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Objective: To develop an artificial intelligence model to predict an antimicrobial susceptibility pattern in patients 
with urinary tract infection (UTI).

Materials and methods: 26 087 adult patients with culture-proven UTI during 2015–2020 from a university 
teaching hospital and three community hospitals in Hong Kong were included. Cases with asymptomatic bac
teriuria (absence of diagnosis code of UTI, or absence of leucocytes in urine microscopy) were excluded. Patients 
from 2015 to 2019 were included in the training set, while patients from the year 2020 were included as the test 
set. 
Three first-line antibiotics were chosen for prediction of susceptibility in the bacterial isolates causing UTI: name
ly nitrofurantoin, ciprofloxacin and amoxicillin-clavulanate. Baseline epidemiological factors, previous anti
microbial consumption, medical history and previous culture results were included as features. Logistic 
regression and random forest were applied to the dataset. Models were evaluated by F1-score and area under 
the curve-receiver operating characteristic (AUC-ROC).

Results: Random forest was the best algorithm in predicting susceptibility of the three antibiotics (nitrofurantoin, 
amoxicillin-clavulanate and ciprofloxacin). The AUC-ROC values were 0.941, 0.939 and 0.937, respectively. The 
F1 scores were 0.938, 0.928 and 0.906 respectively.

Conclusions: Random forest model may aid judicious empirical antibiotics use in UTI. Given the reasonable per
formance and accuracy, these accurate models may aid clinicians in choosing between different first-line anti
biotics for UTI.

© The Author(s) 2024. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/ 
by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Antimicrobial resistance (AMR) is an emerging threat that jeopar
dizes global health and development. Driven by inappropriate 
antimicrobial prescription, AMR threatens therapeutic success 
with both existing and new antibiotics.

Urinary tract infection (UTI) is the commonest cause of bac
terial infection in both community and hospital settings world
wide.1 As the major driver of antibiotics prescription, UTI is a 
key target for antimicrobial stewardship. These efforts include 
laboratory stewardship, educational seminar, clinical decision 

support tool, development of clinical guidelines, clinical audit or 
feedback session.2–6 These are often, however, resource heavy 
and unsustainable. The ‘one-size-fit-all’ approach of antibiotics 
guidelines cannot address individual patient factors either. 
Clinicians often face a dilemma between inadequate antimicro
bial coverage and promoting drug resistance when guidelines 
do not cover all clinical scenarios.

Machine learning (ML) is a field of artificial intelligence that fo
cuses on algorithms that improve with data input. The application 
of these ML algorithms in antimicrobial stewardship is gaining trac
tion due to the availability of large healthcare datasets.7–9 Many ML 
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algorithms have been proposed to streamline empirical antimicro
bial use in UTI by predicting the most likely resistance patterns in ur
ine culture.10–12 When integrated into clinical practice, these ML 
algorithms can advise clinicians on the narrowest spectrum effect
ive antibiotic based on the patient’s health data.

Objective
In this study, we aim to develop a ML algorithm for culture-proven 
UTI to predict susceptibility of bacterial isolates to three first-line 
antibiotics, namely nitrofurantoin, amoxicillin-clavulanate and 
ciprofloxacin.

Materials and methods
Subjects
This was an epidemiological study of a territory-wide database of the public 
hospital network comprising the New Territories East Cluster of Hong Kong 
SAR, China. This hospital network consisted of one university teaching hos
pital, two district general hospitals and affiliated clinics. The public health
care system was responsible for 90% of healthcare in this locality, and this 
hospital cluster served a population of 2 million in the region.

Adult patients who attended these hospitals with positive urine cul
tures within the period between 1 January 2015 and 31 December 
2020 were considered for the study. For patients with multiple episodes 
of UTI in the study period, only the first episode of UTI for each patient 
in the study period was included. This was to allow a more unbiased re
presentation of the patient population.

Inclusion criteria
Patients with a positive urine culture (culture colony count ≥104 cfu/mL) 
and the following criteria were considered to have culture-proven UTI: 

• presence of white blood cell (WBC) in urine microscopy, and
• s confirmed diagnosis of UTI in Clinical Management System (ICD-9 

codes: 590, 595 and 599.0)

Exclusion criteria

• age < 18 years old
• discordance of result between concomitant blood culture and urine 

culture within 3 days
• three or more bacterial morphotypes in urine culture, i.e. potential 

contamination
• culture positive for yeasts, viridans Streptococcus species, coagulase- 

negative Staphylococcus species except Staphylococcus saprophyticus 
and Corynebacterium species.

It is well-recognized that the diagnosis of UTI in elderly can be challen
ging owing to the increasingly atypical presentation with age and the po
tential lack of a comprehensive history. Bearing in mind the possibility of 
asymptomatic bacteriuria especially among catheterized patients, the 
study therefore only included patients receiving a confirmed diagnosis 
of UTI from the clinical team, instead of all patients with positive urine 
cultures. As the elderly form the bulk of medical admissions in the locality, 
the inclusion of catheter urine ensures that many elderly patients with 
acute pyelonephritis, who are often too frail to save mid-stream urine 
on their own, were included in the study.
Figure 1 illustrates the design of this study. Background healthcare data 
for 5 years before the episode of UTI (epidemiological factors, medical co
morbidities, antibiotics consumption, laboratory investigations and AMR 
data) available on the study subjects before the episode of UTI were col
lected. For patients with multiple episodes of UTI during the study period, 
background data for 5 years before the first episode of UTI was included. 
Medical comorbidities were compiled as individual features. These were 
compiled as features (explanatory variables) and analysed with ML algo
rithms, for the prediction of antimicrobial susceptibility (AST) results in ur
ine culture (labels or outcome variables).

Figure 1. Study design.
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Data collection
Laboratory data were retrieved from Laboratory Information System of 
Microbiology laboratories in the hospital cluster. They included urine cul
ture results and corresponding blood culture results of the proposed 
study period. For each specimen, laboratory data collected included col
lection date, cultured organism identity, antibiotic susceptibility pattern 
of each isolate, bacterial colony count and microscopy findings. UTI 
with concomitant bloodstream infection is not uncommon. For cases 
with bacteraemic UTI, combined sensitivity results based on both urine 
and blood culture were used for data analysis. The more resistant antibio
gram was used in place of the more susceptible one.

Clinical data of the corresponding patients were retrieved through a 
territory-wide healthcare database, the Clinical Data Analysis and 
Reporting System. Medical records of these patients were screened for 
potential features, including age, gender, admission source, residence 
at old age home, previous in-patient stays, active diagnosis, antibiotic ad
ministration, culture results and procedures. Diagnoses were encoded ac
cording to International Classification of Diseases ninth revision Clinical 
Modification (ICD-9-CM). Medications other than antibiotics were grouped 
by the British National Formulary index. Antibiotics were grouped accord
ing to their class, with cephalosporins classified by generations. Blood in
vestigation results were entered at both their raw numerical values and 
whether they were above or below the respective laboratory reference 
ranges.

For subjects with multiple urine culture specimens within the same 
episode of illness in the study period, the first urine specimen for that sub
ject was included for prediction. Other subsequent urine culture data in 
the study period were excluded.

Data analysis and machine learning
The dataset comprising of 6 years of urine culture result was split into a 
training set and a test set. The training set consisted of the data from 1 
January 2015 to 31 December 2019, while the test set consisted of 
data from 1 January 2020 to 31 December 2020. R statistical language 
version 3.6.2 (R foundation, Vienna, Austria) was used for data analysis 
and ML.

Missing data were imputed by multiple imputation by chained equa
tions method through the R package ‘mice’. For all classification meth
ods except logistic regression, all features were normalized by minmax 
normalization to 0–1 range to ensure model convergence and 
optimization.

Exploratory data analysis and summary statistics were used to sum
marize the dataset. Variables with high correlation with others were omit
ted from the dataset. Each member of pairs of variables with correlation 
coefficient of 0.5 or above were removed with the choice of removal 
decided by subject domain knowledge.

In a preliminary analysis of model performance for different ML algo
rithms (XGBoost, decision tree, random forest, neural network, support 
vector machine) in the pilot study, random forest was found to be the 
best performing model. Hence optimization and further analysis of ML al
gorithm were focused on random forest. Logistic regression was included 
in this study as a comparator. Please refer to Table S1 (available as 
Supplementary data at JAC-AMR Online) for the full list of features used 
in the production of these models.

Logistic regression

Univariable logistic regression was performed for all explanatory variables. 
Model selection was done by a combination of expert domain knowledge 
input from the specialist in Clinical Microbiology and Infection, and bidirec
tional stepwise regression. The Hosmer–Lemeshow test was used to deter
mine the goodness of fit. The logistic regression model was used to look for 
risk factors predicting antibiotics resistance in UTI. P values <0.05 were 
considered statistically significant.

Random forest

Decision tree models use a range of probabilistic rules arranged in the 
form of a flowchart to classify each observation into a variety of categor
ies. The random forest model, as an ensemble method, uses many deci
sion trees to optimize its predictive power. This was accessed through the 
R package ‘randomForest’. Intuitive explanation of random forest was 
performed by Shapley Additive Explanations (SHAP) values. This was ac
cessed via the R package ‘treeshap’ with a unified representation of the 
random forest models. SHAP value of a feature represents the contribu
tion of it to the predictive model.

Model evaluation

Model evaluation was done in the separate test set to ensure objectivity. 
Each prediction model was evaluated on the test set by sensitivity, speci
ficity, positive predictive value (PPV), negative predictive value (NPV), 
macro-averaged F1 score and area under the curve-receiver operating 
characteristic (AUC-ROC).

Ethical considerations
The declaration of Helsinki was followed in this study. Ethics approval was 
obtained for this study through the ethics committee (CREC reference 
number: 2022.628).

Results
Baseline epidemiological characteristics
A total of 72 276 positive urine culture samples were found in the 
period 2015–2020. After removing duplicate samples and 
non-UTI cases, a total of 26 087 patients were included in this 
study. Among these cases, 20 237 cases were from the period 
2015–2019, and 5850 cases were from the year 2020.

In the data analysis, 105 features were included. Table 1 shows 
the baseline epidemiological characteristics of the cohort: 8888 
(34.1%) of the cohort were male, and the mean age was 67.9 years. 
Most patients were given beta-lactam beta-lactamase-inhibitor 
combinations (mean defined daily dose (DDD) 40.71) or quinolones 
(mean DDD 10.22) in the past 5 years. For detailed description of 
background characteristics, please refer to Table S1.

The distribution of causative agents in the current cohort are 
shown in Table 2.

The commonest pathogen in the study was Escherichia coli, 
accounting for over half (62.6%) of cases. Klebsiella spp. 
(11.1%) and Proteus mirabilis (5.7%) were also commonly found. 
The percentage of extended-spectrum beta-lactamase (ESBL) re
sistance in Enterobacterales was 18.8% (3880/20 687).

Logistic regression
Table 3 shows the performance of logistic regression for the three 
tested antibiotics.

The AUC-ROC of logistic regression values for susceptibility 
prediction of nitrofurantoin, amoxicillin-clavulanate and cipro
floxacin were 0.917, 0.922 and 0.912, respectively. The F1 score 
of logistic regression for susceptibility prediction of nitrofurantoin, 
amoxicillin-clavulanate and ciprofloxacin were 0.944, 0.928 and 
0.900, respectively.

Figure 2 shows the ROC of logistic regression models. For 
precision-recall curves, please refer to Table S2.
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Table 4 shows the performance and key predictive variables 
using logistic regression.

For prediction of nitrofurantoin susceptibility with logistic re
gression, statistically significant predictors were prior susceptibility 
to nitrofurantoin (OR 377.91, P < 0.001), amoxicillin-clavulanate 

Table 1. Baseline characteristics of the study cohort (n = 26 087)

Variable Count (%)/mean (SD)

(a) Antibiotic susceptibility of causative agent in the cohort
Nitrofurantoin 20 794 (79.7%)
Amoxicillin-clavulanate 18 658 (71.5%)
Ciprofloxacin 17 410 (66.8%)
(b) Basic epidemiological factors
Male gender 8888 (34.1%)
Use of immunosuppressive within the past 5 

years
2283 (8.75%)

Age in years 67.9 (21.0)
Patient source

Emergency department 3277 (12.6%)
Hospital in-patient 14 303 (54.8%)
Clinic 8507 (32.6%)

Variable Median (IQR)

(c) Antibiotics consumption of each patient in the past 5 years (defined 
daily dose)

Beta-lactam beta-lactamase inhibitor combination 24 (48)
Carbapenems 0 (0)
Second-generation cephalosporins 0 (0)
Third-generation cephalosporins 0 (0)
Penicillins 0 (7)
Fluoroquinolones 0 (9)
Nitrofurantoin 0 (5)

Variable Count (%)/mean (SD)

(d) Blood test results in the previous 5 years before the index episode 
of UTI

Haemoglobin mean value (g/dL) 11.74 (1.86)
WBC mean value (×109/L) 9.32 (3.89)
Platelet count mean value (×109/L) 237.93 (85.55)
Creatinine mean value (μmol/L) 106.45 (97.14)
Bilirubin mean value (μmol/L) 12.08 (12.48)
Alanine transaminase mean value (IU/L) 27.94 (40.94)
Alkaline phosphatase mean value (IU/L) 96.81 (68.09)

Variable Median (IQR)

(e) Number of disease episodes in electronic health record in the 
previous 5 years

Diabetes mellitus (DM) 0 (1)
Gastrointestinal tract disorder 0 (2)
Genitourinary tract disorder 0 (1)
Number of episodes of infection 0 (1)
Retention of urine 0 (1)
Stroke 0 (2)
(f) Percentage of patients with a urinary tract pathogen isolated in the 

past 5 years
Enterobacterales order 84.56
Enterococcus spp. 10.20
Pseudomonas aeruginosa 5.04
Candida spp. 3.40
Methicillin-susceptible S. aureus (MSSA) 1.78

Continued 

Table 1. Continued  

Variable Median (IQR)

MRSA 1.53
Acinetobacter spp. 1.03
Streptococcus spp. 0.96
Other organisms 2.06
(g) Mean percentage of urinary tract bacterial pathogen susceptible to 

antibiotics in the past 5 yearsa

Nitrofurantoin 76.54
Amoxicillin-clavulanate 68.55
Meropenem 91.03
Ciprofloxacin/Levofloxacin 62.82
Amikacin 99.53
Cefuroxime 65.99%
Cefotaxime/ceftriaxone 70.31%

aFurther explanation for Table 1g: To capture the entire antimicrobial re
sistance pattern of each patient, we chose antibiotic susceptibility per
centage of each patient as the summary statistic. For patients with 
only one isolate of urinary tract pathogen, this statistic would be based 
on that single isolate only. For example, if the patient only had 1 MSSA 
urinary tract isolate in the past 5 years, his/her amoxicillin-clavulanate 
percentage susceptibility would be 1/1 = 100%. Alternatively, if the pa
tient had one isolate of MRSA only, then the amoxicillin-clavulanate per
centage susceptibility would be 0/1 = 0%. For patients with multiple 
urinary tract pathogens isolated in past 5 years, this statistic would be 
calculated as an average proportion of organisms susceptible to the par
ticular antibiotic. For example, if the patient had two isolates of MSSA and 
three isolates of MRSA in the past 5 years, the amoxicillin-clavulanate per
centage susceptibility would be 2/5 = 40%. For patients without any urin
ary tract pathogen isolated in the past, the susceptibility percentage was 
considered 100%.

Table 2. Distribution of causative agents of UTI in the study

Organism In-patient
Community 

(via A&E)
Community 
(via clinic)

E. coli 8448 2347 5528
Klebsiella spp. 1661 262 964
Enterococcus spp. 1291 150 586
P. mirabilis 830 158 489
P. aeruginosa 505 52 100
Citrobacter spp. 301 85 247
Enterobacter spp. 281 60 131
S. aureus 420 50 148
Morganella morganii 196 38 118
Serratia spp. 73 10 34
Others 297 65 162
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(OR 3.91, P < 0.001) and ceftriaxone (OR 0.22, P < 0.001) in previous 
UTI pathogens.

For prediction of amoxicillin-clavulanate susceptibility with 
logistic regression, statistically significant predictors included 
previous ESBL-producing Enterobacterales in urine (OR 0.24, P <  
0.001), previous susceptibility to amoxicillin-clavulanate (OR 
516.02, P < 0.001) and ceftriaxone (OR 0.23, P < 0.001) suscepti
bility in UTI.

For prediction of amoxicillin-clavulanate susceptibility with lo
gistic regression, statistically significant predictors included pul
monary disease (OR 0.83, P < 0.001), previous methicillin-resistant 
Staphylococcus aureus (MRSA) (OR 0.79, P < 0.001), previous 

Table 3. Performance of logistic regression in predicting antibiotic 
susceptibility

Nitrofurantoin Amoxicillin-clavulanate Ciprofloxacin

Accuracy 0.909 0.895 0.874
Sensitivity 0.730 0.781 0.858
Specificity 0.952 0.938 0.884
F1 score 0.944 0.928 0.900
AUC-ROC 0.917 0.922 0.912
PPV 0.937 0.918 0.917
NPV 0.783 0.828 0.806

Figure 2. ROC curves of logistic regression models.

Table 4. Logistic regression model specifications

Logistic regression model with nitrofurantoin susceptibility as outcome variable

Explanatory variable Odds ratio (95% CI) P values

Male gender 1.11 (0.98, 1.26) 0.09
Previous nitrofurantoin susceptibility in UTI 377.91 (320.23, 445.99) <0.001
Previous amoxicillin-clavulanate susceptibility in UTI 3.91 (3.37, 4.53) <0.001
Previous ceftriaxone susceptibility in UTI 0.22 (0.19, 0.26) <0.001

Logistic regression model with amoxicillin-clavulanate susceptibility as outcome variable

Explanatory variable Odds ratio (95% CI) P values

Previous ESBL-producing Enterobacterales in urine 0.24 (0.19, 0.3) <0.001
Previous amoxicillin-clavulanate susceptibility in UTI 516.02 (437.08, 609.23) <0.001
Previous ceftriaxone susceptibility in UTI 0.23 (0.18, 0.28) <0.001

Logistic regression model with ciprofloxacin susceptibility as outcome variable

Explanatory variable Odds ratio (95% CI) P values

Pulmonary disease 0.83 (0.77, 0.9) <0.001
Previous MRSA 0.79 (0.73, 0.86) <0.001
Previous Gram-positive organism in UTI 1.76 (1.45, 2.13) <0.001
Previous nitrofurantoin susceptibility in UTI 0.46 (0.4, 0.53) <0.001
Previous ciprofloxacin/Levofloxacin susceptibility in UTI 308.43 (267.21, 356) <0.001
Previous Amikacin susceptibility in UTI 2.20 (1.01, 4.8) 0.0451
Previous ceftriaxone susceptibility in UTI 0.66 (0.57, 0.76) <0.001

Multi-centre AST prediction in UTI using AI                                                                                                       
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Gram-positive organism in UTI (OR 1.76, P < 0.001) and previous 
susceptibility to nitrofurantoin (OR 0.46, P < 0.001), ciprofloxacin/ 
levofloxacin (OR 308.43, P < 0.001), amikacin (OR 2.20, P = 0.045) 
and ceftriaxone (OR 0.66, P < 0.001) in UTI.

Random forest
Table 5 shows the model performance for random forest. The 
AUC-ROC of random forest for susceptibility prediction of nitrofuran
toin, amoxicillin-clavulanate and ciprofloxacin were 0.941, 0.939 
and 0.937, respectively. The F1 score of logistic regression for sus
ceptibility prediction of nitrofurantoin, amoxicillin-clavulanate and 
ciprofloxacin were 0.938, 0.928 and 0.906, respectively.

Figure 3 shows the ROC curves of random forest models.
Five features with the highest predictive power, i.e. the highest 

SHAP values for each model (nitrofurantoin, amoxicillin-clavulanate, 
ciprofloxacin), are displayed in Figure 4.

The most important features (features with the highest SHAP 
values) in the nitrofurantoin model were urinary retention, previ
ous nitrofurantoin susceptibility in UTI, hyperlipidaemia, previous 
amoxicillin-clavulanate susceptibility in UTI and the standard de
viation of platelet count.

The most important features in the amoxicillin-clavulanate 
model was previous amoxicillin-clavulanate susceptibility 
in UTI. The single most important feature in the ciprofloxacin 
model was previous susceptibility to ciprofloxacin/levofloxacin 
in UTI.

Discussion
The study evaluated the performance of various ML methods (lo
gistic regression and random forest) in predicting AST. We 
showed that many of the applied modelling techniques were ac
curate in predicting susceptibility, with most of the model 
AUC-ROC values showing outstanding performance.

In logistic regression model, prior susceptibility to ceftriaxone 
was associated with a prediction of non-susceptibility to each of 
the three antibiotics. We postulate that this could be related to 
the nature of ceftriaxone as a third-generation cephalosporin. 

Figure 4. Features with the highest predictive power (SHAP value) in random forest models.

Figure 3. ROC curves of random forest models.

Table 5. Performance of random forest in predicting antibiotic 
susceptibility

Nitrofurantoin Amoxicillin-clavulanate Ciprofloxacin

Accuracy 0.902 0.894 0.882
Sensitivity 0.840 0.765 0.860
Specificity 0.916 0.943 0.894
F1 0.938 0.928 0.906
AUC-ROC 0.941 0.939 0.937
PPV 0.960 0.913 0.919
NPV 0.705 0.837 0.820
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The use of broad-spectrum antibiotics is generally regarded as a 
driver for resistance.

The main advantage of the study was its sample size. The data 
of 26 087 cases with their complete electronic health record were 
included in the dataset. Patients from both community and hos
pitals were all recruited in the study, representing the entire spec
trum of UTI encountered in clinical practice.

Another advantage of the study was the validity of the study. 
Model validation (train-test split) was performed on dataset ob
tained from a separate year. The model was trained with data of 
2015–2019, and validation was performed on the data of 2020. 
This offered a prospective validation of the model. Regarding the 
lack of external validation, further studies in other sites will be re
quired to validate utility and performance of this model.

The main predictive factors in our logistic regression models and 
predictive features with the highest SHAP values in our random for
est models were all clinically relevant to the prediction to AST.

One drawback of the study was the large number of features 
required for model training. Given that the random forest models 
were trained with 105 features. However, many predictive models 
using big data are often integrated to the electronic health system 
as a clinical decision support tool. The models could be used to pro
vide clinicians with valuable information on the likelihood of AMR in 
UTI in different patients. A future direction is to create a ‘lite’ ver
sion of the model for easier bedside calculation when immediate 
access to electronic health system is not available.

Another potential limitation with the study was the inclusion 
of only healthcare data in the public healthcare system in Hong 
Kong. As patient receive care in both public and private sectors lo
cally, there would be an under-estimation of actual antimicrobial 
consumption.

New laboratory technologies have been described in the litera
ture for rapid identification and susceptibility testing in urine culture. 
Common examples are MALDI-TOF, computer vision, fluorescence 
analysis and rapid AST.13–15 While they are valuable in shortening 
the specimen processing and reporting time, they cannot replace 
the judicious selection of empirical antibiotics treatment.

The aim of this AI model is to predict susceptibility categories 
for various commonly used first-line antibiotics for UTI. However, 
these antimicrobial agents are not without side effects. 
Nitrofurantoin use is contraindicated in renal failure, and cipro
floxacin has multiple black box warning. As an antimicrobial stew
ardship tool, this model can aid clinicians in predicting antibiotic 
susceptibility. But prescribers must also consider other factors dur
ing prescription. The development of AI models based on health
care data to aid safe prescription would be another future direction.

Previous studies on AST prediction with various AI algorithms 
from different geographical areas10,12,16,17 showed that they 
were accurate. Studies that compared the predicted antimicro
bial prescription and actual antimicrobial prescription also 
showed that AI algorithms could reduce the use of broad- 
spectrum antibiotics significantly.10,16 They show the powerful 
potential of AI in the field of antimicrobial stewardship.

Conclusion
Random forest model may aid judicious empirical antibiotics use 
in UTI. Given the reasonable performance and accuracy, these 

accurate models may aid clinicians in choosing between different 
first-line antibiotics for UTI.
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