructed using different V/C ratios (i.e., 0.3, 0.5, and 0.7) and 

underlying CV penetration rates (i.e., 0.1, 0.4, and 0.7). For each simulation case, the study period was 

set to 2 h after a 30-min warm-up period. Vehicle arrivals followed Poisson distributions with constant 

average demands during the warm-up period, and the optimal fixed-time signal plan derived from the 

optimised signal capacity and delay (OSCADY) model was implemented. To simulate a realistic rush-

hour traffic demand pattern, each approach was set to have a commonly used triangular demand profile, 

in which the demand starts and ends at 0.8 times the average demand, peaking at 1.2 times the average 

demand. That is, while the average demand for each approach varied over time, the mean of these 

average demands remained identical to the constant average demand used in the warm-up period. In 

addition, the triangular demand profile period aligned with the duration of the study period. The demand 

generated under each average demand followed a Poisson distribution. To test different V/C ratios, the 

average demands corresponding to the V/C ratios of interest (i.e., 0.3, 0.5, and 0.7) were derived by 

scaling the actual demands up or down. Furthermore, each vehicle had probabilities 𝓅𝓅 and 1 − 𝓅𝓅 of 

being a CV and a non-CV, respectively, with different underlying CV penetration rates considered (i.e., 

0.1, 0.4, and 0.7). 

 

6.2. Signal control schemes 

To critically evaluate the performance of the proposed control schemes, namely the DPRC and 

SPRC schemes, within the CVASC framework, the built-in vehicle-actuated control (VAC) scheme in 

VISSIM was chosen as the benchmark. VAC relies on downstream detectors placed on each lane to 

detect vehicle presence and adaptively adjusts signal timings based on real-time traffic data. Thus, as 

the VAC scheme uses full traffic information, it has demonstrated reliable and satisfactory performance 

and has been widely employed as a benchmark (Feng et al., 2015; Feng et al., 2018; Wang et al., 2021; 

Tan and Yang, 2024). Given that the VAC scheme operates without a fixed cycle length, the total 

junction delay (defined as the sum of all vehicle delays experienced during the study period) was 

selected as the evaluation metric for all signal control schemes under consideration. 
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In the VAC scheme, the minimum durations for traffic signal groups were set to 5 s, while the 

minimum durations for pedestrian signal groups 10 and 11 (depicted in Figures 5 and 6) were set to 18 

s and 9 s, respectively, based on a lane width of 3.5 m. The maximum green and vehicle extension times 

for each signal group were determined by a simple grid search method with step sizes of 10 s and 2 s, 

respectively. For each combination of maximum green and vehicle extension times, a 2-h simulation 

was conducted to determine the resulting total junction delay, with the combination yielding the lowest 

total junction delay selected as the optimal parameters. Amber and red clearance times for all signal 

groups were set to 3 s and 2 s, respectively. The controller frequency was set to 2 Hz, enabling 

communication with VISSIM twice per second during the simulation. Following a 30-min warm-up 

period, the VAC scheme was implemented with optimal parameters in VISSIM to control all traffic 

signals over the 2-h study period. Vehicle delays recorded by VISSIM during this period were 

subsequently stored for evaluation. 

In contrast, both DPRC and SPRC involved cycle-by-cycle adaptive signal control solely based 

on CV data. These schemes optimized the signal plan at the end of each cycle and implemented the 

optimized plan in the next cycle. The successor matrix and the clearance time matrix (Tables O2 and 

O3 in Appendix O) determined the group sequence and the clearance times, respectively. These 

matrices were essential parameters in DPRC and SPRC. Both schemes followed the same set of 

constraints outlined in Eqs. (15) to (22). Without loss of generality, the start of green of signal group 1 

was set to the beginning of a cycle. As with VAC, the minimum durations for traffic signal groups were 

set to 5 s, while those for pedestrian signal groups 10 and 11 were set to 18 s and 9 s, respectively. 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 

was set to 120 s. Considering the computational constraints in real-world applications, a 3 s buffer was 

reserved at the start of the signal plan, necessitating 𝜃𝜃9 + 𝜙𝜙9 − 1 ≥ 3𝜁𝜁 given the defined intersection 

and signal groups. After the observation of several cycles, the saturation flow rate and the average 

effective vehicle length were determined as 2,268 veh/h and 6.44 m, respectively. The primary 

distinction between DPRC and SPRC lies in the treatment of the CV penetration rate uncertainty. DPRC 

does not consider this uncertainty, resulting in fixed vehicle arrival rates and deterministic control, while 

SPRC incorporates its uncertainty, and hence the uncertainty in vehicle arrival rates, leading to 

stochastic control. DPRC, SPRC with 𝜔𝜔 = 0 , and SPRC with 𝜔𝜔 = 20  were considered in the 

simulation study. To implement the proposed G3S2 algorithm, the number of random signal plans 

explored in each optimization cycle, 𝑁𝑁𝑅𝑅, must be determined. A small 𝑁𝑁𝑅𝑅 may result in the failure to 

capture potentially better solutions, while excessively large 𝑁𝑁𝑅𝑅  values may yield only marginal 

improvement at a high computational cost. Preliminary experiments determined appropriate values for 

𝑁𝑁𝑅𝑅 as follows: 19 for DPRC, 29 for SPRC with 𝜔𝜔 = 0, and 39 for SPRC with 𝜔𝜔 = 20. Further details 

are provided in Appendix P. Additionally, both 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑁𝑁𝐺𝐺𝐺𝐺𝑆𝑆 in Algorithm 1 were set to 5. The initial 

signal plan 𝕍𝕍(0,∗) for both DPRC and SPRC was configured as the optimal fixed-time signal plan to 
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ensure fair comparisons. Each simulation case consisted of a 30-min warm-up followed by a 2-h study 

period, during which individual vehicle delays were recorded for evaluation. 

 

6.3. Results  

Table 5 presents the performances of different signal control schemes at a low V/C ratio (0.3), 

with the last column indicating the percentage improvement in total junction delay of the proposed 

control schemes compared with the VAC scheme benchmark. Given the light traffic demand, the 

performances of the signal control schemes were not expected to vary significantly. The DPRC scheme, 

which does not account for CV penetration rate uncertainty, exhibited slightly inferior but comparable 

performance to the VAC scheme across different levels of CV penetration. Performance worsened as 

CV penetration rates decreased and improved as CV penetration rates increased. In contrast to the DPRC 

scheme, the SPRC scheme accounts for CV penetration rate uncertainty. The SPRC scheme with ω = 

20, which optimized for both efficiency and stability, only partially considered traffic efficiency but 

demonstrated performance that was comparable to or slightly better than the performances of the DPRC 

and VAC schemes across different CV penetration rates. In contrast, the SPRC scheme with ω = 0, 

which optimized for only traffic efficiency, outperformed the VAC and DPRC schemes at all CV 

penetration rates (i.e., 0.1, 0.4, and 0.7). Similarly, performance improved with increased CV 

penetration rates. These results highlight the importance of considering CV penetration rate uncertainty 

in CV-based traffic signal control. 

Table 5. Performance comparison of different signal control schemes at a V/C ratio of 0.3 with 

varying 𝓅𝓅.  

Scheme 𝓅𝓅 
Incorporation of 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝𝑚𝑚,𝑘𝑘�? 
Total junction delay (s) Improvement (%) 

VAC - - 79,004 - 

DPRC 0.1  79,376 -0.47 

DPRC 0.4  79,016 -0.02 

DPRC 0.7  79,007 -0.00 

SPRC (𝜔𝜔 = 20) 0.1  79,177 -0.22 

SPRC (𝜔𝜔 = 20) 0.4  79,018 -0.02 

SPRC (𝜔𝜔 = 20) 0.7  78,706 0.38 

SPRC (𝜔𝜔 = 0) 0.1  78,563 0.56 

SPRC (𝜔𝜔 = 0) 0.4  77,666 1.69 

SPRC (𝜔𝜔 = 0) 0.7  77,376 2.06 

 

Table 6 presents the performances of different signal control schemes at a medium V/C ratio 

(0.5), and it can be seen that the patterns of performance are similar to those depicted in Table 5. The 
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performance of the DPRC scheme improved as CV penetration rates increased but remained slightly 

inferior to that of the VAC scheme across all CV penetration rates (0.1, 0.4, and 0.7). The SPRC scheme 

with ω = 20 only partially considered traffic efficiency and thus its total junction delay improvements 

were -2.97%, -0.47%, and 1.03% (compared with the VAC scheme) at CV penetration rates of 0.1, 0.4, 

and 0.7, respectively. In contrast, the SPRC scheme with ω = 0 fully optimized traffic efficiency and 

thus its total junction delay improvements were more significant, namely 2.99%, 5.36%, and 7.03% 

(compared with the VAC scheme) at CV penetration rates of 0.1, 0.4, and 0.7, respectively. Table 7 

presents the performance of different signal control schemes at a high V/C ratio (0.7), and it can be seen 

that the DPRC scheme exhibited worse performance than the VAC scheme at CV penetration rates of 

0.1 and 0.4 but better performance than the VAC scheme at a CV penetration rate of 0.7. The SPRC 

scheme with ω = 20 only partially considered traffic efficiency and thus did not demonstrate any 

improvements (compared with the VAC scheme) in total junction delay at CV penetration rates of 0.1, 

0.4, and 0.7. However, the SPRC scheme with ω = 0 fully optimized traffic efficiency and thus 

outperformed the VAC scheme by 4.44% and 12.62% in total junction delay at CV penetration rates of 

0.4 and 0.7, respectively. These findings suggest that across a wide range of CV penetration rates and 

V/C ratios, the proposed CV-based signal control schemes, which do not rely on detector data, generally 

perform similarly to or better than the VAC scheme, which requires complete traffic information from 

detectors. Furthermore, these findings underscore the significance and superiority of incorporating CV 

penetration rate uncertainty into CV-based traffic signal control. 

Table 6. Performance comparison of different signal control schemes at a V/C ratio of 0.5 with 

varying 𝓅𝓅. 

Scheme 𝓅𝓅 
Incorporation of 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝𝑚𝑚,𝑘𝑘�? 
Total junction delay (s)  Improvement (%) 

VAC - - 146,607 - 

DPRC 0.1  149,297 -1.83 

DPRC 0.4  148,278 -1.14 

DPRC 0.7  148,192 -1.08 

SPRC (𝜔𝜔 = 20) 0.1  150,960 -2.97 

SPRC (𝜔𝜔 = 20) 0.4  147,301 -0.47 

SPRC (𝜔𝜔 = 20) 0.7  145,093 1.03 

SPRC (𝜔𝜔 = 0) 0.1  142,226 2.99 

SPRC (𝜔𝜔 = 0) 0.4  138,745 5.36 

SPRC (𝜔𝜔 = 0) 0.7  136,301 7.03 

 
Table 7. Performance comparison of different signal control schemes at a V/C ratio of 0.7 with 

varying 𝓅𝓅. 
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Scheme 𝓅𝓅 
Incorporation of 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝𝑚𝑚,𝑘𝑘�? 
Total junction delay (s) Improvement (%) 

VAC - - 329,837 - 

DPRC 0.1  431,355 -30.78 

DPRC 0.4  355,579 -7.80 

DPRC 0.7  323,523 1.91 

SPRC (𝜔𝜔 = 20) 0.1  397,908 -20.64 

SPRC (𝜔𝜔 = 20) 0.4  358,294 -8.63 

SPRC (𝜔𝜔 = 20) 0.7  337,146 -2.22 

SPRC (𝜔𝜔 = 0) 0.1  357,563 -8.41 

SPRC (𝜔𝜔 = 0) 0.4  315,182 4.44 

SPRC (𝜔𝜔 = 0) 0.7  288,226 12.62 

 
Figure 7 illustrates the results reported in Tables 5, 6, and 7, which serve as a valuable reference 

for determining the critical CV penetration rate required for real-world implementation of the CVASC 

framework. Crucially, none of the proposed control schemes require on-road detectors, whereas the 

VAC scheme is detector-dependent. The results clearly demonstrate that the proposed control schemes 

generally performed similarly to or outperformed the VAC scheme. In particular, the SPRC scheme 

with 𝜔𝜔 = 0, which fully optimizes for traffic efficiency, accounted for uncertain vehicle arrival rate due 

to CV penetration rate uncertainty and thus demonstrated marked superiority and robustness. Therefore, 

the SPRC scheme with 𝜔𝜔 = 0 yielded consistent and significant improvements across most cases. At 

low and medium V/C ratios (i.e., 0.3 and 0.5), it outperformed the VAC scheme, even with a low CV 

penetration rate of 0.1, which has already been achieved in some cities around the world. At a high V/C 

ratio (0.7), the critical CV penetration rate was only approximately 0.3. These findings suggest that 

implementing the SPRC scheme with 𝜔𝜔 = 0 at low CV penetration rates (i.e., 0.1–0.3) would yield 

better outcomes than implementing the VAC scheme across various traffic demand conditions and 

without requiring complete traffic information from fixed detectors. Conversely, the SPRC scheme with 

𝜔𝜔 = 20, which is designed to balance efficiency with stability, exhibited a slight reduction in efficiency 

compared with the SPRC scheme with 𝜔𝜔 = 0. Appendix Q provides further experiments comparing 

the properties of the SPRC schemes with 𝜔𝜔 = 0 and 𝜔𝜔 = 20. 

 
Figure 7. Comparison of different signal control schemes with varying V/C ratios and 𝓅𝓅. 
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The average computational costs per cycle for DPRC, SPRC with 𝜔𝜔 = 0, and SPRC with 𝜔𝜔 =

20 across various V/C ratios and CV penetration rates included parameter estimations and optimization 

processes. These computations took approximately 0.80, 1.05, and 1.06 s, respectively, on the 

designated machine. These values were all below the reserved computation time of 3 s. Furthermore, 

more powerful graphical processing units and clusters hold the potential to further reduce computing 

time in practical applications. These results consistently demonstrate the applicability and efficiency of 

the proposed DPRC, SPRC and solution methods, highlighting the significance of incorporating the CV 

penetration rate uncertainty, and thus the uncertainty in vehicle arrival rate, into signal optimization.  

 

7. Conclusions 

This paper proposes a CVASC framework that adaptively optimizes signal timings cycle by 

cycle using CV data. Moreover, an efficient ASD model and a G3S2 algorithm are introduced to solve 

the proposed DPRC and SPRC in CVASC, and the significance of considering CV penetration rate 

uncertainty in adaptive signal control is emphasized. A key challenge in this study lies in accurately 

estimating the mean, variance, and gradients of the stochastic objective, given numerous uncertain 

parameters and control variables. This paper effectively breaks down the complex problem according 

to the first principle. The explicit modeling of the uncertainty and its propagation process plays a vital 

role in solving the above stochastic problem. Conducting high-dimensional and non-convex 

optimization is another challenge. Starting with different initial points is important for the solution 

algorithm to search for better local minima. The basic idea is to systematically sample the initial solution 

from a feasible region as large as possible, thereby increasing the likelihood of identifying superior 

solutions. However, implementing such a simple idea in a high-dimensional optimization problem with 

numerous constraints is not straightforward. Transforming this complex problem into a standard LP 

problem effectively resolves this dilemma. Extensive numerical experiments and VISSIM simulations 

demonstrate the applicability and effectiveness of the proposed models. For users prioritizing efficiency, 

SPRC with 𝜔𝜔 = 0  is recommended, while SPRC with 𝜔𝜔 > 0  is recommended to achieve a balance 

between efficiency and stability. 

Nonetheless, this study presents certain limitations: (1) the successor matrix remains constant 

over cycles, and (2) complex interactions between intersections are not yet modeled. The successor 

matrix could be treated as variables and jointly optimized in each cycle. Furthermore, taking into 

account interactions between junctions delves into the more challenging domain of network-wide traffic 

control. Future research directions may involve addressing these limitations and extending these 

methods to network-wide adaptive signal control systems. 
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Appendix A. Glossary and table of symbols 

This appendix provides a glossary (Table A1) and table of symbols (Table A2). 

Table A1. Glossary. 

Terminology Description 

Connected vehicles (CVs) Vehicles equipped to exchange real-time traffic information (e.g., 

time, speed, location) with one another. 

CV-based adaptive signal 

control (CVASC) 

A framework that optimizes signal plans for isolation intersections 

on a cycle-by-cycle basis, exploiting partial CV data and operating 

without on-road detectors. 

Consequential system delay 

(CSD) 

An analytical model for estimating total junction delay. 

Deterministic penetration 

rate control (DPRC) 

A CV-based adaptive signal control method for isolated 

intersections that does not incorporate CV penetration rate 

uncertainty. 

Stochastic penetration rate 

control (SPRC) 

A CV-based adaptive signal control method for isolated 

intersections that incorporates CV penetration rate uncertainty. 

Gradient-guided golden 

section search (G3S2) 

algorithm 

An optimization algorithm that combines gradient information and 

golden section search for solving DPRC and SPRC. 

Analytical stochastic delay 

(ASD) model 

An analytical model used for estimating stochastic delay and its 

gradient. 

Generalized polynomial 

chaos expansion (gPCE) 

A polynomial approximation method used in stochastic modeling. 

VISSIM Verkehr In Städten – SIMulationsmodell, a microscopic, multi-

modal traffic flow simulation software developed by PTV Planung 

Transport Verkehr AG in Karlsruhe, Germany. 

Next-generation simulation 

(NGSIM) dataset 

A real-world trajectory dataset collected in the United States. 

Fifth-generation (5G) An advanced communication technology supporting high-speed 

data transmission. 

CV penetration rate The ratio of the number of CVs to the total number of vehicles. 

Single-source data 

penetration rate estimator 

(SSDPRE) 

An analytical model for estimating CV penetration rate. 

Probabilistic penetration rate 

(PPR) 

An analytical model for estimating CV penetration rate uncertainty. 
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Markov-constrained queue 

length (MCQL) 

An analytical model to account for residual-vehicle effects on CV 

penetration rate uncertainty. 

Successor matrix A matrix specifying the sequence in which traffic signal groups 

operate. 

Clearance time matrix A matrix defining the minimum gaps required for transitions 

between incompatible traffic signal groups. 

Holding vehicles  Vehicles that remain undischarged at the end of an arbitrarily 

defined cycle. 

Consequential delay The extra delay experienced beyond regular delay due to holding 

vehicles. 

Monte Carlo sampling 

(MCS) 

A computational technique for generating samples from a specific 

probability distribution. 

Vehicle-actuated control 

(VAC) 

An adaptive traffic signal control method that dynamically adjusts 

signals based on real-time vehicle presence detected by on-road 

sensors. 

 

Table A2. Symbols and definitions. 

Symbol Description 

𝑙𝑙 Total number of approaching lanes at an intersection. 

𝑁𝑁𝑇𝑇 Number of traffic signal groups. 

𝑁𝑁𝑃𝑃 Number of pedestrian groups. 

𝛀𝛀 Successor matrix defining signal group sequences. 

Ω𝑖𝑖𝑖𝑖 Element located in the 𝑖𝑖𝑡𝑡ℎ row and the 𝑗𝑗𝑡𝑡ℎ column in the successor 

matrix 𝛀𝛀. 

𝚻𝚻 Clearance time matrix, which indicates minimum transition gaps 

between incompatible traffic signal groups. 

𝑡𝑡𝑖𝑖𝑖𝑖 Element located in the 𝑖𝑖𝑡𝑡ℎ row and the 𝑗𝑗𝑡𝑡ℎ column in the clearance 

time matrix 𝚻𝚻. 

𝚿𝚿 Set of incompatible signal group pairs. 

𝐷𝐷 Total junction delay. 

𝐸𝐸(𝐷𝐷) Expected total junction delay. 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) Variance of total junction delay. 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 Vehicle arrival rate in lane 𝑚𝑚 in cycle 𝑘𝑘 + 1. 

𝑛𝑛𝑚𝑚,𝑘𝑘 Number of CVs in lane 𝑚𝑚 in cycle 𝑘𝑘. 

𝐶𝐶𝑘𝑘 Length of cycle 𝑘𝑘. 

𝑞𝑞�𝑚𝑚,𝑘𝑘 Average arrival rate in lane 𝑚𝑚, estimated at the end of cycle 𝑘𝑘. 
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𝑝𝑝𝑚𝑚,𝑘𝑘 CV penetration rate in lane 𝑚𝑚 in cycle 𝑘𝑘. 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝𝑚𝑚,𝑘𝑘) Variance of 𝑝𝑝𝑚𝑚,𝑘𝑘. 

𝜃𝜃𝑖𝑖 Time from the cycle origin to the start of an actual green signal for 

control group 𝑖𝑖 divided by the cycle time. 

𝜙𝜙𝑖𝑖 Duration of the actual green signal for control group 𝑖𝑖 divided by the 

cycle time. 

𝜁𝜁 Reciprocal of the cycle length. 

𝑅𝑅𝑚𝑚,𝑘𝑘 Number of holding vehicles in lane 𝑚𝑚 in cycle 𝑘𝑘. 

𝑑𝑑𝑚𝑚,𝑘𝑘+1 Traffic delay for lane 𝑚𝑚 in cycle 𝑘𝑘 + 1. 

𝑑𝑑𝑚𝑚,𝑘𝑘+1
𝑐𝑐  Consequential delay for lane 𝑚𝑚 in cycle 𝑘𝑘 + 1. 

𝑓𝑓 Abstract function representing total junction delay.  

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Maximum cycle length. 

𝑔𝑔𝑇𝑇 Minimum traffic signal group duration. 

𝑔𝑔𝑃𝑃 Minimum pedestrian signal group duration. 

𝐽𝐽𝐷𝐷 Deterministic total junction delay. 

𝕍𝕍 Control variable set. 

𝐽𝐽𝑆𝑆 Stochastic total junction delay. 

𝜔𝜔 User-defined parameter representing the trade-off between 

efficiency and stability. 

𝛼𝛼𝑚𝑚 Probability that a vehicle selects lane 𝑚𝑚. 

Φ Orthonormal polynomials. 

𝒄𝒄 Coefficient vector associated with orthonormal polynomials Φ. 

𝛫𝛫 Maximum order of generalized polynomial chaos expansion. 

𝜉𝜉 Number of samples for CV penetration rate. 

𝑍𝑍𝑚𝑚 Random variable associated with 𝑝𝑝𝑚𝑚,𝑘𝑘. 

𝕍𝕍(𝑘𝑘,∗) Optimized signal plan for cycle 𝑘𝑘. 

𝕡𝕡 Golden section number. 

𝓅𝓅 True CV penetration rate. 

 

Appendix B. Estimations of essential inputs 

B.1. Estimation of CV penetration rate uncertainty  

Consider any lane connected to a signalized intersection, where vehicles are required to stop 

during red signals and form constrained queues (Wong et al., 2019; Jia et al., 2023, 2024a, 2024b). Let 

𝑛𝑛𝑚𝑚,𝑘𝑘 be the number of observed CVs in the constrained queue in lane 𝑚𝑚 in cycle 𝑘𝑘 and 𝑁𝑁�𝑚𝑚,𝑘𝑘 be the 

number of vehicles prior to the last stopped CV in the constrained queue in lane 𝑚𝑚 in cycle 𝑘𝑘. According 
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to these two quantities, Wong et al. (2019) proved that the SSDPRE, 𝐸𝐸(𝑝𝑝�𝑚𝑚,𝑘𝑘), is an unbiased estimator 

for the average CV penetration rate, 𝑝̅𝑝𝑚𝑚,𝑘𝑘, where 

𝑝𝑝�𝑚𝑚,𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧
𝑛𝑛𝑚𝑚,𝑘𝑘 − 1
𝑁𝑁�𝑚𝑚,𝑘𝑘 − 1

         𝑖𝑖𝑖𝑖 𝑛𝑛𝑚𝑚,𝑘𝑘 > 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁�𝑚𝑚,𝑘𝑘 > 1       

1                𝑖𝑖𝑖𝑖 𝑛𝑛𝑚𝑚,𝑘𝑘 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁�𝑚𝑚,𝑘𝑘 = 1
0                𝑖𝑖𝑖𝑖 𝑛𝑛𝑚𝑚,𝑘𝑘 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁�𝑚𝑚,𝑘𝑘 > 1
0                𝑖𝑖𝑖𝑖 𝑛𝑛𝑚𝑚,𝑘𝑘 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁�𝑚𝑚,𝑘𝑘 = 0

,∀𝑚𝑚 ∈ [1, 𝑙𝑙]. (B1) 

More details can be found in Wong et al. (2019). However, in real-time applications, only a single 

realization of 𝑝𝑝�𝑚𝑚,𝑘𝑘 is available, and this can deviate from 𝑝̅𝑝𝑚𝑚,𝑘𝑘. To ensure unbiased model estimations 

and optimal system optimizations, it is crucial to account for the uncertainty of 𝑝𝑝�𝑚𝑚,𝑘𝑘, which is measured 

by the variance of the distribution of 𝑝𝑝�𝑚𝑚,𝑘𝑘, 𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝�𝑚𝑚,𝑘𝑘�. Considering any constrained queue length 𝑁𝑁𝑚𝑚,𝑘𝑘 

that follows a counting distribution such that 𝑃𝑃�𝑁𝑁𝑚𝑚,𝑘𝑘 = 𝑖𝑖� = 𝜉𝜉𝑖𝑖,∀𝑖𝑖 = 0, 1, 2, …  and 𝑛𝑛𝑚𝑚,𝑘𝑘 , which 

follows a binomial distribution, 𝐵𝐵(𝑁𝑁𝑚𝑚,𝑘𝑘, 𝑝̅𝑝𝑚𝑚,𝑘𝑘), Jia et al. (2023) derived an exact PPR model quantifying 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝�𝑚𝑚,𝑘𝑘): 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝�𝑚𝑚,𝑘𝑘� = lim
𝑗𝑗→+∞

�∑ 𝜉𝜉𝑖𝑖
𝑗𝑗
𝑖𝑖=1 𝑉𝑉2�𝑖𝑖, 𝑝̅𝑝𝑚𝑚,𝑘𝑘��,∀𝑚𝑚 ∈ [1, 𝑙𝑙], (B2) 

where 
𝑉𝑉2�𝑁𝑁𝑚𝑚,𝑘𝑘 , 𝑝̅𝑝𝑚𝑚,𝑘𝑘� =

�
∑ 𝑝̅𝑝𝑚𝑚,𝑘𝑘

𝑖𝑖�1− 𝑝̅𝑝𝑚𝑚,𝑘𝑘�
𝑁𝑁𝑚𝑚,𝑘𝑘−𝑖𝑖 �𝑉𝑉1�𝑖𝑖,𝑁𝑁𝑚𝑚,𝑘𝑘� + � 𝑖𝑖

𝑁𝑁𝑚𝑚,𝑘𝑘
�
2
� �𝑁𝑁𝑚𝑚,𝑘𝑘

𝑖𝑖 �𝑁𝑁𝑚𝑚,𝑘𝑘
𝑖𝑖=2 − 𝑝̅𝑝𝑚𝑚,𝑘𝑘

2 + 𝑝̅𝑝𝑚𝑚,𝑘𝑘�1− 𝑝̅𝑝𝑚𝑚,𝑘𝑘�
𝑁𝑁𝑚𝑚,𝑘𝑘−1 𝑖𝑖𝑖𝑖 𝑁𝑁𝑚𝑚,𝑘𝑘 > 1

𝑝̅𝑝𝑚𝑚,𝑘𝑘�1 − 𝑝̅𝑝𝑚𝑚,𝑘𝑘�                                                                                                                                             𝑖𝑖𝑖𝑖 𝑁𝑁𝑚𝑚,𝑘𝑘 = 1
, 

(B3) 

and  

𝑉𝑉1�𝑛𝑛𝑚𝑚,𝑘𝑘,𝑁𝑁𝑚𝑚,𝑘𝑘� =

⎩
⎪
⎨

⎪
⎧∑

𝑛𝑛𝑚𝑚,𝑘𝑘−1
𝑁𝑁𝑚𝑚,𝑘𝑘−𝑖𝑖

�𝑁𝑁𝑚𝑚,𝑘𝑘−𝑖𝑖−1
𝑛𝑛𝑚𝑚,𝑘𝑘−2

�
𝑁𝑁𝑚𝑚,𝑘𝑘−𝑛𝑛𝑚𝑚,𝑘𝑘+1
𝑖𝑖=1

�𝑁𝑁𝑛𝑛�
− 𝑛𝑛2

𝑁𝑁2      𝑖𝑖𝑖𝑖 𝑛𝑛𝑚𝑚,𝑘𝑘 > 1

𝑛𝑛𝑚𝑚,𝑘𝑘
2−2𝑛𝑛𝑚𝑚,𝑘𝑘+𝑁𝑁𝑚𝑚,𝑘𝑘
𝑁𝑁𝑚𝑚,𝑘𝑘

2                                 𝑖𝑖𝑖𝑖 𝑛𝑛𝑚𝑚,𝑘𝑘 = 1

0                                                             𝑖𝑖𝑖𝑖 𝑛𝑛𝑚𝑚,𝑘𝑘 = 0

.   (B4) 

Thus, 𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝�𝑚𝑚,𝑘𝑘�  can be taken as the estimator for 𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝𝑚𝑚,𝑘𝑘) . Under the assumption that the 

distribution of 𝑁𝑁𝑚𝑚,𝑘𝑘, which is the essential input of the PPR model, follows a Poisson distribution, the 

governing parameter of the constrained queue length distribution 𝑁𝑁0 can be estimated using the constant 

dissipation time (CDT) model (Jia et al., 2023): 

𝑁𝑁0 =
𝑠𝑠𝑞𝑞�𝑚𝑚,𝑘𝑘𝑟𝑟
𝑠𝑠 − 𝑞𝑞�𝑚𝑚,𝑘𝑘

,  (B5) 

where 𝑠𝑠  and 𝑟𝑟  represent the saturation flow rate and the red period, respectively. Furthermore, to 

account for the complex residual-vehicle effects, an MCQL model can be used to estimate the 

distribution of 𝑁𝑁𝑚𝑚,𝑘𝑘. More details on the development of the model are presented in Jia et al. (2024a, 

2024b). 

B.2. Estimation of average arrival rate and CV penetration rate 
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Given the PPR and CDT models, the joint probability distribution of 𝑛𝑛𝑚𝑚,𝑘𝑘 and 𝑁𝑁�𝑚𝑚,𝑘𝑘 is given as 

follows (Jia et al., 2023): 

𝑃𝑃�𝑛𝑛𝑚𝑚,𝑘𝑘 = 𝑖𝑖,𝑁𝑁�𝑚𝑚,𝑘𝑘 = 𝑗𝑗� =

⎩
⎪
⎨

⎪
⎧ 𝜋𝜋0 + �𝜋𝜋𝑧𝑧

𝑘𝑘

𝑧𝑧=1

�1 − 𝑝̅𝑝𝑚𝑚,𝑘𝑘�
𝑧𝑧,                                 𝑖𝑖 = 0, 𝑗𝑗 = 0

�𝜋𝜋𝑧𝑧 �
𝑗𝑗 − 1
𝑖𝑖 − 1

� 𝑝̅𝑝𝑚𝑚,𝑘𝑘
𝑖𝑖�1 − 𝑝̅𝑝𝑚𝑚,𝑘𝑘�

𝑧𝑧−𝑖𝑖,∀𝑖𝑖, 𝑗𝑗 = 1, 2, … ,𝑘𝑘, 𝑗𝑗 ≥ 𝑖𝑖
𝑘𝑘

𝑧𝑧=𝑗𝑗

, (B6) 

where 𝜋𝜋𝑧𝑧 = 𝑃𝑃�𝑁𝑁𝑚𝑚,𝑘𝑘 = 𝑧𝑧�,∀𝑧𝑧 = 0, 1, 2, …. Thus, 𝑞𝑞�𝑚𝑚,𝑘𝑘 and 𝑝̅𝑝𝑚𝑚,𝑘𝑘 can be estimated using the following 

maximum likelihood estimation formulation (Jia et al., 2023, 2024a, 2024b, 2024c): 

max
𝑞𝑞�𝑚𝑚,𝑘𝑘,𝑝̅𝑝𝑚𝑚,𝑘𝑘

�𝑃𝑃(𝑛𝑛𝑚𝑚,𝑘𝑘−𝑗𝑗,𝑁𝑁�𝑚𝑚,𝑘𝑘−𝑗𝑗)
𝜔𝜔

𝑗𝑗=0

,∀𝑚𝑚 ∈ [1, 𝑙𝑙], (B7) 

where 𝜔𝜔 = 0, 1, 2, … , 𝑘𝑘 − 1, and it represents the number of past cycles considered in the likelihood 

function. Following Jia et al. (2023, 2024a, 2024b, 2024c), this paper sets 𝜔𝜔 to 2. A simple grid search 

method can be used to solve Eq. (B7) and search for the optimal solution.  

B.3. Estimation of the number of holding vehicles  

The number of holding vehicles at the end of a cycle serves as the initial state of the subsequent 

cycle and plays a pivotal role in the estimation of traffic delay in the following cycle. Integrating holding 

vehicle information into the estimation of 𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝𝑚𝑚,𝑘𝑘)  and adaptive signal control can significantly 

enhance traffic efficiency (Jia et al., 2024a, 2024b). To accurately estimate the number of holding 

vehicles in lane 𝑚𝑚 in cycle 𝑘𝑘, 𝑅𝑅𝑚𝑚,𝑘𝑘, a generic and fully analytical model, CV-based holding vehicle 

(CVHV), was derived in a previous study (Jia et al., 2024c). The model consists of two sub-models, 

CVHV-I and CVHV-II, which are tailored to accommodate various holding vehicle patterns arising 

from different signal structures. Specifically, when a lane is controlled by a signal plan ending with an 

effective red, the CVHV-I sub-model should be applied; otherwise, the CVHV-II sub-model should be 

used. The estimated 𝑅𝑅𝑚𝑚,𝑘𝑘 is used in traffic delay estimation, as elaborated in Section 3. 

 

Appendix C. Proof of Proposition 1 

Under the assumption of a uniform vehicle arrival pattern, the traffic delay for lane 𝑚𝑚 in cycle 

𝑘𝑘 + 1, 𝑑𝑑𝑚𝑚,𝑘𝑘+1, can be visualized as the area enclosed by the cumulative arrival and departure lines 

(Figure 3). Cases 1 and 2 in Figure 3 are utilized to derive 𝑑𝑑𝑚𝑚,𝑘𝑘+1
(1)   and 𝑑𝑑𝑚𝑚,𝑘𝑘+1

(2)  , respectively. The 

formulae for 𝑑𝑑𝑚𝑚,𝑘𝑘+1
(1)  and 𝑑𝑑𝑚𝑚,𝑘𝑘+1

(2)  are derived according to simple geometry (Tables 1 and 2). It should 

be noted that the estimated delay is primarily governed by the vehicle arrival rate, which dictates the 

slope of the cumulative arrival line and largely determines the total number of arriving vehicles in a 

cycle. If the CV penetration rate uncertainty is ignored, a fixed vehicle arrival rate and slope are 

determined, resulting in the DPRC. In contrast, incorporating CV penetration rate uncertainty accounts 
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for the uncertainty in vehicle arrival rate, and hence the uncertainty in the slope of the cumulative arrival 

line, establishing the SPRC. 

 

Appendix D. Derivation of 𝒅𝒅𝒎𝒎,𝒌𝒌+𝟏𝟏
𝒄𝒄  

Under the assumption that holding vehicles arise owing to temporarily high demand in lane 𝑚𝑚 

in cycle 𝑘𝑘 + 1, 𝑞𝑞𝑚𝑚,𝑘𝑘+1, and the arrival rate in lane 𝑚𝑚 returns to the estimated average arrival rate in 

cycle 𝑘𝑘, 𝑞𝑞�𝑚𝑚,𝑘𝑘, after cycle 𝑘𝑘 + 1, the number of holding vehicles in lane 𝑚𝑚 at the end of cycle 𝑘𝑘 + 1, 

𝑅𝑅𝑚𝑚,𝑘𝑘+1, can be estimated as 𝑅𝑅𝑚𝑚,𝑘𝑘+1
(1)  if the signal group controlling that lane ends with effective red; 

otherwise, it is estimated as 𝑅𝑅𝑚𝑚,𝑘𝑘+1
(2) , where 

𝑅𝑅𝑚𝑚,𝑘𝑘+1
(1) =

⎩
⎨

⎧𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟2                             𝑖𝑖𝑖𝑖 𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤
𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑟𝑟1 + 𝑔𝑔
 

𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝐶𝐶 − 𝑠𝑠𝑠𝑠     𝑖𝑖𝑖𝑖 𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑟𝑟1 + 𝑔𝑔
 
; 

and 

(D1) 

 

𝑅𝑅𝑚𝑚,𝑘𝑘+1
(2) =

⎩
⎪
⎨

⎪
⎧𝑞𝑞𝑚𝑚,𝑘𝑘+1(𝑟𝑟 + 𝑔𝑔2) − 𝑠𝑠𝑔𝑔2              𝑖𝑖𝑖𝑖 𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤

𝑠𝑠𝑔𝑔1 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑔𝑔1
, 𝑞𝑞𝑚𝑚,𝑘𝑘+1 >

𝑠𝑠𝑔𝑔2
𝑟𝑟 + 𝑔𝑔2

 

𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝐶𝐶 − 𝑠𝑠𝑠𝑠         𝑖𝑖𝑖𝑖 𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑔𝑔1 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑔𝑔1
, 𝑞𝑞𝑚𝑚,𝑘𝑘+1 >

𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝐶𝐶
0                                                                           𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

. (D2) 

For ease of analysis, 𝑅𝑅𝑚𝑚,𝑘𝑘+1 can be projected to the end of the nearest green period, denoted as 𝑅𝑅𝑚𝑚,𝑘𝑘+1
′, 

which can be estimated as either 𝑅𝑅𝑚𝑚,𝑘𝑘+1
(1) ′

 or 𝑅𝑅𝑚𝑚,𝑘𝑘+1
(2) ′

depending on whether the lane is controlled by a 

signal group ending with effective red or green, as shown in Tables 3 and 4. 

  
Figure D1. Illustration of consequential delay estimation. 

An elevated arrival line is defined as a heightened level of arrival due to the presence of holding 

vehicles, while a regular arrival line represents the anticipated level of arrival without holding vehicles. 

As depicted in Figure D1, 𝑅𝑅𝑚𝑚,𝑘𝑘+1
′ > 0 indicates that some vehicles are carried over to the subsequent 

cycle owing to the temporarily high demand. In such cases, the new arrivals in the following cycle 

would experience extra delays beyond the regular delays experienced at 𝑅𝑅𝑚𝑚,𝑘𝑘+1
′ = 0 owing to the first-
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come-first-served property. Considering a selected analysis signal plan with an analysis cycle length 𝐶𝐶0, 

analysis effective green 𝑔𝑔𝑚𝑚,0 , and analysis effective red 𝑟𝑟𝑚𝑚,0  as a reference, the total delay for the 

system with holding vehicles is determined by the area enclosed by the elevated arrival line and the 

departure line. Conversely, the regular delay for the system without holding vehicles is the area enclosed 

by the regular arrival line and the departure line. The consequential delay induced by 𝑅𝑅𝑚𝑚,𝑘𝑘+1
′  as 

expressed in Eq. (11) is graphically represented by the difference between the total delay and the regular 

delay (Figure D1). In contrast, 𝑅𝑅𝑚𝑚,𝑘𝑘+1
′ = 0 indicates that all of the arrived vehicles in cycle 𝑘𝑘 + 1 are 

discharged before the end of the green period. Consequently, no vehicles will be carried over to the 

subsequent cycles, resulting in no additional influence on the system performance. Therefore, the 

consequential delay, 𝑑𝑑𝑚𝑚,𝑘𝑘+1
𝑐𝑐 , is expected to be 0. 

According to Figure D1,  

𝑑𝑑𝑚𝑚,𝑘𝑘+1
𝑐𝑐 = 𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂 +

|𝑂𝑂𝑂𝑂|
𝐶𝐶0

𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂 , (D3) 

where 

𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂 =
1
2
𝑅𝑅𝑚𝑚,𝑘𝑘+1

′|𝑂𝑂𝑂𝑂|, (D4) 

𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂 =
1
2
𝑠𝑠𝑟𝑟𝑚𝑚,0𝑔𝑔𝑚𝑚,0 −

1
2
𝑟𝑟𝑚𝑚,0𝑠𝑠|𝐻𝐻𝐻𝐻|. (D5) 

The conservation law of traffic flow guarantees that 

𝑅𝑅𝑚𝑚,𝑘𝑘+1
′ + 𝑞𝑞�𝑚𝑚,𝑘𝑘|𝑂𝑂𝑂𝑂| = 𝑠𝑠

𝑔𝑔𝑚𝑚,0

𝐶𝐶0
|𝑂𝑂𝑂𝑂|, (D6) 

and 

𝑞𝑞�𝑚𝑚,𝑘𝑘(𝑟𝑟𝑚𝑚,0 + |𝐻𝐻𝐼𝐼|) = 𝑠𝑠|𝐻𝐻𝐼𝐼|. (D7) 

Rearranging terms, Eqs. (D6) and (D7) respectively become  

|𝑂𝑂𝑂𝑂| =
𝐶𝐶0𝑅𝑅𝑚𝑚,𝑘𝑘+1

′

𝑠𝑠𝑔𝑔𝑚𝑚,0 − 𝐶𝐶0𝑞𝑞�𝑚𝑚,𝑘𝑘
, (D8) 

and 

|𝐻𝐻𝐼𝐼| =
𝑞𝑞�𝑚𝑚,𝑘𝑘𝑟𝑟𝑚𝑚,0

𝑠𝑠 − 𝑞𝑞�𝑚𝑚,𝑘𝑘
. (D9) 

By substituting Eqs. (D8) and (D9) into Eqs. (D4) and (D5), respectively, Eq. (D3) becomes  

𝑑𝑑𝑚𝑚,𝑘𝑘+1
𝑐𝑐 = 𝛾𝛾1,𝑚𝑚𝑅𝑅𝑚𝑚,𝑘𝑘+1

′ 2 + 𝛾𝛾2,𝑚𝑚𝑅𝑅𝑚𝑚,𝑘𝑘+1
′,∀𝑚𝑚 ∈ [1, 𝑙𝑙], (D10) 

where 

𝛾𝛾1,𝑚𝑚 =
𝐶𝐶0

2�𝑠𝑠𝑔𝑔𝑚𝑚,0 − 𝐶𝐶0𝑞𝑞�𝑚𝑚,𝑘𝑘�
, (D11) 

𝛾𝛾2,𝑚𝑚 =
𝑟𝑟𝑚𝑚,0𝑠𝑠

2(𝑠𝑠 − 𝑞𝑞�𝑚𝑚,𝑘𝑘)
. (D12) 

As the coefficients 𝛾𝛾1,𝑚𝑚 and 𝛾𝛾2,𝑚𝑚 in Eq. (D10) are lane-specific, the consequential delays for different 

lanes can differ even if the projected numbers of holding vehicles are identical. Moreover, the inverse 
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forms of 𝛾𝛾1,𝑚𝑚 and 𝛾𝛾2,𝑚𝑚 are sensitive to signal plans. Therefore, the averages of lane-specific coefficients 

𝛾𝛾1 and 𝛾𝛾2, as shown in Eqs. (11) to (13), are adopted in Proposition 2. 

 

Appendix E. Gradient of 𝒅𝒅𝒎𝒎,𝒌𝒌+𝟏𝟏 

According to 𝑑𝑑𝑚𝑚,𝑘𝑘+1
(1)  and 𝑑𝑑𝑚𝑚,𝑘𝑘+1

(2)  in Tables 1 and 2 and the parameters defined in Eqs. (4)–(10), 

the first partial derivatives of 𝑑𝑑𝑚𝑚,𝑘𝑘+1
(1)   and 𝑑𝑑𝑚𝑚,𝑘𝑘+1

(2)   𝑤𝑤. 𝑟𝑟. 𝑡𝑡.  different parameters are derived using the 

chain rules, as shown in Tables E1 and E2, respectively. 

Table E1. First partial derivatives of 𝑑𝑑𝑚𝑚,𝑘𝑘+1
(1) . 

Condition First partial derivative 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤
𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑟𝑟1 + 𝑔𝑔
 𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1

(1)

𝜕𝜕𝜃𝜃𝑖𝑖
=
𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1(𝑟𝑟1 − 𝑟𝑟2)

𝜁𝜁
+
𝑞𝑞𝑚𝑚,𝑘𝑘+1(𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟1)

𝜁𝜁(𝑠𝑠 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1)
 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(1)

𝜕𝜕𝜙𝜙𝑖𝑖
= −

𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟2
𝜁𝜁

 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(1)

𝜕𝜕𝜕𝜕
= −

(𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟1)𝜃𝜃𝑖𝑖 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟2(1− 𝜃𝜃𝑖𝑖 − 𝜙𝜙𝑖𝑖)
𝜁𝜁2

−
2𝑞𝑞𝑚𝑚,𝑘𝑘+1𝜃𝜃𝑖𝑖�𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟1�

2𝜁𝜁2(𝑠𝑠 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1)
 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑟𝑟1 + 𝑔𝑔
 𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1

(1)

𝜕𝜕𝜃𝜃𝑖𝑖
=
𝑠𝑠𝑠𝑠
𝜁𝜁

 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(1)

𝜕𝜕𝜙𝜙𝑖𝑖
=
𝑠𝑠(𝑔𝑔 + 𝑟𝑟1 − 𝐶𝐶)

𝜁𝜁
 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(1)

𝜕𝜕𝜕𝜕
= −

𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝐶𝐶 − 𝑠𝑠𝑠𝑠 + 𝜙𝜙𝑖𝑖𝑠𝑠(𝑔𝑔 + 𝑟𝑟1 − 𝐶𝐶) + 𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖
𝜁𝜁2

 

 

Table E2. First partial derivatives of 𝑑𝑑𝑚𝑚,𝑘𝑘+1
(2) . 

Condition First partial derivative 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤
𝑠𝑠𝑔𝑔1 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑔𝑔1
, 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤
𝑠𝑠𝑔𝑔2
𝑟𝑟 + 𝑔𝑔2

 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(2)

𝜕𝜕𝜃𝜃𝑖𝑖
= 0 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(2)

𝜕𝜕𝜙𝜙𝑖𝑖
=

𝑠𝑠𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟
𝜁𝜁(𝑞𝑞𝑚𝑚,𝑘𝑘+1 − 𝑠𝑠)

 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(2)

𝜕𝜕𝜕𝜕
= −

𝑠𝑠𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟(1 − 𝜙𝜙𝑖𝑖)
𝜁𝜁2(𝑠𝑠 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1)

 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤
𝑠𝑠𝑔𝑔1 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑔𝑔1
, 𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1

(2)

𝜕𝜕𝜃𝜃𝑖𝑖
=
𝑠𝑠𝑔𝑔2 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1(𝑟𝑟 + 𝑔𝑔2)

𝜁𝜁
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𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑔𝑔2
𝑟𝑟 + 𝑔𝑔2

 𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(2)

𝜕𝜕𝜙𝜙𝑖𝑖
= −

𝑞𝑞𝑚𝑚,𝑘𝑘+1(𝑟𝑟 + 𝑔𝑔2)
𝜁𝜁

 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(2)

𝜕𝜕𝜕𝜕
= −

𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟(2 −𝜙𝜙𝑖𝑖 − 𝜃𝜃𝑖𝑖)
𝜁𝜁2

−
𝑔𝑔2�𝑞𝑞𝑚𝑚,𝑘𝑘+1(1− 𝜙𝜙𝑖𝑖) + (1 − 𝜃𝜃𝑖𝑖)�𝑞𝑞𝑚𝑚,𝑘𝑘+1 − 𝑠𝑠��

𝜁𝜁2
 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑔𝑔1 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑔𝑔1
, 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤
𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝐶𝐶
 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(2)

𝜕𝜕𝜃𝜃𝑖𝑖
= −

𝑠𝑠𝑠𝑠
𝜁𝜁

 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(2)

𝜕𝜕𝜙𝜙𝑖𝑖
=
𝑠𝑠�𝑟𝑟𝑟𝑟 + 𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑔𝑔1�𝑞𝑞𝑚𝑚,𝑘𝑘+1 − 𝑠𝑠��

𝜁𝜁(𝑞𝑞𝑚𝑚,𝑘𝑘+1 − 𝑠𝑠)
 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(2)

𝜕𝜕𝜕𝜕
= −

1
𝜁𝜁2 �

(𝜃𝜃𝑖𝑖 + 𝜙𝜙𝑖𝑖 − 1)�𝑅𝑅𝑚𝑚,𝑘𝑘 + �𝑞𝑞𝑚𝑚,𝑘𝑘+1 − 𝑠𝑠�(𝑔𝑔1 + 𝑟𝑟)�

+ (1 − 𝜙𝜙𝑖𝑖)�𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟

+ 𝑔𝑔1�𝑞𝑞𝑚𝑚,𝑘𝑘+1 − 𝑠𝑠���

+
𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑔𝑔1�𝑞𝑞𝑚𝑚,𝑘𝑘+1 − 𝑠𝑠� + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟

2�𝑠𝑠 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1�
2 �2�𝑠𝑠

− 𝑞𝑞𝑚𝑚,𝑘𝑘+1� �−
1
𝜁𝜁2 �

(𝜃𝜃𝑖𝑖 + 𝜙𝜙𝑖𝑖 − 1)�𝑞𝑞𝑚𝑚,𝑘𝑘+1 − 𝑠𝑠�

+ 𝑞𝑞𝑚𝑚,𝑘𝑘+1(1− 𝜙𝜙𝑖𝑖)��� 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑔𝑔1 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑔𝑔1
, 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝐶𝐶
 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(2)

𝜕𝜕𝜃𝜃𝑖𝑖
= −

𝑠𝑠𝑠𝑠
𝜁𝜁

 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(2)

𝜕𝜕𝜙𝜙𝑖𝑖
= −

𝑠𝑠(𝑟𝑟 + 𝑔𝑔2)
𝜁𝜁

 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
(2)

𝜕𝜕𝜕𝜕
= −

1
𝜁𝜁2 �

(𝜃𝜃𝑖𝑖 + 𝜙𝜙𝑖𝑖 − 1)�𝑅𝑅𝑚𝑚,𝑘𝑘 + �𝑞𝑞𝑚𝑚,𝑘𝑘+1 − 𝑠𝑠�(𝑔𝑔1 + 𝑟𝑟)�

+ (1 − 𝜙𝜙𝑖𝑖)�𝑅𝑅𝑚𝑚,𝑘𝑘 + 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟

+ 𝑔𝑔1�𝑞𝑞𝑚𝑚,𝑘𝑘+1 − 𝑠𝑠���

+
1

2𝜁𝜁2 �
𝑠𝑠(1 − 𝜃𝜃𝑖𝑖)(𝑔𝑔 + 𝑔𝑔1)

+ 𝑔𝑔2𝑠𝑠(2𝜙𝜙𝑖𝑖 + 𝜃𝜃𝑖𝑖 − 1) − 𝑔𝑔2𝑞𝑞𝑚𝑚,𝑘𝑘+1(1 + 𝜃𝜃𝑖𝑖)

− 𝑞𝑞𝑚𝑚,𝑘𝑘+1(1− 𝜃𝜃𝑖𝑖)(𝑟𝑟 + 𝑔𝑔1 + 𝐶𝐶)

− 2𝑅𝑅𝑚𝑚,𝑘𝑘(1− 𝜃𝜃𝑖𝑖)� 

 

Appendix F. Gradient of 𝒅𝒅𝒎𝒎,𝒌𝒌+𝟏𝟏
𝒄𝒄  



 41 

According to Eq. (11), the first partial derivatives of 𝑑𝑑𝑚𝑚,𝑘𝑘+1
𝑐𝑐   𝑤𝑤. 𝑟𝑟. 𝑡𝑡.  𝑥𝑥 , ∀𝑥𝑥 ∈ {𝜃𝜃𝑖𝑖,𝜙𝜙𝑖𝑖, 𝜁𝜁} , are 

given by 

𝜕𝜕𝑑𝑑𝑚𝑚,𝑘𝑘+1
𝑐𝑐

𝜕𝜕𝜕𝜕
= �2𝛾𝛾1𝑅𝑅𝑚𝑚,𝑘𝑘+1

′ + 𝛾𝛾2�
𝜕𝜕𝑅𝑅𝑚𝑚,𝑘𝑘+1

′

𝜕𝜕𝜕𝜕
,∀𝑥𝑥 ∈ {𝜃𝜃𝑖𝑖,𝜙𝜙𝑖𝑖, 𝜁𝜁}. (F1) 

As 𝑅𝑅𝑚𝑚,𝑘𝑘+1
′ can be respectively estimated as either 𝑅𝑅𝑚𝑚,𝑘𝑘+1

(1) ′
 or 𝑅𝑅𝑚𝑚,𝑘𝑘+1

(2) ′
 depending on whether the lane 

is controlled by a signal group ending with effective red or green, the first partial derivatives of 𝑅𝑅𝑚𝑚,𝑘𝑘+1
(1) ′

 

and 𝑅𝑅𝑚𝑚,𝑘𝑘+1
(2) ′

 are respectively derived in Tables F1 and F2. 

Table F1. First partial derivatives of 𝑅𝑅𝑚𝑚,𝑘𝑘+1
(1) ′

. 

Conditions 𝑹𝑹𝒎𝒎,𝒌𝒌+𝟏𝟏
(𝟏𝟏) ′

 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤
𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑟𝑟1 + 𝑔𝑔
, 

𝑞𝑞�𝑚𝑚,𝑘𝑘 >
𝑠𝑠𝑠𝑠 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝑟𝑟2

𝑟𝑟1 + 𝑔𝑔
 

𝜕𝜕𝑅𝑅𝑚𝑚,𝑘𝑘+1
(1) ′

𝜕𝜕𝜃𝜃𝑖𝑖
=
𝑞𝑞�𝑚𝑚,𝑘𝑘 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1

𝜁𝜁
 

𝜕𝜕𝑅𝑅𝑚𝑚,𝑘𝑘+1
(1) ′

𝜕𝜕𝜙𝜙𝑖𝑖
=
𝑞𝑞�𝑚𝑚,𝑘𝑘 − 𝑠𝑠 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1

𝜁𝜁
 

𝜕𝜕𝑅𝑅𝑚𝑚,𝑘𝑘+1
(1) ′

𝜕𝜕𝜕𝜕
=

(𝜃𝜃𝑖𝑖 + 𝜙𝜙𝑖𝑖)�𝑞𝑞𝑚𝑚,𝑘𝑘+1 − 𝑞𝑞�𝑚𝑚,𝑘𝑘� − 𝑞𝑞𝑚𝑚,𝑘𝑘+1 + 𝑠𝑠𝜙𝜙𝑖𝑖
𝜁𝜁2

 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑟𝑟1 + 𝑔𝑔
, 

𝑞𝑞�𝑚𝑚,𝑘𝑘 >
2𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝐶𝐶

𝑟𝑟1 + 𝑔𝑔
 

𝜕𝜕𝑅𝑅𝑚𝑚,𝑘𝑘+1
(1) ′

𝜕𝜕𝜃𝜃𝑖𝑖
=
𝑞𝑞�𝑚𝑚,𝑘𝑘

𝜁𝜁
 

𝜕𝜕𝑅𝑅𝑚𝑚,𝑘𝑘+1
(1) ′

𝜕𝜕𝜙𝜙𝑖𝑖
=
𝑞𝑞�𝑚𝑚,𝑘𝑘 − 2𝑠𝑠

𝜁𝜁
 

𝜕𝜕𝑅𝑅𝑚𝑚,𝑘𝑘+1
(1) ′

𝜕𝜕𝜕𝜕
=

2𝑠𝑠𝜙𝜙𝑖𝑖 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1 − 𝑞𝑞�𝑚𝑚,𝑘𝑘(𝜃𝜃𝑖𝑖 + 𝜙𝜙𝑖𝑖)
𝜁𝜁2

 

 

Table F2. First partial derivatives of 𝑅𝑅𝑚𝑚,𝑘𝑘+1
(2) ′

. 

Conditions 𝑹𝑹𝒎𝒎,𝒌𝒌+𝟏𝟏
(𝟐𝟐) ′

 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 ≤
𝑠𝑠𝑔𝑔1 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑔𝑔1
, 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑔𝑔2
𝑟𝑟 + 𝑔𝑔2

, 

𝑞𝑞�𝑚𝑚,𝑘𝑘 >
𝑠𝑠𝑠𝑠 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1(𝑟𝑟 + 𝑔𝑔2)

𝑔𝑔1
 

𝜕𝜕𝑅𝑅𝑚𝑚,𝑘𝑘+1
(2) ′

𝜕𝜕𝜃𝜃𝑖𝑖
=
𝑞𝑞�𝑚𝑚,𝑘𝑘 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1

𝜁𝜁
 

𝜕𝜕𝑅𝑅𝑚𝑚,𝑘𝑘+1
(2) ′

𝜕𝜕𝜙𝜙𝑖𝑖
=
𝑞𝑞�𝑚𝑚,𝑘𝑘 − 𝑠𝑠 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1

𝜁𝜁
 

𝜕𝜕𝑅𝑅𝑚𝑚,𝑘𝑘+1
(2) ′

𝜕𝜕𝜕𝜕

=
𝑞𝑞𝑚𝑚,𝑘𝑘+1(𝜃𝜃𝑖𝑖 + 𝜙𝜙𝑖𝑖 − 2) + 𝑠𝑠𝜙𝜙𝑖𝑖 + 𝑞𝑞�𝑚𝑚,𝑘𝑘(1− 𝜃𝜃𝑖𝑖 − 𝜙𝜙𝑖𝑖)

𝜁𝜁2
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𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑔𝑔1 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝑔𝑔1
, 

𝑞𝑞𝑚𝑚,𝑘𝑘+1 >
𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑚𝑚,𝑘𝑘

𝐶𝐶
, 

𝑞𝑞�𝑚𝑚,𝑘𝑘 >
𝑠𝑠(𝑔𝑔1 + 𝑔𝑔) − 𝑅𝑅𝑚𝑚,𝑘𝑘 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1𝐶𝐶

𝑔𝑔1
 

𝜕𝜕𝑅𝑅𝑚𝑚,𝑘𝑘+1
(2) ′

𝜕𝜕𝜃𝜃𝑖𝑖
=
𝑞𝑞�𝑚𝑚,𝑘𝑘 − 𝑠𝑠

𝜁𝜁
 

𝜕𝜕𝑅𝑅𝑚𝑚,𝑘𝑘+1
(2) ′

𝜕𝜕𝜙𝜙𝑖𝑖
=
𝑞𝑞�𝑚𝑚,𝑘𝑘 − 2𝑠𝑠

𝜁𝜁
 

𝜕𝜕𝑅𝑅𝑚𝑚,𝑘𝑘+1
(2) ′

𝜕𝜕𝜕𝜕
=
�𝑞𝑞�𝑚𝑚,𝑘𝑘 − 𝑠𝑠�(1 − 𝜃𝜃𝑖𝑖 − 𝜙𝜙𝑖𝑖) + 𝑠𝑠𝜙𝜙𝑖𝑖 − 𝑞𝑞𝑚𝑚,𝑘𝑘+1

𝜁𝜁2
 

 

Appendix G. Proof of Lemma 1 

Let 𝑞𝑞𝑚𝑚 represent the traffic demand for lane 𝑚𝑚,∀𝑚𝑚 ∈ [1, 𝑙𝑙], and let 𝑞𝑞 denote the total traffic 

demand, where 𝑞𝑞 = ∑ 𝑞𝑞𝑚𝑚𝑙𝑙
𝑚𝑚=1   follows 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆) . The proof is divided into two parts: (1) the 

independence of 𝑞𝑞𝑚𝑚, ∀𝑚𝑚 ∈ [1, 𝑙𝑙], and (2) the independence of 𝑝𝑝𝑚𝑚,𝑘𝑘, ∀𝑚𝑚 ∈ [1, 𝑙𝑙].  

(1) Independence of 𝑞𝑞𝑚𝑚 

Let the traffic demand assigned to lane 𝑚𝑚  be 𝑣𝑣𝑚𝑚,∀𝑚𝑚 ∈ [1, 𝑙𝑙] . The probability of observing 

𝑞𝑞1 = 𝑣𝑣1, … , 𝑞𝑞𝑚𝑚 = 𝑣𝑣𝑚𝑚, … , 𝑞𝑞𝑙𝑙 = 𝑣𝑣𝑙𝑙 is given by  

𝑃𝑃(𝑞𝑞1 = 𝑣𝑣1, … , 𝑞𝑞𝑚𝑚 = 𝑣𝑣𝑚𝑚, … , 𝑞𝑞𝑙𝑙 = 𝑣𝑣𝑙𝑙) 

= 𝑃𝑃�𝑞𝑞1 = 𝑣𝑣1, … , 𝑞𝑞𝑚𝑚 = 𝑣𝑣𝑚𝑚, … , 𝑞𝑞𝑙𝑙 = 𝑣𝑣𝑙𝑙� ∑ 𝑞𝑞𝑚𝑚𝑙𝑙
𝑚𝑚=1 = ∑ 𝑣𝑣𝑚𝑚𝑙𝑙

𝑚𝑚=1 �𝑃𝑃 �� 𝑞𝑞𝑚𝑚

𝑙𝑙

𝑚𝑚=1

= � 𝑣𝑣𝑚𝑚

𝑙𝑙

𝑚𝑚=1

� 

= 𝑃𝑃�𝑞𝑞1 = 𝑣𝑣1, … , 𝑞𝑞𝑚𝑚 = 𝑣𝑣𝑚𝑚, … , 𝑞𝑞𝑙𝑙 = 𝑣𝑣𝑙𝑙�𝑞𝑞 = ∑ 𝑣𝑣𝑚𝑚𝑙𝑙
𝑚𝑚=1 �𝑃𝑃 �𝑞𝑞 = � 𝑣𝑣𝑚𝑚

𝑙𝑙

𝑚𝑚=1

�, 

(G1) 

where 𝑃𝑃�𝑞𝑞1 = 𝑣𝑣1, … , 𝑞𝑞𝑚𝑚 = 𝑣𝑣𝑚𝑚, … , 𝑞𝑞𝑙𝑙 = 𝑣𝑣𝑙𝑙�𝑞𝑞 = ∑ 𝑣𝑣𝑚𝑚𝑙𝑙
𝑚𝑚=1 �  is the probability of observing 𝑞𝑞1 =

𝑣𝑣1, … , 𝑞𝑞𝑚𝑚 = 𝑣𝑣𝑚𝑚, … , 𝑞𝑞𝑙𝑙 = 𝑣𝑣𝑙𝑙 under the condition that 𝑞𝑞 = ∑ 𝑣𝑣𝑚𝑚𝑙𝑙
𝑚𝑚=1 . Given the lane choice probability 

𝛼𝛼𝑚𝑚 , ∀𝑚𝑚 ∈ [1, 𝑙𝑙] , the lane choice process can be modeled using a multinomial distribution with the 

following probability mass function:  

𝑃𝑃(𝑞𝑞1 = 𝑥𝑥1, … , 𝑞𝑞𝑚𝑚 = 𝑥𝑥𝑚𝑚, … , 𝑞𝑞𝑙𝑙 = 𝑥𝑥𝑙𝑙) = �
𝑞𝑞!

∏ 𝑥𝑥𝑚𝑚!𝑙𝑙
𝑚𝑚=1

�𝛼𝛼𝑚𝑚𝑥𝑥𝑚𝑚

𝑙𝑙

𝑚𝑚=1

         𝑖𝑖𝑖𝑖 𝑞𝑞 ∈ ℕ

0                                          𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

. (G2) 

Thus,  

𝑃𝑃�𝑞𝑞1 = 𝑣𝑣1, … , 𝑞𝑞𝑚𝑚 = 𝑣𝑣𝑚𝑚, … , 𝑞𝑞𝑙𝑙 = 𝑣𝑣𝑙𝑙�𝑞𝑞 = ∑ 𝑣𝑣𝑚𝑚𝑙𝑙
𝑚𝑚=1 � =

�∑ 𝑣𝑣𝑚𝑚𝑙𝑙
𝑚𝑚=1 �!

∏ 𝑣𝑣𝑚𝑚!𝑙𝑙
𝑚𝑚=1

�𝛼𝛼𝑚𝑚𝑣𝑣𝑚𝑚

𝑙𝑙

𝑚𝑚=1

. (G3) 

Moreover,  

𝑃𝑃�𝑞𝑞 = � 𝑣𝑣𝑚𝑚

𝑙𝑙

𝑚𝑚=1

� = 𝑒𝑒−𝜆𝜆
𝜆𝜆∑ 𝑣𝑣𝑚𝑚𝑙𝑙

𝑚𝑚=1

�∑ 𝑣𝑣𝑚𝑚𝑙𝑙
𝑚𝑚=1 �!

. (G4) 

Substituting Eqs. (G3) and (G4) into Eq. (G1) gives 



 43 

𝑃𝑃(𝑞𝑞1 = 𝑣𝑣1, … , 𝑞𝑞𝑚𝑚 = 𝑣𝑣𝑚𝑚, … , 𝑞𝑞𝑙𝑙 = 𝑣𝑣𝑙𝑙) =
𝑒𝑒−𝜆𝜆 ∏ 𝛼𝛼𝑚𝑚𝑣𝑣𝑚𝑚𝑙𝑙

𝑚𝑚=1 𝜆𝜆∑ 𝑣𝑣𝑚𝑚𝑙𝑙
𝑚𝑚=1

∏ 𝑣𝑣𝑚𝑚!𝑙𝑙
𝑚𝑚=1

=
𝑒𝑒−𝜆𝜆 ∏ (𝜆𝜆𝜆𝜆𝑚𝑚)𝑣𝑣𝑚𝑚𝑙𝑙

𝑚𝑚=1

∏ 𝑣𝑣𝑚𝑚!𝑙𝑙
𝑚𝑚=1

. (G5) 

Considering that ∑ 𝛼𝛼𝑚𝑚𝑙𝑙
𝑚𝑚=1 = 1, Eq. (G5) can be rewritten as  

𝑃𝑃(𝑞𝑞1 = 𝑣𝑣1, … , 𝑞𝑞𝑚𝑚 = 𝑣𝑣𝑚𝑚, … , 𝑞𝑞𝑙𝑙 = 𝑣𝑣𝑙𝑙) =
𝑒𝑒−𝜆𝜆∑ 𝛼𝛼𝑚𝑚𝑙𝑙

𝑚𝑚=1 ∏ (𝜆𝜆𝜆𝜆𝑚𝑚)𝑣𝑣𝑚𝑚𝑙𝑙
𝑚𝑚=1

∏ 𝑣𝑣𝑚𝑚!𝑙𝑙
𝑚𝑚=1

= �
𝑒𝑒−𝛼𝛼𝑚𝑚𝜆𝜆(𝛼𝛼𝑚𝑚𝜆𝜆)𝑣𝑣𝑚𝑚

𝑣𝑣𝑚𝑚!

𝑙𝑙

𝑚𝑚=1

. (G6) 

In addition, as only 𝛼𝛼𝑚𝑚 of the total demand is distributed to lane 𝑚𝑚, the traffic demand for lane 𝑚𝑚 is 

given by 𝛼𝛼𝑚𝑚𝜆𝜆. Therefore,  

𝑃𝑃(𝑞𝑞𝑚𝑚 = 𝑣𝑣𝑚𝑚) =
𝑒𝑒−𝛼𝛼𝑚𝑚𝜆𝜆(𝛼𝛼𝑚𝑚𝜆𝜆)𝑣𝑣𝑚𝑚

𝑣𝑣𝑚𝑚!
,∀𝑚𝑚 ∈ [1, 𝑙𝑙]. (G7) 

Substituting Eq. (G7) into Eq. (G6) gives 

𝑃𝑃(𝑞𝑞1 = 𝑣𝑣1, … , 𝑞𝑞𝑚𝑚 = 𝑣𝑣𝑚𝑚, … , 𝑞𝑞𝑙𝑙 = 𝑣𝑣𝑙𝑙) = �𝑃𝑃(𝑞𝑞𝑚𝑚 = 𝑣𝑣𝑚𝑚)
𝑙𝑙

𝑚𝑚=1

. (G8) 

 Therefore, 𝑞𝑞𝑚𝑚,∀𝑚𝑚 ∈ [1, 𝑙𝑙] are independent of each other. 

(2) Independence of 𝑝𝑝𝑚𝑚,𝑘𝑘 

The estimates from the SSDPRE method, 𝑝𝑝𝑚𝑚,𝑘𝑘, depend on the number of CVs, 𝑛𝑛𝑚𝑚,𝑘𝑘, and the 

total number of observable vehicles (𝑁𝑁�𝑚𝑚,𝑘𝑘; i.e., the number of vehicles prior to the last stopped CV, 

including itself) that are stopped by red signals. Considering that 𝑁𝑁�𝑚𝑚,𝑘𝑘 includes 𝑛𝑛𝑚𝑚,𝑘𝑘, they are directly 

correlated. As 𝑛𝑛𝑚𝑚,𝑘𝑘 is dependent on 𝑞𝑞𝑚𝑚,  

𝑝𝑝𝑚𝑚,𝑘𝑘 = ℊ𝑖𝑖(𝑞𝑞𝑚𝑚),𝑚𝑚 ∈ [1, 𝑙𝑙], (G9) 

where ℊ𝑖𝑖(∙), ∀𝑖𝑖 ∈ [1, 𝑙𝑙], represents the 𝑖𝑖𝑡𝑡ℎ real-valued mapping function. Let 𝑝𝑝𝑚𝑚,𝑘𝑘
∗  and ℊ𝑖𝑖−1(𝑝𝑝𝑚𝑚,𝑘𝑘

∗ ) be a 

realization of 𝑝𝑝𝑚𝑚,𝑘𝑘 and the preimage of 𝑝𝑝𝑚𝑚,𝑘𝑘
∗  under ℊ𝑖𝑖, respectively. It follows that 

𝑃𝑃�𝑝𝑝1,𝑘𝑘 = 𝑝𝑝1,𝑘𝑘
∗ , … ,𝑝𝑝𝑚𝑚,𝑘𝑘 = 𝑝𝑝𝑚𝑚,𝑘𝑘

∗ , … ,𝑝𝑝𝑙𝑙,𝑘𝑘 = 𝑝𝑝𝑙𝑙,𝑘𝑘∗ �

= 𝑃𝑃 �𝑞𝑞1 = ℊ1−1�𝑝𝑝1,𝑘𝑘
∗ �, … , 𝑞𝑞𝑚𝑚 = ℊ𝑚𝑚−1�𝑝𝑝𝑚𝑚,𝑘𝑘

∗ �, … , 𝑞𝑞𝑙𝑙 = ℊ𝑙𝑙−1�𝑝𝑝𝑙𝑙,𝑘𝑘∗ ��. 
(G10) 

According to the proven independence of 𝑞𝑞𝑚𝑚, ∀𝑚𝑚 ∈ [1, 𝑙𝑙],  

𝑃𝑃�𝑝𝑝1,𝑘𝑘 = 𝑝𝑝1,𝑘𝑘
∗ , … ,𝑝𝑝𝑚𝑚,𝑘𝑘 = 𝑝𝑝𝑚𝑚,𝑘𝑘

∗ , … , 𝑝𝑝𝑙𝑙,𝑘𝑘 = 𝑝𝑝𝑙𝑙,𝑘𝑘∗ � = �𝑃𝑃�𝑞𝑞𝑚𝑚 = ℊ𝑚𝑚−1�𝑝𝑝𝑚𝑚,𝑘𝑘
∗ ��

𝑙𝑙

𝑚𝑚=1

= �𝑃𝑃�𝑝𝑝𝑚𝑚,𝑘𝑘 = 𝑝𝑝𝑚𝑚,𝑘𝑘
∗ �

𝑙𝑙

𝑚𝑚=1

. 

(G11) 

Therefore, 𝑝𝑝𝑚𝑚,𝑘𝑘, ∀𝑚𝑚 ∈ [1, 𝑙𝑙] are independent of each other. 

 

Appendix H. Validation of Lemma 1 

Let 𝜌𝜌(∙,∙)  and 𝑞𝑞𝑚𝑚,∀𝑚𝑚 ∈ [1,2],  represent the correlation coefficient between two random 

variables and the traffic demand in lane 𝑚𝑚, respectively. To examine the independence of 𝑝𝑝𝑚𝑚,𝑘𝑘, various 

combinations of 𝜆𝜆, 𝛼𝛼1, and 𝑝𝑝 under groups I, II, and III are considered. The correlation coefficients 
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evaluated for these combinations are presented in Table H1. The near-zero correlation coefficients 

across different combinations of 𝜆𝜆, 𝛼𝛼1, and 𝑝𝑝 validate Lemma 1. 

Table H1. Correlation coefficients of traffic demands and CV penetration rates. 

No. 𝜆𝜆 𝛼𝛼1 𝑝𝑝 𝜌𝜌(𝑞𝑞1, 𝑞𝑞2) 𝜌𝜌(𝑝𝑝1,𝑘𝑘,𝑝𝑝2,𝑘𝑘) 

Baseline 20 0.4 0.4 0.002 −0.008 

I-1 10 0.4 0.4 0.006 −0.005 

I-2 30 0.4 0.4 −0.008 −0.003 

II-1 20 0.1 0.4 0.012 −0.008 

II-2 20 0.7 0.4 −0.008 0.011 

II-3 20 0.9 0.4 −0.009 0.007 

III-1 20 0.4 0.1 0.002 0.002 

III-2 20 0.4 0.7 0.002 0.004 

III-3 20 0.4 0.9 0.002 -0.007 

 

Appendix I. Proof of Proposition 3 

Given the distribution function of 𝒁𝒁, 𝐹𝐹𝒁𝒁, 

𝐸𝐸�𝐷𝐷�� = 𝐸𝐸𝐹𝐹𝒁𝒁 � � 𝑐𝑐𝒌𝒌

 

|𝒌𝒌|≤𝛫𝛫

Φ𝒌𝒌(𝒁𝒁)� = � 𝑐𝑐𝒌𝒌

 

|𝒌𝒌|≤𝛫𝛫

𝐸𝐸𝐹𝐹𝒁𝒁[Φ𝒌𝒌(𝒁𝒁)]. (I1) 

By definition, Φ𝟎𝟎(𝒁𝒁) = 1. Thus, Eq. (I1) can be rewritten as 

𝐸𝐸�𝐷𝐷�� = � 𝑐𝑐𝒌𝒌

 

|𝒌𝒌|≤𝛫𝛫

𝐸𝐸𝐹𝐹𝒁𝒁[Φ𝒌𝒌(𝒁𝒁)Φ𝟎𝟎(𝒁𝒁)]. (I2) 

The orthonormality of Φ𝒌𝒌(𝒁𝒁), ∀|𝒌𝒌| ≤ 𝛫𝛫, gives 

𝐸𝐸𝐹𝐹𝒁𝒁�Φ𝒌𝒌1(𝒁𝒁)Φ𝒌𝒌2(𝒁𝒁)� = �1    𝑖𝑖𝑖𝑖 𝒌𝒌1 = 𝒌𝒌2
0    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

. (I3) 

Therefore, 

𝐸𝐸�𝐷𝐷�� = 𝑐𝑐𝟎𝟎𝐸𝐸𝐹𝐹𝒁𝒁[Φ𝟎𝟎(𝒁𝒁)Φ𝟎𝟎(𝒁𝒁)] + � 𝑐𝑐𝒌𝒌

 

0<|𝒌𝒌|≤Κ

𝐸𝐸𝐹𝐹𝒁𝒁[Φ𝒌𝒌(𝒁𝒁)Φ𝟎𝟎(𝒁𝒁)] = 𝑐𝑐𝟎𝟎. (I4) 

For 𝑉𝑉𝑉𝑉𝑉𝑉�𝐷𝐷��, 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐷𝐷�� = 𝐸𝐸𝐹𝐹𝒁𝒁 ��𝐷𝐷� − 𝐸𝐸�𝐷𝐷���2� = 𝐸𝐸𝐹𝐹𝒁𝒁 �� � 𝑐𝑐𝒌𝒌

 

|𝒌𝒌|≤𝛫𝛫

Φ𝒌𝒌(𝒁𝒁) − 𝑐𝑐𝟎𝟎�
2

� 

(I5) 

= 𝐸𝐸𝐹𝐹𝒁𝒁 �� � 𝑐𝑐𝒌𝒌

 

|𝒌𝒌|≤𝛫𝛫

Φ𝒌𝒌(𝒁𝒁)�
2

� − 2𝐸𝐸𝐹𝐹𝒁𝒁 �𝑐𝑐𝟎𝟎 � 𝑐𝑐𝒌𝒌

 

|𝒌𝒌|≤𝛫𝛫

Φ𝒌𝒌(𝒁𝒁)�+ 𝐸𝐸𝐹𝐹𝒁𝒁�𝑐𝑐𝟎𝟎
2�. 

Let 𝐴𝐴 = 𝐸𝐸𝐹𝐹𝒁𝒁 ��∑ 𝑐𝑐𝒌𝒌 
|𝒌𝒌|≤𝛫𝛫 Φ𝒌𝒌(𝒁𝒁)�2�, 𝐵𝐵 = 𝐸𝐸𝐹𝐹𝒁𝒁�𝑐𝑐𝟎𝟎 ∑ 𝑐𝑐𝒌𝒌 

|𝒌𝒌|≤𝛫𝛫 Φ𝒌𝒌(𝒁𝒁)�, and 𝐹𝐹 = 𝐸𝐸𝐹𝐹𝒁𝒁�𝑐𝑐𝟎𝟎
2�. The total number 

of cases for |𝒌𝒌| ≤ 𝛫𝛫 is denoted as ℚ. For 𝐴𝐴, it follows that  
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𝐴𝐴 = 𝐸𝐸𝐹𝐹𝒁𝒁 �[𝑐𝑐𝒌𝒌1Φ𝒌𝒌1(𝒁𝒁) + 𝑐𝑐𝒌𝒌2Φ𝒌𝒌2(𝒁𝒁) + ⋯+ 𝑐𝑐𝒌𝒌ℚΦ𝒌𝒌ℚ(𝒁𝒁)]2� 

= 𝐸𝐸𝐹𝐹𝒁𝒁�𝑐𝑐𝒌𝒌1
2 Φ𝒌𝒌1

2 (𝒁𝒁)�+ 𝐸𝐸𝐹𝐹𝒁𝒁�𝑐𝑐𝒌𝒌2
2 Φ𝒌𝒌2

2 (𝒁𝒁)�+ ⋯+ 𝐸𝐸𝐹𝐹𝒁𝒁 �𝑐𝑐𝒌𝒌ℚ
2 Φ𝒌𝒌ℚ

2 (𝒁𝒁)�

+ 𝐸𝐸𝐹𝐹𝒁𝒁�2𝑐𝑐𝒌𝒌1Φ𝒌𝒌1(𝒁𝒁)𝑐𝑐𝒌𝒌2Φ𝒌𝒌2(𝒁𝒁)�+ ⋯ 

= 𝑐𝑐𝒌𝒌1
2 + 𝑐𝑐𝒌𝒌2

2 + ⋯+ 𝑐𝑐𝒌𝒌ℚ
2 + 0 + ⋯ = � 𝑐𝑐𝒌𝒌2

 

0≤|𝒌𝒌|≤Κ

. 

(I6) 

Without loss of generality, let 𝒌𝒌1 = 𝟎𝟎. For 𝐵𝐵,  

𝐵𝐵 = 𝐸𝐸𝐹𝐹𝒁𝒁 �𝑐𝑐𝟎𝟎 � 𝑐𝑐𝒌𝒌

 

|𝒌𝒌|≤Κ

Φ𝒌𝒌(𝒁𝒁)� 

= 𝐸𝐸𝐹𝐹𝒁𝒁 �𝑐𝑐𝟎𝟎Φ𝟎𝟎(𝒁𝒁) �𝑐𝑐𝟎𝟎Φ𝟎𝟎(𝒁𝒁) + 𝑐𝑐𝒌𝒌2Φ𝒌𝒌2(𝒁𝒁) +⋯+ 𝑐𝑐𝒌𝒌ℚΦ𝒌𝒌ℚ(𝒁𝒁)��   

= 𝑐𝑐𝟎𝟎2𝐸𝐸𝐹𝐹𝒁𝒁[Φ𝟎𝟎(𝒁𝒁)Φ𝟎𝟎(𝒁𝒁)] + 𝑐𝑐𝟎𝟎𝑐𝑐𝒌𝒌2𝐸𝐸𝐹𝐹𝒁𝒁�Φ𝒌𝒌2(𝒁𝒁)Φ𝟎𝟎(𝒁𝒁)�+ ⋯+ 𝑐𝑐𝟎𝟎𝑐𝑐𝒌𝒌ℚ𝐸𝐸𝐹𝐹𝒁𝒁 �Φ𝒌𝒌ℚ(𝒁𝒁)Φ𝟎𝟎(𝒁𝒁)� 

= 𝑐𝑐𝟎𝟎2 + 0 + ⋯+ 0 = 𝑐𝑐𝟎𝟎2. 

(I7) 

For 𝐹𝐹,  

𝐹𝐹 = 𝐸𝐸𝐹𝐹𝒁𝒁�𝑐𝑐𝟎𝟎
2� = 𝑐𝑐𝟎𝟎2. (I8) 

Substituting 𝐴𝐴, 𝐵𝐵, and 𝐹𝐹 into Eq. (I5) yields Eq. (31). 

 

Appendix J. Proof of Proposition 4 

Using the least-square method, the discrepancies between the gPCE approximations and 

simulations are minimized through the following optimization problem:  

min 𝐽𝐽𝑒𝑒 =��𝑓𝑓�𝜃𝜃�1, … ,𝜃𝜃�𝑖𝑖, … ,𝜃𝜃�𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙�1, … ,𝜙𝜙�𝑖𝑖, … ,𝜙𝜙�𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁�𝒑𝒑(𝑖𝑖))−�𝑐𝑐𝒌𝒌𝑗𝑗

ℚ

𝑗𝑗=1

Φ𝒌𝒌𝑗𝑗�𝒁𝒁
(𝑖𝑖)��

2𝜉𝜉

𝑖𝑖=1

. (J1) 

Taking the first partial derivative of 𝐽𝐽𝑒𝑒 𝑤𝑤. 𝑟𝑟. 𝑡𝑡. 𝑐𝑐𝒌𝒌𝑢𝑢 ,∀𝑢𝑢 ∈ [1,ℚ] gives 

𝜕𝜕𝐽𝐽𝑒𝑒
𝜕𝜕𝑐𝑐𝒌𝒌𝑢𝑢

= ���𝑓𝑓�𝜃𝜃�1, … ,𝜃𝜃�𝑖𝑖, … ,𝜃𝜃�𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙�1, … ,𝜙𝜙�𝑖𝑖 , … ,𝜙𝜙�𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁�𝒑𝒑(𝑖𝑖)) −�𝑐𝑐𝒌𝒌𝑗𝑗

ℚ

𝑗𝑗=1

Φ𝒌𝒌𝑗𝑗�𝒑𝒑
(𝑖𝑖)��Φ𝒌𝒌𝑢𝑢�𝒁𝒁

(𝑖𝑖)��
𝜉𝜉

𝑖𝑖=1

. (J2) 

According to the notations defined in Eqs. (33) to (35), equating the first partial derivatives to zero 

yields the following matrix form: 

𝜕𝜕𝐽𝐽𝑒𝑒
𝜕𝜕𝑐𝑐𝒌𝒌𝑢𝑢

= �𝒃𝒃T − 𝒄𝒄T𝑨𝑨� �
Φ𝒌𝒌𝑢𝑢�𝒁𝒁

(1)�
…

Φ𝒌𝒌𝑢𝑢�𝒁𝒁
(𝜉𝜉)�

� = 0,∀𝑢𝑢 ∈ [1,ℚ]. (J3) 

Thus, 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐𝒌𝒌1

, … ,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐𝒌𝒌ℚ

� = �𝒃𝒃T − 𝒄𝒄T𝑨𝑨� �
Φ𝒌𝒌1�𝒁𝒁

(1)� ⋯ Φ𝒌𝒌ℚ�𝒁𝒁
(1)�

⋮ ⋱ ⋮
Φ𝒌𝒌1�𝒁𝒁

(𝜉𝜉)� ⋯ Φ𝒌𝒌ℚ�𝒁𝒁
(𝜉𝜉)�

�
�������������������

𝑨𝑨T

= 𝟎𝟎T. (J4) 

Solving Eq. (J4) gives 
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𝒄𝒄T𝑨𝑨𝑨𝑨T = 𝒃𝒃T𝑨𝑨T. (J5) 

Taking the transpose on both sides yields 

𝑨𝑨𝑨𝑨T𝒄𝒄 = 𝑨𝑨𝑨𝑨. (J6) 

Left-multiplying by the inverse matrix of 𝑨𝑨𝑨𝑨T yields Eq. (32). 

 

Appendix K. Jacobi polynomials 

The Jacobi polynomials in the form of Rodrigues’s formula are given by  

Φ𝑘𝑘(𝑍𝑍) = 𝑃𝑃𝑘𝑘
(𝑎𝑎,𝑏𝑏)(𝑧𝑧) =

(−1)𝑘𝑘

2𝑘𝑘𝑘𝑘!
(1 − 𝑧𝑧)−𝑎𝑎(1 + 𝑧𝑧)−𝑏𝑏

𝑑𝑑𝑘𝑘[(1− 𝑧𝑧)𝑎𝑎+𝑘𝑘(1 + 𝑧𝑧)𝑏𝑏+𝑘𝑘]
𝑑𝑑𝑧𝑧𝑘𝑘

,∀𝑘𝑘 ∈ ℕ, (K1) 

where 𝑎𝑎, 𝑏𝑏 > −1, the support is [−1, 1], and the weighting function is  

𝑤𝑤(𝑧𝑧) = (1 − 𝑧𝑧)𝑎𝑎(1 + 𝑧𝑧)𝑏𝑏 . (K2) 

The orthogonality of Jacobi polynomials 𝑤𝑤. 𝑟𝑟. 𝑡𝑡. the weighting function 𝑤𝑤(𝑧𝑧) gives 

� 𝑃𝑃𝑘𝑘1
(𝑎𝑎,𝑏𝑏)(𝑧𝑧)

1

−1
𝑃𝑃𝑘𝑘2

(𝑎𝑎,𝑏𝑏)(𝑧𝑧)𝑤𝑤(𝑧𝑧)𝑑𝑑𝑑𝑑 

=
2𝑎𝑎+𝑏𝑏+1Γ(𝑘𝑘1 + 𝑎𝑎 + 1)Γ(𝑘𝑘1 + 𝑏𝑏 + 1)

(2𝑘𝑘1 + 𝑎𝑎 + 𝑏𝑏 + 1)Γ(𝑘𝑘1 + 𝑎𝑎 + 𝑏𝑏 + 1)𝑛𝑛!
𝛿𝛿𝑘𝑘1𝑘𝑘2 ,∀𝑘𝑘1,𝑘𝑘2 ∈ ℕ, 

(K3) 

where Γ(∙) represents the gamma function defined by  

Γ(𝑥𝑥) = � 𝑡𝑡𝑥𝑥−1
∞

0
𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑; (K4) 

and 𝛿𝛿𝑘𝑘1𝑘𝑘2 is the Kronecker delta function defined by 

𝛿𝛿𝑘𝑘1𝑘𝑘2 = �
0   𝑖𝑖𝑖𝑖 𝑘𝑘1 ≠ 𝑘𝑘2 
1  𝑖𝑖𝑖𝑖 𝑘𝑘1 = 𝑘𝑘2

,∀𝑘𝑘1,𝑘𝑘2 ∈ ℕ. (K5) 

However, the standard beta distribution is defined on the interval [0, 1] with the probability 

density function 

𝒻𝒻(𝑥𝑥;𝛼𝛼,𝛽𝛽) =
𝑥𝑥𝛼𝛼−1(1− 𝑥𝑥)𝛽𝛽−1

𝐵𝐵(𝛼𝛼,𝛽𝛽)
, (K6) 

where 𝑥𝑥 ∈ [0,1];  𝛼𝛼,𝛽𝛽 > 0; and 𝐵𝐵(∙,∙) represents the beta function defined as  

𝐵𝐵(𝛼𝛼,𝛽𝛽) = � 𝑡𝑡𝛼𝛼−1
1

0
(1 − 𝑡𝑡)𝛽𝛽−1𝑑𝑑𝑑𝑑. (K7) 

Therefore, necessary transformations are required to link Jacobi polynomials and the beta 

distribution. By taking the parameters and variables of the beta distribution as a basis, the parameters 

and variables in the Jacobi polynomials can be rewritten as  

𝑎𝑎 = 𝛽𝛽 − 1, 

𝑏𝑏 = 𝛼𝛼 − 1, 

𝑧𝑧 = 2𝑥𝑥 − 1. 

(K8) 

Substituting Eq. (K8) into Eq. (K3) and letting 𝑘𝑘1 = 𝑘𝑘2 = 𝑘𝑘 gives 
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� �𝑃𝑃𝑘𝑘
(𝛽𝛽−1,𝛼𝛼−1)(2𝑥𝑥 − 1)�

21

0
𝑤𝑤(2𝑥𝑥 − 1)𝑑𝑑(2𝑥𝑥 − 1)

=
2𝛼𝛼+𝛽𝛽−1Γ(𝑘𝑘 + 𝛼𝛼)Γ(𝑘𝑘 + 𝛽𝛽)

(2𝑘𝑘 + 𝛼𝛼 + 𝛽𝛽 − 1)Γ(𝑘𝑘 + 𝛼𝛼 + 𝛽𝛽 − 1)𝑛𝑛!
,∀𝑘𝑘 ∈ ℕ. 

(K9) 

Equation (K9) establishes the orthogonality of Jacobi polynomials 𝑤𝑤. 𝑟𝑟. 𝑡𝑡. the weighting function in the 

transformed parameters and variables. Substituting Eq. (K2) into the left-hand side of Eq. (K9) yields 

� �𝑃𝑃𝑘𝑘
(𝛽𝛽−1,𝛼𝛼−1)(2𝑥𝑥 − 1)�

21

0
𝑤𝑤(2𝑥𝑥 − 1)𝑑𝑑(2𝑥𝑥 − 1) 

= 2𝛼𝛼+𝛽𝛽−1 � �𝑃𝑃𝑘𝑘
(𝛽𝛽−1,𝛼𝛼−1)(2𝑥𝑥 − 1)�

2
𝑥𝑥𝛼𝛼−1(1− 𝑥𝑥)𝛽𝛽−1𝑑𝑑𝑑𝑑

1

0
 

= 2𝛼𝛼+𝛽𝛽−1𝐵𝐵(𝛼𝛼,𝛽𝛽)� �𝑃𝑃𝑘𝑘
(𝛽𝛽−1,𝛼𝛼−1)(2𝑥𝑥 − 1)�

2 𝑥𝑥𝛼𝛼−1(1− 𝑥𝑥)𝛽𝛽−1

𝐵𝐵(𝛼𝛼,𝛽𝛽) 𝑑𝑑𝑑𝑑
1

0
 

= 2𝛼𝛼+𝛽𝛽−1𝐵𝐵(𝛼𝛼,𝛽𝛽)� �𝑃𝑃𝑘𝑘
(𝛽𝛽−1,𝛼𝛼−1)(2𝑥𝑥 − 1)�

2
𝒻𝒻(𝑥𝑥;𝛼𝛼,𝛽𝛽)𝑑𝑑𝑑𝑑

1

0
. 

(K10) 

Substituting Eq. (K10) into Eq. (K9) yields 

� �𝑃𝑃𝑘𝑘
(𝛽𝛽−1,𝛼𝛼−1)(2𝑥𝑥 − 1)�

2
𝒻𝒻(𝑥𝑥;𝛼𝛼,𝛽𝛽)𝑑𝑑𝑑𝑑

1

0
 

=
Γ(𝑘𝑘 + 𝛼𝛼)Γ(𝑘𝑘 + 𝛽𝛽)

(2𝑘𝑘 + 𝛼𝛼 + 𝛽𝛽 − 1)Γ(𝑘𝑘 + 𝛼𝛼 + 𝛽𝛽 − 1)𝑛𝑛!𝐵𝐵(𝛼𝛼,𝛽𝛽) ,∀𝑘𝑘 ∈ ℕ. 
(K11) 

Equation (K11) indicates that (1) the orthogonal Jacobi polynomials 𝑤𝑤. 𝑟𝑟. 𝑡𝑡.  the standard beta 

distribution, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼,𝛽𝛽) , are 𝑃𝑃𝑘𝑘
(𝛽𝛽−1,𝛼𝛼−1)(2𝑥𝑥 − 1) , ∀𝑘𝑘 ∈ ℕ ; (2) the corresponding normalization 

constants are � Γ(𝑘𝑘+𝛼𝛼)Γ(𝑘𝑘+𝛽𝛽)
(2𝑘𝑘+𝛼𝛼+𝛽𝛽−1)Γ(𝑘𝑘+𝛼𝛼+𝛽𝛽−1)𝑛𝑛!𝐵𝐵(𝛼𝛼,𝛽𝛽) ,∀𝑘𝑘 ∈ ℕ, which ensures the orthogonality of the Jacobi 

polynomials; and (3) the transformation relationship between the input samples for the original system 

and the surrogate system is given by 𝑧𝑧 = 2𝑥𝑥 − 1. 

 

Appendix L. Efficiency of Propositions 3 and 4 

This section presents the results of a series of numerical experiments comparing the efficiencies 

of the MCS method and Propositions 3 and 4 in estimating 𝐸𝐸(𝐷𝐷) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷). As shown in Table L1 

and Figure L1, the MCS method required millions of samples to obtain stable estimates for 𝐸𝐸(𝐷𝐷) and 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷), making it remarkably time-consuming and unsuitable for real-time applications. In contrast, 

the method based on Propositions 3 and 4 required only a small number of samples to achieve similar 

performance. Specifically, when 𝛫𝛫 = 1, dozens of samples were sufficient to accurately estimate 𝐸𝐸(𝐷𝐷). 

Although the estimation of the second-order quantity, 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷), was more challenging, the proposed 

method could constrain the APE within 4% using only 210 samples and a 𝛫𝛫 = 2 setting. Increasing 𝛫𝛫 

to 3 and the number of samples to 1,120 further reduced the error to 0.09%. Moreover, as the proposed 

method is fully analytical, the computational costs remained at the millisecond level. The excellent 
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approximation accuracy and high efficiency of the proposed method make it suitable for a wide range 

of transportation problems. 

Table L1. Comparison of the efficiencies of the MCS method and Propositions 3 and 4. 

Method Number of 

samples 

𝐸𝐸(𝐷𝐷) (s) APE of  
𝐸𝐸(𝐷𝐷) (%) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) 

(s2) 

APE of  
𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) 

(%) 

Computation 

time (s) 

MCS 10 6164.3 - 651803.3 - 0.00 

MCS 100 6472.2 - 507594.5 - 0.01 

MCS 1,000 6600.3 - 437981.2 - 0.01 

MCS 10,000 6591.5 - 431920.2 - 0.02 

MCS 100,000 6585.2 - 443010.9 - 0.28 

MCS 1,000,000 6584.2 - 442896.2 - 2.32 

MCS 

(Ground truth) 

10,000,000 6584.0 - 442850.2 - 24.06 

Propositions 3 

and 4 (𝛫𝛫 = 1) 

28 6584.1 0.00 314884.6 28.90 0.01 

Propositions 3 

and 4 (𝛫𝛫 = 2) 

210 6586.3 0.04 428672.0 3.20 0.08 

Propositions 3 

and 4 (𝛫𝛫 = 3) 

1,120 6588.5 0.07 443237.8 0.09 0.79 

 

 
Figure L1. Comparison of the efficiencies of the MCS method and Propositions 3 and 4. 

 

Appendix M. Proof of Proposition 5 

According to Proposition 3,  

𝐸𝐸(𝐷𝐷) = �𝑎𝑎1𝑖𝑖𝑓𝑓(𝜃𝜃1, … ,𝜃𝜃𝑖𝑖, … ,𝜃𝜃𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙1, … ,𝜙𝜙𝑖𝑖, … ,𝜙𝜙𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁|𝒑𝒑(𝑖𝑖))
𝜉𝜉

𝑖𝑖=1

, (M1) 
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𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) = ���𝑎𝑎𝑖𝑖𝑖𝑖𝑓𝑓�𝜃𝜃1, … ,𝜃𝜃𝑖𝑖, … ,𝜃𝜃𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 ,𝜙𝜙1, … ,𝜙𝜙𝑖𝑖, … ,𝜙𝜙𝑁𝑁𝑇𝑇+𝑁𝑁𝑃𝑃 , 𝜁𝜁|𝒑𝒑(𝑗𝑗)�
𝜉𝜉

𝑗𝑗=1

�

2ℚ

𝑖𝑖=2

. (M2) 

For 𝐸𝐸(𝐷𝐷), ∀𝑥𝑥 ∈ 𝕍𝕍, 

𝜕𝜕𝜕𝜕(𝐷𝐷)
𝜕𝜕𝜕𝜕

= lim
∆𝑥𝑥→0

∑ �𝑎𝑎1𝑖𝑖𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥 + ∆𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑖𝑖)��𝜉𝜉
𝑖𝑖=1 − ∑ �𝑎𝑎1𝑖𝑖𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑖𝑖)��𝜉𝜉

𝑖𝑖=1
∆𝑥𝑥

 

= lim
∆𝑥𝑥→0

∑ 𝑎𝑎1𝑖𝑖�𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥 + ∆𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑖𝑖)� − 𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑖𝑖)��𝜉𝜉
𝑖𝑖=1

∆𝑥𝑥
 

= �𝑎𝑎1𝑖𝑖 lim
∆𝑥𝑥→0

𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥 + ∆𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑖𝑖)� − 𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑖𝑖)�
∆𝑥𝑥

𝜉𝜉

𝑖𝑖=1

 

= �𝑎𝑎1𝑖𝑖𝑓𝑓𝑥𝑥′�𝜃𝜃1, … , 𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑖𝑖)�
𝜉𝜉

𝑖𝑖=1

= 𝔸𝔸1𝒃𝒃′. 

(M3) 

For 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷),  

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝐷𝐷)
𝜕𝜕𝜕𝜕

= lim
∆𝑥𝑥→0

�
∑ �∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥 + ∆𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑗𝑗)�𝜉𝜉

𝑗𝑗=1 �
2
−ℚ

𝑖𝑖=2

∆𝑥𝑥

−
∑ �∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑗𝑗)�𝜉𝜉

𝑗𝑗=1 �
2ℚ

𝑖𝑖=2

∆𝑥𝑥 � . 

(M4) 

Let ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥 + ∆𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑗𝑗)�𝜉𝜉
𝑗𝑗=1 = 𝐺𝐺  and ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑗𝑗)�𝜉𝜉

𝑗𝑗=1 = 𝐻𝐻 . Eq. (M4) can 

be rewritten as  

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝐷𝐷)
𝜕𝜕𝜕𝜕

= lim
∆𝑥𝑥→0

∑ (𝐺𝐺 + 𝐻𝐻)(𝐺𝐺 − 𝐻𝐻)ℚ
𝑖𝑖=2

∆𝑥𝑥
= � lim

∆𝑥𝑥→0

ℚ

𝑖𝑖=2

(𝐺𝐺 +𝐻𝐻)(𝐺𝐺 − 𝐻𝐻)
∆𝑥𝑥

. (M5) 

For 𝐺𝐺 + 𝐻𝐻, 

lim
∆𝑥𝑥→0

(𝐺𝐺 + 𝐻𝐻) = 2�𝑎𝑎𝑖𝑖𝑖𝑖𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑗𝑗)�
𝜉𝜉

𝑗𝑗=1

. (M6) 

According to Proposition 4, 

�𝑎𝑎𝑖𝑖𝑖𝑖𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑗𝑗)�
𝜉𝜉

𝑗𝑗=1

= 𝑐𝑐𝒌𝒌𝑖𝑖 . (M7) 

Thus, 

lim
∆𝑥𝑥→0

(𝐺𝐺 + 𝐻𝐻) = 2𝑐𝑐𝒌𝒌𝑖𝑖 . (M8) 

For 𝐺𝐺 − 𝐻𝐻, 

lim
∆𝑥𝑥→0

𝐺𝐺 − 𝐻𝐻
∆𝑥𝑥

= lim
∆𝑥𝑥→0

∑ 𝑎𝑎𝑖𝑖𝑖𝑖�𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥 + ∆𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑗𝑗)� − 𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑗𝑗)��𝜉𝜉
𝑗𝑗=1

∆𝑥𝑥
 (M9) 
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= �𝑎𝑎𝑖𝑖𝑖𝑖 lim
∆𝑥𝑥→0

𝜉𝜉

𝑗𝑗=1

�𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥 + ∆𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑗𝑗)� − 𝑓𝑓�𝜃𝜃1, … , 𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑗𝑗)��
∆𝑥𝑥

 

= �𝑎𝑎𝑖𝑖𝑖𝑖𝑓𝑓𝑥𝑥′�𝜃𝜃1, … , 𝑥𝑥, … , 𝜁𝜁|𝒑𝒑(𝑗𝑗)�
𝜉𝜉

𝑗𝑗=1

= 𝔸𝔸𝑖𝑖𝒃𝒃′. 

Substituting Eqs. (M8) and (M9) into Eq. (M5) yields Eq. (39). 

 

Appendix N. Validation of Proposition 5 

This appendix provides detailed experimental results of estimations of the gradients of 𝐸𝐸(𝐷𝐷) 

and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷). Numerical differentiation was used to evaluate the gradients of E(𝐷𝐷) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷), which 

were then taken as the ground-truth values for evaluation. To evaluate the partial derivative 

𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜕𝜕,∀𝑥𝑥 ∈ 𝕍𝕍, the expected values at 𝑥𝑥 + 𝜖𝜖 and 𝑥𝑥 − 𝜖𝜖, denoted as 𝐸𝐸(𝐷𝐷′) and 𝐸𝐸(𝐷𝐷′′), respectively, 

were first computed according to a large number of samples (107 samples were adopted), where 𝜖𝜖 was 

set to 10−8. Then, 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜕𝜕 was estimated as [𝐸𝐸(𝐷𝐷′)− 𝐸𝐸(𝐷𝐷′′)]/(2𝜖𝜖). Similar steps were followed 

to evaluate 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜕𝜕,∀𝑥𝑥 ∈ 𝕍𝕍. The sampling process was conducted only once to save computation 

time. Additionally, signal groups 10 and 11 (c.f. Figs. 5 and 6) were pedestrian groups and were not 

included in 𝐷𝐷; therefore, the partial derivatives 𝑤𝑤. 𝑟𝑟. 𝑡𝑡. the associated variables, 𝜃𝜃10, 𝜙𝜙10, 𝜃𝜃11, and 𝜙𝜙11, 

were all zeros. A comparison of the results of the numerical differentiation method with those based on 

Proposition 5 (Table N1) revealed that the estimates based on Proposition 5 were nearly identical to 

those based on numerical differentiation. For the gradient of 𝐸𝐸(𝐷𝐷), the maximum APE was less than 

1%, and the average APE was only 0.14%. As expected, the estimation errors for the gradient of 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) 

were slightly larger, with the maximum and average APEs of 4.21% and 2.56%, respectively. Despite 

the similar performance between the numerical method and Proposition 5, Proposition 5 required a 

computation time of only 0.08 s, while numerical differentiation required 525.42 s. These results 

consistently demonstrate the superiority of Proposition 5. 

Table N1. Comparison of the numerical differentiation method and Proposition 5 in gradient 

estimations.  

Item 

Numerical 

differentiation 

(Ground truth) 

Proposition 5 APE (%) 

𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜃𝜃1 5.03 5.04 0.25 

𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜙𝜙1 −222.46 −222.46 0.00 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜃𝜃2 −258.79 −258.81 0.00 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜙𝜙2 −1045.37 −1045.37 0.00 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜃𝜃3 139.81 139.75 0.04 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜙𝜙3 −486.44 −486.44 0.00 
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 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜃𝜃4 −553.92 −554.18 0.05 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜙𝜙4 −1060.01 −1060.14 0.01 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜃𝜃5 1131.42 1130.92 0.04 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜙𝜙5 −9044.56 −9038.91 0.06 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜃𝜃6 −1212.09 −1212.17 0.00 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜙𝜙6 −1923.12 −1923.11 0.00 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜃𝜃7 90.74 90.71 0.04 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜙𝜙7 −525.69 −525.69 0.00 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜃𝜃8 2263.21 2263.07 0.00 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜙𝜙8 −16057.09 −16055.85 0.00 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜃𝜃9 −5250.78 −5198.67 0.99 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜙𝜙9 −12344.84 −12297.99 0.38 

 𝜕𝜕𝜕𝜕(𝐷𝐷)/𝜕𝜕𝜕𝜕 −1451272.58 −1438922.88 0.85 

Maximum error - - 0.99 

Average error - - 0.14 

Variance in error - - 0.08 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜃𝜃1 −6475.32 −6238.12 3.66 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜙𝜙1 −8638.25 −8929.11 3.37 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜃𝜃2 −6188.87 −5982.91 3.33 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜙𝜙2 −11195.40 −10752.12 3.96 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜃𝜃3 3803.32 3774.99 0.74 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜙𝜙3 −8725.10 −8465.34 2.98 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜃𝜃4 −47673.45 −46060.22 3.38 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜙𝜙4 −65062.70 −62852.72 3.40 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜃𝜃5 9125.88 9437.14 3.41 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜙𝜙5 −96769.76 −100843.69 4.21 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜃𝜃6 −23079.59 −23577.60 2.16 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜙𝜙6 −30298.61 −31517.06 4.02 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜃𝜃7 413.02 419.34 1.53 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜙𝜙7 −3254.19 −3270.94 0.51 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜃𝜃8 9145.56 9373.16 2.49 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜙𝜙8 −88268.94 −90251.22 2.25 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜃𝜃9 −777706.30 −771067.34 0.85 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜙𝜙9 −875030.54 −893651.21 2.13 

 𝜕𝜕𝑉𝑉𝑎𝑎𝑎𝑎(𝐷𝐷)/𝜕𝜕𝜕𝜕 −112443516.26 −112109004.60 0.30 

Maximum error - - 4.21 
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Average error - - 2.56 

Variance in error - - 1.51 

Computation time (s) 525.42 0.08 - 

 

Appendix O. Traffic demands, successor matrix, and clearance time matrix of Intersection 1 

The traffic demands, successor matrix, and clearance time matrix of Intersection 1 in the 

NGSIM dataset are presented in Tables O1, O2, and O3, respectively. 

Table O1. Actual traffic demands and turning proportions of Intersection 1 in the NGSIM dataset. 

Direction 
Northbound Southbound Eastbound Westbound 

veh/h % veh/h % veh/h % veh/h % 

Left turn 72 13 80 18 148 22 0 1 

Through 480 86 364 81 496 77 68 65 

Right turn 0 1 0 1 0 1 36 34 

Total 552 1 444 1 644 1 104 1 

 

Table O2. Successor matrix. 

Group 1 2 3 4 5 6 7 8 9 10 11 

1 - 0 0 0 0 0 - - - - 0 

2 1 - 1 1 - - 1 1 - 1 - 

3 1 0 - 1 - - 1 1 0 - - 

4 1 0 0 - 0 0 - - 0 - 0 

5 1 - - 1 - 1 1 1 - 1 - 

6 1 - - 1 0 - 1 1 - - 0 

7 - 0 0 - 0 0 - 0 - - - 

8 - 0 0 - 0 0 1 - - - - 

9 - - 1 1 - - - - - 1 - 

10 - 0 - - 0 - - - 0 - - 

11 1 - - 1 - 1 - - - - - 

 

Table O3. Clearance time matrix. 

Group 1 2 3 4 5 6 7 8 9 10 11 

1 - 6 5 6 6 5 - - - - 6 

2 5 - 6 5 - - 5 6 - 5 - 

3 6 5 - 5 - - 5 5 6 - - 

4 6 6 5 - 5 5 - - 6 - 5 

5 5 - - 5 - 5 6 5 - 5 - 
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6 5 - - 6 6 - 5 5 - - 6 

7 - 5 6 - 5 5 - 6 - - - 

8 - 5 5 - 5 6 6 - - - - 

9 - - 5 5 - - - - - 5 - 

10 - 5 - - 5 - - - 5 - - 

11 5 - - 5 - 5 - - - - - 

 

Appendix P. Sensitivity tests on 𝑵𝑵𝑹𝑹 

This appendix presents the results of preliminary experiments conducted to determine the 

appropriate parameter 𝑁𝑁𝑅𝑅. Various cases based on either DPRC or SPRC with different 𝑁𝑁𝑅𝑅 values were 

considered for signal plan optimizations using the actual demands listed in Table O1 (Appendix O). In 

SPRC, the parameter 𝜔𝜔 was user-defined to strike a balance between efficiency and stability. According 

to Eq. (32), 𝜔𝜔 = 0  signifies that the objective solely optimizes efficiency, while 𝜔𝜔 > 0  indicates a 

consideration for both efficiency and stability. A higher 𝜔𝜔  prioritizes stability and robustness, 

potentially at the expense of overall efficiency. In addition to cases with 𝜔𝜔 = 0, 𝜔𝜔 = 20 was chosen to 

generate cases that prioritize stability and robustness while maintaining reasonable efficiency. The 

identical initial signal plan, denoted as 𝕍𝕍(0,∗), was randomly generated and applied to all of the cases. 

Delays over 2-h periods across different cases were recorded in VISSIM. The results are summarized 

in Table P1. 

For the DPRC scheme, increasing 𝑁𝑁𝑅𝑅  from 9 to 19 enhanced performance consistently, but 

further increasing 𝑁𝑁𝑅𝑅 to 29 showed no additional benefit. Thus, 𝑁𝑁𝑅𝑅 = 19 was chosen. Similarly, 𝑁𝑁𝑅𝑅 =

29 and 𝑁𝑁𝑅𝑅 = 39 were determined for the SPRC schemes with 𝜔𝜔 = 0 and 𝜔𝜔 = 20, respectively. 

Table P1. Sensitivity tests of 𝑁𝑁𝑅𝑅. 

Scheme 𝜔𝜔 𝑁𝑁𝑅𝑅 Total junction delay (s) Chosen? 

DPRC - 9 92,185  

 - 19 91,727  

 - 29 92,175  

SPRC 0 9 92,145  

 0 19 91,470  

 0 29 90,041  

 0 39 90,398  

 20 9 95,758  

 20 19 93,256  

 20 29 90,755  

 20 39 90,750  

 20 49 93,556  
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Appendix Q. Properties of SPRC schemes with different 𝝎𝝎 

This appendix presents additional experiments that compare the properties of the SPRC 

schemes with ω = 0 and ω = 20. Each experiment was run for a 1,000-min study period, following a 

30-min warm-up. To simulate dynamic traffic conditions, the average demand of each approach was 

modeled using a sinusoidal curve fluctuating by 20% around the constant average demand, starting from 

an initial phase of zero. That is, while the average demand for each approach varied over time, the mean 

of these average demands remained identical to the constant average demand used in the warm-up 

period. The periods of these sinusoidal curves aligned with the duration of the study period. Additionally, 

the CV penetration rate was set to 0.4. Total junction delays for each cycle over the study period were 

recorded in VISSIM for analysis. The evaluation metrics were average, maximum, and variance in 

junction delays. The results are presented in Table Q1.  

The results indicate that across different V/C ratios, the SPRC scheme with ω = 20 displayed 

marginally higher average junction delays but yielded lower maximum junction delays and variances 

in junction delays than the SPRC scheme with ω = 0. These findings confirm that the SPRC scheme 

with ω = 0 fully optimized efficiency, whereas the SPRC scheme with ω = 20 provided a balance 

between optimized efficiency and optimized stability. That is, an increase in ω increased stability at the 

expense of efficiency. 

Table Q1. Comparison of SPRC schemes with different 𝜔𝜔. 

V/C ratio SPRC 

Average 

intersection delay 

(s) 

Maximum 

intersection delay 

(s) 

Variance in 

intersection delay 

(𝑠𝑠2) 

0.3 𝜔𝜔 = 20 561 1,483 27,481 

 𝜔𝜔 = 0 558 1,496 27,925 

0.5 𝜔𝜔 = 20 1,111 2,740 102,887 

 𝜔𝜔 = 0 1,042 3,108 111,105 

0.7 𝜔𝜔 = 20 5,779 23,987 15,346,807 

 𝜔𝜔 = 0 5,089 24,232 16,975,453 

 

 

 
 

 

 

 

 


