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Abstract

Optimizing traffic signal control is crucial for improving efficiency in congested urban
environments. Current adaptive signal control systems predominantly rely on on-road detectors, which
entail significant capital and maintenance costs, thereby hindering widespread implementation. In this
paper, a novel connected vehicle (CV)-based adaptive signal control (CVASC) framework is proposed
that optimizes signal plans on a cycle-by-cycle basis without the need for on-road detectors, leveraging
partial CV data. The framework comprises a consequential system delay (CSD) model, deterministic
penetration rate control (DPRC), and stochastic penetration rate control (SPRC). The CSD model
analytically estimates vehicle arrival rates and, consequently, the total junction delay, utilizing CV
penetration rates as essential inputs. Employing the CSD model without considering CV penetration
rate uncertainty results in fixed vehicle arrival rates and leads to DPRC. On the other hand,
incorporating CV penetration rate uncertainty accounts for uncertain vehicle arrival rates, establishing
SPRC, which poses a high-dimensional, non-convex, and stochastic optimization problem. An
analytical stochastic delay model using generalized polynomial chaos expansion is proposed to
efficiently and accurately estimate the mean, variance, and their gradients for the CSD model within
SPRC. To solve DPRC and SPRC, a gradient-guided golden section search algorithm is introduced.
Comprehensive numerical experiments and VISSIM simulations demonstrate the effectiveness of the
CVASC framework, emphasizing the importance of accounting for CV penetration rate uncertainty and

uncertain vehicle arrival rates in achieving optimal solutions for adaptive signal optimizations.
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1. Introduction

The advent of fifth-generation (5G) mobile communication technologies has facilitated the
development of connected vehicle (CV) systems. These vehicles can exchange real-time traffic
information (including time, speed, and location) among themselves as CV data. This presents
promising opportunities for developing novel solutions to complex transportation challenges. However,
as such connectivity is still in its early stage, only a fraction of vehicles on the road are equipped with

CV capabilities. This partial connectivity is anticipated to persist for an extended period owing to



diverse technological, societal, and ethical factors. During this prolonged transition period toward full
CV deployment, accurately estimating the CV penetration rate, defined as the ratio of CV volume to
the total traffic volume, is crucial for the effective planning and implementation of CV-based
transportation applications.

Links with on-road detectors can directly provide total traffic volume; however, many links
within a network lack such detectors, making accurate CV penetration rate estimation challenging.
Furthermore, even in the presence of detectors, intermittent maintenance or technical issues may
compromise their reliability. Several approaches have been explored to estimate CV penetration rates
on links without detectors. One approach entails using the average of the CV penetration rate
distribution, derived from CV penetration rates sampled from nearby links with detectors, as an
estimation (Wong and Wong, 2015, 2016a, 2019; Wong, Wong, and Liu, 2019). However, this method
relies on the assumption of independent and identically distributed CV penetration rates. Meng et al.
(2017a) developed an empirical model to explain the spatial variance by leveraging land-use properties,
although the model depends on locally collected data. In contrast, a more promising approach involves
estimating the CV penetration rate solely using CV data. For example, under the assumption of Poisson
arrival, Comert (2016) derived multiple analytical models for estimating the CV penetration rate. To
address the limitations associated with Poisson arrival assumptions, Wong et al. (2019) proposed the
single-source data penetration rate estimator (SSDPRE) to unbiasedly estimate the CV penetration rate
regardless of arrival patterns. Additionally, other methods based on the maximum likelihood approach
and leveraging the distribution of the stopping positions of vehicles in queues have been developed for
estimating CV penetration rates (Zhao et al., 2019a, 2019b, 2022). Nevertheless, these estimates are
point estimators, meaning that they do not account for the uncertainty in the CV penetration rate.
Utilizing point estimators for transport modeling and system optimization may result in biased models
and suboptimal solutions (Yin, 2008; Wong and Wong, 2015, 2016, 2019; Wong, Wong, and Liu, 2019).

Building upon the SSDPRE, Jia et al. (2023) derived the probabilistic penetration rate (PPR)
model to explicitly model the uncertainty in the CV penetration rate. This work represents a significant
paradigm shift from deterministic analysis to stochastic analysis in CV penetration rate estimation. It
provides a robust probabilistic analysis framework for stochastic modeling and optimization in CV-
based transportation systems, offering valuable insights into various CV-related challenges.
Additionally, further considering complex residual-vehicle effects, Jia et al. (2024a, 2024b) proposed a
Markov-constrained queue length (MCQL) model for accurately estimating constrained queue length,
which is an essential input for the PPR model. This development ensures that the PPR model can
effectively handle all under-saturation scenarios regardless of the presence of residual vehicles.

The aforementioned methods for estimating the CV penetration rate have paved the way for
numerous beneficial applications. For example, Comert and Cetin (2009, 2011), Comert (2013), and
Hao et al. (2014) have utilized the CV penetration rate as input to develop a range of methods for

estimating queue length. Recovering traffic information for non-CVs using CV signals, such as



locations, speeds, and travel times, is extremely important for optimal traffic operations and has thus
been extensively investigated (Jenelius et al., 2013, 2015; Rahmani et al., 2015; Khan et al., 2017; Igbal
et al., 2018). Other relevant applications include traffic flow and density estimation (Geroliminis and
Daganzo, 2008; Ambiihl and Menendez, 2016; Du et al., 2016; Wong and Wong, 2016c; Wong, Wong,
and Liu, 2021), origin—destination estimation (Yang et al., 2017; Wang et al., 2020; Cao et al., 2021),
and traffic incident impact evaluation (Wong and Wong, 2016b).

Among various applications, CV-based adaptive signal control (CVASC) has received
considerable attention over the past decade. Feng et al. (2015) proposed a phase allocation algorithm to
dynamically adjust signal sequences and timings in a connected environment. This approach involves
dividing the problem into two sub-problems: a dynamic programming problem for signal sequence
determination and a utility minimization problem for phase duration optimization. The proposed
approach requires the availability of a complete arrival table, which must be estimated using the
accessible CV data. To enhance the performance of adaptive signal control in scenarios with low CV
penetration rates, dedicated models utilizing only a few CV trajectories have been developed to
accurately estimate traffic delay and arrival information (Feng et al., 2018; Wang et al., 2021). In
addition, multi-mode adaptive traffic signal control systems that leverage both CV data and existing
detector data have been explored (Rafter et al., 2020; Al Islam et al., 2020). Liang et al. (2020a)
proposed a real-time traffic control scheme to balance efficiency and equity (measured by average and
maximum vehicle delays, respectively) using CV data. Mo et al. (2022) investigated the application of
reinforcement learning to traffic signal control based on CV data. Despite these advancements, current
research in adaptive signal control based on CV data has predominantly relied on deterministic models,
overlooking uncertainties in traffic state estimation. Given the nonlinear and time-varying nature of
transportation systems, deterministic optimization that does not consider variability can lead to
suboptimal solutions in traffic signal control (Yin, 2008; Jia et al., 2023, 2024a, 2024b). Therefore,
incorporating uncertainties in traffic state estimations is essential for achieving optimal solutions in
adaptive signal control within a connected environment.

The present paper proposes a novel CVASC framework that optimizes signal plans on a cycle-
by-cycle basis to minimize total junction delay using only available partial CV data. To analytically
estimate vehicle arrival rates, and hence total junction delay, a consequential system delay (CSD) model
with CV penetration rates as essential inputs is derived. However, the estimated CV penetration rates
are subject to uncertainty. Ignoring this uncertainty yields fixed vehicle arrival rates and deterministic
penetration rate control (DPRC). In contrast, incorporating the uncertainty associated with the CV
penetration rate accounts for uncertain vehicle arrival rates and establishes stochastic penetration rate
control (SPRC). Given the high-dimensional, non-convex, and stochastic nature of SPRC, efficiently
solving such an optimization problem poses significant challenges. To address this, an analytical
stochastic delay (ASD) model integrating generalized polynomial chaos expansion (gPCE) (Xiu, 2010)

is proposed to accurately estimate the mean and variance of total junction delay and their gradients in



SPRC. Subsequently, an efficient gradient-guided golden section search (G*S?) algorithm is introduced
as the solution method. Extensive numerical experiments and VISSIM simulations based on a real-
world intersection layout extracted from the Next Generation Simulation (NGSIM) dataset (Federal
Highway Administration, 2006) demonstrate the applicability and efficiency of the proposed models
and the significance of incorporating CV penetration rate uncertainty and uncertain vehicle arrival rates
into adaptive signal control.

The remainder of this paper is structured as follows. Section 2 defines the problem. Section 3
systematically presents the CVASC framework. Sections 4 and 5 detail the derivations of the ASD
model and the G3S? algorithm, respectively. Section 6 provides a comprehensive set of realistic

simulations. Finally, Section 7 concludes the paper.

2. Problem Statement

Consider a signalized isolated intersection with an arbitrary number of approaches, all without
any detectors. Each approach consists of a specific number of lanes leading to the junction. The total
number of approaching lanes for the intersection, denoted as [, is the sum of the lanes in all of the
approaches. The numbers of traffic and pedestrian groups are N and Np, respectively. Given the
geometric details of the junction, let @ € RINT+Np)X(NT+Np) and T € RINT+NP)X(NT+NP) e the
successor matrix and the clearance time matrix, respectively. ();; is the element at the it" row and the

jt" column in Q, where

Q. = {0 if groupiprecedes group j (1)
Yo otherwise’

Additionally, t;; is the element at the it" row and the j** column in T, and it indicates the minimum
clearance time during a transition from signal group i to j. The set of incompatible signal group pairs is
denoted as W. A sample intersection with two traffic groups and one pedestrian group is used to illustrate
the above definitions (Figure 1). In the transition period of a mixed driving environment involving both
CVs and non-CVs within the network, only CV data are available. Given the aforementioned settings
and constraints, this paper aims to develop a CVASC framework that optimizes cycle-by-cycle adaptive

signal control by minimizing the total junction delay solely using the available partial CV data.
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The total junction delay, denoted as D, is the sum of traffic delays across all lanes. At the end
of cycle k, the total junction delay for cycle k + 1 has to be estimated. The vehicle arrival rate in lane
m in cycle k + 1, denoted as g,y x+1, is the essential input for estimating the traffic delay in lane m in
cycle k + 1, vm € [1,1]. With the assumption of similar traffic demands between consecutive cycles
and an identical average arrival rate in lane m in cycle k + 1 to that in cycle k, g, ,+1 can be estimated

as follows:

Nm

k —
Admk+1 = Cr + CIm,k(]- - pm,k):vm € [1: l]: (2)

where n,, i, Cx, G k» and py, ,, represent the number of CVs in lane m in cycle k, length of cycle k,
average arrival rate in lane m estimated at the end of cycle k, and CV penetration rate in lane m in cycle
k, respectively (Jia et al., 2023, 2024a, 2024b). While n,, i, Cx, and g, ; are constants, the estimated
Pm x could be subject to uncertainty. The CV penetration rate is defined as the ratio of the number of
CVs in a cycle to the total number of vehicles in that cycle. Wong et al. (2019) proposed a novel
SSDPRE method to unbiasedly estimate the CV penetration rate based on the number of CVs and the
total number of vehicles in a constrained queue deduced from the stopping location of the last CV. The
variance of the estimator quantifies the uncertainty in CV penetration rate and thus serves as an indicator
of'its variation range. CV penetration rate uncertainty can generally be attributed to one of the following
four key factors: (1) variations in the total number of vehicles, (2) variations in the number of CVs, (3)
permutations of CVs and non-CVs, and (4) the presence of residual vehicles from previous cycles. Jia
et al. (2023) analytically quantified CV penetration rate uncertainty due to (1) variations in the total
number of vehicles, (2) variations in the number of CVs, and (3) permutations of CVs and non-CVs.
Subsequently, Jia et al. (2024a, 2024b) extended their analysis by further quantifying CV penetration
rate uncertainty due to (4) the residual vehicles from the previous cycles. In general, CV penetration
rate uncertainty decreases as volume-to-capacity (V/C) ratio increases, due to the richer information
available from partially observed constrained queues. Additionally, when the underlying CV penetration
rate is either very low or very high, the uncertainty approaches zero due to the near absence or
abundance of observed CVs, respectively. As the total junction delay D is a function of gy, x+1, Which
itself depends on p;, ., D is inherently subject to uncertainty associated with p,, ;. Ignoring other
constants, the abstract form of D, dependent on a set of group-based control variables, can be written
as
D= f(61, 104 s Onptnps D1 s Dis oo Dt S| PLies -+ Prmer -+ PLic)» ®)

where 6;,Vi € [1, Ny + Np] represents the time from the cycle origin to the start of an actual green
signal for control group i divided by the cycle time, ¢;, Vi € [1, N; + Np] represents the duration of
the actual green signal for control group i divided by the cycle time, and { is the reciprocal of the cycle

length (Wong, 1996; Silcock, 1997; Lee et al., 2017a, 2017b).



It is important to emphasize that the total junction delay, D, largely depends on vehicle arrival
rates, which in turn are influenced by the CV penetration rates. Evaluating D and optimizing signal
plans are straightforward if p, ,, Vm € [1,1], is taken as a point estimator without considering its
variability, Var(py, ;). In this case, the estimated vehicle arrival rates are fixed and Eq. (3) simplifies
into a deterministic model. However, deterministic models can be biased and may lead to suboptimal
solutions in system optimizations (Yin, 2008; Wong and Wong, 2015, 2016a, 2019; Jia et al., 2023,
2024a, 2024b). In a simulation study of a simple two-approach intersection, Jia et al. (2023)
demonstrated that incorporating the uncertainty of the CV penetration rate into a CV-based adaptive
signal optimization problem could result in significant improvements. Specifically, a 15.1% reduction
in average delay, a 15.3% decrease in maximum delay, and a substantial 45.5% drop in delay variance
were observed. Considering both the mean and uncertainty of p,, ; turns it into a random variable,
accounting for uncertain vehicle arrival rates and making Eq. (3) a stochastic model. With numerous
control variables and traffic lanes for a complex intersection, efficiently evaluating E (D) and Var(D)
for cycle-by-cycle adaptive signal control becomes challenging. Furthermore, obtaining the partial
derivatives of E(D) and Var(D) for developing gradient-based optimization algorithms increases the
complexity. While Monte Carlo sampling (MCS) is convenient for diverse evaluations, its low
computational efficiency hinders real-time applications. Thus, the key research problem of this paper is
to develop a CVASC framework with models that can efficiently estimate E(D), Var(D), and their
partial derivatives to achieve cycle-by-cycle adaptive signal control solely using CV data. In addition
to the terminology and notation defined above, a glossary and a table of symbols are provided in

Appendix A.

3. CV-based Adaptive Signal Control (CVASC) Framework

This section presents the formulation of the CV-based adaptive signal control (CVASC)
framework, starting with the consequential system delay (CSD) model that estimates the total junction
delay. A set of constraints is introduced for signal optimization. Lastly, the deterministic penetration
rate control (DPRC) and stochastic penetration rate control (SPRC) models are developed.

Developing the CVASC framework under uncertain CV penetration rates requires estimating
several critical quantities, including the uncertainty of the CV penetration rate in lane m in cycle k,
Var(pmk), the average arrival rate in lane m in cycle k, @y, x, and the number of holding vehicles in
lane m in cycle k, R,y ;, where holding vehicles represent vehicles that, based on their projected
trajectories using cruise speed, should have been discharged but are instead held by the system and
remain undischarged at the end of a cycle (Jia et al., 2024c). Previous studies by Wong et al. (2019) and
Jia et al. (2023, 2024a, 2024b, 2024c) have demonstrated that these quantities can be estimated in

situations with partial CV trajectories. Thus, they are considered known inputs for the proposed



framework in this study. Appendix B provides concise overviews of the estimation methods for these
essential quantities.

In addition, Figure 2 provides a step-by-step flowchart summarizing the implementation
procedure of the proposed CVASC framework. In Step 1, CV trajectories are extracted from real-time
traffic data. In Step 2, these CV trajectories are used to estimate essential traffic parameters. In Step 3,
the delay estimation model is established (Section 3.1). In Steps 4 and 5, the optimization constraints
are determined and the control schemes are defined, respectively (Sections 3.2—3.4). Finally, in Step 6,
the signal optimization problem is solved (Sections 4 and 5), and the optimized signal plan is
implemented in the traffic system. In practice, this process is continuously repeated throughout the

control period.

Step 1 Step 2 Step 3
Real-time CV trajectory Traffic parameter Delay estimation
traffic data extraction estimation (CSD model)
Traffic
system
Optimized _ Signal Control method Constraints
signal plan | ©Ptimization (G*S2 (DPRC or SPRC) determination
with ASD model)

Step 6 Step 5 Step 4

Figure 2. Flowchart illustrating the process of CVASC framework implementation.

3.1. Consequential system delay model

The CSD model estimates both the traffic delay in cycle k + 1 and the consequential delay
induced by the holding vehicles at the end of cycle k + 1, as presented in Propositions 1 and 2,
respectively. The estimated delay is determined by the area enclosed between the cumulative arrival
curve and the cumulative departure curve. Typically, the cumulative departure curve is closely modeled
by a straight line with a slope equal to the saturation flow rate, representing the maximum discharge
rate of queued vehicles. The cumulative arrival curve, on the other hand, depends on the vehicle arrival
rate and the specific vehicle arrival pattern. The estimated delay is mainly governed by the vehicle
arrival rate, which dictates the overall slope of the cumulative arrival curve and largely determines the
total number of arriving vehicles in a cycle. As illustrated in Eq. (2), the estimated vehicle arrival rate
depends on the CV penetration rate. Ignoring the CV penetration rate uncertainty results in fixed vehicle
arrival rates and DPRC. Considering the crucial role of the vehicle arrival rate in estimating delay,
incorporating CV penetration rate uncertainty accounts for the uncertainty in vehicle arrival rates and,
consequently, the uncertainty in the overall slope of the cumulative arrival curve, leading to the
establishment of SPRC. In comparison, the impact of the specific vehicle arrival pattern on the estimated

delay is relatively minor compared to the vehicle arrival rate, as the total number of arriving vehicles is



already largely governed by the vehicle arrival rate. In the absence of the detailed vehicle arrival pattern,
particularly for non-CVs, assuming a uniform vehicle arrival pattern serves as a reasonable and accurate
first-order approximation. Proposition 1 provides the traffic delay for any lane m in cycle k + 1,

denoted as dy; g1

Proposition 1. Under the assumption of a uniform vehicle arrival pattern, the traffic delay for any lane

min cycle k + 1, denoted as d,;, y+1, is estimated as dr(i,)k 41 0T dr(,ﬂc +1 depending on whether the lane

is controlled by a signal group ending with effective red or green, respectively. dr(i)k +1 and dr(i)k +1

under different conditions are detailed in Tables 1 and 2, and the parameters C, 7, 14, 75, g, g1, and g,
in Egs. (4)—(10) respectively represent the cycle length, total effective red, effective red before effective
green, effective red after effective green, total effective green, effective green before effective red, and

effective green after effective red for the associated signal group controlling lane m.

Table 1. Analytical formulae for dr(i)k +1-
Conditions dg)k +1
59 — Rk 1 (Rmk + am k+17'1)2 1
S— =Ry + +— ' +5 2
dmk+1 n+g 2( mi ¥ dmk+171)"1 2(5 — Qmrss) > Amk+172
Sg — Rk 1 1
Imk+1 > EEYE E(ZRm,k + Gmi+1C)C — E(ZC — g —2r)sg
Table 2. Analytical formulae for dr(s)k +1-
Conditions dﬁ)k +1
591 — Rk 592 R,..2+s r?
Amk+1 < - Amik+1 = n mk Qmk+1
91 "t g2 2(s = Gmi+1)
591 — Rk 592 R, .2 r?
Amic+1 = s Amk+1 = mk + dm je+1
9 TY9 (s | 2
+ 9> (ZCIm,k+17" + Qmr+192 — 592)
2
591 — Rk Sg—Rmik (2R, 4 + -5
Gmiesr > m  Gmjert S m ( mk T Amk+191 91)91
g1 C 2
1
+r (Rm,k + dmr+191 + > Amk+1T 591)
2
N (Rm,k t qmk+191 —Sg1 Tt Qm,k+17")
2(5 - qm,k+1)
591 — Rm Sg = Rmr (2R, + —s
Gmicsr > - m Qs - m ( mk Qm,k2+191 91)91




1
+r (Rm,k + qmr+191 + 5 dmct1” — sgl)

1
+3 92[2Rmic + dmperr (7 + g1 + )

- 5291 + 92)]

c=1 4
=7 4)
g=¢i€+(,‘v’i€[1,NT]. 5)
0,

rn = ?,Vl € [1, NT]' (6)
r2=—1_9i2¢i_(,ViE[1,NT]. (7
r= #,w € [1, Ny]. (8)
g =T vie ) )

1-6;
92=— Vi €[1,Ng]. (10)

Proof. Under a uniform vehicle arrival pattern, traffic delay can be represented as the area of the
polygon formed between the cumulative arrival and departure lines, as illustrated in Figure 3. Different
demand levels form distinct polygons. This determines the various conditions and their corresponding
formulae for estimating traffic delays, as shown in Tables 1 and 2. The detailed proof is provided in

Appendix C.
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Figure 3. Estimation of traffic delays for lane m in cycle k + 1. Cases 1 and 2 represent a signal group
ending with an effective red and green, respectively.
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Proposition 1 provides a generic and analytical model for estimating traffic delay under any

signal plan. However, it only focuses on the traffic delay in cycle k + 1 and fails to consider the
potential impact caused by holding vehicles at the end of cycle k + 1. In an ideal scenario, an effective
signal plan should ensure that all arrivals are cleared within the same cycle, avoiding holding vehicles
at the end of the green period. Failure to achieve this could result in significant delays for holding
vehicles and subsequent arrivals, potentially causing congestion propagation in the local transportation
system, particularly in situations with temporarily high V/C ratios. Proposition 2 is introduced to model

such consequential delays.

Proposition 2. Under the assumption that the temporarily high arrival rate returns to the average arrival

rate G,  after cycle k + 1, the consequential delay for any lane m in cycle k + 1, dy, .41, can be

estimated as
A1 = ViRmis1 >+ VoRmpsr, Ym € [L1], (11)

where
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!
1 Co
h=722(s = Codmp)
m=1 gm,O qu,k
!

_ 1 TmoS
L 4o 2(s = qmp)’
m=1

Y2

(12)

(13)

R k+1 represents the projected number of holding vehicles at the end of the nearest green period, and

Co, Ym0, and 7y, o respectively denote the cycle length, effective green duration, and effective red

duration of a selected signal plan used for analysis. Ry, ;+1 can be estimated as either Rr(;)k 41 OF

@)
Rm,k+1

green, as detailed in Tables 3 and 4.

Table 3. Analytical formulae for R

!

depending on whether the lane is controlled by a signal group ending with effective red or

®

mk+1
Conditions Rf;)k +1’
S9 —Rmk _ Sg — Amkr+172 Amic+172 + Ami (11 + g) — sg
Gmk+1 =S~ qmk > ————(
7'1 + g rl + g
S9 —Rmk _ 259 = Rmk = Gmi+1C  Rpp + Qmp+1C + Gmp (1 + g) — 2sg
Amk+1 > 7 Qmk =
7'1 + g rl + g
Otherwise 0
Table 4 Analytical formulae for Rr(j)k 1
Conditions Rfrzl)k +1’
591 — Rk 592 (r+g,)—sg+q
Gmjer1 < T’", Gmjert > — Amk+1 92 9 T qmk91
_ Sg = qmi+1(r + g2)
qm,k >
g1
591 — Rmk 59 — Rmk Rk + dmi+1C — g + (@mi — S)91
Amik+1 > g— Amik+1 > —c
1

> S(gl + g) - Rm,k - Qm,k+1C

qm,k

g1

Otherwise

Proof. The existence of holding vehicles will delay all newly arrived vehicles owing to the first-come-

first-served nature of the transportation system, resulting in extra delay except for the regular delay

experienced by a system without holding vehicles. This additional delay is estimated as the

consequential delay. A detailed proof is presented in Appendix D.
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Proposition 2 reveals a quadratic relationship between dy, ;.1 and Ry +1 - To determine y,
and y,, a straightforward yet effective approach is to use the optimal fixed-time signal plan derived
from average traffic demands as the selected analysis signal plan. With both Propositions 1 and 2, the

total junction delay in cycle k 4+ 1 can be explicitly expressed as

l
D= f(gl' L] 91’! L] GNT+NPI ¢1l L] ¢i' L] ¢NT+NP' Z|p1,kl "'lpl,k) = Z (dm,k+1 + drcn,k+1)' (14)

m=1

3.2. Constraints for signal optimization
This subsection summarizes a set of constraints for signal optimization. First, the definitions of

the control variables imply the following constraints:

0<¢;,<1,Vi€e[l N+ Npl. (16)
Considering the maximum cycle length Cy,,,, gives
1
‘> - (17)
Cmax
For traffic groups, the minimum signal group duration is denoted as g, meaning that
¢i = grd, Vi € [1,Nr]. (18)
For pedestrian groups,
¢; = gp¢, Vi € [Ny + 1, Ny + Np], (19)

where the minimum signal group duration, gp, is set to pw/vp; p = 1.5 represents the provision being
50% higher than the minimum curb-to-curb crossing time; w is the width of the crossing in m; and
vp = 1.2 is the average walking speed in m/s. For safety, the clearance time constraints must be satisfied:
0+ ¢ +t;;¢ <0; +Q;;, V(1)) €W. (20)
In addition, in practical scenarios, the start or end of green for certain groups can be further
constrained as follows:
0; = A, Vi € Xy, 21
0; + ¢; = 0;(,Vi € Xy, (22)
where A; and o; are user-defined parameters and X; and X, represent sets of groups that need to
constrain the start and end of green, respectively. For instance, Eq. (21) can be used to set the start of
green for a certain group as the beginning of a cycle. Equation (22) can be used to allocate computation

time for optimization purposes.

3.3. Deterministic penetration rate control model
The objective function of the CVASC framework can be formulated as the minimization of the
total junction delay, D, which is a function of the CV penetration rates. Given the uncertainty in the CV

penetration rates, pp,,Vm € [1,1], the objective function is also subject to uncertainty. One

12



straightforward approach for evaluating D involves disregarding the uncertainty in p,, ; and replacing
it with the estimated average and fixed CV penetration rate p,, ;. Treating all of the input parameters as
constants converts D into a deterministic model. Minimizing this deterministic delay, subject to the

optimization constraints outlined in Section 3.2, results in the following formulation of the DPRC model:

min =D,
{9i,¢i,i€[1,NT+Np]},<]D

$.6.D = f(01, s 04y woes Ongt s P vves D oo s Ongtips S|P oo s Prmer oo Pk (23)
and Egs. (15) to (22).
Given the analytical and deterministic form of Jp, substituting the analysis signal plan of
interest into the function f provides a straightforward evaluation of the total junction delay.

Furthermore, the gradient of Jj is given as follows:

!
9/p _ Z 0dm k+1 + 0dy k1
0x 0x 0x

m=1

),vX €V, (24)

where V = {91, e B4y Onpa Ny D1y e D) ...,¢NT+NP,(} is the control variable set. Thus, the
problem reduces to the derivation of the gradients of dy, 41 and dy, 4,1, Which are respectively
presented in Appendices E and F. Substituting the gradients of dy, x+1 and dp, 44 into Eq. (24)

provides the gradient of /.

3.4. Stochastic penetration rate control model

While the above deterministic model is straightforward, it does not consider the uncertainty in
the CV penetration rate, and hence the uncertainty in vehicle arrival rate. In the context of the stochastic
and dynamic nature of transportation systems, optimizing the system without accounting for this
uncertainty may result in suboptimal solutions and unsatisfactory performance. To potentially achieve
optimal solutions in adaptive signal control, incorporating the uncertainty of CV penetration rates in the
estimation of D is imperative. As p, , ranges from 0 to 1 by definition, it is assumed to follow a beta
distribution with a mean of p,,, and a variance of Var(p,x) (Jia et al., 2023, 2024a, 2024b).

Consequently, the problem is reformulated into the following SPRC model:
{ei,¢i,iefr1‘.}v“T+NP]},ng = E(D) + w\/Var(D),

s.t.D = f(el' ey Oi, ey GNT+NP' d)l' . ¢i' . ¢NT+NP' <|p1,k' ---vpm,kr ""pl,k)
and Egs. (15) to (22),

(25)

where w is a user-defined parameter representing the trade-off between efficiency and stability.

1 (1= pm) |, Yme[1,1. (26)

Pm i ~Beta P (1 = P 1] 5 [@n,k(l — Pmk)
mk I —————— _— s

Var(pmx) "™ var(pm)

The inclusion of parameters with uncertainties in the objective function presents challenges in

both evaluation and optimization. While the MCS method is a convenient option, it is time-consuming
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and impractical for real-time applications. Moreover, obtaining the gradient of this objective function,
which is essential for developing high-efficiency gradient-based solution algorithms, is an even more

challenging task.

4. Analytical Stochastic Delay Model

This section introduces the analytical stochastic delay (ASD) model, which is designed to
accurately estimate the stochastic quantity /s and its gradient using efficient analytical models. Before
the estimations of Jg and its gradient are presented, the independence of py,x, Ym € [1,1], is

established, as it is essential for the subsequent derivations.

4.1 Independence of p, i
4.1.1 Model derivation

The independence of p,, , Vm € [1,1], is stated in Lemma 1.
Lemma 1. With the assumption that a super source demand g follows a Poisson distribution, i.e.,
q~Pois(1), which generates demands for all lanes, each vehicle is randomly determined to be a CV or
a non-CV according to an underlying CV penetration rate. Additionally, each vehicle has an equal
probability a,, of selecting lane m, where Y\, _; a,, = 1. Furthermore, the random variables Pmk>
vm € [1,1], are independent of each other.
Proof. Detailed proof of Lemma 1 is provided in Appendix G.

4.1.2. Numerical experiments

To examine the independence of p,, ., a series of numerical experiments is conducted. An
approach with two arbitrary lanes connected to an intersection is considered. The total demand in each
cycle is assumed to follow a Poisson distribution with a mean arrival of 4, i.e., Pois(4). Every vehicle
is randomly assigned to be either a CV or a non-CV according to the underlying CV penetration rate p.
In addition, each vehicle has an equal probability of selecting either lane 1 or lane 2, as represented by
a4 and a5, respectively, where a; + a, = 1. For simplicity, a vertical queue assumption and a 50% red
and 50% green signal plan are adopted. Various combinations of 4, a;, and p are tested. For each
combination, 10,000 cycles are simulated. In each cycle, the SSDPRE method is applied separately to
the two lanes. This process generates 10,000 samples of p;;, j for each lane. The correlation coefficient
between p;, and p, is then evaluated according to these samples. The correlation coefficients
between py j and p,  are very close to 0 across different combinations of 4, a;, and p. Thus, the

numerical experiments validate Lemma 1. Detailed analysis and results can be found in Appendix H.
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4.2. Estimation of J¢
4.2.1. Model derivation

The objective function /g in the SPRC model relies on both E(D) and Var(D), where D is
dependent on uncertain parameters, p,, ., Vm € [1,1]. Leveraging the independence property of p, .,

Proposition 3 is introduced for efficient estimations of E(D) and Var(D).

Proposition 3. For any given signal plan
(61= 01,0 =0y, Onpinp = Onpanps B1 = P1, s B0 = Pis o, Dvpany = Ppanyn§ =), (27)
with a stochastic model featuring distributed and independent parameters p;, ., Ym € [1,1],
D =f(01 s 00 s Onpanps P1 oo i oo Bvp s S [P oo Prer e PLD, (28)
and a K -order gPCE for D,
D= Z aPr(@),Z = (Zy, . 2y o, Z1), (29)
|kI=K

E(D) and Var(D) can be estimated as follows:

E(D) = co, (30)
Var(D) = Z Cie 31)
0<Ik|<K

where {Z,, ..., Z,,, ..., Z;} is a set of independent random variables determined by the original random
variables {py . ..., P ser - Pric} » {Pr(Z) = [Ty D, (Zn), VIk| < K} is a set of multivariate
orthonormal polynomials, {Cbkm Zyw), Vky <K }, vm € [1,]] are sets of univariate orthonormal
polynomials determined by the distribution of Z,,,Vm € [1,1], ¢, V|k| < K is the coefficient
of ®r(Z), k = (kq,ky, ..., k;) is a multi-index with |k| = §-=1 k;j, and K is the maximum order of
gPCE.
Proof. Detailed proof of Proposition 3 is provided in Appendix I.
]
Proposition 3 offers a fully analytical and efficient method to evaluate E(D) and Var(D)
according to gPCE. Knowing the coefficients of gPCE is essential for evaluating E (D) and Var(D).

Proposition 4 is proposed for estimating these essential coefficients.

Proposition 4. Given the gPCE for D, the set of & samples for p,, VYme€ [1,1], {p(i) =

(pg,)(, ...,pl(_i,z),Vi € [1, 5]}, the set of associated & samples for Z, {Z(i),vi € [1,€]}, and the total

number of cases for |k| < K being Q, the coefficients ¢, V|k| < K can be analytically estimated as
follows:

c = (AA")1Ab, (32)
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where

T l+K
c= [Cli "'JckQ] )] Q = ( K )I (33)
q)kl(z(l)) q)kl(z(f))
A= : : , (34)
q)k@(z(l)) chQ(Z(f))
F(O1 0,0 e, O s P oo P oo Brigar S |P)
b = ~ ~ ~ e ~ ) . (3%5)
(81 o8ty e Otips B s Bt o Bt {[P©)
Proof. Detailed proof of Proposition 4 is provided in Appendix J.
]

With Proposition 4, the coefficients ¢, V|k| < K can be efficiently obtained using only a
small number of samples. Typically, the number of samples ¢ is set to uQ, where y represents the
oversampling rate, and it is commonly set to 2 or 3 (. = 2 is used in this paper). To ensure the
reproducibility of the experiment and improve convergence speed in coefficient estimation, the samples

p® = (pf,)c, pg,)c, ...,pl(,i,?),Vi € [1,&] are generated using quasi-random and low-discrepancy Sobol

sequences. Notably, the selected distribution for Z,,,Vm € [1,1] and the associated orthonormal
polynomials are dependent on the original distribution p,, x, Ym € [1, I]. In this study, py,  is assumed
to follow a beta distribution; hence, Jacobi polynomials are used. Given that Jacobi polynomials are
formulated using Rodrigues’s formula, the support of the associated weighting function is [—1,1] rather
than the standard beta distribution defined on [0,1]. Therefore, necessary transformations are required
between p,, \ and Z,,. Detailed derivation is provided in Appendix K.
4.2.2. Numerical experiments

This subsection presents a series of numerical experiments aimed at comparing the efficiency
of the MCS method and Propositions 3 and 4 in evaluating E (D) and Var(D). Consider the real-world
four-arm intersection depicted in Figure 5 in Section 6. Given a total of 13 approaching lanes connected
to the intersection, the total junction delay D depends not only on parameters such as the signal plan
parameters but also on the 13 uncertain CV penetration rate parameters p;, x, Ym € [1,13]. These
random variables greatly complicate the task of evaluating E(D) and Var(D). The MCS method
estimates E(D) and Var (D) by sampling uncertain parameters from the assumed distributions. Despite
its simplicity, this method typically requires millions of samples to converge and may lack
reproducibility. In contrast, the proposed Proposition 4 requires only a small number of samples to
estimate the essential inputs of Proposition 3, making it much more efficient.

The numerical experiment results indicate that when the MCS method is used, the estimates
converge as the number of samples gradually increases from 10 to 107 at a growth rate of 10. With a
negligible difference observed between the estimates obtained using sample sizes of 10° and 107, the

estimates derived from the MCS method with 107 samples are considered the ground-truth values,
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requiring a computation time of ~24 s. In contrast, when K in Proposition 4 is set to 1, only 28 samples
are required, and Propesition 3 achieves absolute percentage errors (APEs) of 0% and 28.9% in
estimating E(D) and Var(D), respectively, with negligible computational cost. Increasing the
approximation order K to 2 and 3 reduces the APE of estimated Var(D) to 3.2% and 0.09%,
respectively, while the APE of estimated E(D) is maintained within 0.07%. Considering both
approximation accuracy and computational complexity, K = 2 is chosen. With this choice, only as few
as 210 samples are required for estimation, and thus the approach is several orders of magnitude more
efficient than the MCS method. The computation time for Propositions 3 and 4 is only 0.08 s,
approximately 300 times more efficient than the MCS method. These results consistently indicate the
superiority and efficiency of Propositions 3 and 4. More details of the numerical experiment are

presented in Appendix L.

4.3. Gradient estimation of J¢
4.3.1. Model derivation
According to Eq. (32), the gradient of /¢ is expressed as
% _ J0E (D) N ) dVar(D)
ox ox 2/Var(D) 0x

€ V. (36)

Therefore, estimating the gradients of E(D) and Var(D) is imperative; the estimation is detailed in

Proposition 5.

Proposition 5. Given D as defined in Eq. (25), ¢, = ¢g in Eq. (33),

a1 Qg Ay

A=(AAT)A =

) 37)

a1 - Agsl  1Ag
and the other notation consistent with that in Proposition 4, the gradients of E(D) and Var(D) are

respectively expressed as follows:

JE(D
9ED) _ Ab', Vx €V, (3%)
ox
War(D) <
ar
— = Z 2¢,, A;b' ,Vx €V, (39)
0x o ¢

where

£ (611 8is e, Ot D1, o Dt s v S IP)

£ (01, 0 04y e Onpa g D1, o0 B oes Dy S [PD)
Proof. Detailed proof of Proposition 5 is provided in Appendix M.

b’ (40)
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Proposition 5 completes the ASD model, indicating that the gradients of E(D) and Var(D)
can be theoretically estimated according to the gPCE and gradients of the corresponding deterministic
models. This crucial finding enables the development of efficient gradient-based algorithms for
addressing stochastic optimization problems.

4.3.2. Numerical experiments

This subsection validates the effectiveness of Proposition 5 in estimating the gradients of E (D)
and Var(D) through a series of numerical experiments. The experiments are conducted using the
settings and parameters outlined in Section 4.2.2. The gradients of E(D) and Var(D) are first estimated
through a numerical differentiation method, and the values serve as the ground truth for evaluation.
Subsequently, with K = 2, the analytical models proposed in Proposition 5 are used to efficiently
estimate the gradients using only 210 samples.

The results of estimates obtained using Proposition 5 indicate that the maximum APE, average
APE, and variance in APE of the estimated partial derivatives of E(D) are 0.99%, 0.14%, and 0.08%,
respectively. These near-zero metrics confirm the accuracy of Proposition 5 in estimating the gradient
of E(D). Similarly, the maximum APE, average APE, and variance in APE of the estimated partial
derivatives of Var(D) are 4.21%, 2.56%, and 1.51%, respectively. Given the inherently greater
complexity of estimating Var(D) and its gradient, these errors are slightly larger than those of E (D),
as expected. Nonetheless, the maximum APE among all partial derivatives remains below 5%, with an
average APE of only ~3%. Moreover, the computation time for Proposition 5 is only 0.08 s,
significantly shorter than that required by the numerical differentiation method (525.42 s). These results

consistently demonstrate the superiority of Proposition 5. Further details are provided in Appendix N.

5. Gradient-guided Golden Section Search Algorithm

The gradient-based method optimizes the signals along the most efficient direction but may
become trapped in a local minimum. The golden section search method searches for solutions along a
specific line spanning the entire feasible region, but randomly selecting the search line can significantly
degrade efficiency. This section proposes an efficient gradient-guided golden section search (G>S?)
algorithm that leverages the strengths of both approaches to dynamically optimize the signal plan.

Let J(+) represent the objective function, which can be either Jj, or Jg. The G*S? algorithm is
tailored for sequential optimization problems and uses the optimized signal plan for cycle k (denoted
as V(&) as the initial solution to optimize the signal plan for cycle k + 1, as depicted in Algorithm 1.
For the initial cycle when k = 0, V(®* can be either randomly generated or manually set according to
prior knowledge. In step 1, the random signal generation algorithm, denoted by G(V(k'*),NR) and
detailed in Algorithm 2, is applied. The algorithm uses the optimized signal plan for cycle k, V¥*) as
input to generate Ny additional random signals. This process helps to avoid poor local minima and aims

to search for better solutions. Subsequently, the G*S? procedure is applied separately to Ni + 1 initial
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signal plans, resulting in N + 1 candidate signal plans. The optimized signal plan for cycle k + 1 is
selected as the best signal plan among the candidate signal plans according to their objective function
values. Rather than randomly selecting a direction for the golden section search, the gradient direction
is used to accelerate convergence, as demonstrated in steps 5 and 6 in Algorithm 1. Additionally, linear
programming (LP) problems are involved in step 6 of Algorithm 1 and step 4 of Algorithm 2, which
can be efficiently solved through the simplex method. Applying the proposed algorithms at the end of
each cycle enables cycle-by-cycle adaptive signal control. Figure 4 illustrates the G*S? algorithm.

Algorithm 1. Gradient-guided golden section search (G*S?) algorithm.

Input: Optimized signal plan for cycle k , Yk =

(65,607, 0% 007, 87, By, (H), where k 2 0, Nyis the number of

random signal plans, N;g4 1s the maximum iterations of gradient computation, N;gs is the maximum
. . . . L 5—1. .
iterations of golden section search under each gradient direction, and p = \/_T is the golden section

number.
Output: Optimized signal plan for cycle k+1 YL =

(k+1,%) (k+1,%) (k+1,%)  (k+1,%) (k+1,%) (k+1,%) "
(60 ""’91: l'"eNT+NPr¢0 ""’d)i ,...,¢NT+NP’((R+1 ))

Initialization: Sp- « {}, Sy» < {}

1: for Vin G(V**),Ng) do

2: VeV
3: fori=1,2,...,Ngg4 do
4: Vev
5: Compute gradient AV = (]{90|v, ""]"9NT+NP |v’]<,¢’°|V’ ""](Il>NT+NP |V,]é|v>
6: Find 7,4, by substituting V « ¥V — nAV into Egs. (15) to (22), i.e.,
Nmax = argmaxn
s.t.{~—77]é|v > Cl
max

0<8 _"]éf|\v < 1,Vj € [1, Ny + Np]
0< ¢, —n];,,j|\v < 1,Vj € [1, Ny + Np]

¢ —nly,| = gr (C=nitly,).vi € [1,N7]

& —nly| = 9p ({—nllg) Vi € Np + 1 Np + Np]

B = bl + Bu = i | + tuw ($=12l) < B0 =105, |, + Qu Y, v) €W

6 =yl =8 (E = mily) Vi€ X
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6 —nlg,| + & iyl =0 (C—nily) vi € X,

7: Nmin = 0

8: form=1,2,..,N;ss do

9: N1 < Nmin + (1 = P) Mmax = Mmin)
10: N2 < Nmin + P(Mmax = Mmin)

11 n* « argminJ(V —nVV) s.t.7 € [Mnin, 11, M2 Nmax]
12: if n* in [Nynin, n1] then

13: Nmax < M2

14: else

15: Nmin < M1

16: V* « V —n*AV

17: D* =J(V —n*aV)

18: SD* (_SD*+{D*}
19: SV* «— SV* + {V*}
20: V&+19) = Sy [argmin(Sp+)]

Algorithm 2. Random signal generation algorithm.

Input: Optimized signal plan for cycle k , V) =
(657, . 087, 000 67, 9, by, C7)), where k 2 0 and Ny is the number
of random signal plans.

Output: A set of starting signal plans Sy = (G(W(k'*), NR).

Initialization: Sy « {}

D Sy « Sy + {V&}

:fori=1,2,..,Np do

—

2
3:  Randomly generate a direction (€, ..., EZ(NT+NP)+1)’ €j~U(—1,1),Vj € [1,2(Ny + Np) + 1].
4 Solve the following LP problems:

Nmin = argminn and n,y,,, = argmaxn
1

s.t.gU) — NE2(Np+Np)+1 = C
max

0< 9].("'*> — 1€ < 1,Yj € [1, Ny + Np]

0< (;b](k’*) —ne€j < 1,Vj € [1, Ny + Np]
k,* % .

¢ —ne; = gr(¢%? = neayanpy+r) Vi € [1,Ny]

k,* * .
¢]§ )~ ne; = gp(¢* ) — n€xvp+np)+1), VJ € [Ny + 1, Np + Np]
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6,7 —new + ¢y = ney + tun (% — neapanpy+1) < 657 —ney + 0, V(v) €
Qj(k'*) —ne; = 8;(T% = neawpenp)+1), Vi € X4
677 —nej + 8" —ne; = 0;(¢%? ~ nex(npangye1). Vi € X

5: Randomly generate a number 9~U(0,1)

6:  Mmia = Mmin + I (Mmax = Mmin)

7. Sy« Sy+{VED) —nia(er o €20nvpinp)+1) }

Feasible region

+
N,
.3

Feasible region

Gradient estimation Golden section search

X Ngss
L J
T
XNeza ¢ Candidate signal
. plan for cycle k+1

Feasible region

Feasible region Feasible region

Random signal
generation
algorithm

+ %

@ Optimized signal + Random  signal Optimized
plan for cycle k plan for cycle k+1 Foasible region * sigpnlg-lnzp?an for
A cycle k+1

Gradient estimation Golden section search

X Ness

i

X Ngra

Serve as the initial signal plan for the next cycle

Figure 4. Illustration of the G*S? algorithm.

6. Realistic Simulations
This section presents a comprehensive and realistic simulation study to demonstrate the

applicability and efficiency of the proposed CVASC framework and its solution methods.

6.1. General settings

Simulations were performed using a VISSIM platform in a Windows 10 environment on a
machine equipped with an Intel Core i7-10700 CPU. Intersection 1 in the next-generation simulation
(NGSIM) dataset, a real-world intersection at the junction of Peachtree Street and 10th Street in Atlanta,
Georgia, USA, was selected for the simulation study. The original layout of the intersection did not
include any pedestrian crossings. However, given the crucial role that pedestrians play at intersections,
many studies have specifically considered pedestrians in intersection control (e.g., Liang et al., 2020b;
Yin et al., 2021). To demonstrate the versatility of the proposed framework, two pedestrian crossings

were introduced. The modified intersection layout and the corresponding groups are illustrated in
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Figures 5 and 6, respectively. Additionally, the actual demands and turning proportions between 12:45

and 13:00 on November 8, 2006 were extracted and are provided in Table O1 in Appendix O.

Group 4 Group 7

“4— Gouws
[Grcup 1

Group 3

Group 5——

Group 2 ‘ Group 10

Group 9

Group 1 Group 8

Figure 5. Modified Intersection 1. Figure 6. Corresponding signal groups.

Various simulation cases were constructed using different V/C ratios (i.e., 0.3, 0.5, and 0.7) and
underlying CV penetration rates (i.e., 0.1, 0.4, and 0.7). For each simulation case, the study period was
set to 2 h after a 30-min warm-up period. Vehicle arrivals followed Poisson distributions with constant
average demands during the warm-up period, and the optimal fixed-time signal plan derived from the
optimised signal capacity and delay (OSCADY) model was implemented. To simulate a realistic rush-
hour traffic demand pattern, each approach was set to have a commonly used triangular demand profile,
in which the demand starts and ends at 0.8 times the average demand, peaking at 1.2 times the average
demand. That is, while the average demand for each approach varied over time, the mean of these
average demands remained identical to the constant average demand used in the warm-up period. In
addition, the triangular demand profile period aligned with the duration of the study period. The demand
generated under each average demand followed a Poisson distribution. To test different V/C ratios, the
average demands corresponding to the V/C ratios of interest (i.e., 0.3, 0.5, and 0.7) were derived by
scaling the actual demands up or down. Furthermore, each vehicle had probabilities p and 1 — p of
being a CV and a non-CV, respectively, with different underlying CV penetration rates considered (i.e.,

0.1, 0.4, and 0.7).

6.2. Signal control schemes

To critically evaluate the performance of the proposed control schemes, namely the DPRC and
SPRC schemes, within the CVASC framework, the built-in vehicle-actuated control (VAC) scheme in
VISSIM was chosen as the benchmark. VAC relies on downstream detectors placed on each lane to
detect vehicle presence and adaptively adjusts signal timings based on real-time traffic data. Thus, as
the VAC scheme uses full traffic information, it has demonstrated reliable and satisfactory performance
and has been widely employed as a benchmark (Feng et al., 2015; Feng et al., 2018; Wang et al., 2021;
Tan and Yang, 2024). Given that the VAC scheme operates without a fixed cycle length, the total
junction delay (defined as the sum of all vehicle delays experienced during the study period) was

selected as the evaluation metric for all signal control schemes under consideration.
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In the VAC scheme, the minimum durations for traffic signal groups were set to 5 s, while the
minimum durations for pedestrian signal groups 10 and 11 (depicted in Figures 5 and 6) were set to 18
s and 9 s, respectively, based on a lane width of 3.5 m. The maximum green and vehicle extension times
for each signal group were determined by a simple grid search method with step sizes of 10 s and 2 s,
respectively. For each combination of maximum green and vehicle extension times, a 2-h simulation
was conducted to determine the resulting total junction delay, with the combination yielding the lowest
total junction delay selected as the optimal parameters. Amber and red clearance times for all signal
groups were set to 3 s and 2 s, respectively. The controller frequency was set to 2 Hz, enabling
communication with VISSIM twice per second during the simulation. Following a 30-min warm-up
period, the VAC scheme was implemented with optimal parameters in VISSIM to control all traffic
signals over the 2-h study period. Vehicle delays recorded by VISSIM during this period were
subsequently stored for evaluation.

In contrast, both DPRC and SPRC involved cycle-by-cycle adaptive signal control solely based
on CV data. These schemes optimized the signal plan at the end of each cycle and implemented the
optimized plan in the next cycle. The successor matrix and the clearance time matrix (Tables O2 and
O3 in Appendix O) determined the group sequence and the clearance times, respectively. These
matrices were essential parameters in DPRC and SPRC. Both schemes followed the same set of
constraints outlined in Eqgs. (15) to (22). Without loss of generality, the start of green of signal group 1
was set to the beginning of a cycle. As with VAC, the minimum durations for traffic signal groups were
set to 5 s, while those for pedestrian signal groups 10 and 11 were set to 18 s and 9 s, respectively. Cp,qx
was set to 120 s. Considering the computational constraints in real-world applications, a 3 s buffer was
reserved at the start of the signal plan, necessitating 89 + ¢pg — 1 = 3 given the defined intersection
and signal groups. After the observation of several cycles, the saturation flow rate and the average
effective vehicle length were determined as 2,268 veh/h and 6.44 m, respectively. The primary
distinction between DPRC and SPRC lies in the treatment of the CV penetration rate uncertainty. DPRC
does not consider this uncertainty, resulting in fixed vehicle arrival rates and deterministic control, while
SPRC incorporates its uncertainty, and hence the uncertainty in vehicle arrival rates, leading to
stochastic control. DPRC, SPRC with w = 0, and SPRC with w = 20 were considered in the
simulation study. To implement the proposed G*S? algorithm, the number of random signal plans
explored in each optimization cycle, Ny, must be determined. A small N may result in the failure to
capture potentially better solutions, while excessively large Ny values may yield only marginal
improvement at a high computational cost. Preliminary experiments determined appropriate values for
Np, as follows: 19 for DPRC, 29 for SPRC with w = 0, and 39 for SPRC with w = 20. Further details
are provided in Appendix P. Additionally, both N;z4 and N s in Algorithm 1 were set to 5. The initial
signal plan V(®*) for both DPRC and SPRC was configured as the optimal fixed-time signal plan to
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ensure fair comparisons. Each simulation case consisted of a 30-min warm-up followed by a 2-h study

period, during which individual vehicle delays were recorded for evaluation.

6.3. Results

Table 5 presents the performances of different signal control schemes at a low V/C ratio (0.3),
with the last column indicating the percentage improvement in total junction delay of the proposed
control schemes compared with the VAC scheme benchmark. Given the light traffic demand, the
performances of the signal control schemes were not expected to vary significantly. The DPRC scheme,
which does not account for CV penetration rate uncertainty, exhibited slightly inferior but comparable
performance to the VAC scheme across different levels of CV penetration. Performance worsened as
CV penetration rates decreased and improved as CV penetration rates increased. In contrast to the DPRC
scheme, the SPRC scheme accounts for CV penetration rate uncertainty. The SPRC scheme with @ =
20, which optimized for both efficiency and stability, only partially considered traffic efficiency but
demonstrated performance that was comparable to or slightly better than the performances of the DPRC
and VAC schemes across different CV penetration rates. In contrast, the SPRC scheme with @ = 0,
which optimized for only traffic efficiency, outperformed the VAC and DPRC schemes at all CV
penetration rates (i.e., 0.1, 0.4, and 0.7). Similarly, performance improved with increased CV
penetration rates. These results highlight the importance of considering CV penetration rate uncertainty
in CV-based traffic signal control.

Table 5. Performance comparison of different signal control schemes at a V/C ratio of 0.3 with

varying p.
Incorporation of
Scheme » Total junction delay (s) Improvement (%)
Var(pm,k)?

VAC - - 79,004 -
DPRC 0.1 x 79,376 -0.47
DPRC 0.4 x 79,016 -0.02
DPRC 0.7 x 79,007 -0.00
SPRC (w = 20) 0.1 v 79,177 -0.22
SPRC (w = 20) 0.4 v 79,018 -0.02
SPRC (w =20) 0.7 v 78,706 0.38
SPRC (w = 0) 0.1 v 78,563 0.56
SPRC (w = 0) 0.4 v 77,666 1.69
SPRC (w = 0) 0.7 v 77,376 2.06

Table 6 presents the performances of different signal control schemes at a medium V/C ratio

(0.5), and it can be seen that the patterns of performance are similar to those depicted in Table 5. The
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performance of the DPRC scheme improved as CV penetration rates increased but remained slightly
inferior to that of the VAC scheme across all CV penetration rates (0.1, 0.4, and 0.7). The SPRC scheme
with ® = 20 only partially considered traffic efficiency and thus its total junction delay improvements
were -2.97%, -0.47%, and 1.03% (compared with the VAC scheme) at CV penetration rates of 0.1, 0.4,
and 0.7, respectively. In contrast, the SPRC scheme with ® = 0 fully optimized traffic efficiency and
thus its total junction delay improvements were more significant, namely 2.99%, 5.36%, and 7.03%
(compared with the VAC scheme) at CV penetration rates of 0.1, 0.4, and 0.7, respectively. Table 7
presents the performance of different signal control schemes at a high V/C ratio (0.7), and it can be seen
that the DPRC scheme exhibited worse performance than the VAC scheme at CV penetration rates of
0.1 and 0.4 but better performance than the VAC scheme at a CV penetration rate of 0.7. The SPRC
scheme with ® = 20 only partially considered traffic efficiency and thus did not demonstrate any
improvements (compared with the VAC scheme) in total junction delay at CV penetration rates of 0.1,
0.4, and 0.7. However, the SPRC scheme with @ = 0 fully optimized traffic efficiency and thus
outperformed the VAC scheme by 4.44% and 12.62% in total junction delay at CV penetration rates of
0.4 and 0.7, respectively. These findings suggest that across a wide range of CV penetration rates and
V/C ratios, the proposed CV-based signal control schemes, which do not rely on detector data, generally
perform similarly to or better than the VAC scheme, which requires complete traffic information from
detectors. Furthermore, these findings underscore the significance and superiority of incorporating CV
penetration rate uncertainty into CV-based traffic signal control.

Table 6. Performance comparison of different signal control schemes at a V/C ratio of 0.5 with

varying p.
Incorporation of
Scheme » Total junction delay (s) Improvement (%)
Var(pm,k)?

VAC - - 146,607 -
DPRC 0.1 x 149,297 -1.83
DPRC 0.4 x 148,278 -1.14
DPRC 0.7 x 148,192 -1.08
SPRC (w = 20) 0.1 v 150,960 -2.97
SPRC (w = 20) 0.4 v 147,301 -0.47
SPRC (w =20) 0.7 v 145,093 1.03
SPRC (w = 0) 0.1 v 142,226 2.99
SPRC (w = 0) 0.4 v 138,745 5.36
SPRC (w = 0) 0.7 v 136,301 7.03

Table 7. Performance comparison of different signal control schemes at a V/C ratio of 0.7 with

varying p.
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Incorporation of

Scheme » Total junction delay (s) Improvement (%)
Var(pm,k)?
VAC - - 329,837 -
DPRC 0.1 x 431,355 -30.78
DPRC 0.4 x 355,579 -7.80
DPRC 0.7 x 323,523 1.91
SPRC (w = 20) 0.1 v 397,908 -20.64
SPRC (w = 20) 0.4 v 358,294 -8.63
SPRC (w =20) 0.7 v 337,146 222
SPRC (w = 0) 0.1 v 357,563 -8.41
SPRC (w = 0) 0.4 v 315,182 4.44
SPRC (w = 0) 0.7 v 288,226 12.62

Figure 7 illustrates the results reported in Tables 5, 6, and 7, which serve as a valuable reference
for determining the critical CV penetration rate required for real-world implementation of the CVASC
framework. Crucially, none of the proposed control schemes require on-road detectors, whereas the
VAC scheme is detector-dependent. The results clearly demonstrate that the proposed control schemes
generally performed similarly to or outperformed the VAC scheme. In particular, the SPRC scheme
with w = 0, which fully optimizes for traffic efficiency, accounted for uncertain vehicle arrival rate due
to CV penetration rate uncertainty and thus demonstrated marked superiority and robustness. Therefore,
the SPRC scheme with w = 0 yielded consistent and significant improvements across most cases. At
low and medium V/C ratios (i.e., 0.3 and 0.5), it outperformed the VAC scheme, even with a low CV
penetration rate of 0.1, which has already been achieved in some cities around the world. At a high V/C
ratio (0.7), the critical CV penetration rate was only approximately 0.3. These findings suggest that
implementing the SPRC scheme with w = 0 at low CV penetration rates (i.e., 0.1-0.3) would yield
better outcomes than implementing the VAC scheme across various traffic demand conditions and
without requiring complete traffic information from fixed detectors. Conversely, the SPRC scheme with
w = 20, which is designed to balance efficiency with stability, exhibited a slight reduction in efficiency
compared with the SPRC scheme with w = 0. Appendix Q provides further experiments comparing

the properties of the SPRC schemes with w = 0 and w = 20.
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| 425000

79250 150000 e

B e e e L e . e S N i e e e G 400000

y (s)

£ 78750 :; 145000 3 375000

£ £ 350000

% 140000 %

3 $ 325000

3 --- VAC £ 300000 { ~=- VAC
2

€ 77750 1 w.... £ 1350001 ... DPRC
—-= SPRC (w=20) == SPRC (w=20) 275000 1 == SPRC (w=20)
— SPRC (w=0) — SPRC (w=0) — SPRC (w=0)

130000 250000
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 05 0.6 0.7 0.1 0.2 03 0.4 05 0.6 0.7

d

§ 78500

t

& 78250
g

t

£ 78000
K

t

77500

Figure 7. Comparison of different signal control schemes with varying V/C ratios and p.

26



The average computational costs per cycle for DPRC, SPRC with w = 0, and SPRC with w =
20 across various V/C ratios and CV penetration rates included parameter estimations and optimization
processes. These computations took approximately 0.80, 1.05, and 1.06 s, respectively, on the
designated machine. These values were all below the reserved computation time of 3 s. Furthermore,
more powerful graphical processing units and clusters hold the potential to further reduce computing
time in practical applications. These results consistently demonstrate the applicability and efficiency of
the proposed DPRC, SPRC and solution methods, highlighting the significance of incorporating the CV

penetration rate uncertainty, and thus the uncertainty in vehicle arrival rate, into signal optimization.

7. Conclusions

This paper proposes a CVASC framework that adaptively optimizes signal timings cycle by
cycle using CV data. Moreover, an efficient ASD model and a G*S? algorithm are introduced to solve
the proposed DPRC and SPRC in CVASC, and the significance of considering CV penetration rate
uncertainty in adaptive signal control is emphasized. A key challenge in this study lies in accurately
estimating the mean, variance, and gradients of the stochastic objective, given numerous uncertain
parameters and control variables. This paper effectively breaks down the complex problem according
to the first principle. The explicit modeling of the uncertainty and its propagation process plays a vital
role in solving the above stochastic problem. Conducting high-dimensional and non-convex
optimization is another challenge. Starting with different initial points is important for the solution
algorithm to search for better local minima. The basic idea is to systematically sample the initial solution
from a feasible region as large as possible, thereby increasing the likelihood of identifying superior
solutions. However, implementing such a simple idea in a high-dimensional optimization problem with
numerous constraints is not straightforward. Transforming this complex problem into a standard LP
problem effectively resolves this dilemma. Extensive numerical experiments and VISSIM simulations
demonstrate the applicability and effectiveness of the proposed models. For users prioritizing efficiency,
SPRC with w = 0 is recommended, while SPRC with w > 0 is recommended to achieve a balance
between efficiency and stability.

Nonetheless, this study presents certain limitations: (1) the successor matrix remains constant
over cycles, and (2) complex interactions between intersections are not yet modeled. The successor
matrix could be treated as variables and jointly optimized in each cycle. Furthermore, taking into
account interactions between junctions delves into the more challenging domain of network-wide traffic
control. Future research directions may involve addressing these limitations and extending these

methods to network-wide adaptive signal control systems.

Acknowledgments

27



The first author was supported by a Postgraduate Scholarship from The University of Hong Kong. The
second author was supported by the Research Grants Council of the Hong Kong Special Administrative
Region, China (Project Nos.: 17204919 and 17205822), and Francis S Y Bong Professorship in

Engineering.

References

Al Islam, S. B., Hajbabaie, A., Aziz, H. A., 2020. A real-time network-level traffic signal control
methodology with partial connected vehicle information. Transportation Research Part C:
Emerging Technologies 121, 102830.

Ambiihl, L., Menendez, M., 2016. Data fusion algorithm for macroscopic fundamental diagram
estimation. Transportation Research Part C: Emerging Technologies 71, 184-197.

Cao, Y., Tang, K., Sun, J., Ji, Y., 2021. Day-to-day dynamic origin—destination flow estimation using
connected vehicle trajectories and automatic vehicle identification data. Transportation
Research Part C: Emerging Technologies 129, 103241.

Comert, G., 2013. Simple analytical models for estimating the queue lengths from probe vehicles at
traffic signals. Transportation Research Part B: Methodological 55, 59-74.

Comert, G., 2016. Queue length estimation from probe vehicles at isolated intersections: Estimators for
primary parameters. European Journal of Operational Research 252, 502-521.

Comert, G., Cetin, M., 2009. Queue length estimation from probe vehicle location and the impacts of
sample size. European Journal of Operational Research 197, 196-202.

Comert, G., Cetin, M., 2011. Analytical evaluation of the error in queue length estimation at traffic
signals from prove vehicle data. [EEE Transactions on Intelligent Transportation Systems
12(2), 563-573.

Du, J., Rakha, H., Gayah, V.V., 2016. Deriving macroscopic fundamental diagrams from probe data:
Issues and proposed solutions. Transportation Research Part C: Emerging Technologies 66,
136-149.

Federal Highway Administration, 2006. Next generation simulation: Peachtree Street dataset. Accessed

June 25, 2022, https://data.transportation.gov/Automobiles/Next-Generation-Simulation-

NGSIM-Program-Peachtree/mupt-aksf.

Feng, Y., Head, K.L., Khoshmagham, S., Zamanipour, M., 2015. A real-time adaptive signal control in
a connected vehicle environment. Transportation Research Part C: Emerging Technologies 55,
460-473.

Feng, Y., Zheng, J., Liu, H. X., 2018. Real-time detector-free adaptive signal control with low
penetration of connected vehicles. Transportation Research Record 2672(18), 35-44.

Geroliminis, N., Daganzo, C.F., 2008. Existence of urban-scale macroscopic fundamental diagrams:

Some experimental findings. Transportation Research Part B: Methodological 42(9), 759-770.

28


https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Program-Peachtree/mupt-aksf
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Program-Peachtree/mupt-aksf

Hao, P., Ban, X.J., Guo, D., Ji, Q., 2014. Cycle-by-cycle intersection queue length distribution
estimation using sample travel times. Transportation Research Part B: Methodological 68, 185-
204.

Igbal, M.S., Hadi, M., Xiao, Y., 2018. Effect of link-level variations of connected vehicles (CV)
proportions on the accuracy and reliability of travel time estimation. /[EEE Transactions on
Intelligent Transportation Systems 20(1), 87-96.

Jenelius, E., Koutsopoulos, H.N., 2013. Travel time estimation for urban road networks using low
frequency probe vehicle data. Transportation Research Part B: Methodological 53, 64-81.

Jenelius, E., Koutsopoulos, H.N., 2015. Probe vehicle data sampled by time or space: Consistent travel
time allocation and estimation. Transportation Research Part B: Methodological 71, 120-137.

Jia, S., Wong, S.C., Wong, W., 2023. Uncertainty estimation of connected vehicle penetration rate.
Transportation Science 57(5),1160-1176.

Jia, S., Wong, S.C., Wong, W., 2024a. Modeling residual-vehicle effects on uncertainty estimation of
the connected vehicle penetration rate. Transportation Research Part C: Emerging
Technologies 168, 104825.

Jia, S., Wong, S.C., Wong, W., 2024b. Modeling residual-vehicle effects in undersaturation conditions
on uncertainty estimation of the connected vehicle penetration rate. In the 25th International
Symposium on Transportation and Traffic Theory, 15-17 July, Michigan, USA.

Jia, S., Wong, S.C., Wong, W., 2024c. Estimating real-time traffic state of holding vehicles at signalized
intersections using partial connected vehicle trajectory data. Transportation Research Part C:
Emerging Technologies. Under review.

Khan, S.M., Dey, K.C., Chowdhury, M., 2017. Real-time traffic state estimation with connected
vehicles. IEEE Transactions on Intelligent Transportation Systems 18(7), 1687-1699.

Lee, S., Wong, S.C. and Varaiya, P., 2017a. Group-based hierarchical adaptive traffic-signal control part
I: Formulation. Transportation Research Part B: Methodological 105, 1-18.

Lee, S., Wong, S.C. and Varaiya, P., 2017b. Group-based hierarchical adaptive traffic-signal control Part
II: Implementation. Transportation Research Part B: Methodological 104, 376-397.

Liang, X. J., Guler, S. 1., Gayah, V. V., 2020a. An equitable traffic signal control scheme at isolated
signalized intersections using connected vehicle technology. Transportation Research Part C:
Emerging Technologies 110, 81-97.

Liang, X., Guler, S.I., Gayah, V.V., 2020b. Traffic signal control optimization in a connected vehicle
environment considering pedestrians. Transportation Research Record 2674(10), 499-511.

Meng, F., Wong, S.C., Wong, W., Li, Y.C., 2017a. Estimation of scaling factors for traffic counts based
on stationary and mobile sources of data. International Journal of Intelligent Transportation

Systems Research 15(3), 180-191.

29



Mo, Z., Li, W., Fu, Y., Ruan, K., Di, X., 2022. CVLight: Decentralized learning for adaptive traffic
signal control with connected vehicles. Transportation Research Part C: Emerging
Technologies 141, 103728.

Rafter, C. B., Anvari, B., Box, S., Cherrett, T., 2020. Augmenting traffic signal control systems for urban
road networks with connected vehicles. IEEE Transactions on Intelligent Transportation
Systems 21(4), 1728-1740.

Rahmani, M., Jenelius, E., Koutsopoulos, H.N., 2015. Non-parametric estimation of route travel time
distributions from low-frequency floating car data. Transportation Research Part C: Emerging
Technologies 58, 343-362.

Silcock, J.P., 1997. Designing signal-controlled junctions for group-based operation. Transportation
Research Part A: Policy and Practice 31(2), 157-173.

Tan, C., Yang, K., 2024. Privacy-preserving adaptive traffic signal control in a connected vehicle
environment. Transportation research part C: Emerging Technologies 158, 104453.

Wang, P., Zhang, J., Deng, H., Zhang, M., 2020. Real-time urban regional route planning model for
connected vehicles based on V2X communication. Journal of Transport and Land Use 13(1),
517-538.

Wang, Q., Yuan, Y., Yang, X. T., Huang, Z., 2021. Adaptive and multi-path progression signal control
under connected vehicle environment. Transportation Research Part C: Emerging
Technologies 124, 102965.

Wong, S.C., 1996. Group-based optimisation of signal timings using the TRANSYT traffic
model. Transportation Research Part B: Methodological 30(3), 217-244.

Wong, W., Wong, S.C., 2015. Systematic bias in transport model calibration arising from the variability
of linear data projection. Transportation Research Part B: Methodological 75, 1-18.

Wong, W., Wong, S.C., 2016a. Biased standard error estimations in transport model calibration due to
heteroscedasticity arising from the variability of linear data projection. Transportation
Research Part B: Methodological 88, 72-92.

Wong, W., Wong S.C., 2016b. Evaluation of the impact of traffic incidents using GPS data. Proceedings
of the Institution of Civil Engineers — Transport 169(3), 148-162.

Wong, W., Wong S.C., 2016¢. Network topological effects on the macroscopic Bureau of Public Roads
function. Transportmetrica A: Transport Science 12(3), 272-296.

Wong, W., Wong, S.C., 2019. Unbiased estimation methods of nonlinear transport models based on
linearly projected data. Transportation Science 53(3), 665-682.

Wong, W., Wong, S.C., Liu, X., 2019. Bootstrap standard error estimations of nonlinear transport
models based on linearly projected data. Transportmetrica A: Transport Science 15(2), 602-

630.

30



Wong, W., Shen, S, Zhao, Y., Liu, X., 2019. On the estimation of connected vehicle penetration rate
based on single-source connected vehicle data. Tramsportation Research Part B:
Methodological 126, 169-191.

Wong, W., Wong, S.C., Liu, X., 2021. Network topological effects on the macroscopic fundamental
diagram. Transportmetrica B: Transport Dynamics 9(1), 376-398.

Xiu, D., 2010. Numerical methods for stochastic computations: a spectral method approach. New
Jersey: Princeton University Press.

Yang, X., Lu, Y., Hao, W., 2017. Origin-destination estimation using probe vehicle trajectory and link
counts. Journal of Advanced Transportation 2017, 4341532.

Yin, B., Menendez, M., Yang, K., 2021. Joint optimization of intersection control and trajectory
planning accounting for pedestrians in a connected and automated vehicle
environment. Sustainability 13(3), 1135.

Yin, Y., 2008. Robust optimal traffic signal timing. Transportation Research Part B: Methodological
42(10), 911-924.

Zhao, Y., Zheng, J., Wong, W., Wang, X., Meng, Y., Liu, H.X., 2019a. Estimation of queue lengths,
probe vehicle penetration rates, and traffic volumes at signalized intersections using probe
vehicle trajectories. Transportation Research Record 2673(11), 660-670.

Zhao, Y., Zheng, J., Wong, W., Wang, X., Meng, Y., Liu, H.X., 2019b. Various methods for queue length
and traffic volume estimation using probe vehicle trajectories. Transportation Research Part C:
Emerging Technologies 107, 70-91.

Zhao, Y., Wong, W., Zheng, J., Liu, H.X., 2022. Maximum likelihood estimation of probe vehicle
penetration rates and queue length distributions from probe vehicle data. IEEE Transactions on

Intelligent Transportation Systems 23(7), 7628-7636.

31



Appendix A. Glossary and table of symbols

This appendix provides a glossary (Table A1) and table of symbols (Table A2).

Table A1. Glossary.

Terminology

Description

Connected vehicles (CVs)

CV-based adaptive signal
control (CVASC)

Consequential system delay
(CSD)
Deterministic penetration

rate control (DPRC)

Stochastic penetration rate
control (SPRC)
Gradient-guided golden
section search (G*S?)
algorithm

Analytical stochastic delay
(ASD) model

Generalized polynomial
chaos expansion (gPCE)
VISSIM

Next-generation simulation
(NGSIM) dataset
Fifth-generation (5G)

CV penetration rate
Single-source data
penetration rate estimator
(SSDPRE)

Probabilistic penetration rate

(PPR)

Vehicles equipped to exchange real-time traffic information (e.g.,
time, speed, location) with one another.

A framework that optimizes signal plans for isolation intersections
on a cycle-by-cycle basis, exploiting partial CV data and operating
without on-road detectors.

An analytical model for estimating total junction delay.

A CV-based adaptive signal control method for isolated
intersections that does not incorporate CV penetration rate
uncertainty.
A CV-based adaptive signal control method for isolated
intersections that incorporates CV penetration rate uncertainty.

An optimization algorithm that combines gradient information and

golden section search for solving DPRC and SPRC.

An analytical model used for estimating stochastic delay and its
gradient.

A polynomial approximation method used in stochastic modeling.

Verkehr In Stddten — SIMulationsmodell, a microscopic, multi-
modal traffic flow simulation software developed by PTV Planung
Transport Verkehr AG in Karlsruhe, Germany.

A real-world trajectory dataset collected in the United States.

An advanced communication technology supporting high-speed
data transmission.
The ratio of the number of CVs to the total number of vehicles.

An analytical model for estimating CV penetration rate.

An analytical model for estimating CV penetration rate uncertainty.
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Markov-constrained queue An analytical model to account for residual-vehicle effects on CV

length (MCQL) penetration rate uncertainty.

Successor matrix A matrix specifying the sequence in which traffic signal groups
operate.

Clearance time matrix A matrix defining the minimum gaps required for transitions

between incompatible traffic signal groups.

Holding vehicles Vehicles that remain undischarged at the end of an arbitrarily
defined cycle.

Consequential delay The extra delay experienced beyond regular delay due to holding
vehicles.

Monte Carlo sampling A computational technique for generating samples from a specific

(MCS) probability distribution.

Vehicle-actuated control An adaptive traffic signal control method that dynamically adjusts

(VAC) signals based on real-time vehicle presence detected by on-road
Sensors.

Table A2. Symbols and definitions.

Symbol Description
l Total number of approaching lanes at an intersection.
Np Number of traffic signal groups.
Np Number of pedestrian groups.
Q Successor matrix defining signal group sequences.
Qy; Element located in the i*" row and the j®* column in the successor
matrix 0.
T Clearance time matrix, which indicates minimum transition gaps

between incompatible traffic signal groups.
tij Element located in the i*" row and the j** column in the clearance

time matrix T.

y Set of incompatible signal group pairs.
D Total junction delay.
E(D) Expected total junction delay.
Var(D) Variance of total junction delay.
Omk+1 Vehicle arrival rate in lane m in cycle k + 1.
Nk Number of CVs in lane m in cycle k.
Cy Length of cycle k.
m.k Average arrival rate in lane m, estimated at the end of cycle k.
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pm,k

Var(pmx)
0;

bi

CV penetration rate in lane m in cycle k.

Variance of p;, .

Time from the cycle origin to the start of an actual green signal for
control group i divided by the cycle time.

Duration of the actual green signal for control group i divided by the
cycle time.

Reciprocal of the cycle length.

Number of holding vehicles in lane m in cycle k.

Traffic delay for lane m in cycle k + 1.

Consequential delay for lane m in cycle k + 1.

Abstract function representing total junction delay.

Maximum cycle length.

Minimum traffic signal group duration.

Minimum pedestrian signal group duration.

Deterministic total junction delay.

Control variable set.

Stochastic total junction delay.

User-defined parameter representing the trade-off between
efficiency and stability.

Probability that a vehicle selects lane m.

Orthonormal polynomials.

Coefficient vector associated with orthonormal polynomials ®.
Maximum order of generalized polynomial chaos expansion.
Number of samples for CV penetration rate.

Random variable associated with p,, .

Optimized signal plan for cycle k.

Golden section number.

True CV penetration rate.

Appendix B. Estimations of essential inputs
B.1. Estimation of CV penetration rate uncertainty

Consider any lane connected to a signalized intersection, where vehicles are required to stop
during red signals and form constrained queues (Wong et al., 2019; Jia et al., 2023, 2024a, 2024b). Let
Ny be the number of observed CVs in the constrained queue in lane m in cycle k and Nm,k be the

number of vehicles prior to the last stopped CV in the constrained queue in lane m in cycle k. According
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to these two quantities, Wong et al. (2019) proved that the SSDPRE, E (p;, ¢ ), is an unbiased estimator

for the average CV penetration rate, p,, x, where

Nk — 1 i ~
= if i >land Ny e > 1
Npr—1 ' '
ﬁm,k = 1 lf Nk = 1 and Nm,k =1 ,Vm € [1, l] (Bl)
0 if iy = 1land IVm,k >1
0 if iy = 0and IVm,k =0

More details can be found in Wong et al. (2019). However, in real-time applications, only a single
realization of Py  is available, and this can deviate from p,, ;. To ensure unbiased model estimations
and optimal system optimizations, it is crucial to account for the uncertainty of Py, x, which is measured
by the variance of the distribution of P, x, Var(ﬁm_ k). Considering any constrained queue length Ny, ;
that follows a counting distribution such that P(Nm_k = i) =¢,vi=0,1,2,.. and n,,;, which
follows a binomial distribution, B(Ny, x, Pm k), Jia et al. (2023) derived an exact PPR model quantifying
Var(Pm):
Var(Bme) = lim [ & Va(i )] v € [1,1], (B2)

where

VZ (Nm,k' ﬁm,k) =

i —i i \? _ _ _ mk—1 .
{zfz’;" i (1= Bi) ™ [Vl(i,Nm_k) + (W) ] (") = B + Bge (1 = Brage) ™ if Nie > 1 (B3)

K

ﬁm,k(l - ﬁm,k) if Nm,k =1
and
Nk~ "mkt1Mm k=1 Ny, —i-1
T A M2)
= k—i\ My g2 n .
( (,f,'s = -5 me>1
n
Vi (nm,k: Nm,k) =\ a2 +Nm g . . (B4)
2 lf Nk = 1
Nm,k
0 lf nm’k =0

Thus, Var (ﬁm_ k) can be taken as the estimator for Var(ps, ). Under the assumption that the
distribution of Ny, ;, which is the essential input of the PPR model, follows a Poisson distribution, the
governing parameter of the constrained queue length distribution N, can be estimated using the constant
dissipation time (CDT) model (Jia et al., 2023):

S C_Im,kr

NO == — )
S —qdmk

(B3)

where s and r represent the saturation flow rate and the red period, respectively. Furthermore, to
account for the complex residual-vehicle effects, an MCQL model can be used to estimate the
distribution of Ny, . More details on the development of the model are presented in Jia et al. (2024a,
2024b).

B.2. Estimation of average arrival rate and CV penetration rate
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Given the PPR and CDT models, the joint probability distribution of n,, ; and Nm’k is given as
follows (Jia et al., 2023):

k
fn0+znz(1—ﬁm,k)z, i=0,j=0
P(Mie = i, Nppje = j) = 7= ,  (B6)

k
=1 _ _ z=i . . .
2”2 (i _ 1) pm,kl(l —pm_k) Vi, =12,k j>1

z=]
where , = P(Nm_k = Z), vz =0,1,2,... Thus, gy x and p,, x can be estimated using the following

maximum likelihood estimation formulation (Jia et al., 2023, 2024a, 2024b, 2024c¢):

dm,k:Pmk

w
_ max HP(nm,k_j,IVm_k_j),Vm € [1,1], (B7)
j=0

where w = 0,1, 2, ...,k — 1, and it represents the number of past cycles considered in the likelihood
function. Following Jia et al. (2023, 2024a, 2024b, 2024c¢), this paper sets w to 2. A simple grid search
method can be used to solve Eq. (B7) and search for the optimal solution.
B.3. Estimation of the number of holding vehicles

The number of holding vehicles at the end of a cycle serves as the initial state of the subsequent
cycle and plays a pivotal role in the estimation of traffic delay in the following cycle. Integrating holding
vehicle information into the estimation of Var(p,, ) and adaptive signal control can significantly
enhance traffic efficiency (Jia et al., 2024a, 2024b). To accurately estimate the number of holding
vehicles in lane m in cycle k, Ry, ., a generic and fully analytical model, CV-based holding vehicle
(CVHYV), was derived in a previous study (Jia et al., 2024c). The model consists of two sub-models,
CVHV-I and CVHV-II, which are tailored to accommodate various holding vehicle patterns arising
from different signal structures. Specifically, when a lane is controlled by a signal plan ending with an
effective red, the CVHV-I sub-model should be applied; otherwise, the CVHV-II sub-model should be

used. The estimated Ry,  is used in traffic delay estimation, as elaborated in Section 3.

Appendix C. Proof of Proposition 1
Under the assumption of a uniform vehicle arrival pattern, the traffic delay for lane m in cycle

k + 1, dp, k+1, can be visualized as the area enclosed by the cumulative arrival and departure lines

(Figure 3). Cases 1 and 2 in Figure 3 are utilized to derive d® . and d'? respectively. The

mk+1 mk+1°
formulae for dr(,ﬂc +1 and dr(j,)k +1 are derived according to simple geometry (Tables 1 and 2). It should
be noted that the estimated delay is primarily governed by the vehicle arrival rate, which dictates the
slope of the cumulative arrival line and largely determines the total number of arriving vehicles in a
cycle. If the CV penetration rate uncertainty is ignored, a fixed vehicle arrival rate and slope are

determined, resulting in the DPRC. In contrast, incorporating CV penetration rate uncertainty accounts
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for the uncertainty in vehicle arrival rate, and hence the uncertainty in the slope of the cumulative arrival

line, establishing the SPRC.

Appendix D. Derivation of dy, ;.1
Under the assumption that holding vehicles arise owing to temporarily high demand in lane m
in cycle k + 1, @ k+1, and the arrival rate in lane m returns to the estimated average arrival rate in

cycle k, G ., after cycle k + 1, the number of holding vehicles in lane m at the end of cycle k + 1,

Ry k+1, can be estimated as Rr(i)k +1 if the signal group controlling that lane ends with effective red,;
otherwise, it is estimated as Rr(j)k +1» Where
, 59 — R
dmk+172 if Gmisr S ———=
R(l) _ ntg | (D1
mk+1 — —R ] )
Rmk + qm k+1C —Sg if Amk+1 = 2 Tk
o ' ntg
and
. 591 — Rm S92
(Qm,k+1(7' + 92) — 592 if Gnjer1 S ———, Qmjes1 > n
@ Rgl r Rgz 02)
R = 591 — sg — .
k . 1 K K
kel Rm,k + Qm,k+lc —Sg lf Amk+1 > 91 = »y dmk+1 > I =
0 otherwise

For ease of analysis, R, r+1 can be projected to the end of the nearest green period, denoted as Ry, 41

which can be estimated as either Rr(i)k 41 OF Rr(f)k +1 depending on whether the lane is controlled by a

signal group ending with effective red or green, as shown in Tables 3 and 4.

A

»n
g Elevated arrival I Effective red B
; — - Regular arrival '; _ | Effective green
% Departure
£
S
(&) gy — ‘C
D
'F
'
Rm,k+1
J > Time

Tm,0 Im,o Tm,0 Im,0
Figure D1. Illustration of consequential delay estimation.

An elevated arrival line is defined as a heightened level of arrival due to the presence of holding
vehicles, while a regular arrival line represents the anticipated level of arrival without holding vehicles.
As depicted in Figure D1, Ry, x4’ > 0 indicates that some vehicles are carried over to the subsequent
cycle owing to the temporarily high demand. In such cases, the new arrivals in the following cycle

would experience extra delays beyond the regular delays experienced at R, 41" = 0 owing to the first-
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come-first-served property. Considering a selected analysis signal plan with an analysis cycle length Cj,
analysis effective green g,, ¢, and analysis effective red 73, ¢ as a reference, the total delay for the
system with holding vehicles is determined by the area enclosed by the elevated arrival line and the
departure line. Conversely, the regular delay for the system without holding vehicles is the area enclosed
by the regular arrival line and the departure line. The consequential delay induced by Ry, 41 as
expressed in Eq. (11) is graphically represented by the difference between the total delay and the regular
delay (Figure D1). In contrast, R, ;41 = 0 indicates that all of the arrived vehicles in cycle k + 1 are
discharged before the end of the green period. Consequently, no vehicles will be carried over to the
subsequent cycles, resulting in no additional influence on the system performance. Therefore, the

consequential delay, dy, 41, is expected to be 0.

According to Figure D1,
|0]]
mk+1 = Soap + C_OSOFG: (D3)
where
1 1A
Soap = ERm,k+1 |0]1, (D4)
1
Sorc = Sorn — Socu = 5 STm09m,o ~ Erm,05|H1|- (D5)

The conservation law of traffic flow guarantees that

Im,0

Rik+1 + GmilOJ| = S 0], (D6)
0
and
‘?m,k(rm,o + |HI|) = s|HI|. (D7)
Rearranging terms, Egs. (D6) and (D7) respectively become
CoR '
loj] = — L (DS)
SIm,0 — COQm,k
and
AQm k"
|HI| — Qm,k_m,o. (D9)
S —qmk
By substituting Egs. (D8) and (D9) into Egs. (D4) and (D5), respectively, Eq. (D3) becomes
dikrr = YimBRmg+1 2+ VoamRmp+1, Vm € [1,1], (D10)
where
“ (DI1)
yl, = _ y
" 2(ng,o - Con,k)
TmoS
Yem =57 = v D12
2™ 205 = Tma) (P12)

As the coefficients y; ,, and y; ,, in Eq. (D10) are lane-specific, the consequential delays for different

lanes can differ even if the projected numbers of holding vehicles are identical. Moreover, the inverse
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forms of y1 ,, and y, ,,, are sensitive to signal plans. Therefore, the averages of lane-specific coefficients

y;1 and y,, as shown in Egs. (11) to (13), are adopted in Proposition 2.

Appendix E. Gradient of d,;, ;1

According to d® . and d®

mk+1 mk+1

in Tables 1 and 2 and the parameters defined in Egs. (4)—(10),
the first partial derivatives of dr(i)k +1 and dr(i)k +1 W.r.t. different parameters are derived using the
chain rules, as shown in Tables E1 and E2, respectively.

Table E1. First partial derivatives of d®

mk+1°
Condition First partial derivative
—R €Y
mi+1 < Sngk 0t et _ R+ mpr1 (1 —72)  Gmprs (Rmpe + Gmpc+am1)
nrd 26; ¢ {(s = Q1)
€Y
adm,k+1 - _ Qm,k+1r2
0¢; ¢
@
Odmper1 _ _ Rmic + Gmi+171)0i + Gmpran2(1 = 6; — ¢4
a¢ g2

_ 2Qm,k,+19i (Rm,k + Qm,k+1r1)
2{2(5 - Qm,k+1)

sg—R (1)
Amk+1 > 29~ Tk O 41 _59

ntg 06, ¢
@
0dp 541 _ s(g+r —0C)
0¢; ¢
@
Odmicr1 _ Rk + dmr+1C =59 + ¢is(g + 11— C) + 599
a¢ 2

4@

Table E2. First partial derivatives of d;; % ;-

Condition First partial derivative

—R (2)
Amk+1 = Sgl—m'kJ M =0
g1 a0,

592
2)
r+g; 0y k41 _ SAmk+1T

b {(Amp+1 =)

(2)
adm,k+1 _ SQm,k+1r(1 - ¢l)

qm,k+1 <

a( B (2(5 - Qm,k+1)
—-R ()
Amk+1 = S‘gl—m’k, adm,k+1 _592 ~ Ami+1 (T + g2)
a1 96; ¢
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S92 ad(z)

Amk+1 = "+ g, g;)k,ﬂ __ Qm,k+1(g" + 92)
l
9d? 2—¢; — 6
mk+1 - _ Qm,k+1r( ¢l l)
a¢ {z
92 [Qm,k+1(1 —¢)+ (1 - 9i)(‘1m,k+1 - 5)]
_ -
—R ()
Amik+1 > 591—m,k, M - _ i
o1 06; {
Sg — Rk )
dmk+1 = C adm,k+1 _ S[TS + Rm,k + gl(Qm,k+1 - S)]
0¢; C(@mp+1—S)
()
ad?), 1
—ag = 7O+ 9= DR+ (dmicrs = 5)(g1 +7)]
+ (1 - d)l) [Rm,k + qm,k+1r
+ 91(mp+1 — 5)]}
Rm,k + g1 (qm,k+1 - S) + Amk+17
+ 7 2(5
2(5 - qm,k+1)
1
~ameen) =7z O+ &1~ Damprs =)
+qmmﬂ1—@ﬂﬂ
—R ()
Amik+1 > 591—m,k, M - _ T
o1 06, {
59 — Rmk
Amk+1 > Tm adr(ri)k+1 _ s(r+g2)
0¢; ¢
ad>, 1
g—'zﬂ = —?{(@ + ¢ — D[Rk + (dmp+1 — 5) (g1 +1)]

+ (1= )[R + Gmpcs1”

+ gl(qm,k+1 - 5)]}
#5500 + 90

+925Q¢; +6; — 1) — golmp+1(1 +6;)
— qmi+1(1 —0)(r + g1 + C)

— 2Ry (1—6))]

Appendix F. Gradient of d,, ;4
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According to Eq. (11), the first partial derivatives of dy, 1 W.7.t. X, Vx € {6;, ¢;,{}, are

given by
0dm 1 / ORm 41
15_),C+ = (2¥1Rmr+1 + yz)rg—'x,Vx €{6; ¢i, ¢} (F1)
As Ry +1 can be respectively estimated as either Rr(i)k 41 OF Rr(i)k +1 depending on whether the lane
. . . . . . o @
is controlled by a signal group ending with effective red or green, the first partial derivatives of R, % 4
and Rr(f)k +1 are respectively derived in Tables F1 and F2.
Table F1. First partial derivatives of Rr(;)k +1 -
Conditions Rg)k + 1’
sg —R o
Amk+1 < %; aRm,k+1 — Amk — Amk+1
1 ) ael {
TS S — Amk+112 a
N — _
m 4] + g aRm,k,+1 _ Amk — S — Qmk+1
0¢; ¢
@ =
aRm,k,+1 _ (Gi + ¢i)(qm,k+1 - Qm,k) — dmk+1 + S¢i
a¢ g2
sg—R o "
Amik+1 = %, aRm,k+1 _ qmk
1 ) ael (
— 2Sg_Rmk_CImk+1C ’
> - - (€3] —
Am i rn+g aRm,k,+1 _ Amk — 2s
0¢; ¢
@ -
ORp 1 _ 25¢i — dmp+1 — Ami (6 + 1)
a¢ g2
Table F2. First partial derivatives of Rr(f)k +1 -
Conditions Rfi)k +1’
sg; — R @ '
Amk+1 < u; aRm,k+1 _ Amk — 9mk+1
g1 agl (
q S~ @ !
k ) _
ket r+ g2 aRm,k+1 _ Amk — S — Qmk+1
S = dmis1(r + 92) 0 ¢
qm,k > g @ I}
! aRm,k+1
a¢
_ Ami+1(0i + & —2) + 5¢i + G (1 — 6i — b0)

(2
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!

Sg1 _Rm,k aR(Z)

Amk+1 > ———— mk+1 _ _Qmk —S
g1 26, 7
Sg - Rmk 12
> @) _
Amk+1 C R ev1 _ Qmk — 2s
_ S(.gl + g) - Rm,k - Qm,k+1C 0¢; ¢
qm,k > g ) ’
! OR ker1 (qm,k —s)(1—60; — ) + 5P — G+t
a¢ {z

Appendix G. Proof of Lemma 1

Let q,,, represent the traffic demand for lane m, vm € [1,1], and let q denote the total traffic
demand, where q = Y.,_, g, follows Pois(1) . The proof is divided into two parts: (1) the
independence of q,,,, Vm € [1, 1], and (2) the independence of p;, ., Vm € [1,1].
(1) Independence of q,,

Let the traffic demand assigned to lane m be v,,, Vm € [1,1]. The probability of observing
q1 = V1, -, Qm = Um, -, @ = V; 1s given by

P(q1 = V1, s @ = Uy oo, @ = V1)

l
= P(Ql =Vyeodm = Uy 1 = vll Z£n=1 dm = Z£n=1 17m)P 2 dm = 2 Um
m=

=P(q1 = V1, s G = Vmy oo, @4 = V1|q = Xhioq V)P q—z:vm ,

m=1
where P(ql =V, e, m = Uy s Q1 = vl|q =yl . vm) is the probability of observing q; =
V1, e @m = U, -, @ = v, under the condition that ¢ = Y%, _; vy,. Given the lane choice probability

am, Vm € [1,1], the lane choice process can be modeled using a multinomial distribution with the

following probability mass function:
l

q! 1—[ X .
_ _ _ )= o, *m ifqeN
P(q1 = X1, ', Qm = Xy 0, Q1 = X1) = in X! 11 m ) (G2)
0 otherwise
Thus,
Z v
P(qlzvl,...,q =V, - q —vl|q—2m 1Um) ( m=1 m) 1_[ Ay ’m. (G3)
m 117m
Moreover,
! " /‘lzgn:ﬂ’m
P q:ZUm = e oy (G4)
m=1 m=1"mj:

Substituting Egs. (G3) and (G4) into Eq. (G1) gives
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l
e =y am"m Am=2Pm e A [y (Aatm) "™

P(q1 = V1,0, Q@ = Uy oo, 1 = V) = ] ' ; (G5)
m=1VYm: m=1VYm:
Considering that Y'1,_; a,,, = 1, Eq. (G5) can be rewritten as
—225,121 am TT! y) Um L —amd 1vm
e 1A e a
P(q1 = V1, s Qm = Vppp 0, @1 = V) = 7 H";_ll( m) = n% (G6)
m=1"m- m-

m=1
In addition, as only a,, of the total demand is distributed to lane m, the traffic demand for lane m is
given by a,, A. Therefore,
e—am/l . )Vm
P(am = vm) = e v e (1,1, (@)

7

Substituting Eq. (G7) into Eq. (G6) gives

l
P(‘h =V lqm = Ump e I = vl) = 1_[ P(Qm = 17m)- (G8)
m=1

Therefore, q,,, Vm € [1,1] are independent of each other.
(2) Independence of p;, x

The estimates from the SSDPRE method, p;, k., depend on the number of CVs, n,, j, and the
total number of observable vehicles (IVm,k; i.e., the number of vehicles prior to the last stopped CV,
including itself) that are stopped by red signals. Considering that IVm,k includes n,, ., they are directly
correlated. As n,, ; is dependent on g,

Pmi = ¢i(@m),m € [L,1], (G9)

where g;(*), Vi € [1,1], represents the i*" real-valued mapping function. Let p},, , and g; ™1 (pj, 1) be a

realization of p,  and the preimage of p,, , under g;, respectively. It follows that

P(P1k = Pigs o r Pk = Prmjer - PLk = Pik)

(G10)
=P(q1= g7 (Pisc)r G = B Oiosc) - @1 = 907 (pi))-
According to the proven independence of q,,,, Vm € [1,1],
l
P(DP1jc = Pij - Pmk = P r P = Plx) = 1_[ P (@m = gm ™ (i)
mt (G11)

l

= 1_[ P(Pmi = Pimk)-

m=1

Therefore, py, x, Ym € [1, 1] are independent of each other.

Appendix H. Validation of Lemma 1
Let p(-,7) and q,,, Vm € [1,2], represent the correlation coefficient between two random
variables and the traffic demand in lane m, respectively. To examine the independence of py, x, various

combinations of A4, @;, and p under groups I, II, and III are considered. The correlation coefficients
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evaluated for these combinations are presented in Table H1. The near-zero correlation coefficients
across different combinations of A, @, and p validate Lemma 1.

Table H1. Correlation coefficients of traffic demands and CV penetration rates.

No. A a p p(q1,q2) P(P1ks P2k)
Baseline 20 0.4 0.4 0.002 —0.008
I-1 10 0.4 0.4 0.006 —0.005
I-2 30 0.4 0.4 —0.008 —0.003
11-1 20 0.1 0.4 0.012 —0.008
11-2 20 0.7 0.4 —0.008 0.011
11-3 20 0.9 0.4 —0.009 0.007
11-1 20 0.4 0.1 0.002 0.002
11-2 20 0.4 0.7 0.002 0.004
11-3 20 0.4 0.9 0.002 -0.007

Appendix 1. Proof of Proposition 3

Given the distribution function of Z, F,

E(D) =Er, | ) @@ | = ) ki, [0 (1)
|k|<K |k|<K

By definition, ®¢(Z) = 1. Thus, Eq. (I1) can be rewritten as

E(D) = ) aEr,[0D)o(2)]. (12)
|k|sk

The orthonormality of @, (Z), V|k| < K, gives
1 lf kl = k2

EFZ[CDkl(Z)CDkZ @] = {0 otherwise’ (13)
Therefore,
E(D) = coEr,[®0(2)Po(2)] + ek Er, [@1(Z)Po(2)] = co. (14)
0<[k|<K
For Var(D),
2
Var(D) = Ep, {[D - E(E)]z} = Ep, Z e Op(Z) — 00]
\k[=K

(I5)

2
Z cr P (Z)
|k|sK

Co Z ck Pr(2)
|k|<K

= Ep, — 2Ep, + Eg,(c5).

Let A = Er, {[Z k< an(Z)]Z}, B = Er,[co T i<k ck Pr(2)], and F = Ep,(c3). The total number

of cases for |k| < K is denoted as Q. For A4, it follows that
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4 = Ep, {[c, @, (2) + €1, @p, (2) + -+ + e @y (D]}

= Ery[c}, 9%, (D] + Erf [, %, (@] + -+ + Ep, [, 9%, (2)]

16
+ EFZ[ZCqu)k1(Z)Ck2(Dk2(Z)] + vee ( )
= ci, + Ck, +...+c,f@+o+...= Z 2.
0<|k|<K

Without loss of generality, let k; = 0. For B,

B =Ep, |co cr Px(Z)

|k|sK

= Er, {co®0(2) [co®0(2) + 1, D1, (2) + -+ + C1ey @y (D)} (17)

= c§Er,[Po(2)Po(2)] + coci,Er,[Pr, (@) Po(2)] + -+ + CoCkoEr, [(DkQ(Z)CDO(Z)]
=cg+0+-+0=cf.
For F,
F = Ep,(c§) = 4. (I18)
Substituting A, B, and F into Eq. (I5) yields Eq. (31).

Appendix J. Proof of Proposition 4
Using the least-square method, the discrepancies between the gPCE approximations and
simulations are minimized through the following optimization problem:
§ Q z
min], =Z lf(él, RO S VPV SO ST W ¢ 1C)) -chj oy, (20)] . (1)
i=1

Jj=1

Taking the first partial derivative of J, w.r.t. ¢, Vu € [1, Q] gives

¢ Q
dJ. ~ ~ ~ - - - o )
- Z {[f(glf T 6N7~+Np' (O RPN TR ¢NT+NP' {lpm) - Z Ck; (Dk]- (p(l))

dc
ke 3 j=1

Dy, (Z(i))}. J2)

According to the notations defined in Egs. (33) to (35), equating the first partial derivatives to zero

yields the following matrix form:

@y (ZWV)
9 ky
Ze @' -ca)| . |=owuelql (13)
Ch, o, (2©)
Thus,
oy Oy, (Z1) o gy (20)
—, —] = (b" - cTA) : : =0T, (14)
ackl ack@ q)kl(z(f)) q)k@(z(f))

AT

Solving Eq. (J4) gives
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cTAAT = pTAT. Js)
Taking the transpose on both sides yields
AATc = Ab. (J6)
Left-multiplying by the inverse matrix of AAT yields Eq. (32).

Appendix K. Jacobi polynomials

The Jacobi polynomials in the form of Rodrigues’s formula are given by

_1k dk 1_Za+k1+Zb+k
@ (2) = PP (2) = (zklzr (1-2)%1+2z)" [A-2) dzk( ) ],Vk eN, (KD
where a, b > —1, the support is [—1, 1], and the weighting function is
w(z) = (1 —-2)%(1 + 2)P. (K2)

The orthogonality of Jacobi polynomials w. r. t. the weighting function w(z) gives

1
f PP (2) PP (2)w(2)dz
-1

(K3)
20t (ke +a+ DIk + b + 1)

T Qkitat+tb+ DIk, +a+b+Dnl

Ok k, Vk1, bz EN,
where I'() represents the gamma function defined by
I'(x) = J t*" e tdt; (K4)
0

and 6y, i, is the Kronecker delta function defined by

0 ifky #ky

6k1k2 = { 1ifk, =k, ,Vki, ky, €N, (K5)

However, the standard beta distribution is defined on the interval [0, 1] with the probability

density function

x® 11— x)A1
(xap)= , (K6)
R TCN0)
where x € [0,1]; a, B > 0; and B(-,") represents the beta function defined as
1
B(a,B) = J t* 1 (1 —t)Fdt. (K7)
0

Therefore, necessary transformations are required to link Jacobi polynomials and the beta
distribution. By taking the parameters and variables of the beta distribution as a basis, the parameters

and variables in the Jacobi polynomials can be rewritten as

a=pf-1,
b=a-1, (K8)
z=2x—1.

Substituting Eq. (K8) into Eq. (K3) and letting k; = k, = k gives
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fl [Pk(ﬁ—l,a—l)(zx _ 1)]2 w(2x — Dd(2x — 1)
0

(K9)
20+B-1T(k + )T (k + )

T Qk+tat+f-DIk+a+p—Dnl
Equation (K9) establishes the orthogonality of Jacobi polynomials w. r. t. the weighting function in the

,Vk € N.

transformed parameters and variables. Substituting Eq. (K2) into the left-hand side of Eq. (K9) yields

fl [Pk(ﬁ—l,a—l)(zx _ 1)]2 w(2x — Dd(2x — 1)
0

1 2
= 2“+ﬁ—1f [Pk(ﬁ‘l'“‘” (2x — 1)] x@1(1 — x)B1dx
0

) 2 x8-1(1 _ )1 (K10)
- 2“+ﬁ-1B(a,/3)f [P D 2x - )] = . ﬁx) dx
0 )
1 2
= 20+B-1B(q, B) f [Pk(ﬁ‘l'“‘”(Zx - 1)] $(x; a, B)dx.
0
Substituting Eq. (K10) into Eq. (K9) yields
1
f [Pk(ﬁ_l’a_l)(Zx - 1)]2 F(x; a, B)dx
0 (K11)

B T'(k+ )k +pB)
T QRk+a+pB-DIk+a+p-1nBapB)

Equation (K11) indicates that (1) the orthogonal Jacobi polynomials w.r.t. the standard beta

Vk € N.

distribution, Beta(a,f8), are Pk(ﬁ _1’a_1)(2x —1), Vk e N; (2) the corresponding normalization

T(k+a)T(k+8)
(2k+a+p-1)I'(k+a+B-1)n'B(a,B)’

constants are \/ Vk € N, which ensures the orthogonality of the Jacobi

polynomials; and (3) the transformation relationship between the input samples for the original system

and the surrogate system is given by z = 2x — 1.

Appendix L. Efficiency of Propositions 3 and 4

This section presents the results of a series of numerical experiments comparing the efficiencies
of the MCS method and Propositions 3 and 4 in estimating E (D) and Var(D). As shown in Table L1
and Figure L1, the MCS method required millions of samples to obtain stable estimates for E(D) and
Var(D), making it remarkably time-consuming and unsuitable for real-time applications. In contrast,
the method based on Propesitions 3 and 4 required only a small number of samples to achieve similar
performance. Specifically, when K = 1, dozens of samples were sufficient to accurately estimate E (D).
Although the estimation of the second-order quantity, Var(D), was more challenging, the proposed
method could constrain the APE within 4% using only 210 samples and a K = 2 setting. Increasing K
to 3 and the number of samples to 1,120 further reduced the error to 0.09%. Moreover, as the proposed

method is fully analytical, the computational costs remained at the millisecond level. The excellent
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approximation accuracy and high efficiency of the proposed method make it suitable for a wide range
of transportation problems.

Table L1. Comparison of the efficiencies of the MCS method and Propositions 3 and 4.

Method Number of E(D) (s) APE of Var(D) APE of Computation

samples E(D) (%) (s) Var(D) time (s)
(%)
MCS 10 6164.3 - 651803.3 - 0.00
MCS 100 6472.2 - 507594.5 - 0.01
MCS 1,000 6600.3 - 437981.2 - 0.01
MCS 10,000 6591.5 - 431920.2 - 0.02
MCS 100,000 6585.2 - 443010.9 - 0.28
MCS 1,000,000 6584.2 - 442896.2 - 2.32
MCS 10,000,000 6584.0 - 442850.2 - 24.06
(Ground truth)
Propositions 3 28 6584.1 0.00 314884.6 28.90 0.01
and4 (K =1)
Propositions 3 210 6586.3 0.04 428672.0 3.20 0.08
and 4 (K = 2)
Propositions 3 1,120 6588.5 0.07 443237.8 0.09 0.79
and 4 (K = 3)
6600 *__*_;; ....... I E— — — ] oo &
' 550000
2 7 3
‘ & rodstmgags & inbsesng

1 2 3 4 5 6 T 1 2 3 4 5 6 7
Number of samples (10%) Number of samples (10%}

Figure L1. Comparison of the efficiencies of the MCS method and Propeositions 3 and 4.

Appendix M. Proof of Proposition 5
According to Proposition 3,
§
E(D) = ) @yif O Bt Brsnps b s Bl s By 1), (M)

i=1
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Q¢ 2
Var(d) = ) |3 aif (81, 00 oo Ongnips $1s s Bt wos Bpanis 1P (M2)

i=2 |j=1

For E(D),Vx €V,

OE®) | S f O 8 )] = B[ (6, 10O
0x Ax—0 Ax
~ lim 58 ay[f (01, x + A%, ., {PD) = (64, e %, .., {|pD))]
- Ax—0 Ax
f i a
= z ay; lim f(gl’ X Ax’ "" (lp(l)) - f(glJ ey Xy ey (lp(l)) (M3)
B = 11Ax—>0 Ax
3
= z alifxl(el, vy X, ...,{lp(i)) = Albl'
i=1
For Var(D),
2
aVar(D) — 1 Zi@=2 [Zf-:l aijf(el, v X + Ax, .,,,{'p(l))] _
ox  ax0 Ax
(M4)

, 2
Z(iQ=2 [25:1 al-jf(Hl, [ (lp(])):l
Bl Ax

Let X5_, aiif (61, ... x + Ax, .., {[pD) = G and B, ay;f (61, ..., x, ..., |pY)) = H. Eq. (M4) can

be rewritten as

ovar(d) . Tia(G+H)(G—H) _ EQ: i (GG —H)

(M5)
0x Ax—0 Ax i Ax—0 Ax
1=
For G + H,
3
Jm G+ =2 ayf (61, SIpD) (Mo)
j=1
According to Proposition 4,
3
Z aijf(91: e Xy ---,f|p(j)) = Ck;- M7)
j=1
Thus,
A13161;1)10(6 + H) = 2¢y;- (M8)
ForG — H,
-0 Xiaylf(6r x4+ 8x, . 0 pD) = £(By, s, ., {IPD)] MO
lim = lim (M9)
Ax—0 Ax Ax—0 Ax
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§ . |
=3 g i PO 0 P0) = (Ot 1)

T Ax—0 Ax

=1
¢
- Z aiifi (61X, o, Cp)) = Ayb.

j=1
Substituting Eqs. (M8) and (M9) into Eq. (M5) yields Eq. (39).

Appendix N. Validation of Proposition 5

This appendix provides detailed experimental results of estimations of the gradients of E(D)
and Var(D). Numerical differentiation was used to evaluate the gradients of £(D) and Var(D), which
were then taken as the ground-truth values for evaluation. To evaluate the partial derivative
0E(D)/0x,Vx € V, the expected values at x + € and x — €, denoted as E(D") and E(D""), respectively,
were first computed according to a large number of samples (107 samples were adopted), where € was
set to 1078, Then, dE(D)/dx was estimated as [E(D') — E(D"")]/(2¢€). Similar steps were followed
to evaluate dVar(D)/0dx,Vx € V. The sampling process was conducted only once to save computation
time. Additionally, signal groups 10 and 11 (c.f. Figs. 5 and 6) were pedestrian groups and were not
included in D; therefore, the partial derivatives w.r. t. the associated variables, 6,1, ¢1¢, 611, and ¢4,
were all zeros. A comparison of the results of the numerical differentiation method with those based on
Proposition 5 (Table N1) revealed that the estimates based on Proposition 5 were nearly identical to
those based on numerical differentiation. For the gradient of E(D), the maximum APE was less than
1%, and the average APE was only 0.14%. As expected, the estimation errors for the gradient of Var(D)
were slightly larger, with the maximum and average APEs of 4.21% and 2.56%, respectively. Despite
the similar performance between the numerical method and Propesition 5, Proposition 5 required a
computation time of only 0.08 s, while numerical differentiation required 525.42 s. These results
consistently demonstrate the superiority of Proposition 5.

Table N1. Comparison of the numerical differentiation method and Proposition 5 in gradient

estimations.
Numerical
Item differentiation Proposition 5 APE (%)
(Ground truth)
J0E(D)/06, 5.03 5.04 0.25
0E(D)/0¢4 —222.46 —222.46 0.00
0E(D)/08, —258.79 —258.81 0.00
0E(D)/0¢, —1045.37 —1045.37 0.00
0E(D)/0065 139.81 139.75 0.04
0E(D)/0¢3 —486.44 —486.44 0.00

50



0E(D)/08, —553.92 —554.18 0.05
0E(D)/0¢, —1060.01 —1060.14 0.01
0E(D)/005 1131.42 1130.92 0.04
0E(D)/0¢s —9044.56 —9038.91 0.06
0E(D)/0064 —1212.09 —1212.17 0.00
0E(D)/0¢s —1923.12 —1923.11 0.00
0E(D)/06;, 90.74 90.71 0.04
0E(D)/0¢- —525.69 —525.69 0.00
0E(D)/004 2263.21 2263.07 0.00
0E(D)/0¢g —16057.09 —16055.85 0.00
0E(D)/08, —5250.78 —5198.67 0.99
0E(D)/0¢q —12344.84 —12297.99 0.38
0E(D)/0¢ —1451272.58 —1438922.88 0.85
Maximum error - - 0.99
Average error - - 0.14
Variance in error - - 0.08
dVar(D)/06, —6475.32 —6238.12 3.66
dVar(D)/0d¢, —8638.25 —8929.11 3.37
dVar(D)/06, —6188.87 —5982.91 333
oVar(D)/d¢, —11195.40 —10752.12 3.96
dVar(D)/065 3803.32 3774.99 0.74
oVar(D)/0¢; —8725.10 —8465.34 2.98
dVar(D)/06, —47673.45 —46060.22 3.38
oVar(D)/0¢, —65062.70 —62852.72 3.40
dVar(D)/06s 9125.88 9437.14 341
oVar(D)/0¢s —96769.76 —100843.69 4.21
dVar(D)/06 —23079.59 —23577.60 2.16
dVar(D)/0¢¢ —30298.61 —31517.06 4.02
dVar(D)/06, 413.02 419.34 1.53
oVar(D)/d¢, —3254.19 —3270.94 0.51
dVar(D)/06g 9145.56 9373.16 2.49
oVar(D)/d¢g —88268.94 —90251.22 2.25
dVar(D)/064 —777706.30 —771067.34 0.85
dVar(D)/0d¢q —875030.54 —893651.21 2.13
oVar(D)/d¢ —112443516.26 —112109004.60 0.30
Maximum error - - 4.21




Average error - - 2.56
Variance in error - - 1.51

Computation time (s) 525.42 0.08 -

Appendix O. Traffic demands, successor matrix, and clearance time matrix of Intersection 1
The traffic demands, successor matrix, and clearance time matrix of Intersection 1 in the
NGSIM dataset are presented in Tables O1, 02, and O3, respectively.
Table O1. Actual traffic demands and turning proportions of Intersection 1 in the NGSIM dataset.

Direction Northbound Southbound Eastbound Westbound
veh/h % veh/h % veh/h % veh/h %
Left turn 72 13 80 18 148 22 0 1
Through 480 86 364 81 496 77 68 65
Right turn 0 1 0 1 0 1 36 34
Total 552 1 444 1 644 1 104 1
Table O2. Successor matrix.
Group |1 2 3 4 5 6 7 8 9 10 11
1 - 0 0 0 0 0 - - - - 0
2 1 - 1 1 - - 1 1 - 1 -
3 1 0 - 1 - - 1 1 0 - -
4 1 0 0 - 0 0 - - 0 - 0
5 1 - - 1 - 1 1 1 - 1 -
6 1 - - 1 0 - 1 1 - - 0
7 - 0 0 - 0 0 - 0 - - -
8 - 0 0 - 0 0 1 - - - -
9 - - 1 1 - - - - - 1 -
10 - 0 - - 0 - - - 0 - -
11 1 - - 1 - 1 - - - - -
Table O3. Clearance time matrix.
Group |1 2 3 4 5 6 7 8 9 10 11
1 - 6 5 6 6 5 - - - - 6
2 5 - 6 5 - - 5 6 - 5 -
3 6 5 - 5 - - 5 5 6 - -
4 6 6 5 - 5 5 - - 6 - 5
5 5 - - 5 - 5 6 5 - 5 -
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6 5 - - 6 6 - 5 5 - - 6
7 - 5 6 - 5 5 - 6 - - -
8 - 5 5 - 5 6 6 - - - -
9 - - 5 5 - - - - - 5 -
10 - 5 - - 5 - - - 5 - -
11 5 - - 5 - 5 - - - - -

Appendix P. Sensitivity tests on Ng

This appendix presents the results of preliminary experiments conducted to determine the
appropriate parameter Ng. Various cases based on either DPRC or SPRC with different Ni values were
considered for signal plan optimizations using the actual demands listed in Table O1 (Appendix O). In
SPRC, the parameter w was user-defined to strike a balance between efficiency and stability. According
to Eq. (32), w = 0 signifies that the objective solely optimizes efficiency, while w > 0 indicates a
consideration for both efficiency and stability. A higher w prioritizes stability and robustness,
potentially at the expense of overall efficiency. In addition to cases with w = 0, w = 20 was chosen to
generate cases that prioritize stability and robustness while maintaining reasonable efficiency. The
identical initial signal plan, denoted as V(°*), was randomly generated and applied to all of the cases.
Delays over 2-h periods across different cases were recorded in VISSIM. The results are summarized
in Table P1.

For the DPRC scheme, increasing N from 9 to 19 enhanced performance consistently, but
further increasing Ny to 29 showed no additional benefit. Thus, N = 19 was chosen. Similarly, N =
29 and N = 39 were determined for the SPRC schemes with w = 0 and w = 20, respectively.

Table P1. Sensitivity tests of Ng.

Scheme ) Ny Total junction delay (s) Chosen?
DPRC - 9 92,185
- 19 91,727 v
- 29 92,175
SPRC 0 9 92,145
0 19 91,470
0 29 90,041 v
0 39 90,398
20 9 95,758
20 19 93,256
20 29 90,755
20 39 90,750 v
20 49 93,556
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Appendix Q. Properties of SPRC schemes with different w

This appendix presents additional experiments that compare the properties of the SPRC
schemes with ® = 0 and ® = 20. Each experiment was run for a 1,000-min study period, following a
30-min warm-up. To simulate dynamic traffic conditions, the average demand of each approach was
modeled using a sinusoidal curve fluctuating by 20% around the constant average demand, starting from
an initial phase of zero. That is, while the average demand for each approach varied over time, the mean
of these average demands remained identical to the constant average demand used in the warm-up
period. The periods of these sinusoidal curves aligned with the duration of the study period. Additionally,
the CV penetration rate was set to 0.4. Total junction delays for each cycle over the study period were
recorded in VISSIM for analysis. The evaluation metrics were average, maximum, and variance in
junction delays. The results are presented in Table Q1.

The results indicate that across different V/C ratios, the SPRC scheme with ® = 20 displayed
marginally higher average junction delays but yielded lower maximum junction delays and variances
in junction delays than the SPRC scheme with © = 0. These findings confirm that the SPRC scheme
with ©® = 0 fully optimized efficiency, whereas the SPRC scheme with ® = 20 provided a balance
between optimized efficiency and optimized stability. That is, an increase in ® increased stability at the
expense of efficiency.

Table Q1. Comparison of SPRC schemes with different w.

Average Maximum Variance in
V/C ratio SPRC intersection delay intersection delay intersection delay
(s) (s) (s2)

0.3 w =20 561 1,483 27,481
W= 558 1,496 27,925
0.5 w =20 1,111 2,740 102,887
W= 1,042 3,108 111,105

0.7 w =20 5,779 23,987 15,346,807

w = 5,089 24,232 16,975,453
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