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A B S T R A C T   

Electronic computers have evolved drastically over the past years with an ever-growing demand for improved 
performance. However, the transfer of information from memory and high energy consumption have emerged as 
issues that require solutions. Optical techniques are considered promising solutions to these problems with 
higher speed than their electronic counterparts and with reduced energy consumption. Here, we use the optical 
reservoir computing framework we have previously described (Scalable Optical Learning Operator or SOLO [1]) 
to program the spatial-spectral output of the light after nonlinear propagation in a multimode fiber. The novelty 
in the current paper is that the system is programmed through an output sampling scheme, similar to that used in 
hyperspectral imaging in astronomy. Linear and nonlinear computations are performed by light in the multimode 
fiber and the high dimensional spatial-spectral information at the fiber output is optically programmed before it 
reaches the camera. We then used a digital computer to classify the programmed output of the multi-mode fiber 
using a simple, single layer network. When combining front-end programming and the proposed spatial-spectral 
programming, we were able to achieve 89.9 % classification accuracy on the dataset consisting of chest X-ray 
images from COVID-19 patients. At the same time, we obtained a decrease of 99 % in the number of tunable 
parameters compared to an equivalently performing digital neural network. These results show that the per
formance of programmed SOLO is comparable with cutting-edge electronic computing platforms, albeit with a 
much-reduced number of electronic operations.   

1. Introduction 

Growing demand for artificial intelligence (AI) has evolved 
dramatically in recent years. The AI revolution is fueled by the immense 
parallel computing power of electronic hardware such as field- 
programmable gate arrays and graphic and tensor processing units 
[2–5]. However, the performance is inherently limited by the funda
mental tradeoff between energy efficiency and computing power in 
electronic computing [6]. The “bigger is better“ mentality has domi
nated, but the energy required to operate large networks becomes a 
limiting factor. Moreover, as the scale of an electronic transistor ap
proaches its physical limit, it is necessary to investigate and develop new 
computing processors during the post-Moore’s law era [7,8]. Optical 
computing, using photons instead of electrons as the information carrier, 

has the potential to provide high power efficiency, and high-speed 
processing [9,10]. 

The development of optical computing platforms has recently been 
the focus of intense research and commercial interest. Various optical 
neural network (ONN) architectures have been proposed, including 
diffractive optical neural networks [11,12], photonic reservoir 
computing [13,14], photonic spiking neural networks [15,16], and op
tical convolutional and recurrent neural networks [17,18]. An ONN with 
a computational speed of more than 10 TOPS has been demonstrated 
with today’s advanced optical technologies [19]. The low energy con
sumption of ONNs is the key advantage of the technology. In fact, less 
than one photon per operation has been demonstrated [20], which can 
lead to orders of magnitude lower energy consumption than digital 
computation. Adaptive training of the ONNs with an error 
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backpropagation algorithm is the most common method to guarantee 
the model’s reliable and accurate network inference. Examples of 
trained ONNs include holographic ONNs [21], physics-aware training of 
an optoelectronic network [22], a reconfigurable diffractive optoelec
tronic neural network with three layers [23], and hybrid training of 
optical neural networks [24]. 

Scalable Optical Learning Operator (SOLO) was previously proposed 
by our group to utilize the optical nonlinear propagation of a graded- 
index multimode fiber (GRIN MMF) to transform the input dataset 
into a less demanding representation space [1]. This architecture is 
inspired by the Extreme Learning Machine algorithm [25], in which a 
fixed nonlinear mapping of the input data is combined with a simple 
single trainable layer. In SOLO, the data is optically encoded via a spatial 
light modulator (SLM) and the nonlinear propagation inside an MMF 
realizes the nonlinear mapping. The advantage of performing the 
nonlinear mapping optically is that it can reduce the number of trainable 
parameters in a neural network and provides reasonable performance on 
many different datasets. The nonlinearity of the MMF affects the output 
beam shape and broadens the spectrum. As the information bandwidth 
increases, valuable information may be spatially or spectrally hidden in 
the output beam. The SOLO system collects the output beam simply with 
a camera, for which the number of pixels is much smaller than the 
spatial-spectral information contained in the beam, thus omitting the 
potential to further increase the classification performance. It can be 
expected that the system’s classification accuracy depends strongly on 
the measuring approach. Therefore, we expect that optimizing the 
sampling of the MMF output beam could improve the performance of the 
system. 

In this paper, we implemented the back-end programmed-SOLO (P- 
SOLO) system and tackled the image classification task on COVID-19 
dataset. A digital micromirror device (DMD) placed at the output of 
the MMF is used to select spatial features by turning DMD pixels on or 
off. A chromatic dispersion grating is placed after the DMD to disperse 
the sampled light to achieve an optimized spatial–temporal measure
ment by the camera. We ran two sampling approaches. In the first 
approach (multi-line), we sampled the output beam of the MMF as a line, 
which is perpendicular to the orientation of the dispersion grating vec
tor. The sampling line is swept across the DMD and capturing the 
sampled beam on the camera simultaneously. This generates multiple 
sampled images per input. In the second approach (single-shot), we 
optimized the DMD sampling pixels that generated only one sampled 
image per input. In the final experiment, we combined the front-end 
programming described in [26] with the proposed single-shot 
approach, and we were able to generate the best classification 

performance (89.9 %) of the COVID-19 dataset on an optical network. 

2. Materials and methods 

2.1. Experimental setup 

The P-SOLO system (Fig. 1) includes an ultrafast laser source 
(Amplitude Laser Satsuma), whose pulses could be adjusted to have 
pulse widths from 700 fs to 10 ps and 125 kHz repetition rate. The pulse 
has a center wavelength of 1034 nm and spectral width of 7 nm. The 
linearly polarized laser output beam with a Gaussian beam shape en
codes the dataset via a phase-only Spatial Light Modulator (SLM, 
Meadowlark). The SLM is a reflective liquid crystal on silicon, with 
1920 × 1152 pixels, placed with a pitch of 9.2 μm and an 8-bit dynamic 
range operated at a frame rate of 50 Hz. The laser beam was expanded to 
cover 520 × 520 pixels on the SLM, which was used to input the dataset 
images. The pulses then propagate in a 5 m GRIN 50/125 MMF with a 
numerical aperture (NA) of 0.2 that supports 240 modes at the operation 
wavelength. The phase-modulated light from the SLM is coupled to the 
MMF through a lens with a focal length of 36 mm. The coupled beam 
covers the whole MMF core area. The output beam pattern from the 
MMF was collimated and then directed to a DMD. The DMD (Ajile AJD- 
4500) consists of 912 × 1140 micromirrors with a pitch of 7.6 μm. The 
light sampled and reflected by the DMD is then dispersed by a diffraction 
grating with a 1200 line mm− 1 period. The dispersed beam after the 
grating is recorded by a camera with a 6.9 μm pixel pitch and a 
maximum frame rate of 552 Hz (BFS-U3-04S2M-CS). We program the 
DMD mask through a surrogate optimization algorithm [27] to find the 
optimal spatial sampling pattern. The beam is attenuated with an 
adjustable neutral density filter before camera detection. The input 
pulse peak power was optimized to maximize the nonlinear interaction 
of multimodes in MMF as in the SOLO system [1]. 

2.2. Physical model of SOLO [1] 

In the computational framework of the SOLO system, nonlinear 
mapping is utilized as a physical realization of reservoir computing that 
takes place when the input pattern propagates in an MMF with high 
pulse intensity. During the pattern propagation in the MMF, the initial 
complex modal coefficients evolve according to spatiotemporal linear 
and nonlinear effects. The nonlinear transformation of information is 
achieved by nonlinear energy redistribution among the fiber modes. 
Further, the nonlinear mapping performed by the MMF can be described 
by the time-dependent beam propagation method (TBPM) involving the 

Fig. 1. Schematic of P-SOLO experimental setup. The experimental setup comprised an SLM for encoding dataset images onto laser pulses, an MMF for nonlinear 
transformation with spatial–temporal optical nonlinearities, a DMD as a space mask for programming combined with a surrogate optimization algorithm to extract 
spatial feature map, and a grating as the spectral frequency-resolved beam profile measurement technique to further improve classification accuracy. 
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fiber mode amplitudes (Ap, where p is the considered mode index). In an 
ideal situation with low power pulse or continuous-wave light input, 
only the phases of modes coefficients change at different rates due to 
modal and chromatic dispersion, which does not exist in intermodal 
power redistribution. This behavior corresponds to a linear trans
formation of the field when it propagates through the fiber, as shown in 
the first term of equation (1). Mode-coupling caused by perturbations 
due to fiber bending or impurities also acts as liner mixing. When the 
pulse peak power is sufficient to induce nonlinear effects in MMF, 
nonlinear mode coupling will lead to a nonlinear operation on the in
formation spatially encoded in the input pulse throughout the fiber (the 
third term in equation (1)). Then, by simply iterating equation (1) with a 
small propagation step (Δz), nonlinear propagation can be implemented 
for each step, and the fiber modes will couple to each other according to 
the linear coupling coefficients and the nonlinear coupling tensor (η). 
This nonlinear operation can also be numerically modeled at each 
propagation step by multiplying each three-element combination of 
mode coefficients with the related entry of the nonlinear mode coupling 
tensor. The specific definitions of symbols in equation (1) can be found 
in [1]. 
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(1)  

2.3. Multi-line mask sampling approach 

In the experiment, we first performed a sequential line sweep method 
across the output beam after the MMF. The COVID-19 dataset [28] was 
served as comparing metrics with 3000 X-ray samples (2400 X-ray 
samples for training and 600 X-ray samples for testing). The accuracy 
previously reported in SOLO was 83 % [1]. The X-ray sample is encoded 
on the phase of the input beam through the SLM while the corresponding 

fiber output intensity patterns are spatially sampled by the DMD. The 
distance of the DMD, grating, and camera is 54 cm and 17 cm, respec
tively (Fig. 2a). The line width of DMD is a parameter that needs to be 
optimized. In the first experiment, the line mask of DMD is designed to 
be perpendicular to the dispersion grating vector, meaning that the 
spatial sampling and spectral sampling are perpendicular to each other. 
The vertical DMD line masks, found to be optimized at 48 pixel width 
(see Supplementary), are horizontally swept at 4 sequential locations to 
spatially sample the MMF output (4H configuration, Fig. 2b). One 
sample in the dataset will generate 4 intensity images recorded by the 
camera. After concatenating these 4 images, the digital layer obtains a 
test accuracy of 86.2 % for 4H configuration. 

In the second experiment, the DMD line masks are rotated. The 
horizontal DMD line masks, found to be optimized at 58 pixel width (see 
Supplementary), are vertically swept at 5 sequential locations and the 
camera recorded 5 corresponding intensity images (5 V configuration, 
Fig. 2c). The test accuracy for 5 V configuration is 85.9 %. In 5 V 
configuration, spatial sampling and spectral sampling are parallel to 
each other, thus, feature information hidden in the beam is not extracted 
as well as 4H configuration. However, with the help of free-space 
diffraction and grating dispersion, this accuracy is still higher than the 
83 % reported previously from the SOLO system [1]. If we further 
combine the 9 images from 4H and 5 V configuration (4H + 5 V 
configuration, Fig. 2d), the classification accuracy of P-SOLO can go up 
to 88 %, surpassing the 87.3 % accuracy obtained by LeNet-5 (82826 
training parameter) [29] digital neural networks. The improvement is 
summarized in Fig. 3 together with the accuracy previously reported in 
SOLO [1]. 

The distance between the DMD, grating, and camera, as indicated in 
Fig. 2a plays an important role since it determines the degree to which 
the nonlinear spectral components of the field propagate in free-space 
and are separately recorded on the camera. In the third experiment, 
we manually optimized the distances between optics components, and 

Fig. 2. Multi-line mask sampling approach with different experimental configurations. (a) Distance between the DMD, the grating and the camera. (b) 4 horizontally 
sweeping vertical DMD lines (4H configuration). (c) 5 vertically sweeping horizontal DMD lines (5 V configuration). (d) Combing both DMD line orientation (4H + 5 
V configuration). 
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we were able to improve the classification accuracy for 4H configuration 
from 86.2 % to 88 % (4H + optimized distance configuration, Fig. 4). 
This accuracy is as high as the 4H + 5 V configuration while it only 
required concatenating 4 images instead of 9 images. This could reduce 
the number of training parameters in the digital decision layer of P- 
SOLO and shorten the experiment time. This result also demonstrates 
that free-space diffraction also plays a vital role in the spatial-spectral 
sampling in the P-SOLO system. 

2.4. Single-shot mask approach 

Next, we optimized the sampling operation by programming a single 
DMD mask. The DMD is divided into several superpixels and the MMF 
output beam covers 80 superpixels. To avoid overlapping between the 
superpixels at the camera plane, a spacing parameter between the 
superpixel (zero-padding) was first introduced. A smaller COVID-19 
dataset was used (1200 X-ray samples for training and 300 X-ray sam
ples for testing) to efficiently determine the spacing parameter of DMD 
superpixel. A total of 80 (4 × 20) superpixels are encoded on the DMD, 
each superpixel consisting of multiple DMD binary pixels. The height of 
the superpixel contains 30 DMD pixels. The width of the superpixel is a 
parameter that needs to be optimized in a range from 16 to 48 DMD 
pixels and it is determined through surrogate optimization. Specifically, 
80 parameters in the optimization algorithm control the on/off of the 
DMD superpixels, and another 5 binary parameters control the width of 
the superpixel (a variable between 16 and 48). During surrogate opti
mization, classification accuracy is generated by the digital decision 
layer and acts as the objective function for optimization. 

The result of the optimized mask indicates that the best width for 
each superpixel is 48 pixels, which means there is no zero-padding be
tween each superpixels. We next applied the optimized DMD mask on 
full-size COVID-19 dataset (3000 X-ray samples of COVID-19 dataset 
with 2400 training samples and 600 testing samples). The iteration of 
the surrogate optimization is shown in Fig. 5. The accuracy gradually 
increases with the number of iterations and the best test accuracy is 
found to be 86.9 % after 400 iterations. The scatter in Fig. 5 indicates the 
testing accuracy as a function of each iteration number and the blue 
dashed line represents the best accuracy obtained up to this point. The 
initial and optimized DMD masks (black superpixel corresponds to the 
on state and white superpixel corresponds to the off state) are also 
shown in Fig. 5. 

2.5. Combining front-end programming and back-end sampling 
programming 

We then performed the joint programming of the front-end (wave
front shaping of the input data that manipulates the nonlinear 

Fig. 3. Comparison of classification accuracy for the COVID-19 X-ray dataset 
under different multi-line mask sampling. 4H, 5 V, and 4H + 5 V are the 
methods proposed in this study. No DMD no grating and no DMD with grating 
are previously reported in SOLO [1]. 

Fig. 4. The classification accuracy improvement after optimizing the distance between the DMD, the grating, and the camera. The optimized distance is shown at the 
top of the figure. The accuracy obtained is as high as 4H + 5 V configuration while only requiring 4 images instead of 9 images. 
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interaction of MMF [26]) and the single-shot mask optimization of the 
DMD at the MMF output. We obtained 89.9 % classification accuracy, up 
from 86.9 % with only the back-end single-shot DMD programming. This 
accuracy is remarkably the same as a pretrained EfficientNet-B6 archi
tecture with 43,322,513 parameters and followed by a digital decision 
layer [30]. However, in our case, only 1003 training parameters were 
used, a reduction of 99 % in training parameters. In the table below, we 
summarize the performance achieved by the different approaches, dig
ital network and optical network, in terms of classification accuracy and 
the number of training parameters (Table 1). 

3. Conclusion 

The P-SOLO system in this work was achieved by spatial-spectral 
optimization based on DMD sampling and grating dispersion placed at 
the MMF output. We optimized the binary mask on the DMD to extract 
important features for classification tasks. The advantage of our P-SOLO 
system was compared and demonstrated with respect to digital neural 
networks. The performance of the P-SOLO system might be further 
improved with mechanically perturbed MMF through polarization 
control. By combining the wavefront shaping method in [26] and our 
proposed sampling method at the MMF output, we achieved a remark
able classification accuracy of 89.9 % while reducing training parame
ters by 99 % compared to an equally performing digital neural network. 

In summary, we have experimentally demonstrated a P-SOLO system 
that can be used for a range of learning task classifications. The pro
gramming single-shot spatial mask or multiple-line sweep method 
combined with spectral dispersion has achieved accuracy improvement 
for classifying COVID-19 X-ray images. The DMD mask only achieves 
amplitude modulation for the output beam. We anticipate that using 
amplitude and phase modulation simultaneously might further improve 
the performance. 
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Fig. 5. Classification accuracy evolution of 3000 samples of COVID-19 X-ray dataset by programming single-shot DMD mask with surrogate optimization. Single-shot 
DMD mask divides into four lines including 80 superpixels with fixed height (30 DMD pixels) and width (48 DMD pixels). On the left and right shows the initial, the 
100th iteration and the optimized mask displayed on the DMD. 

Table 1 
Summary of performance of optical and digital implementations of networks for the classification of the COVID-19 x-ray images database. The brackets style indicates 
the type of programmable parameters: in round bracket () is digital decision layer, in curly bracket {} is DMD superpixel, and in angle bracket 〈 〉 is front-end 
programming.  

Configuration # of Training Parameter Test Accuracy 

SOLO [1] (22×22+1) 83% 
4 horizontally sweeping multi-line DMD (4H) (4×22×22+1) = 1,937 86.2% 
5 vertically sweeping multi-line DMD (5V) (5×22×22+1) = 2,421 85.9% 
LeNet-5 [29] 82,826 87.3% 
4H + 5V (9×22×22+1) = 4,357 88.0% 
4H + optimized distance (4×22×22+1) = 1,937 88.0% 
Single-shot DMD (30×30+1) + {80} = 981 86.9% 
EfficientNet-B6 [30] 43,322,513 89.9% 
Single shot DMD + front-end programming [26] (30×30+1) + {52} + 〈50〉 = 1,003 89.9%  
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