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Electronic computers have evolved drastically over the past years with an ever-growing demand for improved
performance. However, the transfer of information from memory and high energy consumption have emerged as
issues that require solutions. Optical techniques are considered promising solutions to these problems with
higher speed than their electronic counterparts and with reduced energy consumption. Here, we use the optical
reservoir computing framework we have previously described (Scalable Optical Learning Operator or SOLO [1])
to program the spatial-spectral output of the light after nonlinear propagation in a multimode fiber. The novelty
in the current paper is that the system is programmed through an output sampling scheme, similar to that used in
hyperspectral imaging in astronomy. Linear and nonlinear computations are performed by light in the multimode
fiber and the high dimensional spatial-spectral information at the fiber output is optically programmed before it
reaches the camera. We then used a digital computer to classify the programmed output of the multi-mode fiber
using a simple, single layer network. When combining front-end programming and the proposed spatial-spectral
programming, we were able to achieve 89.9 % classification accuracy on the dataset consisting of chest X-ray
images from COVID-19 patients. At the same time, we obtained a decrease of 99 % in the number of tunable
parameters compared to an equivalently performing digital neural network. These results show that the per-
formance of programmed SOLO is comparable with cutting-edge electronic computing platforms, albeit with a
much-reduced number of electronic operations.

1. Introduction has the potential to provide high power efficiency, and high-speed
processing [9,10].
The development of optical computing platforms has recently been

the focus of intense research and commercial interest. Various optical

Growing demand for artificial intelligence (AI) has evolved
dramatically in recent years. The Al revolution is fueled by the immense

parallel computing power of electronic hardware such as field-
programmable gate arrays and graphic and tensor processing units
[2-5]. However, the performance is inherently limited by the funda-
mental tradeoff between energy efficiency and computing power in
electronic computing [6]. The “bigger is better* mentality has domi-
nated, but the energy required to operate large networks becomes a
limiting factor. Moreover, as the scale of an electronic transistor ap-
proaches its physical limit, it is necessary to investigate and develop new
computing processors during the post-Moore’s law era [7,8]. Optical
computing, using photons instead of electrons as the information carrier,

neural network (ONN) architectures have been proposed, including
diffractive optical neural networks [11,12], photonic reservoir
computing [13,14], photonic spiking neural networks [15,16], and op-
tical convolutional and recurrent neural networks [17,18]. An ONN with
a computational speed of more than 10 TOPS has been demonstrated
with today’s advanced optical technologies [19]. The low energy con-
sumption of ONNs is the key advantage of the technology. In fact, less
than one photon per operation has been demonstrated [20], which can
lead to orders of magnitude lower energy consumption than digital
computation. Adaptive training of the ONNs with an error
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backpropagation algorithm is the most common method to guarantee
the model’s reliable and accurate network inference. Examples of
trained ONNs include holographic ONNs [21], physics-aware training of
an optoelectronic network [22], a reconfigurable diffractive optoelec-
tronic neural network with three layers [23], and hybrid training of
optical neural networks [24].

Scalable Optical Learning Operator (SOLO) was previously proposed
by our group to utilize the optical nonlinear propagation of a graded-
index multimode fiber (GRIN MMF) to transform the input dataset
into a less demanding representation space [1]. This architecture is
inspired by the Extreme Learning Machine algorithm [25], in which a
fixed nonlinear mapping of the input data is combined with a simple
single trainable layer. In SOLO, the data is optically encoded via a spatial
light modulator (SLM) and the nonlinear propagation inside an MMF
realizes the nonlinear mapping. The advantage of performing the
nonlinear mapping optically is that it can reduce the number of trainable
parameters in a neural network and provides reasonable performance on
many different datasets. The nonlinearity of the MMF affects the output
beam shape and broadens the spectrum. As the information bandwidth
increases, valuable information may be spatially or spectrally hidden in
the output beam. The SOLO system collects the output beam simply with
a camera, for which the number of pixels is much smaller than the
spatial-spectral information contained in the beam, thus omitting the
potential to further increase the classification performance. It can be
expected that the system’s classification accuracy depends strongly on
the measuring approach. Therefore, we expect that optimizing the
sampling of the MMF output beam could improve the performance of the
system.

In this paper, we implemented the back-end programmed-SOLO (P-
SOLO) system and tackled the image classification task on COVID-19
dataset. A digital micromirror device (DMD) placed at the output of
the MMF is used to select spatial features by turning DMD pixels on or
off. A chromatic dispersion grating is placed after the DMD to disperse
the sampled light to achieve an optimized spatial-temporal measure-
ment by the camera. We ran two sampling approaches. In the first
approach (multi-line), we sampled the output beam of the MMF as a line,
which is perpendicular to the orientation of the dispersion grating vec-
tor. The sampling line is swept across the DMD and capturing the
sampled beam on the camera simultaneously. This generates multiple
sampled images per input. In the second approach (single-shot), we
optimized the DMD sampling pixels that generated only one sampled
image per input. In the final experiment, we combined the front-end
programming described in [26] with the proposed single-shot
approach, and we were able to generate the best classification
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performance (89.9 %) of the COVID-19 dataset on an optical network.
2. Materials and methods
2.1. Experimental setup

The P-SOLO system (Fig. 1) includes an ultrafast laser source
(Amplitude Laser Satsuma), whose pulses could be adjusted to have
pulse widths from 700 fs to 10 ps and 125 kHz repetition rate. The pulse
has a center wavelength of 1034 nm and spectral width of 7 nm. The
linearly polarized laser output beam with a Gaussian beam shape en-
codes the dataset via a phase-only Spatial Light Modulator (SLM,
Meadowlark). The SLM is a reflective liquid crystal on silicon, with
1920 x 1152 pixels, placed with a pitch of 9.2 pm and an 8-bit dynamic
range operated at a frame rate of 50 Hz. The laser beam was expanded to
cover 520 x 520 pixels on the SLM, which was used to input the dataset
images. The pulses then propagate in a 5 m GRIN 50/125 MMF with a
numerical aperture (NA) of 0.2 that supports 240 modes at the operation
wavelength. The phase-modulated light from the SLM is coupled to the
MMF through a lens with a focal length of 36 mm. The coupled beam
covers the whole MMF core area. The output beam pattern from the
MMF was collimated and then directed to a DMD. The DMD (Ajile AJD-
4500) consists of 912 x 1140 micromirrors with a pitch of 7.6 pm. The
light sampled and reflected by the DMD is then dispersed by a diffraction
grating with a 1200 line mm™! period. The dispersed beam after the
grating is recorded by a camera with a 6.9 pm pixel pitch and a
maximum frame rate of 552 Hz (BFS-U3-04S2M-CS). We program the
DMD mask through a surrogate optimization algorithm [27] to find the
optimal spatial sampling pattern. The beam is attenuated with an
adjustable neutral density filter before camera detection. The input
pulse peak power was optimized to maximize the nonlinear interaction
of multimodes in MMF as in the SOLO system [1].

2.2. Physical model of SOLO [1]

In the computational framework of the SOLO system, nonlinear
mapping is utilized as a physical realization of reservoir computing that
takes place when the input pattern propagates in an MMF with high
pulse intensity. During the pattern propagation in the MMF, the initial
complex modal coefficients evolve according to spatiotemporal linear
and nonlinear effects. The nonlinear transformation of information is
achieved by nonlinear energy redistribution among the fiber modes.
Further, the nonlinear mapping performed by the MMF can be described
by the time-dependent beam propagation method (TBPM) involving the
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Fig. 1. Schematic of P-SOLO experimental setup. The experimental setup comprised an SLM for encoding dataset images onto laser pulses, an MMF for nonlinear
transformation with spatial-temporal optical nonlinearities, a DMD as a space mask for programming combined with a surrogate optimization algorithm to extract
spatial feature map, and a grating as the spectral frequency-resolved beam profile measurement technique to further improve classification accuracy.



Y. Zhou et al.

fiber mode amplitudes (Ap, where p is the considered mode index). In an
ideal situation with low power pulse or continuous-wave light input,
only the phases of modes coefficients change at different rates due to
modal and chromatic dispersion, which does not exist in intermodal
power redistribution. This behavior corresponds to a linear trans-
formation of the field when it propagates through the fiber, as shown in
the first term of equation (1). Mode-coupling caused by perturbations
due to fiber bending or impurities also acts as liner mixing. When the
pulse peak power is sufficient to induce nonlinear effects in MMF,
nonlinear mode coupling will lead to a nonlinear operation on the in-
formation spatially encoded in the input pulse throughout the fiber (the
third term in equation (1)). Then, by simply iterating equation (1) with a
small propagation step (Az), nonlinear propagation can be implemented
for each step, and the fiber modes will couple to each other according to
the linear coupling coefficients and the nonlinear coupling tensor ().
This nonlinear operation can also be numerically modeled at each
propagation step by multiplying each three-element combination of
mode coefficients with the related entry of the nonlinear mode coupling
tensor. The specific definitions of symbols in equation (1) can be found
in [1].
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2.3. Multi-line mask sampling approach

In the experiment, we first performed a sequential line sweep method
across the output beam after the MMF. The COVID-19 dataset [28] was
served as comparing metrics with 3000 X-ray samples (2400 X-ray
samples for training and 600 X-ray samples for testing). The accuracy
previously reported in SOLO was 83 % [1]. The X-ray sample is encoded
on the phase of the input beam through the SLM while the corresponding
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fiber output intensity patterns are spatially sampled by the DMD. The
distance of the DMD, grating, and camera is 54 cm and 17 cm, respec-
tively (Fig. 2a). The line width of DMD is a parameter that needs to be
optimized. In the first experiment, the line mask of DMD is designed to
be perpendicular to the dispersion grating vector, meaning that the
spatial sampling and spectral sampling are perpendicular to each other.
The vertical DMD line masks, found to be optimized at 48 pixel width
(see Supplementary), are horizontally swept at 4 sequential locations to
spatially sample the MMF output (4H configuration, Fig. 2b). One
sample in the dataset will generate 4 intensity images recorded by the
camera. After concatenating these 4 images, the digital layer obtains a
test accuracy of 86.2 % for 4H configuration.

In the second experiment, the DMD line masks are rotated. The
horizontal DMD line masks, found to be optimized at 58 pixel width (see
Supplementary), are vertically swept at 5 sequential locations and the
camera recorded 5 corresponding intensity images (5 V configuration,
Fig. 2c). The test accuracy for 5 V configuration is 85.9 %. In 5 V
configuration, spatial sampling and spectral sampling are parallel to
each other, thus, feature information hidden in the beam is not extracted
as well as 4H configuration. However, with the help of free-space
diffraction and grating dispersion, this accuracy is still higher than the
83 % reported previously from the SOLO system [1]. If we further
combine the 9 images from 4H and 5 V configuration (4H + 5 V
configuration, Fig. 2d), the classification accuracy of P-SOLO can go up
to 88 %, surpassing the 87.3 % accuracy obtained by LeNet-5 (82826
training parameter) [29] digital neural networks. The improvement is
summarized in Fig. 3 together with the accuracy previously reported in
SOLO [1].

The distance between the DMD, grating, and camera, as indicated in
Fig. 2a plays an important role since it determines the degree to which
the nonlinear spectral components of the field propagate in free-space
and are separately recorded on the camera. In the third experiment,
we manually optimized the distances between optics components, and
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Fig. 2. Multi-line mask sampling approach with different experimental configurations. (a) Distance between the DMD, the grating and the camera. (b) 4 horizontally
sweeping vertical DMD lines (4H configuration). (c) 5 vertically sweeping horizontal DMD lines (5 V configuration). (d) Combing both DMD line orientation (4H + 5

V configuration).
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Fig. 3. Comparison of classification accuracy for the COVID-19 X-ray dataset
under different multi-line mask sampling. 4H, 5 V, and 4H + 5 V are the
methods proposed in this study. No DMD no grating and no DMD with grating
are previously reported in SOLO [1].

we were able to improve the classification accuracy for 4H configuration
from 86.2 % to 88 % (4H + optimized distance configuration, Fig. 4).
This accuracy is as high as the 4H + 5 V configuration while it only
required concatenating 4 images instead of 9 images. This could reduce
the number of training parameters in the digital decision layer of P-
SOLO and shorten the experiment time. This result also demonstrates
that free-space diffraction also plays a vital role in the spatial-spectral
sampling in the P-SOLO system.
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2.4. Single-shot mask approach

Next, we optimized the sampling operation by programming a single
DMD mask. The DMD is divided into several superpixels and the MMF
output beam covers 80 superpixels. To avoid overlapping between the
superpixels at the camera plane, a spacing parameter between the
superpixel (zero-padding) was first introduced. A smaller COVID-19
dataset was used (1200 X-ray samples for training and 300 X-ray sam-
ples for testing) to efficiently determine the spacing parameter of DMD
superpixel. A total of 80 (4 x 20) superpixels are encoded on the DMD,
each superpixel consisting of multiple DMD binary pixels. The height of
the superpixel contains 30 DMD pixels. The width of the superpixel is a
parameter that needs to be optimized in a range from 16 to 48 DMD
pixels and it is determined through surrogate optimization. Specifically,
80 parameters in the optimization algorithm control the on/off of the
DMD superpixels, and another 5 binary parameters control the width of
the superpixel (a variable between 16 and 48). During surrogate opti-
mization, classification accuracy is generated by the digital decision
layer and acts as the objective function for optimization.

The result of the optimized mask indicates that the best width for
each superpixel is 48 pixels, which means there is no zero-padding be-
tween each superpixels. We next applied the optimized DMD mask on
full-size COVID-19 dataset (3000 X-ray samples of COVID-19 dataset
with 2400 training samples and 600 testing samples). The iteration of
the surrogate optimization is shown in Fig. 5. The accuracy gradually
increases with the number of iterations and the best test accuracy is
found to be 86.9 % after 400 iterations. The scatter in Fig. 5 indicates the
testing accuracy as a function of each iteration number and the blue
dashed line represents the best accuracy obtained up to this point. The
initial and optimized DMD masks (black superpixel corresponds to the
on state and white superpixel corresponds to the off state) are also
shown in Fig. 5.

2.5. Combining front-end programming and back-end sampling
programming

We then performed the joint programming of the front-end (wave-
front shaping of the input data that manipulates the nonlinear
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Fig. 4. The classification accuracy improvement after optimizing the distance between the DMD, the grating, and the camera. The optimized distance is shown at the
top of the figure. The accuracy obtained is as high as 4H + 5 V configuration while only requiring 4 images instead of 9 images.
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Fig. 5. Classification accuracy evolution of 3000 samples of COVID-19 X-ray dataset by programming single-shot DMD mask with surrogate optimization. Single-shot
DMD mask divides into four lines including 80 superpixels with fixed height (30 DMD pixels) and width (48 DMD pixels). On the left and right shows the initial, the

100th iteration and the optimized mask displayed on the DMD.

Table 1

Summary of performance of optical and digital implementations of networks for the classification of the COVID-19 x-ray images database. The brackets style indicates
the type of programmable parameters: in round bracket () is digital decision layer, in curly bracket {} is DMD superpixel, and in angle bracket ( ) is front-end

programming.

Configuration # of Training Parameter Test Accuracy
SOLO [1] (22x22+1) 83%
4 horizontally sweeping multi-line DMD (4H) (4x22x22+1) = 1,937 86.2%
5 vertically sweeping multi-line DMD (5V) (5x22x22+1) = 2,421 85.9%
LeNet-5 [29] 82,826 87.3%
4H + 5V (9%x22x22+1) = 4,357 88.0%
4H + optimized distance (4%x22x22+1) = 1,937 88.0%
Single-shot DMD (30x30+1) + {80} =981 86.9%
EfficientNet-B6 [30] 43,322,513 89.9%
Single shot DMD + front-end programming [26] (30x30+1) + {52} + (50) = 1,003 89.9%

interaction of MMF [26]) and the single-shot mask optimization of the
DMD at the MMF output. We obtained 89.9 % classification accuracy, up
from 86.9 % with only the back-end single-shot DMD programming. This
accuracy is remarkably the same as a pretrained EfficientNet-B6 archi-
tecture with 43,322,513 parameters and followed by a digital decision
layer [30]. However, in our case, only 1003 training parameters were
used, a reduction of 99 % in training parameters. In the table below, we
summarize the performance achieved by the different approaches, dig-
ital network and optical network, in terms of classification accuracy and
the number of training parameters (Table 1).

3. Conclusion

The P-SOLO system in this work was achieved by spatial-spectral
optimization based on DMD sampling and grating dispersion placed at
the MMF output. We optimized the binary mask on the DMD to extract
important features for classification tasks. The advantage of our P-SOLO
system was compared and demonstrated with respect to digital neural
networks. The performance of the P-SOLO system might be further
improved with mechanically perturbed MMF through polarization
control. By combining the wavefront shaping method in [26] and our
proposed sampling method at the MMF output, we achieved a remark-
able classification accuracy of 89.9 % while reducing training parame-
ters by 99 % compared to an equally performing digital neural network.

In summary, we have experimentally demonstrated a P-SOLO system
that can be used for a range of learning task classifications. The pro-
gramming single-shot spatial mask or multiple-line sweep method
combined with spectral dispersion has achieved accuracy improvement
for classifying COVID-19 X-ray images. The DMD mask only achieves
amplitude modulation for the output beam. We anticipate that using
amplitude and phase modulation simultaneously might further improve
the performance.
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