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Abstract6

A two-way coupling numerical framework based on smoothed particle hydrodynamics (SPH) is
developed in this study to model binary granular mixtures consisting of coarse and fine grains. The
framework employs updated Lagrangian SPH to simulate fine grains, with particle configurations
updated at each time step, and total Lagrangian SPH to efficiently model coarse grains without
updated particle configurations. A Riemann solver is utilized to introduce numerical dissipation in
fine grains and facilitate their coupling with coarse grains. To enhance computational efficiency, a
multiple time-stepping scheme is initially applied to manage the time integration coupling between
coarse and fine grains. Several numerical experiments, including granular column collapse, low-
speed impact craters, and granular flow impacting blocks, are conducted to validate the stability
and accuracy of the proposed algorithm. Subsequently, two more complex scenarios involving a
soil-rock mixture slope considering irregular coarse particle shapes, and bouldery debris flows on
natural terrain, are simulated to showcase the potential engineering applications. Finally, a detailed
analysis is performed to evaluate the computational efficiency advantages of the present approach.
The findings of this study are consistent with previous experimental and numerical results, and the
implementation of a multiple time-stepping scheme can improve computational efficiency by up
to 600%, thereby providing significant advantages for large-scale engineering simulations.

Keywords: Smoothed particle hydrodynamics; Granular materials; Binary mixtures; Bouldery7

debris flow; Updated Lagrangian formulation8

1. Introduction9

Binary mixtures are granular materials made up of both coarse and fine grains [1]. In geotech-10

nical engineering, earth sciences, geological engineering, and mining engineering, binary mixtures11

are commonly encountered materials, such as soil-rock mixtures (SRM) in natural slopes [2], boul-12

ders mixed with soils in debris flows [3], gravel-sand mixtures in dam filling [4], ballast-fouling13

mixtures in railway track beds [5], and mining waste rock and tailing [6].14
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Discrete element method (DEM) [7] is widely used to model granular mixtures [1, 8], where15

fine grains and coarse grains are represented by discrete particles of different sizes. However,16

DEM requires solving for each discrete particle individually, resulting in significant computa-17

tional time and memory overhead [9, 10]. Some researchers used a continuum model, which only18

captures the macroscopic information of the material such as stress and strain, to simulate fine19

grains. This is then coupled with DEM-simulated coarse grains to improve computational effi-20

ciency. Coupling the finite element method (FEM) with DEM to simulate granular mixtures is21

one of such approaches [11, 12]. However, when the material undergoes large and nonuniform22

deformations, translations, or rotations, the mesh in FEM can become ill-shaped [9], affecting its23

computational accuracy. Therefore, some continuum methods suited for large deformations, such24

as the material point method (MPM), have also been used to model fine grains and coupled with25

DEM [13, 14, 15].26

Smoothed particle hydrodynamics (SPH) [16, 17] has become a popular method in recent27

years for simulating large deformations of granular materials [18, 19, 20, 21]. Unlike MPM, SPH28

is a fully particle-based mesh-free method where all physical quantities, such as density, velocity,29

and stress, are carried by particles and updated through interactions between each particle and30

those within its support domain. Due to its mesh-free nature, the SPH method facilitates efficient31

modeling of granular flows with substantial strains and displacements [9]. SPH methods can be32

classified into total Lagrangian SPH (TLSPH) [22, 23] and updated Lagrangian SPH (ULSPH)33

[24, 25] based on whether the particle configurations, which define each particle’s neighbors, are34

updated during the simulation. TLSPH and ULSPH each have distinct characteristics that make35

them suitable for different applications. TLSPH is efficient in handling elastic and plastic dynamics36

as it avoids the computational cost of continuously updating particle configurations, while ULSPH,37

by updating particle configurations at each time step, is better suited for modeling material failure38

and fracture beyond elastic or plastic deformations [26].39

Over the past 30 years, the SPH method has evolved and been successfully applied to simulate40

fluid dynamics [27], solids [24], and fluid-structure interactions [28, 29]. Bui et al. [18] firstly41

applied the ULSPH method to simulate large deformations of granular materials and validated the42

numerical model with experimental results. Since then, this approach has been widely used for43

simulating elastoplastic granular materials [25, 30, 31, 32, 33, 34, 35]. Based on this, Hu et al.44

[9] developed a coupling algorithm that uses ULSPH to simulate fine grains as granular materials,45

which is then coupled with moving solid bodies. Peng et al. [36] simulated the interaction between46

non-Newtonian fluids and solid particles with the SPH-DEM coupling method.47

In this study, the simulation of binary granular mixtures is implemented within a unified SPH48

framework. Fine grains, such as clay and silt in debris flows, exhibit highly dynamic and irregular49

motion and displacement, with constantly changing particle configurations (neighboring particles),50

necessitating the use of ULSPH for accurate simulation [18] as elasto-plastic materials. In contrast,51

the particle configuration of each coarse grain, assuming no breakage, keeps unchanged [26]. This52

feature allows TLSPH to simulate each coarse grain as an elastic body (Neo-Hookean materials53

in this study), enhancing computational efficiency [22]. Building on Zhang et al.’s study [20], a54

Riemann solver is introduced to replace artificial viscosity [37, 18] in modeling fine grains, aiming55

to reduce numerical dissipation while maintaining high accuracy. The stress diffusion term [38] is56

also applied in fine grain modeling to eliminate spurious stress profiles and achieve a smooth stress57
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distribution. Additionally, a multiple time-stepping scheme, originally proposed for fluid-structure58

interactions [39], is introduced in modelling granular materials for the first time to handle coupled59

time integration for coarse and fine grains, significantly enhancing computational efficiency. The60

irregular shape of coarse particles can be incorporated by utilizing level-set based pre-processing61

techniques [40]. Compared to previous methods that use DEM [1, 8], FEM-DEM [11, 12], MPM-62

DEM [14, 15], or SPH-DEM [36] to simulate binary granular mixtures, the approach in this study63

offers the following advantages: (1) it delivers a two-way coupling between fine and coarse grains64

within a unified SPH framework; (2) SPH is a mesh-free method that effectively handles large65

deformations in granular flows; (3) compared to DEM, SPH is a continuum method that offers66

higher computational efficiency.67

The remainder of this paper is arranged as follows. Sections 2 and 3 introduce the theories68

behind ULSPH-based fine grain modeling and TLSPH-based coarse grain modeling, respectively.69

Section 4 presents the ULSPH-TLSPH coupling method for simulating binary granular mixtures.70

Section 5 validates the stability and accuracy of the proposed numerical method through several71

commonly used test cases. In Section 6, two more complex cases are used to demonstrate the po-72

tential engineering applications of the algorithm. Section 7 analyzes the computational efficiency73

of the method, and Section 8 provides the conclusion.74

2. ULSPH for modelling fine grains75

ULSPH is used to simulate fine grains, with updating particle configurations at each time step.76

Note that the term ’fine’ is used throughout this paper as the opposite of ’coarse’. It does not refer77

to soil grains smaller than 0.075 mm [1, 41]. In SPH, each particle represents a continuous finite78

volume. This study considers the size of fine grains to be the size of the continuous region rep-79

resented by each SPH particle [9], specifically the initial particle spacing dp. The actual physical80

size of these fine grains is not constrained; it can range from a few millimeters when simulating81

small-scale problems [18] to several meters for large-scale problems [42]. The size of each coarse82

grain is determined by the outline formed by multiple SPH particles, as shown in Fig. 1. In the83

present method, there is no upper limit on the size of coarse grains. However, based on previous84

studies where the wall-boundary condition involved three or four layers of particles [18, 20, 43],85

the minimum size is set to four times that of the fine grains. A coarse grain of this size is capable86

of accurately representing its shape after discretization. As shown in Fig. 1, coarse particle-1 is an87

example, with its size being approximately four times that of the fine grains.88

2.1. Governing equations and constitutive model89

For the updated Lagrangian framework, the motion state is described based on the current90

configuration. The governing equations in ULSPH, including the conservation of mass and mo-91

mentum, are defined as92

dρ
dt
= −ρ∇ · v (1)

93

dv
dt
=

1
ρ
∇ · σ + g +

1
m

fc→ f (2)
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SPH particle of fine grain
SPH particle of coarse grain

Fine grainsCoarse grain-1

Coarse grains

Fig. 1. A binary mixture of coarse and fine grains implemented with SPH.

where ρ is the density, v is velocity, g is the body force. ∇ is the gradient operator and d
dt donates94

the material derivative. m is the particle mass, and fc→ f represents the force exerted by coarse95

grains on fine grains. σ is the stress tensor (negative for compression) and can be calculated by96

integrating the stress rate σ̇ with respect to time.97

σ =

∫ t

0
σ̇dt (3)

The elastic-perfectly plastic Drucker-Prager constitutive model with non-associated flow rule [44,98

45] is adopted here to describe the stress-strain relationship of granular materials with fine grains.99

The yield criterion f and plastic potential function g are defined as [44, 45]100

f (I1, J2) = αϕI1 +
√

J2 − kc (4)
101

g(I1, J2) = αψI1 +
√

J2 (5)

where I1 = tr(σ) and J2 =
1
2σ

s : σs are the first and second invariant of stress tensor, respectively.102

The symbol : represents the double contraction of tensors. αϕ, kc and αψ are material constants,103

and are defined as [45, 46, 47, 48]104

αϕ =
tan ϕ√

9 + 12tan2ϕ
, kc =

3c√
9 + 12tan2ϕ

, αψ =
tanψ√

9 + 12tan2ψ
(6)

Here, c is cohesion, ϕ is friction angle, and ψ is dilation angle. The Jaumann stress rate that is105

invariant to rigid-body rotation for Drucker-Prager model with non-associated flow rule can be106

expressed as [45]107

σ̇ = 2Gε̇ + Ktr(ε̇)I − γ̇
(
3KαϕI +

G
√

J2
σs

)
+ σ · ω̇T + ω̇ · σ (7)

4

Acce
pte

d M
an

usc
rip

t



where σs = σ − 1
3 tr(σ)I is the deviatoric stress tensor. The last two terms σ · ω̇T + ω̇ · σ are108

introduced to mitigate the influence of rigid rotation, with the superscript T being the transpose of109

a tensor. G and K are the elastic shear modulus and bulk modulus. ω is the spin tensor and I is the110

identity matrix. γ is the plastic multiplier, and γ = 0 if f < 0 or f = 0 & d f < 0 corresponds to111

elastic behavior or plastic unloading, while γ > 0 if f = 0 & d f = 0 corresponds plastic loading.112

The Jaumann stress rate is widely used in SPH literature [18, 33, 38]; however, it is prone to113

oscillations under simple shear [49], as also noted by Castillo et al. [32]. Nevertheless, their study114

[32] further shows that even when applying the Jaumann stress rate in SPH simulations, these115

oscillations were not observed in both simple shear and large deformation problems, partly due to116

the very small time steps employed in explicit time integration. Nonetheless, other objective stress117

rates, such as those based on the Lie derivative [50], could also be used here. For non-associated118

flow rule, γ̇ is defined as [45, 51]119

γ̇ =
3αϕKtr(ε̇) + (G/

√
J2)σs : ε̇

9αϕKαψ +G
(8)

ε̇ and ω̇ are strain rate and spin rate, respectively.120

ε̇ =
1
2

[
∇v + (∇v)T

]
(9)

121

ω̇ =
1
2

[
∇v − (∇v)T

]
(10)

The integration of the constitutive model employs the two-step elastic predictor-plastic correc-122

tor scheme, also known as return mapping algorithms [45, 52]. In this scheme, an initial elastic123

trial solution is computed by integrating the constitutive equations with the strain increment. The124

resulting stress is then evaluated against the yield function. If the stress falls within or on the125

yield surface, the trial solution is accepted. However, if the stress lies outside the yield surface,126

the plastic corrector step is iteratively performed to bring the trial stress back to the yield surface127

[18, 34]. When condition −αϕI1 + kc < 0 is met, the hydrostatic stress component can be adjusted128

by129

σ̃ = σ −
1
3

(
I1 −

kc

αϕ

)
I (11)

When condition −αϕI1 + kc <
√

J2 is satisfied, the deviatoric stress component can be adjusted by130

σ̃ =
−αϕI1 + kc
√

J2
σs +

1
3

I1I (12)

where the σ and σ̃ are the stress before and after return mapping.131

2.2. SPH discretization132

The prevalent SPH discretization approach [24, 38] for the governing Eqs. (1) and (2) is133

dρi

dt
= ρi

∑
j

vi j · ∇iWi jV j (13)
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134

dvi

dt
=

1
ρi

∑
j

(
σi + σ j

)
· ∇iWi jV j + g +

1
mi

fc→ f
i (14)

where Wi j represents W(ri − r j, h), which is the kernel function, and ∇iWi j =
∂Wi j

∂ri j
ei j =

∂W(|ri j |,h)
∂|ri j |

ei j.135

ri j = |ri−r j| is the distance between two particles, with r being the particle position and h being the136

smoothing length. ei j is the unit vector pointing from particle j to particle i and vi j = vi − v j. The137

subscripts i and j donate particle numbers, and V is the particle volume. fc→ f
i will be calculated in138

Section 4.1.139

Rather than using artificial viscosity [18, 38, 37], which introduces the numerical dissipation140

explicitly, we utilize a low-dissipation Riemann solver [20, 53] to introduce numerical dissipation141

implicitly. The discrete form of the governing equations after introducing the Riemann problem is142

shown as Eqs. (15) and (16). The detailed derivation process can be found in reference [20, 53].143

dρi

dt
= 2ρi

∑
j

(vi − v∗) · ∇iWi jV j (15)

144

dvi

dt
= 2

1
ρi

∑
j

σ∗ · ∇iWi jV j + g +
1
mi

fc→ f
i (16)

The Riemann solutions v∗, σ∗ are expressed as145

v∗ = U∗ei j +
(
vi j − Uei j

)
(17)

146

σ∗ = σs
i j − P∗I (18)

Here, U = (UL + UR)/2. vi j = (vi + v j)/2 and σs
i j = (σs

i + σ
s
j)/2 are the particle-average velocity147

and shear stress between particles i and j, respectively. U∗ and P∗, which are obtained from148

the low-dissipation Riemann solver [53, 20, 26], are the solutions of an inter-particle Riemann149

problem.150

U∗ =
ρLcLUL + ρRcRUR + PL − PR

ρLcL + ρRcR
(19)

151

P∗ =
ρLcLPR + ρRcRPL + βρLcLρRcR (UL − UR)

ρLcL + ρRcR
(20)

The subscripts L and R denote the left and right states obtained from the Riemann problem, and152

are defined as153 (ρL,UL, PL, cL) = (ρi, vi · ei j, Pi, c0i)
(ρR,UR, PR, cR) = (ρ j, v j · ei j, P j, c0 j)

(21)

where Pi = −
1
3 tr(σi). c0 is the speed of sound and is defined as [26]154

c0 =

√
E

3(1 − 2ν)ρ0
(22)
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where E is the Young’s modulus, ν is the Poisson’s ratio, and ρ0 is the initial density. β in Eq. (20)155

is a dissipation limiter, and is expressed as [53]156

β = min
{
ηmax

[
(PL + PR)(UL − UR)

ρLcL + ρRcR
, 0

]
, 1.0

}
(23)

η is a coefficient that controls the numerical dissipation, and is set 20d [20] in this study unless157

otherwise specified, with d donating the space dimension. The velocity gradient ∇v in Eqs. (9)158

and (10) can be discretized as159

∇v =
∑

j

vi j ⊗ ∇iWi jV j (24)

To achieve a smooth stress distribution, a stress diffusion term [38] is incorporated into the160

constitutive equation by adding another term D in the right-hand side of Eq. (7). For a particle i,161

the stress diffusion term Di is defined as162

Di = 2ζhc0

∑
j

Ψi j
ri j

|ri j|
2 + 0.01h2

∇iWi jV j (25)

The coefficient ζ is introduced to regulate the magnitude of the diffusion term and is set to 0.1163

[38]. If the direction of the z-coordinate axis is opposite to the direction of gravity g, the diffusion164

operator Ψi j can be defined as165 
Ψ
αβ
i j = σ

αβ
i j α , β

Ψ xx
i j = σ

xx
i j − K0ρ0|g|zi j

Ψ
yy
i j = σ

yy
i j − K0ρ0|g|zi j

Ψ zz
i j = σ

zz
i j − ρ0|g|zi j

(26)

where zi j = zi − z j is the distance between two particles along z-axis. K0 = 1 − sin(ϕ) is Jaky’s166

earth pressure coefficient at rest.167

2.3. Tensile instability168

If the granular material is cohesive, the well-known issue of tensile instability [24] will arise169

during SPH simulations, manifesting as particle clustering and non-physical fractures. This prob-170

lem does not occur in non-cohesive granular materials because tensile instability only appears in171

regions under tension, and non-cohesive granular materials cannot sustain tensile stress. Gray et172

al. proposed an artificial stress term to address tensile instability [24], which was later incorporated173

into the simulation of cohesive granular materials by Bui et al. [18]. Specifically, an additional174

artificial stress term R, acting as a repulsive force, was introduced into the momentum equation.175

This repulsive force increases as the distance between particles decreases, thereby preventing par-176

ticle clustering. The momentum equation Eq. (16) with the introduced artificial stress term is177

rewritten as178

dvi

dt
= 2

1
ρi

∑
j

(
σ∗ + f n

i jRi j

)
· ∇iWi jV j + g +

1
mi

fc→ f
i (27)
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where Ri j = (Ri + R j)/2. fi j = W(|ri j|, h)/W(dp, h) is a coefficient which increases with reducing179

particle distance |ri j|. The exponent n is set to 2.55, based on the value used by Bui et al. [18] for180

granular materials.181

The fundamental procedure of artificial stress involves first diagonalizing the stress tensor by182

means of a coordinate system rotation. Subsequently, an additional artificial stress term is added183

to each positive component (tension) of the diagonalized stress tensor. Finally, the value of the184

artificial stress in the original coordinate system is determined by rotating the coordinate system185

back. In two dimensions, each component of the second-order tensor Ri is defined by [24]186 
Rxx

i = cos2 θiR
′xx
i + sin2 θiR

′yy
i

Ryy
i = sin2 θiR

′xx
i + cos2 θiR

′yy
i

Rxy
i = sin θi cos θi(R

′xx
i − R

′yy
i )

(28)

where R
′xx
i and R

′yy
i are the principal stress components. θi is the rotation angle of the coordinate187

system when diagonalizing the stress tensor, and is given by [24]188

tan 2θi =
2σxy

i

σxx
i − σ

yy
i

(29)

Here, σxx
i , σyy

i , and σxy
i are the components of the stress tensor in the original coordinate system.189

The diagonal components of the artificial stress term is calculated by [24]190

R
′xx
i =

−ϵ
σ
′xx
i

ρ2
i

if σ
′xx
i > 0

0 if σ
′xx
i ≤ 0

(30)

The parameter ϵ is a positive constant, and is set to 0.5 for granular materials according to Bui et191

al. [18]. The diagonal components of stress tensor σ
′xx
i and σ

′yy
i are obtained by [24]192 σ

′xx
i = cos2 θiσ

xx
i + 2 sin θi cos θiσ

xy
i + sin2 θiσ

yy
i

σ
′yy
i = sin2 θiσ

xx
i + 2 sin θi cos θiσ

xy
i + cos2 θiσ

yy
i

(31)

The extension of the aforementioned methods to three-dimensional (3D) problems is quite193

complicated, primarily due to the intricate and time-consuming process of diagonalizing matri-194

ces through coordinate rotation in 3D scenarios. A more simplified approach known as artificial195

pressure [54] is typically employed for 3D cases. In this study, only one two-dimensional (2D)196

example involves cohesive granular material (as shown in Section 6.1), which exhibits tensile197

instability; therefore, the method proposed by Gray et al. [24] is adopted.198

2.4. Wall-boundary condition199

As shown in Fig. 2, four layers of fixed dummy particles are used to impose the wall-boundary200

condition [43]. Real particles represent the particles for simulated materials, specifically referring201

to fine grains here.202
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Boundary surface

dp

Real particles

Wall particles

Support domain of particle i

i

𝜅h

Fig. 2. Illustration of the wall-boundary condition. Here, dp represents the initial particle spacing. The
smoothing length h = 1.3dp and the cut-off radius κh = 2.6dp

By solving a one-sided Riemann problem [53] along the wall’s normal direction, the interaction203

between real particles and wall particles is determined. When dealing with real particle i, if wall204

particles are present within the support domain of particle i, the stress of the wall particles can205

be set to be equal to the stress of the real particle i, i.e., σw = σi to achieve a non-slip boundary206

condition [18]. In this specific Riemann problem, the left state is defined as207

(ρL,UL, PL, cL) = (ρ f ,−nw · v f , P f , c0 f ) (32)

where the subscript f represents the SPH particles for fine grains and w represents wall particles.208

nw is the local wall norm direction and is defined as [53]209

nw =
Φ(ri)
|Φ(ri)|

, Φ(ri) = −
∑
j∈w

∇iWi jV j (33)

The summation in Eq. (33) is restricted to wall particles only. Based on the physical wall boundary210

condition, the right-state velocity UR is defined as [53]211

UR = −UL + 2uW (34)

where uW is the prescribed wall velocity. The right-state pressure is assumed as [53]212

PR = PL + ρ f g · r f w (35)

where r f w = r f − rw.213

3. TLSPH for modelling coarse grains214

TLSPH is employed to simulate the finite deformations of coarse grains, enhancing computa-215

tional efficiency by bypassing the need to update particle configurations.216
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3.1. Governing equations and constitutive model217

The kinematics can be characterized by introducing a deformation map, denoted as φ, which218

describes the mapping of a material point r0 from the initial reference configuration Ω0 ∈ Rd to219

the corresponding point r = φ(r0, t) in the deformed configuration Ω = φ(Ω0). In this study, the220

superscript (•)0 represents the quantities in the initial reference configuration. The deformation221

tensor F can be defined as the gradient of the current position with respect to the initial reference222

configuration, expressed as223

F =
∂r
∂r0 = ∇

0u + I (36)

where u = r − r0 is the displacement, and ∇0 is the spatial gradient operator with respect to the224

initial reference configuration. In the total Lagrangian formulation, the conservation equations for225

mass and momentum can be formulated as226

ρ = J−1ρ0 (37)
227

dv
dt
=

1
ρ0∇

0 · PT + g +
1
m

f f→c (38)

where J = det(F) is the determinant of the deformation tensor. ρ0 and ρ are the initial and current228

densities, respectively. P = FS is the first Piola-Kirchhoff stress tensor, with S denoting the second229

Piola-Kirchhoff stress tensor. f f→c represents the force exerted by fine grains on coarse grains.230

In this study, the coarse grains are modelled with Neo-Hookean materials, which can be defined231

in general form by introducing the strain-energy density function [55]232

W = µtr(E) − µ ln J +
λ

2
(ln J)2 (39)

The second Piola-Kirchhoff stress tensor for the Neo-Hookean model is defined as [55]233

S =
∂W
∂E
= µ(I − C−1) + λ(ln J)C−1 (40)

where λ and µ are the Lamé parameters, with K = λ+2µ/3 and G = µ. E is the Green-Lagrangian234

strain tensor and is defined as235

E =
1
2

(
FTF − I

)
=

1
2

(C − I) (41)

where C is the right Cauchy deformation tensor.236

In this study, the inelastic deformation and breakage of coarse grains are not considered. This237

simplification is acceptable since the deformation of soil-composing minerals (silicates) is negligi-238

ble due to their high hardness; however, under large forces or when coarse grains collide with each239

other at high speeds (such as in high-speed long-runout landslides), fragmentation is expected to240

occur. In such cases, a fracture model [56] would be necessary.241
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3.2. SPH discretization242

The mass and momentum equation for total Lagrangian formulation can be discretized as [57,243

22]244

ρi = ρ
0
i

1
det(Fi)

(42)
245

dvi

dt
=

1
ρ0

i

∑
j

(
PiB0

i
T
+ P jB0

j
T)
∇0

i Wi jV0
j +

1
mi

f f→c
i (43)

Here, ∇0
i Wi j =

∂W(|r0
i j |,h)

∂|r0
i j |

e0
i j denotes the gradient of the kernel function calculated at the initial refer-246

ence configuration. For coarse grains, the smoothing length is set to h = 1.15dp, and the cut-off247

radius is 2.3dp. f f→c
i will be calculated in Section 4.1. B0 is the correction matrix, which is applied248

to satisfy the first-order consistency [58, 59, 60], and is defined as249

B0
i =

∑
j

(
r0

j − r0
i

)
⊗ ∇0

i Wi jV0
j


−1

(44)

The correction matrix is obtained based on the reference configuration, so it only needs to be250

calculated once. The deformation tensor F is updated according to its rate of change, which can251

be discretized as [57]252

dFi

dt
=

∑
j

(
v j − vi

)
⊗ ∇0

i Wi jV0
j B0

i (45)

Refer to reference [61], we apply an artificial stress damping based on the Kelvin-Voigt type253

damper, to enhance the numerical stability of the original TLSPH method. Firstly, the second254

Piola-Kirchhoff stress S is reformulated as255

S = SS + SD (46)

where SS can be calculated based on the constitutive relation Eq. (40), and the damper SD is given256

by [61]257

SD =
Π

2

(dF
dt

)T

F + FT

(
dF
dt

) (47)

Π = ρc0h/2 is the artificial viscosity [61]. When two coarse grains collide with each other, the258

contact force between them are calculated following literatures [62, 63].259

When using TLSPH to simulate solids, the issue of hourglass modes [64] can affect compu-260

tational stability. However, related research [64, 65] indicates that hourglass modes only become261

pronounced when the material undergoes significant deformation. In this study, the elastic modu-262

lus of the coarse grains is relatively high, resulting in minimal deformation; therefore, hourglass263

modes are not observed. Nevertheless, in cases with larger deformations, it is necessary to apply264

hourglass control methods [64, 65] to enhance computational stability and accuracy.265
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4. ULSPH-TLSPH coupling approach266

4.1. Coupling force formulation267

In this section, we present a general coupled approach for TLSPH and ULSPH to compute the268

coupling force between coarse grains and fine grains. As mentioned earlier, TLSPH is employed269

to simulate coarse grains, while ULSPH is used to simulate fine grains. We use superscripts c and270

f to represent the physical quantities on coarse grains and fine grains, respectively.271

When considering the forces exerted by coarse grains on fine grains, i.e., fc→ f , the coarse272

grains are treated as a solid boundary condition as described in Section 2.4. The force fc→ f can be273

expressed by274

fc→ f
i =

m f
i

ρ
f
i

∑
j

[(
σ f

i + σ
c
j

)
· e f c

i j + P∗, f c
dissn

c
j

] ∂W f c
i j

∂r f c
i j

V f
j (48)

where nc
j represents the normal directon of particle j on coarse grains. P∗diss is the dissipation term275

in the Riemann solution P∗ (Eq. (20)). P∗diss is given by276

P∗diss =
βρLcLρRcR (UL − UR)

ρLcL + ρRcR
(49)

Here, the superscript f and c in P∗, f c
diss represents the left and right states are obtained from fine and277

coarse grains, respectively. When a coarse particle j is in the support domain of a fine particle i,278

then we take σc
j = σ

f
i , as indicated in Section 2.4.279

Similarly, the force f f→c on coarse particles is given by280

f f→c
i =

mc
i

ρc
i

∑
j

[(
σc

i + σ
f
j

)
· ec f

i j + P∗,c f
dissn

c
i

] ∂Wc f
i j

∂rc f
i j

Vc
j (50)

where the left and right states in P∗,c f
diss are from coarse and fine grains. If a fine particle j falls281

within the support domain of a coarse particle i, we set σc
i = σ

f
j [18].282

4.2. Time integration283

The multiple time-stepping scheme [39] is applied here for the coupled time integration of fine284

and coarse grains. The time step for fine grains is given by [26, 39]285

△t f = CFL f h f

c f
0 + |v f |max

(51)

where |v f |max is the maximum particle velocity, and the Courant-Friedrichs-Lewy (CFL) number286

for fine particles is set to CFL f = 0.4. The time step for coarse grains is given by [39]287

△tc = CFLcmin

 hc

cc
0 + |vc|max

,

√
hc

| dvc

dt |max

 (52)

where | dvc

dt |max represents the maximum particle acceleration, and CFLc = 0.4.288
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Usually, the smaller value between △t f and △tc is selected as the time step [66, 31] for both289

coarse and fine grains.290

△t = min
(
△t f ,△tc

)
(53)

However, since the Young’s modulus of fine grains, such as soils, is much smaller than that of291

coarse grains, such as boulders, according to Eq. 22, the sound speed in fine grains is typically292

much lower than that in coarse grains. As a result, the time step for fine grains is larger than that293

for coarse grains [39]. Hence, forcing △t = min
(
△t f ,△tc

)
would result in a significant waste of294

unnecessary time in the computation of fine grains.295

In this study, the multiple time-stepping method is employed, using separate time steps for fine296

and coarse grains in their respective calculations. Additionally, within one time step of the fine297

grains, κ time integrations for the coarse grains are performed, where κ = ⌈△t f

△tc ⌉, and ⌈•⌉ represents298

the ceiling function which rounds a given number up to the nearest integer. It should be noted299

that the total duration of κ integrations for coarse grains should be equal to one time step for fine300

grains.301

The position-based Verlet scheme [39] is applied here for the time integration of fine and coarse302

grains, which can achieve strict momentum conservation in this coupling problems. Fig. 3 depicts303

the multiple time-stepping method for fine and coarse grains by assuming that κ = 5. By updating304

the position twice and the velocity once using the acceleration at the half step, the position-based305

scheme attains the second-order accuracy [39].

One step for fine grains

Five steps for coarse grains

௡ା
ଵ
ଶ

௡ ௡ାଵ

ଵ
ଶ

ଷ
ଶ

ହ
ଶ

଻
ଶ

ଽ
ଶ

ଵ ଶ ଷ ସ ହ

Fig. 3. Illustration of the multiple time-stepping scheme (κ = 5)
306

For fine grains, the beginning of the time step is denoted by superscript n, while the midpoint307

and new time step are denoted by superscripts n + 1
2 and n + 1, respectively. In the Verlet scheme,308

the particle position and density are initially updated to the midpoint using the following equations309 r f
n+ 1

2
= r f

n +
1
2△t f v f

n

ρ
f
n+ 1

2
= ρ

f
n +

1
2△t f

(
dρ
dt

) f

n

(54)

Subsequently, the particle velocity is updated to the new time step once the particle acceleration310

has been determined.311

v f
n+1 = v f

n + △t f dv f

dt
(55)
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Then, the particle position and density are updated to the new time step by312 r f
n+1 = r f

n+ 1
2
+ 1

2△t f v f
n+1

ρ
f
n+1 = ρ

f
n+ 1

2
+ 1

2△t f
(

dρ
dt

) f

n+1

(56)

For coarse grains, the index χ = 0, 1, ..., κ − 1 is utilized to represent the integration steps. Em-313

ploying the position-based Verlet scheme, the deformation tensor, density, and particle position314

are updated to the midpoint using the following expressions.315 
Fc
χ+ 1

2
= Fc

χ +
1
2△tc

(
dF
dt

)c

χ

ρc
χ+ 1

2
= ρc

0
1
J

rc
χ+ 1

2
= rc

χ +
1
2△tcvc

χ

(57)

The velocity is updated by316

vc
χ+1 = vc

χ + △tc dvc

dt
(58)

Finally, the deformation tensor and the position of coarse grains are updated to the new time step.317 
Fc
χ+1 = Fc

χ+ 1
2
+ 1

2△tc
(

dF
dt

)c

χ+1

ρc
χ+1 = ρ

c
0

1
J

rc
χ+1 = rc

χ+ 1
2
+ 1

2△tcvc
χ+1

(59)

Prior to starting the next step for fine grains, the time integration of coarse grains, as described by318

Eqs. (57) to (59), is iterated κ times. Therefore, when calculating the coupling forces between fine319

and coarse grains, the velocity of coarse grains may display different values, updated after each320

coarse-grain time step △tc. According to [39], the time-averaged velocity vc of coarse grains over321

each time step △t f is used, which is defined as322

vc(n + 1) =
1
△t f

[
rc
χ=κ−1(n + 1) − rc

χ=0(n + 1)
]

(60)

It is important to note that the average velocity vc is only utilized in the computation of the coupling323

forces between coarse and fine grains. The updates for the coarse grains themselves are based on324

the velocity vc at each time step △tc.325

5. Model validation326

In this section, we utilize several benchmark cases to validate the effectiveness of our proposed327

model. Specifically, we perform a comparative analysis, comparing the simulation results with328

experimental data and SPH results from previous research. This analysis serves to demonstrate329

the stability and accuracy of our current approach. A fifth-order Wendland kernel [67], as shown330
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in Eq. (61), is adopted for both fine and coarse grains, with h = 1.3dp for fine grains [34, 20] and331

h = 1.15dp for coarse grains [22].332

W(q, h) = αd

(1 − 0.5q)4(2q + 1) 0 ≤ q ≤ 2
0 q > 2

(61)

Here, q = |ri j|/h represents the ratio of the distance between two particles to the smoothing333

length h. αd is the normalization constant, and is equal to 3/(4h), 7/(4πh2), and 21/(16πh3) in334

one-, two- and three-dimensional space respectively.335

5.1. Granular column collapse336

First, we verify the motion characteristics of fine grains by employing ULSPH simulation.337

Granular column collapse is a gravity-driven problem that has been widely studied experimentally338

[18, 68] and numerically [9, 69, 23, 70]. The experiments conducted by Lube et al. [68] are339

broadly used to verify SPH simulations [71, 72, 69, 20]. According to previous experimental [68]340

and numerical [69] studies, the simulation procedure is shown in Fig. 4. A cylindrical granular341

column, characterized by its height (h0) and radius (r0), is released under the influence of self-342

gravity. The resulting final deposit is measured to determine the run-out distance (r∞) reached by343

the column. Referring to [68, 69], the physical parameters are set as follows: density ρ = 2600344

kg/m3, Young’s module E = 5.98 MPa, Poisson’s ratio ν = 0.3, friction angle ϕ = 30°, cohesion345

c = 0 kPa and dilation angle ψ = 0°.

2 ଴

Wall boundary

Granular column

2 ஶ

(a) Model setup (b) Final deposit

x

y
z

x

y
z

଴

Fig. 4. Simulation of 3D column collapse: (a) initial model setup; (b) final deposit. The diameter and length
of the initial granular column are r0 and h0 respectively, and the final run-out distance is r∞.

346

Fig. 5 displays particle configurations and velocity distributions of a granular column (r0 =347

0.1 m and h0 = 0.2 m) at different time instants during the simulation process. To facilitate the348

visualization of the internal structure, the model has been quartered, retaining only three-quarters349

of it. It can be observed that the granular column rapidly collapses under the influence of gravity350

and gradually reaches a stable state. Due to the symmetry of the model, the velocity distribution351

is also symmetric and uniform. It is worth noting that unlike in Hu et al.’s research [9] where352
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additional numerical techniques, such as penetration-based particle shifting technique (PPST), are353

employed to achieve a uniform particle distribution, our model is capable of achieving a highly354

uniform particle distribution without the need for such corrective methods. This is because we355

used a low-dissipation Riemann solver [20, 53], which, compared to the artificial viscosity term356

that can cause excessive numerical dissipation and may affect the physical flow characteristics357

[51, 53], ensures no or reduced numerical dissipation for expansion and compression waves [53],358

respectively. The simulation results of column collapse from Nguyen et al. [51] also show that359

when only the artificial viscosity is applied without other regularization, irregular particle distri-360

butions, such as slight depressions and bulges of particles, appear at the base of the slope. Fig. 6361

illustrates the distribution of vertical stress and accumulated deviatoric plastic strain in the final362

deposit. It can be observed that the stress diffuses from the center to the sides of the model, and363

the stress distribution is smooth. Fig. 6b shows that there is an undisturbed region at the center of364

the model, which is consistent with previous research [20, 73].

t = 0.1 s t = 0.2 s

t = 0.3 s t = 0.4 s

0

0.2

0.4

0.6

0.8

Ve
lo

ci
ty

 m
ag

ni
tu

de
 [m

/s
]

Fig. 5. Snapshots of a granular column at different times during the simulation process. Here, r0 = 0.1 m
and h0 = 0.2 m. The initial particle spacing is set to dp = r0/20 = 0.005 m.

365

Moreover, the convergence and accuracy of the present numerical model is analyzed. We dis-366

cretize the model using different resolutions (dp = r0/10, dp = r0/15, and dp = r0/20) and367

investigate the relationship between the run-out distance of the granular column and the initial368

aspect ratio a (a = h0/r0). A comparison is made with Lube’s empirical equation [68], i.e.,369

r∞ = r0(1 + 1.24a) for a < 1.7. Firstly, it can be observed that with increasing model resolution,370

the computed run-out distance r∞ gradually converge to the reference value. Additionally, the nu-371

merical simulation results with dp = r0/20 align with Lube’s empirical equation [68], highlighting372

the accuracy of the model.373
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Fig. 6. Illustration of (a) vertical stress and (b) accumulated deviatoric plastic strain for the final deposit.
r0 = 0.1 m and h0 = 0.2 m in this case and the initial particle spacing is dp = r0/20 = 0.005 m.

5.2. Low-speed impact craters374

In this section, we validate the coupling behavior between ULSPH and TLSPH through the375

simulation of low-speed impact craters. More specifically, we simulate the formation of craters by376

dropping balls from a certain height into dry, non-cohesive granular media [74, 75]. The TLSPH377

method is utilized to simulate the ball as coarse grains, while the granular media is simulated using378

the ULSPH method to represent fine grains. An initial uniform particle distribution of the ball is379

achieved by a level-set based pre-processing technique [40].380

Uehara et al. [74] and Ambroso et al. [75] have conducted detailed experimental studies on this381

problem and have summarized the relationship between penetration depth, friction coefficient of382

the granular media, ball radius, and drop height. Experimental research [74, 75] has also been used383

by previous scholars to validate their numerical models [9]. Therefore, we will also compare our384

numerical results with their experimental findings to demonstrate the effectiveness of the proposed385

model.386

The model setup is shown in Fig. 8, a ball with a radius of Rball is dropped from a height Hball387

above the surface of the granular media, under the influence of gravity. The final penetration depth388

is Dball, and the total distance traveled by the ball is Hdrop. Based on the physical tests [74, 75],389
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Fig. 7. The influence of aspect ratio a (a = h0/r0) on the run-out distance: a comparative analysis between
our numerical study and Lube’s empirical equation [68]. Three different resolutions, i.e., dp = r0/10,
dp = r0/15, and dp = r0/20, are considered to verify the convergence and accuracy of the present model.

Granular media

Initial position

Final position

Initial granular surface

௕௔௟௟

௕௔௟௟

௕௔௟௟

ௗ௥௢௣

Fig. 8. Model setup for the low-speed impact craters.

the penetration depth (Dball) of the ball follows the empirically derived expression390

Dball =
0.14
µ

(
ρball

ρgranular

) 1
2

(2Rball)
2
3
(
Hdop

) 1
3 (62)

where µ = tan ϕ is the grain-grain friction coefficient of the granular media [74], and ϕ is the391

friction angle. ρball and ρgranular are the densities of the ball and granular media, respectively.392
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Referring to [9, 74], the densities of the granular materials and the ball are specified as 1510393

kg/m3 and 2200 kg/m3, respectively. The Young’s moduli for the granular materials and the ball394

are 2 MPa and 200 MPa, respectively. The Poisson’s ratios for the granular materials and the ball395

are set to 0.3 and 0.25, respectively. The initial particle spacing is set to dp = 0.002 m, and The396

coefficient η in the dissipation limiter is set to 50d in this section. According to [9], three different397

ball heights (0.05 m, 0.1 m and 0.2 m) and two different grain-grain friction coefficients (0.3 and398

0.5) are initialized to verify Eq. (62). Unlike past studies [9], where the radius of the ball is fixed399

at 0.0125 m, we introduced an additional case with a radius of 0.02 m for the purpose of testing.400

As a result, a total of 12 simulations were conducted, comprising two variations of ball radii, two401

variations of friction coefficients, and three variations of drop heights.402

Fig. 9 shows the snapshots of one simulation with Rball = 0.02 m, Hball = 0.2 m and µ = 0.3.403

The top right corner of Fig. 9 shows the ball discretized by SPH particles. The color of the404

granular material represents the velocity magnitude. Since the ball undergoes free fall motion405

before coming into contact with the granular material, our focus lies on the interaction process406

between the ball and granular materials. Hence, we consider t = 0 as the instant when the ball just407

touches the granular material. As the sphere gradually descends, the surrounding particle material408

is displaced, forming craters. This aligns with our expected results [9], indicating the stability of409

the algorithm proposed in this paper. Next, we validate the accuracy of the algorithm. Fig. 10410

illustrates the variation of penetration depth with ball radius, friction coefficient, and drop height,411

compared to the empirical equation derived from physical experiments [74, 75]. It can be observed412

that the simulation results closely align with the experimental findings [74, 75]. The evolution of413

penetration depth over time is also recorded, as shown in Fig. 11.414

5.3. Granular flow impacting blocks415

Liu et al. [76] conducted physical experiments to study the impact of granular flow on three416

wooden blocks and their interactions, which were used to validate numerical models [76, 77].417

Building on this, this section will simulate the same scenario and compare the results with both418

experimental data [76] and previous numerical findings [76, 77]. The setup of the model is shown419

in Fig. 12. The dimensions of the three blocks are all 0.02 m in length and 0.018 m in height.420

Consistent with the experimental setup, the block No. 3 is fixed. Therefore, the blocks No. 1 and421

No. 2 will move under the impact of the granular flow. The material parameters are also taken in422

accordance with the experimental setup [76]. The initial particle spacing is set to 1.25 mm, and a423

total of 12800 SPH particles are generated for the granular materials.424

Fig. 13 shows the process of granular material gradually collapsing under gravity and impact-425

ing the wooden blocks. Snapshots from the experiment [76] are also displayed for comparison. It426

can be seen that at t = 0.3 s, Blocks No. 1 and No. 2 experience significant displacement due to427

the impact. Block No. 2 falls to the ground around t = 0.4 s and remains almost stationary. We428

measured the angle β (as shown in Fig. 13) between the side of Block No. 2 and the x-axis during429

this process. The variation of β over time is shown in Fig. 14, which also includes the experimen-430

tal results [76] and previous numerical results [76, 77]. It can be seen that the initial value of β is431

90 degrees. At approximately 0.25 s, when the granular material reaches the blocks, the angle β432

begins to decrease, reaching about 0 degrees at around 0.45 s. The SPH results presented in this433

study are in agreement with previous experimental [76] and MPM results [76, 77], indicating that434
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Fig. 9. Snapshots of low-speed impact craters at different times during the simulation. The granular material
is colored by velocity magnitude. Here, the ball radius is 0.02 m and the drop height is 0.2 m

the present method can accurately capture the motion behavior of the blocks under the impact of435

granular flows.436

6. Application437

We demonstrate the potential engineering applications of the proposed method through two438

more realistic case studies: soil-rock mixture slopes considering the realistic shape of rock blocks439

and bouldery debris flows on natural terrain.440

6.1. Soil-rock mixture slope441

Soil-rock mixtures (SRM), a heterogeneous geomaterial comprising high-strength rock and442

low-strength soil, is prevalent in natural steep slopes and at the toe of scarps and rock faces in443

mountainous regions [2, 78]. This unique composition has made SRM a focal point in geotechni-444

cal engineering, especially in the analysis of slope instability [15, 79]. In this section, the proposed445

method is used to simulate the failure of SRM slopes. The soil, represented as fine grains, is sim-446

ulated using ULSPH, while the rock blocks, represented as coarse grains, are simulated using447

TLSPH. Following references [15, 80], the model setup is shown in Fig. 15. The slope becomes448
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Fig. 10. Penetration depth with different friction coefficients, ball radius, and drop heights. The empirical
equation obtained from experimental studies [74, 75] is also presented for comparison.
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Fig. 11. The variation of penetration depth over time for four different cases with varying friction coeffi-
cients and drop heights. The radius of the ball is 0.02 m.

unstable under gravity, moves, and gradually comes to a rest. The run-out distance of the final449

deposit is measured to conduct a quantitative study. The shapes of the rock particles used in this450

section are based on real rock blocks photographed and processed through digital image process-451

ing [70]. Fig. 16 shows samples of three rock profiles and the discretized rock blocks by using452

the level-set based pre-processing method [40]. As shown in Table 1, the selection of material453

parameters for soil and rock blocks follows the literature [15, 80]. The coefficient η in the dissi-454
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Fig. 12. Model setup of granular collapse with impact on blocks.
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Fig. 13. Snapshots of granular collapse with impact on blocks at different times during the simulation. The
first column showcase experimental outcomes [76], while the second column depict the present numerical
results at the respective time points. The granular material is colorized by the x-component of velocity.
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Fig. 14. The temporal evolution of the angle between the left boundary of block No. 2 and the x-axis. The
experiment result [76] and MPM simulation results [76, 77] are also shown for comparison.

pation limiter is set to 50d and the initial particle spacing is set to 0.5 m. The artificial stress term455

mentioned in Section 2.3 is applied to in this section to eliminate tensile instability.

45°

57 m

43
 m

143 m

14
 m

Run-out distance

Initial slope profile

Final deposit

Wall boundary
Wall boundary

Fig. 15. Model setup of SRM slopes.

456

First, we investigate the influence of rock block content (RBC) on the run-out distance. By457

randomly placing rock blocks [2], we constructed slopes with three different rock block contents458

(10%, 20%, 30%) and compared their results with those of a homogeneous soil slope (RBC = 0%).459

The RBC is defined as the ratio of the rock area to the total area of rock and soil. To standardize the460

conditions, the size of the rock blocks is set at 4 m, as recommended within the reasonable range461

in references [15, 80]. The size D of the rock block is defined as D = 2
√

A/π, with A being the462

area of the rock. Fig. 17 illustrates the dynamic behavior of slopes over time, with varying content463

of rock blocks. All models have reached a stable state by t = 10 s. For homogeneous soil slopes,464

the sliding band extends from the toe to the top, forming a rotational failure mode. In SRM slopes,465
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(a)

(b)

Fig. 16. Illustration of (a) rock block samples and (b) discretization of rock blocks.

Table 1: Material parameters for soils and rock blocks.

Parameter Soil Rock
Density (kg/m3) 2000 2400

Young’s modulus (GPa) 3 18
Poisson’s ratio 0.35 0.2
Cohesion (kPa) 8.4 -

Friction angle (°) 15 -
Dilation angle (°) 0 -

the development of the plastic zone is usually obstructed by rocks, preventing the formation of a466

continuous plastic zone from top to bottom as in homogeneous slopes. Instead, it displays a typical467

pattern of winding around rocks and bifurcating. Hence, SRM slopes exhibit a failure mode with468

multiple sliding bands due to the combined effect of various plastic zone expansion paths [2].469

Among the potential sliding bands that appear in the initial stage, only a few ultimately develop470

into actual sliding bands.471

In SRM slopes, the distribution of rocks is highly random. To reduce this random error, we472

conducted five parallel tests for each RBC, with different distributions of rocks in each test. Fig. 18473

shows the final deposit states for the three rock block contents and the five parallel tests. The run-474

out distance for each model is measured and plotted with error bars in Fig. 19. The results obtained475

by MPM [80] and MPM-DEM [15] with different µc f are also shown for comparison, with µc f476

being the friction coefficient between coarse and fine grains. The run-out distance decreases as the477

rock content increases, which is consistent with previous research findings [15, 80]. Quantitatively,478

the run-out distances obtained from the current SPH model are close to those from MPM. The479

MPM-DEM results with µc f = 0, meaning that the friction between coarse and fine grains is not480

considered, also fall within the error range of our SPH results. However, the MPM-DEM results481

show that when µc f = 1, the run-out distance of the slope can be significantly reduced. Currently,482

the SPH model does not explicitly account for the friction between coarse and fine grains. In future483

work, a friction model for interactions between different material types will be implemented within484

the existing SPH framework.485

Fig. 20 demonstrates the effectiveness of artificial stress in eliminating tensile instability. As486

shown in Fig. 20a, without the application of artificial stress, classic manifestations of tensile487

instability, such as particle clustering and non-physical fractures, appear on the slope surface.488
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Fig. 17. Snapshots of slope failure under gravity with different rock block contents (0%, 10%, 20%, 30%).

However, after applying artificial stress, as depicted in Fig. 20b, tensile instability is completely489

eliminated, resulting in a very uniform particle distribution. It is important to note that, although490

in the cases presented in this section, the presence of tensile instability does not significantly affect491

the final distribution of the plastic zone and overall deformation, it can lead to severe consequences492

in other elastic [24] and plastic [34] scenarios reported in the literature.493

In the above simulations, a single rock size was used as a controlling variable; however, this494

single size could not generate a high rock content since there are no smaller rock blocks to fill the495

voids between larger rock blocks. Here, an SRM slope is generated with rock blocks of different496

sizes. The constructed slope model, with a RBC of 40%, is shown in Fig. 21a, along with the parti-497

cle size distribution of coarse grains displayed in the upper right corner. Fig. 21b demonstrates the498

situation at 10 seconds in the simulation, where three different patterns of plastic zone expansion499

can be observed: (1) “bypass”: the plastic zone circumvents one side of the rock block; (2) “in-500

clusion”: the plastic zone closes after circumventing both sides of the rock block; (3) “diversion”:501

the plastic zone remains open after circumventing both sides of the rock block. This is consistent502

with reports in the literature [2, 78, 81]. Combining Fig. 21 and Fig. 17, it can be observed that an503

increase in the RBC significantly alters the shape of the failure surface. Specifically, as the RBC504

increases, the development of the plastic zone transitions from a few thick shear bands to multiple505

thin and narrow shear bands, resulting in a more fragmented plastic zone. This effect is especially506

pronounced when the particle size distribution is heterogeneous and there are more smaller-sized507

rock blocks present, as shown in Fig. 21, which is consistent with the results shown in the refer-508

ence [2] using finite difference method. This is because the shear bands can only extend through509

the soil located between the rock blocks. As the number of rock blocks increases, the amount of510

soil decreases, forcing the shear bands to narrow, and making the plastic zone increasingly frag-511
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Fig. 18. The final deposits for three sets of RBC (10%, 20%, 30%) and five parallel tests. Each row
represents the results of one set of parallel tests.

mented, due to the obstructive and separating effects of the rock blocks on the shear bands. When512

the particle size distribution is non-uniform, a higher number of small-sized rock blocks under the513

same RBC further accentuates this effect.514

6.2. Bouldery debris flow on natural terrain515

This section will further explore the potential of the proposed method in a real debris flow on516

natural terrain. Initially, a 3D realistic slope surface is created by utilizing UAV-based photogram-517

metry techniques. For the detailed information of the slope, please refer to Huang et al.’s work518

[82]. Subsequently, the surface was integrated into SPH and discretized using a level set-based519

preprocessing method [40]. As depicted in Fig. 22, the slope surface is uneven, with a twisting520

ravine running down the center of the slope. At the top of the slope, an initial deposit consists521

of soil (fine grains) and boulders (coarse grains), with the 3D boulder model reconstructed from522

natural rock fragments using white-light scanning [83, 84]. Some boulders are exposed on the523

soil surface, especially in areas where the soil layer is relatively thin at the front end of the initial524

deposit, but more boulders are buried within the soil mass. Fig. 23 showcases the 3D models525

of various boulder samples alongside the SPH-discretized models. Under the influence of gravity,526

the initial binary granular mixtures will slide downward to simulate realistic bouldery debris flows.527

Our aim is to demonstrate that this algorithm can operate reliably under relatively complex con-528

ditions involving irregular geometric surfaces and real 3D coarse grain shapes, further validating529
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Fig. 19. The relationship between the run-out distance and RBC based on five parallel tests. The results are
compared with those obtained by MPM [80] and MPM-DEM [15].
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Fig. 20. Illustration of the effect of artificial stress on eliminating tensile instability: (a) without artificial
stress; (b) with artificial stress. This is the result for an SRM slope with RBC = 20% at t = 10 s.

its stability and robustness. The material properties for soils and boulders are shown in Table 2530
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Fig. 21. The simulation of an SRM slope with different rock sizes and RBC = 40% at (a) t = 0 s and (b)
t = 10 s. Three different expansion modes of plastic zone can be observed, i.e., “bypass”, “inclusion”, and
“diversion”.

[20, 81], and dp is set to 0.25 m.531

Fig. 24 shows snapshots of the bouldery debris flow at various stages of the simulation. The532

images illustrate how soils and boulders move downslope along the valley under the influence of533

gravity, eventually reaching and accumulating at the base of the slope. During this process, the534

boulders gradually migrate to the front of the soil mass (Fig. 24c), and in the final deposit (Fig.535

24d), many boulders are positioned at the front, exhibiting particle size segregation [85, 86]. This536

phenomenon can be explained by gravity-driven segregation [87], which is a combined mechanism537

of gravity-driven kinetic sieving [88] and squeeze expulsion [89]. When materials are transported538

downslope, the flow behaves like a fluctuating random sieve, statistically favoring the percolation539

of smaller grains over larger ones under the influence of gravity, as the smaller grains are more540

likely to occupy the openings that form beneath them [87, 88, 89]. After the grains have vertically541

segregated into inversely graded layers, with larger grains positioned above finer ones, depth-542

dependent velocity shear causes preferential transport of the larger grains toward the front [87].543

Next, we introduced slit dams along the path of the bouldery debris flow to impede its move-544

ment and further test the stability and reliability of the proposed model. As shown in Fig. 25a,545
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Fig. 22. Model setup of the bouldery debris flow.

(a)

(b)

Fig. 23. Illustration of (a) 3D boulder samples and (b) discretization of boulders.

based on the study by Ng et al. [90], the dam heights are set to 0.75-1.5h f , where h f is the up-546

stream approach flow depth. In this scenario, despite the uneven surface, the tops of all dams are547

aligned, resulting in dam heights ranging from 6 to 10 meters. The distance between the centers of548

two adjacent dams is set at 2 meters, with each dam measuring 1 meter in both length and width.549

This dam configuration clearly plays a significant role in reducing the impact of the debris flow on550

downstream areas. As illustrated in Fig. 25b, the slit dams effectively block most of the boulders,551

although a small number of boulders are diverted to the sides. The movement of the fine fraction552

is also hindered, with some soils either seeping through the gaps between the dams or overflowing553
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Table 2: Material parameters for soils and boulders.

Parameter Soil Boulder
Density (kg/m3) 2000 2400

Young’s modulus (MPa) 5.98 1000
Poisson’s ratio 0.3 0.2
Cohesion (kPa) 0 -

Friction angle (°) 30 -
Dilation angle (°) 0 -

from the top. Ultimately, most of the deposits (soils and boulders) remain on the slope and have554

not reached the base by t = 40 s, with their velocity significantly reduced.555
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Fig. 24. Bouldery debris flows on natural terrain at different times: (a) t = 4 s; (b) t = 8 s; (c) t = 16 s; (d) t
= 40 s.

Fig. 26 quantitatively captures the time evolution of the kinetic energy of the fine and coarse556

fraction (boulders), both with and without dams. Their kinetic energy rapidly increases to a peak557

at the start of the simulation, then gradually decreases and stabilizes over time. Notably, before558

the debris flow reaches the slit dams at around t = 4 s, the changes in kinetic energy are identical559

regardless of the presence of dams. However, as anticipated, once the debris flow encounters560

the dams, the kinetic energy of both fractions dissipates more quickly compared to the scenario561

without dams. It is worth noting that around t = 11 s, a second increase in kinetic energy is562

observed for the boulders in the no-dam group. This occurs because the boulders gradually move563
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Fig. 25. Bouldery debris flows on natural terrain with slit dams at different times: (a) t = 4 s; (b) t = 8 s; (c)
t = 16 s; (d) t = 40 s.

to the front of the soil mass and navigate through terrain depressions into open areas. The absence564

of additional obstacles leads to a sudden acceleration as gravitational potential energy is converted565

into kinetic energy. In contrast, the dam group does not exhibit this phenomenon, as most of the566

boulders are blocked by the dams.567

7. Computational efficiency568

The present SPH framework is implemented based on the open-source library named SPHinXsys569

[91], a C++ API for modelling fluids, solids, and fluid-solid interactions with SPH method. In this570

section, we will delve into the computational efficiency analysis of the proposed ULSPH-TLSPH571

coupling framework for modelling binary garnular mixtures. All simulations are conducted on a572

CentOS-8 system with 32 cores. The CPU details are as follows: 64 Intel(R) Xeon(R) Gold 6226R573

CPUs @ 2.90 GHz.574

7.1. Multiple time-stepping scheme versus single time-stepping scheme575

The computational efficiency of the multiple time-steeping scheme (Section 4.2) utilized in576

this study for the coupling problem between coarse and fine grains is analyzed, juxtaposed against577

the efficiency of the conventional single time-stepping scheme [31, 66].578
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Fig. 26. Time evolution of the kinetic energy of fine and coarse grains with and without slit dams.

Firstly, the calculation efficiency of low-speed impact craters (Section 5.2) is tested with model579

configurations as shown in Fig. 8. The ball radius is set to 0.02 m and drop height is 0.2 m. Other580

parameters follow the description in Section 5.2. The simulation ends at physical time TP = 0.1 s.581

Initial particle spacing dp is set at 4 mm, 2 mm, and 1.5 mm respectively for efficiency testing to582

reduce random error. The wall clock time spent using the multiple time-stepping scheme (T M
W ) and583

the single time-stepping method (T S
W) are shown in Table 3. In each test, the time steps △t f and △tc

584

for fine and coarse grains are computed, along with κ = ⌈△t f

△tc ⌉, all detailed in Table 3, facilitating the585

subsequent analysis of the superior computational efficiency of the multiple time-stepping scheme.586

The proportion of computational time saved (PT ) by using the multiple time-stepping scheme is587

defined as588

PT =

(
1 −

T M
W

T S
W

)
× 100% (63)

The improvement in computational efficiency (ICE) is calculated by589

ICE =

(
T S

W

T M
W

− 1
)
× 100% (64)

As shown in Table 3, compared to the previous method that used the smaller time step between590

fine and coarse grains, the multiple time-stepping scheme can improve computational efficiency591

by approximately 600% for this case. This time saving mainly comes from reducing unnecessary592

iterations for fine grains. Specifically, for the example presented here, κ = 9, meaning the coarse593

grains are updated 9 times for every single update of the fine grains; whereas in the previous594

method, each coarse grain update required a corresponding fine grain update.595

Then, the SRM slopes are tested with model configurations as shown in Fig. 17. The simu-596

lation ends at physical time TP = 10 s. Initial particle spacing dp is set to 0.7 m, 0.5 m, and 0.3597

m, respectively. The wall clock time T M
W and T S

W for models with different contents of rock block598

are shown in Table 4. In this example, the multiple time-stepping approach can improve computa-599
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Table 3: Computational efficiency test by simulating low-speed impact craters. Here, Np represents the total number
of real particles. T S

W and T M
W are wall clock time spent by using the single time-stepping method and the multiple

time-stepping scheme, respectively. Physical time TP = 0.1 s for each simulation.

dp (mm) Np (k) △t f (s) △tc (s) κ T S
W (min) T M

W (min) PT ICE

4 51.2 ≈ 6.1 × 10−5 ≈ 7.4 × 10−6 9 9.7 1.5 84.5% 547.7%
2 426.0 ≈ 3.1 × 10−5 ≈ 3.7 × 10−6 9 138.0 19.9 85.6% 593.5%

1.5 1009.9 ≈ 2.3 × 10−5 ≈ 2.8 × 10−6 9 439.2 57.6 86.9% 662.5%

Table 4: Computational efficiency test by simulating SRM slopes. Here, Np represents the total number of real
particles. T S

W and T M
W are wall clock time spent by using the single time-stepping method and the multiple time-

stepping scheme, respectively. Physical time TP = 10 s for each simulation.

RBC dp (m) Np (k) △t f (s) △tc (s) κ T S
W (min) T M

W (min) PT ICE

10%
0.7 8.2 ≈ 2.8 × 10−4 ≈ 1.6 × 10−4 2 4.3 2.8 34.9% 53.6%
0.5 16.3 ≈ 2.0 × 10−4 ≈ 1.1 × 10−4 2 9.3 6.0 35.5% 55.0%
0.3 45.3 ≈ 1.2 × 10−4 ≈ 6.7 × 10−5 2 32.8 20.0 39.0% 64.0%

20%
0.7 8.2 ≈ 2.8 × 10−4 ≈ 1.6 × 10−4 2 4.2 3.1 26.2% 35.5%
0.5 16.3 ≈ 2.0 × 10−4 ≈ 1.1 × 10−4 2 8.5 6.0 29.4% 41.4%
0.3 45.3 ≈ 1.2 × 10−4 ≈ 6.7 × 10−5 2 31.4 20.1 36.0% 56.2%

30%
0.7 8.2 ≈ 2.8 × 10−4 ≈ 1.6 × 10−4 2 4.6 3.3 28.3% 39.4%
0.5 16.3 ≈ 2.0 × 10−4 ≈ 1.1 × 10−4 2 9.8 6.8 30.6% 44.1%
0.3 45.3 ≈ 1.2 × 10−4 ≈ 6.7 × 10−5 2 31.2 20.5 34.3% 52.2%

tional efficiency by approximately 40%-60%. Since κ is only 2 in this case, it does not achieve as600

much improvement in efficiency as the low-speed impact craters with κ = 9.601

The correlation between κ and ICE is tested by simulating low-speed impact craters, whose602

setup is simple and thus easily for others to repeat. As shown in Fig. 27, the ICE increases with603

κ, indicating that the multiple time-stepping scheme becomes more efficient when the ratio of604

time steps between fine and coarse particles is larger. To aid readers, the wall-clock times for the605

remaining three cases are provided in Table 5, along with details on the initial particle spacing dp,606

the number of real particles Np, and the physical time TP.607

7.2. TLSPH versus ULSPH for modelling coarse grains608

This study employs the TLSPH method to simulate coarse grains as elastic materials, offer-609

ing greater computational efficiency compared to the ULSPH method. This section compares the610

computational efficiency of the TLSPH and ULSPH methods for simulating elastic solids (coarse611

grains), followed by an analysis of the efficiency advantages of the present ULSPH-TLSPH frame-612

work over a fully ULSPH approach for modeling both coarse and fine grains.613

The ULSPH and TLSPH methods are employed to simulate the collision of 2D rubber rings614

[24] and 3D hollow rubber balls [26], respectively. As is shown in Fig. 28a, two rings, with615

Table 5: Computation time for simulating granular column collapse (h0 = r0 = 0.1 m), granular flow impacting
blocks, and bouldery debris flow on natural terrain. Here, TP denotes the physical time for the simulation and T M

W
represents the wall clock time spent by using the multiple time-stepping scheme.

Case dp (m) Np (k) TP (s) T M
W (min)

Granular column collapse 0.005 25.1 0.5 2.6
Granular flow impacting blocks 0.00125 13.5 0.5 6.2

Bouldery debris flow on natural terrain 0.25 633.8 40 411.9
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Fig. 27. Correlation between κ and ICE in simulations of low-speed impact craters. Here, the initial particle
spacing dp = 2 mm and total number of real particle is 426015.

an inner radius of 0.03 m and an outer radius of 0.04 m, move toward each other. The material616

parameters are: density ρ0 = 1200 kg/m3, Young’s modulus E = 10 MPa, and Poisson’s ratio617

ν = 0.4. The initial velocity magnitude |v0| = 0.08c0, where c0 is the sound speed as defined in618

Eq. (22). The 2D rings are also extended to 3D hollow rubber balls, as shown in Fig. 28b for the619

middle cross-section, with same material parameters and initial velocity magnitude.

0.09 𝑣଴𝑣଴
0.04 0.03

0.04 0.03
𝑣଴ 𝑣଴0.09

(a)

(b)

Fig. 28. Model setup for (a) 2D colliding rubber rings and (b) 3D colliding hollow rubber balls (units: m).

620

Table 6 presents the computation times for the two cases using ULSPH and TLSPH at differ-621
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Table 6: Comparison of computational efficiency between ULSPH and TLSPH for simulating elastic solids. The
physical time for all simulations is 0.01 s.

Case dp (mm) Np (k) T UL
W (s) T T L

W (s) PT ICE

2D ring
1 4.4 4.8 2.5 48.0% 92.0%

0.5 17.6 21.5 8.2 61.9% 162.2%
0.25 70.4 145.0 48.3 66.7% 200.2%

3D ball
2 38.4 28.4 8.8 69.0% 227.7%

1.5 91.8 93.9 26.2 72.1% 258.4%
1 310.0 497.5 132.5 73.4% 275.5%

ent resolutions. It also provides the computational time savings PT achieved by TLSPH relative622

to ULSPH, along with the corresponding increase in computational efficiency ICE. It can be ob-623

served that the efficiency gain of the TLSPH method for simulating elastic solids increases with624

the number of SPH particles. In these two test cases, the efficiency improvements in 2D and 3D625

scenarios reached up to 200.2% and 275.5%, respectively.626

Returning to the simulation of binary granular mixtures: suppose the total computation time627

using the ULSPH-TLSPH coupling framework for a given case is T UL−T L
W , with tc representing the628

time spent on computing coarse grains only using TLSPH. Based on the proportion of time saved629

PT by TLSPH relative to ULSPH for simulating coarse grains, we can derive the computation time630

T UL−UL
W required if both coarse and fine grains were simulated entirely using ULSPH.631

T UL−UL
W = T UL−T L

W − tc +
tc

1 − PT
= T UL−T L

W +
PT

1 − PT
tc (65)

For example, for the SRM slope shown in Fig. 21, the total computation time T UL−T L
W = 282.7 s,632

with the coarse grain portion taking tc = 109.7 s. According to Table 6, assuming that the time633

savings PT achieved by using TLSPH to simulate coarse grains is 50% relative to ULSPH, the634

required time when both coarse and fine grains are simulated using ULSPH can be determined to635

be T UL−UL
W = 392.4 s. In other words, compared to simulating both types of grains using ULSPH,636

the adoption of the ULSPH-TLSPH framework can enhance computational efficiency by 38.8%637

for this case.638

8. Conclusions and outlook639

We develop a two-way strong coupling SPH framework to simulate binary granular mixtures.640

Fine grains are modeled using ULSPH to capture complex granular flow and large deformations,641

while coarse grains are simulated using TLSPH to enhance computational efficiency. Simula-642

tions of three fundamental scenarios, i.e., granular column collapse, low-speed impact craters, and643

granular flow impacting blocks, demonstrate consistency with experimental and past numerical644

findings, affirming the stability and accuracy of the proposed approach. Subsequently, simula-645

tions are conducted on two realistic cases, namely the soil-rock mixture slope and bouldery debris646

flow on natural terrain. The analysis of the results is further corroborated by integrating litera-647

ture analysis, indicating the potential for the proposed method to be applied in other engineering648

applications. Finally, an analysis of the computational efficiency of the proposed algorithm is649

performed, demonstrating that the integration of the multiple time-stepping scheme within the650
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ULSPH-TLSPH coupling framework significantly enhances computational performance, improv-651

ing efficiency by up to 600%.652

The key attributes of the present approach are: (1) its ability to deliver binary mixture simula-653

tions of coarse grains and fine grains interacting within a unified SPH framework; (2) capability654

to simulate complex boundaries and particle shapes; (3) high computational efficiency, facilitating655

the handling of extensive computational tasks in engineering applications; (4) the coarse grain is656

simulated by TLSPH as an elastic material, making it deformable rather than rigid. However, at657

the same time, the method used in this study to calculate the coupling forces between fine grains658

and coarse grains does not explicitly consider the coefficient of friction between them. Although659

capturing and computing frictional forces may incur additional computational time, it can be es-660

sential in scenarios where friction plays a significant role in the outcomes, even though this aspect661

is beyond the scope of this paper. Current research [31, 33, 71] exists on computing friction forces662

between fine grains and rigid bodies using the SPH method, but extending this approach to calcu-663

late friction forces with deformable materials has not been documented. Accurately calculating the664

friction forces of binary mixtures within the SPH framework, while incorporating water to account665

for the interactions between water, soil, and boulders, will be the focus of our future research.666
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