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Abstract 10 
 11 
In the transition to full deployment of connected vehicles (CVs), the CV penetration rate plays a key 12 
role in bridging the gap between partial and complete traffic information. Several innovative methods 13 
have been proposed to estimate the CV penetration rate using only CV data. However, these methods, 14 
as point estimators, may lead to biased estimations or suboptimal solutions when applied directly in 15 
modeling or system optimization. To avoid these problems, the uncertainty and variability in the CV 16 
penetration rate must be considered. Recently, a probabilistic penetration rate (PPR) model was 17 
developed for estimating such uncertainties. The key model input is a constrained queue length 18 
distribution composed exclusively of queues formed by red signals in undersaturation conditions with 19 
no residual vehicles. However, in real-world scenarios, due to random arrivals, residual vehicles are 20 
commonly carried over from one cycle to another in temporary overflow cycles in undersaturation 21 
conditions, which seriously restricts the applicability of the PPR model. To address this limitation, 22 
this paper proposes a Markov-constrained queue length (MCQL) model that can model the complex 23 
effects of residual vehicles on the CV penetration rate uncertainty. A constrained queue with residual 24 
vehicles is decomposed into four vehicle groups: observable constrained residual vehicles, 25 
unobservable constrained residual vehicles, unconstrained residual vehicles, and new arrivals. 26 
Although the first vehicle group is observable in the former cycle, the focus of this work is to model 27 
the residual vehicles from the second and third vehicle groups in combination with the new arrivals. 28 
The MCQL model includes four sub-models, namely, the residual-vehicle model, convolutional 29 
constrained queue model, constrained residual queue model, and observable residual queue model, 30 
to isolate and derive the distribution of the constrained vehicle set formed by the three latter vehicle 31 
groups. This distribution is then substituted into the PPR model to estimate the uncertainty. 32 
Comprehensive VISSIM simulations and applications to real-world datasets demonstrate that the 33 
proposed MCQL model can accurately model the residual-vehicle effect and estimate the uncertainty. 34 
Thus, the applicability of the PPR model is truly extended to real-world settings, regardless of the 35 
presence of residual vehicles. A simple stochastic CV-based adaptive signal control example 36 
illustrates the potential of the proposed model in real-world applications.  37 
 38 
Keywords: Connected vehicle penetration rate uncertainty; probabilistic penetration rate model; 39 
residual vehicle estimation; Markov-constrained queue length model; signal control with uncertainty 40 

1 Introduction 41 
With advancements in communication systems (e.g., 5G), Internet of Things technologies have 42 
undergone rapid development. These frameworks facilitate the seamless connection of various 43 
system components, thereby allowing instant exchange of information. In transportation systems, 44 
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this connectivity enables the sharing of valuable traffic information from connected vehicles (CVs), 1 
such as the location, speed, and acceleration, thereby providing numerous opportunities for the 2 
implementation of beneficial applications. Despite these advancements, the full deployment of 3 
CVs is limited by factors such as budget constraints, privacy security, and individual preferences. 4 
Consequently, a mixed traffic environment, in which both conventional vehicles and CVs coexist, 5 
is expected to prevail. Due to the absence of complete traffic information in such scenarios, the 6 
missing data must be estimated using the partial information obtained from CVs to promote traffic 7 
management and control.  8 

The CV penetration rate, defined as the probability of a vehicle to be a CV, serves as a fundamental 9 
parameter for traffic data scaling and various model estimations and applications. Comert and Cetin 10 
(2009, 2011) and Comert (2013) proposed a series of models that use the given CV penetration 11 
rate and queue length distribution to estimate the queue length at isolated junctions. Feng et al. 12 
(2015) developed a location and speed algorithm for estimating arrival tables in the controlled 13 
optimization of a phase algorithm (Sen and Head, 1997). In this framework, the CV penetration 14 
rate is considered an essential input. Other CV-based methods for queue length estimation include 15 
a Bayesian-network-based model proposed by Hao et al. (2014) and a method based on the 16 
shockwave theory (Argote et al., 2011), both of which assume the CV penetration rate to be known 17 
during model development. Moreover, the CV penetration rate has been applied in the inference 18 
of traffic flow (Wong and Wong, 2015, 2016a, 2016c) and traffic density or accumulation 19 
(Geroliminis and Daganzo, 2008; Ambühl and Menendez, 2016; Du et al., 2016; Wong and Wong, 20 
2019; Wong et al., 2019a, 2021) using linear data projection (Wong and Wong, 2015, 2016a, 2019; 21 
Wong et al., 2019a). In addition, the CV penetration rate has been introduced as a critical input in 22 
traffic incident impact evaluation (Wong and Wong, 2016b), travel time and speed estimations 23 
(Jenelius et al., 2013, 2015; Rahmani et al., 2015; Tian et al., 2015; Mousa et al., 2017; Khan et 24 
al., 2017; Iqbal et al., 2018; Lu et al., 2019), origin–destination estimations (Yang et al., 2017; 25 
Wang et al., 2020; Cao et al., 2021), and time exposure estimation in road safety studies (Meng et 26 
al., 2017b). Notably, due to the dynamic and stochastic nature of transportation systems, the CV 27 
penetration rate is a random variable and is not known in practice. Consequently, estimation of the 28 
CV penetration rate has emerged as a research hotspot in CV-based transportation problems. 29 

CV penetration rates for links outfitted with on-road fixed detectors, such as loop detectors, can be 30 
directly determined using the total vehicle counts measured by the detectors and CV counts from 31 
the CV signals. However, most roadways in a network are not equipped with such detectors owing 32 
to the considerable investment and maintenance costs for universal implementation. Moreover, the 33 
installed detectors may occasionally become non-operational, leading to intrusive installation and 34 
maintenance activities that can significantly disrupt traffic flow and even result in blockages within 35 
the local transportation systems. To estimate the CV penetration rates on links without detectors, 36 
a probability distribution model (Wong and Wong, 2015, 2016a, 2019; Wong et al., 2019a) has 37 
been developed. In this framework, the probability distribution is approximated based on the CV 38 
penetration rates observed on links equipped with detectors. The expectation of this distribution is 39 
then used as an estimate for the CV penetration rates on links without detectors, given their 40 
geographical proximity to the links with detectors. Furthermore, the variance of this distribution 41 
can capture the spatial variations. Notably, this method relies on the assumption of independent 42 
and identically distributed CV penetration rates across different links within the network. However, 43 
this assumption may be violated due to the interconnectivity of roads and heterogeneous 44 
attractiveness of various urban areas. To address this issue, a CV penetration rate estimation model 45 
incorporating land-use variables has been developed (Meng et al., 2017a). Nonetheless, the use of 46 
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local land-use data presents several challenges that hinder the widespread adoption of this model. 1 

Many researchers have attempted to overcome these limitations by estimating the CV penetration 2 
rate based solely on CV data. Under the assumption of Poisson arrival, Comert (2016) proposed a 3 
set of models to estimate the CV penetration rate based on partial CV information. However, the 4 
assumption of Poisson arrival does not always hold in reality, and thus, these models may not be 5 
applicable for generic arrival patterns. By eliminating the assumption of specific arrival patterns, 6 
Wong et al. (2019b) proposed the single-source data penetration rate estimator (SSDPRE), which 7 
is a fully analytical, non-parametric, and unbiased estimator to estimate the CV penetration rate. 8 
This model determines the number of non-CVs preceding the last CV on the stopping locations of 9 
CVs at a signalized junction and uses this partial queue information to combine two estimation 10 
mechanisms—(1) the probability of the first stopping vehicle being a CV and (2) the CV 11 
penetration rate of the deduced partial queue—to estimate the CV penetration rate in an unbiased 12 
manner. Various other methods approximate the distribution of stopping locations of vehicles in 13 
queues through maximum likelihood estimation (Zhao et al., 2019a, 2019b, 2022). Similarly, Wang 14 
et al. (2024) used the method of moment to estimate CV penetration rate and vehicle arrival rate.  15 
Although the aforementioned methods yield valuable insights, they do not take into account the 16 
uncertainty associated with CV penetration rates. Given the dynamic and nonlinear nature of 17 
transportation systems, relying solely on point estimators in model estimation and system 18 
optimization may lead to biased models and suboptimal solutions (Wong and Wong, 2015, 2016, 19 
2019; Wong et. al., 2019; Yin, 2008). For instance, Wong and Wong (2015, 2016, 2019) and Wong 20 
et al. (2019) have proven that estimating traffic models solely based on traffic data constituted from 21 
the means of CV penetration rates, without considering their variability, can result in biased model 22 
parameters and standard errors. Additionally, incorporating the variabilities of parameters in 23 
stochastic optimizations has been shown to be advantageous in formulating strategies to mitigate 24 
traffic intersection violations (Sun et al., 2018), traffic delay and emissions (Han et al., 2016), as 25 
well as human exposure to emissions (Zhang et al., 2013). Furthermore, Jia et al. (2023) conducted 26 
simulation studies to demonstrate that incorporating the CV penetration rate variability into a CV-27 
based adaptive signal optimization problem can lead to a 15% decrease in average and maximum 28 
driver delay and a 45% decrease in delay variance. Therefore, accurately modeling the uncertainty 29 
of CV penetration rates is crucial to obtain unbiased transport models and optimal solutions. 30 

Utilizing the SSDPRE (Wong et al. 2019), the output from a cycle can be taken as the realized CV 31 
penetration rate for that specific cycle. In oversaturation conditions where the volume-to-capacity 32 
(V/C) ratios consistently exceed one, demand persistently surpasses the capacity. Due to the 33 
continuous carryover in oversaturation conditions, nearly all vehicle identities can be determined 34 
using the bridging queue algorithm proposed in Wong et al. (2019b). This allows for the precise 35 
determination of the population CV penetration rate with a high degree of certainty. Nevertheless, 36 
in undersaturation conditions where the V/C ratios are less than one, vehicle identities cannot be 37 
fully revealed. Due to stochastic arrivals and random appearance of CVs, the realized CV 38 
penetration rate is subject to uncertainty. To quantify such uncertainty, an analytical probabilistic 39 
penetration rate (PPR) model has recently been developed (Jia et al., 2023). A key input of this 40 
model is the constrained queue length1 distribution, which depends on the queues of vehicles that 41 
stop at red signals in each traffic light cycle. This distribution can be estimated using probabilistic 42 
dissipation time (PDT) or constant dissipation time (CDT) models derived in undersaturation 43 

 
1 A constrained queue length is defined as the total number of vehicles that are stopped by a red signal over a cycle, which 
differs from the usual queue length, i.e., the queue length at a specific moment in time. Figure 1 illustrates the notion of 
a constrained queue length.  
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conditions without any residual vehicles. However, in real-world scenarios, due to random arrivals, 1 
demand can temporarily exceed capacity, and residual vehicles are commonly carried over from 2 
one cycle to another in temporary overflow cycles under undersaturation conditions. These 3 
temporary overflow cycles are referred to as temporary overflow conditions. As temporary 4 
overflow conditions are common in real-world situations, the applicability of the methods proposed 5 
in Jia et al. (2023) is seriously limited. Neglecting the effects of these residual vehicles in temporary 6 
overflow conditions may lead to inaccurate estimation of the constrained queue length, which can 7 
adversely affect the estimation of the CV penetration rate uncertainty. Considering the highly 8 
nonlinear nature of transportation systems, such unreliable uncertainty estimates can undermine 9 
the effectiveness of the PPR model in practical applications. Therefore, the residual-vehicle effects 10 
must be accurately modeled to ensure the generalizability and effectiveness of the PPR model in 11 
estimating the CV penetration rate uncertainty. 12 

To this end, this paper proposes a Markov-constrained queue length (MCQL) model. A constrained 13 
queue with residual vehicles is generically decomposed into four vehicle groups: observable 14 
constrained residual vehicles (Group 1), unobservable constrained residual vehicles (Group 2), 15 
unconstrained residual vehicles (Group 3), and new arrivals (Group 4). Although the residual 16 
vehicles from Group 1 are observable in the former cycle, the focus of this work is to model the 17 
residual vehicles from Groups 2 and 3 in combination with the new arrivals in Group 4. Four sub-18 
models, namely, the residual-vehicle model, convolutional constrained queue model, constrained 19 
residual queue model, and observable residual queue model, are introduced to isolate and derive 20 
the distribution of the constrained vehicle set formed by the three latter vehicle groups. This 21 
distribution is then substituted into the PPR model for uncertainty estimation. Extensive numerical 22 
simulations and real-world dataset applications provide strong evidence for the effectiveness of 23 
the proposed MCQL model in accurately capturing residual-vehicle effects and estimating the 24 
uncertainty in the CV penetration rate. Furthermore, a practical demonstration of a stochastic CV-25 
based adaptive signal control showcases the potential of the MCQL model in system optimizations. 26 
The proposed models can exploit the full capability of the PPR model and enhance its applicability 27 
in real-world situations.  28 

The remainder of this paper is organized as follows. Section 2 introduces the necessary preliminary 29 
knowledge, and Section 3 defines the research problem and notation. Section 4 describes the 30 
formulation of the MCQL model. Section 5 presents details of the comprehensive micro-31 
simulation study performed based on VISSIM to validate the proposed model. Section 6 describes 32 
the validation of the proposed models using the Next Generation Simulation (NGSIM) dataset 33 
(Federal Highway Administration, 2006). Moreover, a demonstrative example based on stochastic 34 
CV-based adaptive signal control is presented to highlight the significance of modeling residual-35 
vehicle effects. Section 7 summarizes the findings and implications of the study. 36 

2 Prior Work 37 

2.1 SSDPRE 38 
When approaching a signalized intersection, the arriving vehicles stop at red lights and form 39 
queues. A constrained queue set, 𝛹𝛹, is defined as a set of vehicles that stop at a red light, e.g., the 40 
sets of vehicle trajectories enclosed by the triangles in Figure 1. |𝛹𝛹| = 𝑁𝑁 is the number of vehicles 41 
in a constrained queue; and 𝑛𝑛 and 𝑁𝑁� are the number of CVs and number of observable vehicles in 42 
the constrained queue, respectively. 𝑛𝑛 is observable, and 𝑁𝑁� is estimated by dividing the distance 43 
between the stop bar and rear end of the last CV by the effective vehicle length. The effective 44 
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vehicle length is the average distance between the rear ends of the preceding and following 1 
stopping vehicles. The CVs and non-CVs are assumed to be sufficiently mixed within a link owing 2 
to the lane-changing behaviors of the drivers; and 𝑖𝑖 and 𝑚𝑚 are the indices for the 𝑖𝑖th constrained 3 
queue formed in cycle 𝑖𝑖 and total number of constrained queues, respectively. The SSDPRE for 4 
this scenario can be formulated as (Wong et al. 2019) 5 

SSDPRE = ∑ 𝑝𝑝�𝑖𝑖𝑚𝑚
𝑖𝑖=1
𝑚𝑚

, (1) 
 6 
where 7 

𝑝𝑝�𝑖𝑖 = 𝑆𝑆�𝑛𝑛𝑖𝑖 ,𝑁𝑁�𝑖𝑖� =

⎩
⎪
⎨

⎪
⎧
𝑛𝑛𝑖𝑖−1
𝑁𝑁�𝑖𝑖−1

         𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖 > 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁�𝑖𝑖 > 1       

1        𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁�𝑖𝑖 = 1
0        𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁�𝑖𝑖 > 1
0        𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁�𝑖𝑖 = 0

. (2) 

 8 
Thus, 𝑝𝑝�𝑖𝑖 is taken as realized CV penetration rate for cycle 𝑖𝑖. The realized CV penetration rates 9 
across cycles form the distribution of the random variable 𝑝𝑝�. 10 

2.2 PPR model 11 
The variance of the distribution of 𝑝𝑝�, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝�), can be taken as the CV penetration rate uncertainty. 12 
Consider any |𝛹𝛹| = 𝑁𝑁  following any counting distribution such that 𝑃𝑃(𝑁𝑁 = 𝑖𝑖) = 𝜉𝜉𝑖𝑖,∀𝑖𝑖 =13 
0, 1, 2, … , 𝑘𝑘 . The number of CVs follows a binomial distribution, i.e., 𝑛𝑛~𝐵𝐵(𝑁𝑁,𝑝𝑝) , where 𝑝𝑝 14 
represents the average CV penetration rate and 𝑁𝑁 ≥ 𝑛𝑛 ≥ 0. In this case, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝�) can be defined as 15 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝�) = lim
𝑘𝑘→+∞

�∑ 𝜉𝜉𝑖𝑖
𝑘𝑘
𝑖𝑖=1 𝑉𝑉2(𝑖𝑖, 𝑝𝑝)�, (3) 

 16 
where 17 

𝑉𝑉2(𝑁𝑁,𝑝𝑝) = �∑ 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝)𝑁𝑁−𝑖𝑖 �𝑉𝑉1(𝑖𝑖,𝑁𝑁) + � 𝑖𝑖
𝑁𝑁
�
2
� �𝑁𝑁𝑖𝑖 �

𝑁𝑁
𝑖𝑖=2 − 𝑝𝑝2 + 𝑝𝑝(1 − 𝑝𝑝)𝑁𝑁−1 𝑖𝑖𝑖𝑖 𝑁𝑁 > 1

𝑝𝑝(1 − 𝑝𝑝)                                                                                                  𝑖𝑖𝑖𝑖 𝑁𝑁 = 1
, (4) 

 18 
and  19 

𝑉𝑉1(𝑛𝑛,𝑁𝑁) =

⎩
⎪
⎨

⎪
⎧∑

𝑛𝑛−1
𝑁𝑁−𝑖𝑖�

𝑁𝑁−𝑖𝑖−1
𝑛𝑛−2 �𝑁𝑁−𝑛𝑛+1

𝑖𝑖=1

�𝑁𝑁𝑛𝑛�
− 𝑛𝑛2

𝑁𝑁2
     𝑖𝑖𝑖𝑖 𝑛𝑛 > 1

𝑛𝑛2−2𝑛𝑛+𝑁𝑁
𝑁𝑁2

                            𝑖𝑖𝑖𝑖 𝑛𝑛 = 1
0                                         𝑖𝑖𝑖𝑖 𝑛𝑛 = 0

.   (5) 

Two corollaries of the PPR model are presented in Appendix A. 20 

2.3 PDT and CDT models 21 
The constrained queue length distribution is an essential input of the PPR model. The PDT model 22 
can accurately model this input by using a time interval partitioning notion, which divides a given 23 
interval into the red period, first dissipation period for vehicles arriving in the red period, second 24 
dissipation period for vehicles arriving in the first dissipation period, and so on. For any given 25 
arrival pattern with an average arrival rate of 𝑞𝑞, a red period of 𝑟𝑟, and a saturation headway of 𝜏𝜏, 26 
the constrained queue length distribution can be expressed as 27 

𝑃𝑃(𝑁𝑁 = 𝑘𝑘) = �
𝑓𝑓(𝑘𝑘; 𝑞𝑞𝑞𝑞)𝑓𝑓(0;𝑞𝑞𝑞𝑞𝑞𝑞) +                                                                               
∑ ∑ 𝑓𝑓(𝑖𝑖; 𝑞𝑞𝑞𝑞)𝑃𝑃�𝑗𝑗(𝑁𝑁 = 𝑘𝑘,𝑀𝑀 = 𝑖𝑖)𝑊𝑊𝑗𝑗(𝑁𝑁 = 𝑘𝑘,𝑀𝑀 = 𝑖𝑖)𝐽𝐽𝑖𝑖

𝑗𝑗=1
𝑘𝑘−1
𝑖𝑖=1  𝑖𝑖𝑖𝑖 𝑘𝑘 ∈ ℕ+

𝑓𝑓(0; 𝑞𝑞𝑞𝑞)                                                                                     𝑖𝑖𝑖𝑖 𝑘𝑘 = 0
, (6) 



 6 

 1 
where 𝑓𝑓(𝜂𝜂; 𝑞𝑞𝑞𝑞) represents the probability of arriving 𝜂𝜂 vehicles within time 𝑡𝑡; 𝑃𝑃�𝑗𝑗(𝑁𝑁 = 𝑘𝑘,𝑀𝑀 = 𝑖𝑖) 2 
is the 𝑗𝑗𝑡𝑡ℎ unique value of the product of the probabilities of observing the remaining 𝑘𝑘 − 𝑖𝑖 vehicles 3 
in the subsequent partitioned time intervals, with ∀𝑘𝑘 ∈ ℕ+, 𝑖𝑖 ∈ [1,𝑘𝑘], 𝑗𝑗 ∈ [1, 𝐽𝐽𝑖𝑖]; and 𝑊𝑊𝑗𝑗(𝑁𝑁 =4 
𝑘𝑘,𝑀𝑀 = 𝑖𝑖) is the weighting factor of 𝑃𝑃�𝑗𝑗(𝑁𝑁 = 𝑘𝑘,𝑀𝑀 = 𝑖𝑖). 5 

The PDT model achieves a high estimation accuracy, but its implementation is complex. To 6 
alleviate the complexity, a simplified model, i.e., the CDT model, has been developed. The 7 
constrained queue length is assumed to follow a Poisson distribution. The average constrained 8 
queue length, 𝑁𝑁0, is the model parameter of the constrained queue length distribution, where 9 

𝑁𝑁0 = 𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠−𝑞𝑞

 . (7) 

3 Problem Statement and Notation   10 

3.1 Problem statement 11 
Although PDT and CDT models can estimate the constrained queue length distribution, they can 12 
only be applied to undersaturation scenarios without residual vehicles. Specifically, these models 13 
can represent the newly arriving vehicles in each cycle, such as the constrained queue set of Cycle 14 
1 in Figure 1. However, in practice, residual vehicles often appear owing to temporary high 15 
demands. For example, in Figure 1, vehicles 7, 8, and 9 are residual vehicles that carry over from 16 
Cycle 1 to Cycle 2. Vehicle 7 is the observable constrained residual vehicle from Cycle 1 (Group 17 
1), vehicle 8 is an unobservable constrained residual vehicle from Cycle 1 (Group 2), and vehicle 18 
9 is an unconstrained residual vehicle from Cycle 1 (Group 3). The constrained queue set of Cycle 19 
2 is {7, 8, 9, 10, 11, 12, 13}, in which the subset {10, 11, 12, 13} represents new arrivals in the 20 
constrained queue set of Cycle 2 (Group 4), which can be modeled by PDT or CDT models. To 21 
avoid double-counting, vehicle 72 must not be used to estimate 𝑝𝑝�2 in Cycle 2. Thus, in addition to 22 
the new arrivals, the unobservable constrained and unconstrained residual vehicles are random 23 
components that can influence the estimation of 𝑝𝑝�𝑖𝑖. Ignoring vehicles 8 and 9 can degrade the 24 
estimation accuracy of the CV penetration rate uncertainty. Therefore, the residual-vehicle effects 25 
must be appropriately modeled in the uncertainty estimation process, especially for near-saturation 26 
situations, which is the motivation for this research. 27 

 28 

Figure 1: Vehicle trajectories in two consecutive cycles. 29 

 
2 Vehicle 7 is the last observable vehicle in the constrained queue set of Cycle 1, which is used to estimate 𝑝𝑝�1. Details 
of the counting method can be found in the work of Wong et al. (2019). 
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3.2 Notation 1 
In addition to the previously introduced notation, the following notation is used in this paper: 2 

Table 1. Notation. 3 
Notation Description Example (Figure 1) 
𝑅𝑅𝑖𝑖−1

(1)  Number of observable constrained residual vehicles 
from cycle 𝑖𝑖 − 1 

𝑅𝑅1
(1) = 1 

𝑅𝑅𝑖𝑖−1
(2)  Number of unobservable constrained residual 

vehicles from cycle 𝑖𝑖 − 1 
𝑅𝑅1

(2) = 1 

𝑅𝑅𝑖𝑖−1
(3)  Number of unconstrained residual vehicles from 

cycle 𝑖𝑖 − 1 
𝑅𝑅1

(3) = 1 

𝑅𝑅𝑖𝑖−1 Number of residual vehicles from cycle 𝑖𝑖 − 1, i.e., 
𝑅𝑅𝑖𝑖−1

(1) + 𝑅𝑅𝑖𝑖−1
(2) + 𝑅𝑅𝑖𝑖−1

(3)  
𝑅𝑅1 = 3 

𝑁𝑁𝑖𝑖
(4) Number of new arrivals in the constrained queue set 

of cycle i  
𝑁𝑁2

(4) = 4 

𝑁𝑁𝑖𝑖 Number of vehicles in the constrained queue set of 
cycle i, i.e., 𝑅𝑅𝑖𝑖−1 + 𝑁𝑁𝑖𝑖

(4) 
𝑁𝑁2 = 7 

𝑄𝑄𝑖𝑖 Number of vehicles in the constrained queue set of 
cycle i, excluding the observable residual vehicles 
carried over from cycle 𝑖𝑖 − 1, i.e., 𝑁𝑁𝑖𝑖 − 𝑅𝑅𝑖𝑖−1

(1)  

𝑄𝑄2 = 6 

𝑅𝑅𝑖𝑖−1
(1,2) Number of constrained residual vehicles from cycle 

𝑖𝑖 − 1, i.e., 𝑅𝑅𝑖𝑖−1
(1) + 𝑅𝑅𝑖𝑖−1

(2)  
𝑅𝑅1

(1,2) = 2 

𝑔𝑔 Effective green - 
𝑟𝑟 Effective red - 
𝑠𝑠 Saturation flow - 
𝑐𝑐 Cycle length - 
𝑞𝑞 Average arrival rate - 
𝐷𝐷𝑖𝑖 Demand of cycle 𝑖𝑖 - 
𝐷𝐷∗ Maximum number of vehicles that can be 

discharged in a cycle 
- 

P State transition matrix of 𝑅𝑅𝑖𝑖−1 - 
S State space of 𝑅𝑅𝑖𝑖−1 - 
F Discrete Fourier transform (DFT) function - 
𝐹𝐹−1 Inverse DFT function - 

4 Methodology 4 
For any consecutive cycles 𝑖𝑖 − 1 and 𝑖𝑖 with a temporary high demand, a certain number of residual 5 
vehicles from cycle 𝑖𝑖 − 1 are carried over to cycle 𝑖𝑖 . The CV penetration rate uncertainty is 6 
governed by the combination of this number of residual vehicles and the new arrivals in cycle 𝑖𝑖, 7 
𝑄𝑄𝑖𝑖. This total number of vehicles consists of 𝑅𝑅𝑖𝑖−1

(2) , 𝑅𝑅𝑖𝑖−1
(3) , and 𝑁𝑁𝑖𝑖

(4). Although 𝑁𝑁𝑖𝑖
(4) can be obtained 8 

by PDT or CDT models, it is challenging to directly derive 𝑅𝑅𝑖𝑖−1
(2)  and 𝑅𝑅𝑖𝑖−1

(3) . Alternatively, 𝑄𝑄𝑖𝑖 can 9 
be expressed as 10 

𝑄𝑄𝑖𝑖 = 𝑁𝑁𝑖𝑖 − 𝑅𝑅𝑖𝑖−1
(1) . (8) 

 11 
Thus, the proposed MCQL model involves three parts, pertaining to the estimations of 𝑁𝑁𝑖𝑖, 𝑅𝑅𝑖𝑖−1

(1) , 12 
and 𝑄𝑄𝑖𝑖. The proposed model is derived based on two fundamental assumptions. First, it is assumed 13 
that connected vehicles (CVs) and non-CVs are adequately mixed within a lane, due to frequent 14 



 8 

lane-changing and overtaking behaviors. As a result, each vehicle has the same probability of being 1 
a CV (𝑝𝑝) or a non-CV (1 − 𝑝𝑝). Second, the state transition of the number of residual vehicles is 2 
assumed to be modeled by a Markov chain, as the number of residual vehicles in the current cycle 3 
depends solely on the number of residual vehicles in the previous cycle, which is consistent with 4 
the Markov property. 5 
 6 

4.1 Estimation of 𝑵𝑵𝒊𝒊 7 
𝑁𝑁𝑖𝑖 can be expressed as the sum of 𝑁𝑁𝑖𝑖

(4) and 𝑅𝑅𝑖𝑖−1:  8 

𝑁𝑁𝑖𝑖 = 𝑁𝑁𝑖𝑖
(4) + 𝑅𝑅𝑖𝑖−1. (9) 

 9 
𝑁𝑁𝑖𝑖

(4) can be estimated using PDT or CDT methods, and a residual-vehicle model is proposed to 10 
estimate 𝑅𝑅𝑖𝑖−1. Then, a convolutional constrained queue model is developed for estimating 𝑁𝑁𝑖𝑖. 11 

4.1.1 Residual-vehicle model 12 

Taking into account vehicles arriving according to any counting distribution:  13 
𝑃𝑃(𝐷𝐷𝑖𝑖 = 𝑘𝑘) = 𝑝𝑝𝑘𝑘,∀𝑘𝑘 ∈ ℕ. (10) 

 14 
The maximum number of vehicles that can be discharged in a cycle, 𝐷𝐷∗, can be estimated as 𝐷𝐷∗ =15 
⌊𝑔𝑔𝑔𝑔⌋, where ⌊∙⌋ represents the floor function. If the temporary demand in cycle 𝑖𝑖 − 1, 𝐷𝐷𝑖𝑖−1, is 16 
greater than 𝐷𝐷∗ , 𝑅𝑅𝑖𝑖−1 > 0 . For any consecutive cycles 𝑖𝑖 − 1  and 𝑖𝑖 , if the vehicle arrivals in 17 
different cycles are independent, i.e., 𝑃𝑃(𝐷𝐷𝑖𝑖 = 𝑘𝑘|𝐷𝐷𝑖𝑖−1 = 𝑗𝑗) = 𝑃𝑃(𝐷𝐷𝑖𝑖 = 𝑘𝑘), 𝑅𝑅𝑖𝑖 depends on 𝑅𝑅𝑖𝑖−1 and 18 
𝐷𝐷𝑖𝑖. Thus, 𝑅𝑅𝑖𝑖 can be modeled by a Markov chain. 19 
 20 
For any cycle 𝑖𝑖, consider the Markov random process {𝑅𝑅𝑖𝑖, 𝑖𝑖 = 0, 1, 2, … ,𝑘𝑘}, where 𝑅𝑅𝑖𝑖 ∈ 𝑆𝑆, and 21 
𝑆𝑆 = {0, 1, 2, 3, … , 𝑠𝑠 − 1} is the state space of 𝑅𝑅𝑖𝑖. ∀𝑗𝑗 ∈ 𝑆𝑆,𝑅𝑅𝑖𝑖 = 𝑗𝑗 represents the state of 𝑗𝑗 residual 22 
vehicles from cycle 𝑖𝑖. The probability of state 𝑗𝑗 is 23 

𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝑗𝑗) = π𝑗𝑗∗, (11) 
 24 
where π𝑗𝑗∗  is the 𝑗𝑗𝑡𝑡ℎ  entry of the probability vector 𝛑𝛑∗ , which is the stationary distribution 25 
independent of cycle 𝑖𝑖  and represents the probability distribution of the number of residual 26 
vehicles from any cycle. 𝛑𝛑∗ can be obtained through the following minimization: 27 

𝑚𝑚𝑚𝑚𝑚𝑚
𝛑𝛑
‖𝛑𝛑𝑷𝑷 − 𝛑𝛑‖22 

𝑠𝑠. 𝑡𝑡. ‖𝛑𝛑‖1 = 1,π𝑗𝑗 > 0,  
(12) 

 28 
where the state transition matrix, 𝑷𝑷, is presented in Table 2. 29 

Table 2. State transition matrix. 30 
          𝑅𝑅𝑖𝑖         
 𝑅𝑅𝑖𝑖−1 0 1 2 … 𝐷𝐷∗ 𝐷𝐷∗ + 1 … 

 
𝑠𝑠 − 1 

0 ∑ 𝑝𝑝𝑘𝑘𝐷𝐷∗
𝑘𝑘=0   𝑝𝑝𝐷𝐷∗+1 𝑝𝑝𝐷𝐷∗+2 … 𝑝𝑝2𝐷𝐷∗ 𝑝𝑝2𝐷𝐷∗+1 … 𝑝𝑝𝐷𝐷∗+𝑠𝑠−1 

1 ∑ 𝑝𝑝𝑘𝑘𝐷𝐷∗−1
𝑘𝑘=0   𝑝𝑝𝐷𝐷∗ 𝑝𝑝𝐷𝐷∗+1 … 𝑝𝑝2𝐷𝐷∗−1 𝑝𝑝2𝐷𝐷∗ … 𝑝𝑝𝐷𝐷∗+𝑠𝑠−2 

2 ∑ 𝑝𝑝𝑘𝑘𝐷𝐷∗−2
𝑘𝑘=0   𝑝𝑝𝐷𝐷∗−1 𝑝𝑝𝐷𝐷∗ … 𝑝𝑝2𝐷𝐷∗−2 𝑝𝑝2𝐷𝐷∗−1 … 𝑝𝑝𝐷𝐷∗+𝑠𝑠−3 

… … … … … … … … … 
𝐷𝐷∗ 𝑝𝑝0 𝑝𝑝1 𝑝𝑝2 … 𝑝𝑝𝐷𝐷∗ 𝑝𝑝𝐷𝐷∗+1 … 𝑝𝑝𝑠𝑠−1 

𝐷𝐷∗ + 1 0 𝑝𝑝0 𝑝𝑝1 … 𝑝𝑝𝐷𝐷∗−1 𝑝𝑝𝐷𝐷∗ … 𝑝𝑝𝑠𝑠−2 
𝐷𝐷∗ + 2 0 0 𝑝𝑝0 … 𝑝𝑝𝐷𝐷∗−2 𝑝𝑝𝐷𝐷∗−1 … 𝑝𝑝𝑠𝑠−3 

… … … … … … … … … 
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𝑠𝑠 − 1 0 0 0 … … … … 𝑝𝑝𝐷𝐷∗ 

Proof. For any consecutive cycles 𝑖𝑖 − 1 and 𝑖𝑖, under any vehicle arrival pattern, the following 1 
scenarios can be derived: If 𝑅𝑅𝑖𝑖−1 = 0, no residual vehicle is carried over from cycle 𝑖𝑖 − 1 to cycle 2 
𝑖𝑖. All possible cases in this situation are presented in the first cell of Table 3. If no residual vehicle 3 
is carried over from cycle 𝑖𝑖 to cycle 𝑖𝑖 + 1, i.e., 𝑅𝑅𝑖𝑖 = 0, the temporary demand of cycle 𝑖𝑖, 𝐷𝐷𝑖𝑖, must 4 
be less than or equal to the maximum number of vehicles that can be discharged in a cycle, 𝐷𝐷∗, 5 
i.e., 𝐷𝐷𝑖𝑖 ≤ 𝐷𝐷∗. The probability of this case, 𝑃𝑃(𝑅𝑅𝑖𝑖 = 0|𝑅𝑅𝑖𝑖−1 = 0), is ∑ 𝑝𝑝𝑘𝑘𝐷𝐷∗

𝑘𝑘=0 . If 𝑅𝑅𝑖𝑖 = 1, 𝐷𝐷𝑖𝑖 must be 6 
equal to 𝐷𝐷∗ + 1, which means that only one vehicle cannot be discharged in cycle 𝑖𝑖. In this case, 7 
𝑃𝑃(𝑅𝑅𝑖𝑖 = 1|𝑅𝑅𝑖𝑖−1 = 0) = 𝑝𝑝𝐷𝐷∗+1. All possible cases can be enumerated in a similar manner. When 8 
𝑅𝑅𝑖𝑖−1 = 0 , the sum of the probabilities of all these cases must equal 1, i.e., 9 
∑ 𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝑘𝑘|𝑅𝑅𝑖𝑖−1 = 0) = 1∞
𝑘𝑘=0 . 10 

Table 3. Enumeration of all possible numbers of residual vehicles carried over from cycles 𝑖𝑖 −11 
1 and 𝑖𝑖. 12 

𝑅𝑅𝑖𝑖−1 𝑅𝑅𝑖𝑖 𝐷𝐷𝑖𝑖 Probability 
0 0 ≤ 𝐷𝐷∗ ∑ 𝑝𝑝𝑘𝑘𝐷𝐷∗

𝑘𝑘=0   
 1 𝐷𝐷∗ + 1 𝑝𝑝𝐷𝐷∗+1 
 2 𝐷𝐷∗ + 2 𝑝𝑝𝐷𝐷∗+2 
   ⋮ ⋮ ⋮ 
 𝑘𝑘, where 𝑘𝑘 → ∞ 𝐷𝐷∗ + 𝑘𝑘 𝑝𝑝𝐷𝐷∗+𝑘𝑘 
1 0 ≤ 𝐷𝐷∗ − 1 ∑ 𝑝𝑝𝑘𝑘𝐷𝐷∗−1

𝑘𝑘=0   
 1 𝐷𝐷∗ 𝑝𝑝𝐷𝐷∗ 
 2 𝐷𝐷∗ + 1 𝑝𝑝𝐷𝐷∗+1 
   ⋮ ⋮ ⋮ 
 𝑘𝑘, where 𝑘𝑘 → ∞ 𝐷𝐷∗ + 𝑘𝑘 − 1 𝑝𝑝𝐷𝐷∗+𝑘𝑘−1 
 
⋮ 
 

 
⋮ 
 

 
⋮ 
 

 
⋮ 
 

𝐷𝐷∗ + 1 0 - 0 
 1 0 𝑝𝑝0 
 2 1 𝑝𝑝1 
   ⋮   ⋮ ⋮ 
 𝑘𝑘, where 𝑘𝑘 → ∞ 𝑘𝑘 − 1 𝑝𝑝𝑘𝑘−1 
 
⋮ 
 

 
⋮ 
 

 
⋮ 
 

 
⋮ 
 

𝑘𝑘′, where 𝑘𝑘′ → ∞ 0 - 0 
 1 - 0 
   ⋮   ⋮   ⋮ 
 𝑘𝑘′ − 𝐷𝐷∗ − 1 - 0 
 𝑘𝑘′ − 𝐷𝐷∗ 0 𝑝𝑝0 
 𝑘𝑘′ − 𝐷𝐷∗ + 1 

  ⋮ 
1 
  ⋮ 

𝑝𝑝1 
  ⋮ 

 𝑘𝑘, where k→ ∞ 𝑘𝑘 − 𝑘𝑘′ + 𝐷𝐷∗ 𝑝𝑝𝑘𝑘−𝑘𝑘′ +𝐷𝐷∗ 

If 𝑅𝑅𝑖𝑖−1 = 1, one residual vehicle is carried over from cycle 𝑖𝑖 − 1 to cycle 𝑖𝑖. All possible cases in 13 
this condition are presented in the second cell of Table 3. If 𝑅𝑅𝑖𝑖 = 0, 𝐷𝐷𝑖𝑖 must be less than or equal 14 



 10 

to 𝐷𝐷∗ − 1 such that all the newly arrived vehicles and the residual vehicle carried over from cycle 1 
𝑖𝑖 − 1 can be discharged. Thus, 𝑃𝑃(𝑅𝑅𝑖𝑖 = 0|𝑅𝑅𝑖𝑖−1 = 1) = ∑ 𝑝𝑝𝑘𝑘𝐷𝐷∗−1

𝑘𝑘=0 . If 𝑅𝑅𝑖𝑖 = 1, 𝐷𝐷𝑖𝑖 must be equal to 2 
𝐷𝐷∗ , and thus, the last vehicle from cycle 𝑖𝑖  is carried over to cycle 𝑖𝑖 + 1 . In this case, 3 
𝑃𝑃(𝑅𝑅𝑖𝑖 = 1|𝑅𝑅𝑖𝑖−1 = 1) = 𝑝𝑝𝐷𝐷∗ . All possible cases can be similarly enumerated. Furthermore, 4 
∑ 𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝑘𝑘|𝑅𝑅𝑖𝑖−1 = 1) = 1∞
𝑘𝑘=0 . All corresponding cases for 𝑅𝑅𝑖𝑖−1 ∈ [0,𝐷𝐷∗] can be enumerated in 5 

a similar manner.  6 

If 𝑅𝑅𝑖𝑖−1 = 𝐷𝐷∗ + 1, 𝑅𝑅𝑖𝑖 must be equal to or greater than 1, i.e., at least one residual vehicle is carried 7 
over from cycle 𝑖𝑖  to cycle 𝑖𝑖 + 1 . Therefore, 𝑃𝑃(𝑅𝑅𝑖𝑖 = 0|𝑅𝑅𝑖𝑖−1 = 𝐷𝐷∗ + 1) = 0 , 8 
𝑃𝑃(𝑅𝑅𝑖𝑖 = 1|𝑅𝑅𝑖𝑖−1 = 𝐷𝐷∗ + 1) = 𝑝𝑝0 , and so on. Again, ∑ 𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝑘𝑘|𝑅𝑅𝑖𝑖−1 = 𝐷𝐷∗ + 1) = 1∞

𝑘𝑘=0 . For 9 
𝑅𝑅𝑖𝑖−1 ≥ 𝐷𝐷∗ + 1, a similar enumeration can be performed.  10 

The transition process of the number of residual vehicles between any two consecutive cycles can 11 
be modeled by a Markov chain. The state transition matrix can be constructed based on Table 3. 12 
Notably, although the transition process can be considered a discrete-time and infinite Markov 13 
chain in theory, the number of residual vehicles from any cycle 𝑖𝑖, 𝑅𝑅𝑖𝑖, is not infinite in real-world 14 
transportation systems. As the probability of the number of residual vehicles being infinite is 15 
negligible, the theoretically infinite space for the number of residual vehicles can be approximated 16 
as a finite space, denoted as 𝑆𝑆 = {0, 1, 2, 3, … , 𝑠𝑠 − 1}. This approximation enables the construction 17 
of the corresponding state transition matrix 𝑷𝑷 ∈ ℝ𝑠𝑠×𝑠𝑠, as shown in Table 2. This finite Markov 18 
chain has the following two properties: (1) It is irreducible, meaning that it only has one 19 
communication class; and (2) it is aperiodic due to the existence of self-transition. Based on the 20 
Markov chain stationary state theorem, a unique stationary distribution exists for such a finite 21 
Markov chain, and its limiting distribution converges to this stationary distribution. Consequently, 22 
the unique stationary distribution can be determined by solving the minimization problem 23 
described in Eq. (12). 24 

QED. 25 

It is important to emphasize that the proposed residual-vehicle model is generic, accommodating 26 
various arrival patterns that could follow any counting distribution. In the numerical experiments 27 
and application presented in Sections 5 and 6, Poisson distributions, which are commonly assumed 28 
as random arrival patterns at isolated junctions, are used for illustrative purposes. 29 

4.1.2 Convolutional constrained queue model 30 

𝑅𝑅𝑖𝑖−1 can be obtained from the residual-vehicle model, and 𝑁𝑁𝑖𝑖
(4) can be estimated using PDT or 31 

CDT methods. Referring Eq. (9), the distribution of 𝑁𝑁𝑖𝑖 can be derived by enumerating all possible 32 
combinations of 𝑅𝑅𝑖𝑖−1  and 𝑁𝑁𝑖𝑖

(4) . A Fourier transformation method can be employed to avoid 33 
tedious enumerations and efficiently perform the calculations. Further details are provided below. 34 

The probability distributions of 𝑅𝑅𝑖𝑖−1  and 𝑁𝑁𝑖𝑖
(4) , 𝑃𝑃(𝑅𝑅𝑖𝑖−1 = 𝑗𝑗) = π𝑗𝑗∗,∀𝑗𝑗 ∈ {0, 1, 2, … , 𝑠𝑠 − 1}, and 35 

𝑃𝑃�𝑁𝑁𝑖𝑖
(4) = 𝑗𝑗� = 𝑎𝑎𝑗𝑗 ,∀𝑗𝑗 ∈ {0, 1, 2, … , 𝑠𝑠1 − 1}, respectively, can be expressed in the following vector 36 

forms: 37 

𝒇𝒇𝑅𝑅𝑖𝑖−1 = �π0
∗ ,π1

∗ , … ,π𝑠𝑠−1
∗ , 0, 0, … , 0�������

𝑠𝑠1−1
� (13) 
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and 1 

𝒇𝒇𝑁𝑁𝑖𝑖
(4) = �𝑎𝑎0,𝑎𝑎1, … ,𝑎𝑎𝑠𝑠1−1, 0, 0, … , 0�������

𝑠𝑠−1
�, (14) 

where the 𝑠𝑠1 − 1 and 𝑠𝑠 − 1 zeros are augmented entries that ensure that the two vectors have the 2 
same dimensions. The probability distribution of 𝑁𝑁𝑖𝑖, 𝑃𝑃(𝑁𝑁𝑖𝑖 = 𝑗𝑗) = 𝑏𝑏𝑗𝑗 ,∀𝑗𝑗 ∈ {0, 1, 2, … , 𝑠𝑠 + 𝑠𝑠1 − 2}, 3 
can be obtained as 4 

𝒇𝒇𝑁𝑁𝑖𝑖 = 𝐹𝐹−1 �𝐹𝐹 �𝒇𝒇𝑁𝑁𝑖𝑖(4)�⨀𝐹𝐹 �𝒇𝒇𝑅𝑅𝑖𝑖−1��, (15) 

where 𝐹𝐹  is the discrete Fourier transform (DFT) function, 𝐹𝐹−1is the inverse DFT function, ⨀ 5 
represents element-wise multiplication, and 𝒇𝒇𝑁𝑁𝑖𝑖 = �𝑏𝑏0, 𝑏𝑏1, … , 𝑏𝑏𝑠𝑠+𝑠𝑠1−2�. 6 

Proof. Given probability distributions 𝒇𝒇𝑅𝑅𝑖𝑖−1  and 𝒇𝒇𝑁𝑁𝑖𝑖
(4) , the following possibilities for 𝑁𝑁𝑖𝑖  can be 7 

derived.  8 

If 𝑁𝑁𝑖𝑖 = 0, then 𝑅𝑅𝑖𝑖−1 = 𝑁𝑁𝑖𝑖
(4) = 0. The probability for this case is π0∗𝑎𝑎0. 9 

If 𝑁𝑁𝑖𝑖 = 1, two cases can be identified: (1) 𝑅𝑅𝑖𝑖−1 = 0 and 𝑁𝑁𝑖𝑖
(4) = 1 or (2) 𝑅𝑅𝑖𝑖−1 = 1 and 𝑁𝑁𝑖𝑖

(4) = 0, 10 
the probabilities for which are π0∗𝑎𝑎1 are π1∗𝑎𝑎0, respectively. Thus, the total probability for 𝑁𝑁𝑖𝑖 = 1 11 
is the sum of these two probabilities, i.e., π0∗𝑎𝑎1 + π1∗𝑎𝑎0. 12 

If 𝑁𝑁𝑖𝑖 = 2, three cases are possible: (1) when 𝑅𝑅𝑖𝑖−1 = 0 and 𝑁𝑁𝑖𝑖
(4) = 2, the probability is π0∗𝑎𝑎2; (2) 13 

when 𝑅𝑅𝑖𝑖−1 = 1 and 𝑁𝑁𝑖𝑖
(4) = 1, the probability is π1∗𝑎𝑎1; and (3) when 𝑅𝑅𝑖𝑖−1 = 2 and 𝑁𝑁𝑖𝑖

(4) = 0, the 14 
probability is π2∗𝑎𝑎0. Thus, the total probability for 𝑁𝑁𝑖𝑖 = 2 is π0∗𝑎𝑎2 + π1∗𝑎𝑎1 + π2∗𝑎𝑎0.  15 

All possible values of 𝑁𝑁𝑖𝑖 and corresponding probabilities can be enumerated in a similar manner. 16 
For the last possible value of 𝑁𝑁𝑖𝑖 , when 𝑁𝑁𝑖𝑖 = 𝑠𝑠 + 𝑠𝑠1 − 2, 𝑅𝑅𝑖𝑖−1 = 𝑠𝑠 − 1,𝑁𝑁𝑖𝑖

(4) = 𝑠𝑠1 − 1, and the 17 
corresponding probability is π𝑠𝑠−1∗ 𝑎𝑎𝑠𝑠1−1 . Therefore, the probability distribution of 𝑁𝑁𝑖𝑖  can be 18 
expressed as 19 

𝑏𝑏𝑗𝑗 = ∑ π𝑘𝑘∗𝑎𝑎𝑗𝑗−𝑘𝑘
𝑗𝑗
𝑘𝑘=0 , 𝑗𝑗 = 0, 1, 2, …, 𝑠𝑠 + 𝑠𝑠1 − 2, (16) 

where 𝑏𝑏𝑗𝑗 is the 𝑗𝑗𝑡𝑡ℎ entry of the probability vector 𝒇𝒇𝑁𝑁𝑖𝑖. Equation (16) can be alternatively expressed 20 
as a one-dimensional discrete linear convolution, as shown in Eq. (17): 21 

𝒇𝒇𝑁𝑁𝑖𝑖 = 𝒇𝒇𝑅𝑅𝑖𝑖−1
′ ∗ 𝒇𝒇

𝑁𝑁𝑖𝑖
(4)

′ , (17) 

where ∗ represents linear convolution; 𝒇𝒇𝑅𝑅𝑖𝑖−1
′ = [π0∗ ,π1∗ , … ,π𝑠𝑠−1∗ ]; and 𝒇𝒇

𝑁𝑁𝑖𝑖
(4)

′ = �𝑎𝑎0,𝑎𝑎1, … , 𝑎𝑎𝑠𝑠1−1�. 22 

According to convolution theory, 23 
𝒇𝒇𝑁𝑁𝑖𝑖 = 𝒇𝒇𝑅𝑅𝑖𝑖−1

′ ∗ 𝒇𝒇
𝑁𝑁𝑖𝑖

(4)
′ = 𝑅𝑅�𝒇𝒇𝑅𝑅𝑖𝑖−1 ⋇ 𝒇𝒇𝑁𝑁𝑖𝑖(4)�, (18) 

where ⋇ represents cyclic convolution; and 𝑅𝑅(∙) is a function that extracts the principal value 24 
sequence, which refers to the first 𝑠𝑠 + 𝑠𝑠1 − 1  values in 𝒇𝒇𝑅𝑅𝑖𝑖−1 ⋇ 𝒇𝒇𝑁𝑁𝑖𝑖(4) . Based on the cyclic 25 
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convolution theorem, the following expression can be obtained:  1 

𝐹𝐹 �𝑅𝑅 �𝒇𝒇𝑅𝑅𝑖𝑖−1
⋇ 𝒇𝒇𝑁𝑁𝑖𝑖(4)�� = 𝐹𝐹 �𝒇𝒇𝑅𝑅𝑖𝑖−1

�⨀𝐹𝐹 �𝒇𝒇𝑁𝑁𝑖𝑖(4)�. (19) 

Substituting Eq. (19) into Eq. (18) yields the probability distribution of 𝑁𝑁𝑖𝑖 as 2 
𝒇𝒇𝑁𝑁𝑖𝑖 = 𝐹𝐹−1 �𝐹𝐹 �𝒇𝒇𝑁𝑁𝑖𝑖(4)�⨀𝐹𝐹�𝒇𝒇𝑅𝑅𝑖𝑖−1��. (20) 

QED. 3 

4.2 Estimation of 𝑹𝑹𝒊𝒊−𝟏𝟏
(𝟏𝟏)  4 

The constrained residual queue and observable residual queue models are used to estimate the 5 
probability distributions of 𝑅𝑅𝑖𝑖−1

(1,2) and 𝑅𝑅𝑖𝑖−1
(1) , respectively. 6 

4.2.1 Constrained residual queue model 7 

Given the probability distributions of 𝑁𝑁𝑖𝑖−1, 𝑃𝑃(𝑁𝑁𝑖𝑖−1 = 𝑘𝑘),∀𝑘𝑘 ∈ ℕ, the probability distribution of 8 
𝑅𝑅𝑖𝑖−1

(1,2) can be expressed as  9 

𝑃𝑃�𝑅𝑅𝑖𝑖−1
(1,2) = 𝑗𝑗� = �∑ 𝑃𝑃(𝑁𝑁𝑖𝑖−1 = 𝑘𝑘), 𝑖𝑖𝑖𝑖 𝑗𝑗 = 0𝐷𝐷∗

𝑘𝑘=0
𝑃𝑃(𝑁𝑁𝑖𝑖−1 = 𝐷𝐷∗ + 𝑗𝑗), 𝑖𝑖𝑖𝑖  𝑗𝑗 > 0

. (21) 

Proof. If 𝑁𝑁𝑖𝑖−1 = 0, 1, 2, … ,𝐷𝐷∗, all vehicles in the constrained queue can be discharged. Therefore, 10 

no constrained residual queue exists, and 𝑃𝑃�𝑅𝑅𝑖𝑖−1
(1,2) = 0� = ∑ 𝑃𝑃(𝑁𝑁𝑖𝑖−1 = 𝑘𝑘)𝐷𝐷∗

𝑘𝑘=0 . 11 

If 𝑁𝑁𝑖𝑖−1 = 𝐷𝐷∗ + 1, one constrained residual vehicle will be carried over to cycle 𝑖𝑖, i.e., 𝑅𝑅𝑖𝑖−1
(1,2) = 1. 12 

Thus, 𝑃𝑃�𝑅𝑅𝑖𝑖−1
(1,2) = 1� = 𝑃𝑃(𝑁𝑁𝑖𝑖−1 = 𝐷𝐷∗ + 1). Similarly, the probabilities of all possible values of 13 

𝑅𝑅𝑖𝑖−1
(1,2) are 𝑃𝑃�𝑅𝑅𝑖𝑖−1

(1,2) = 𝑗𝑗� = 𝑃𝑃(𝑁𝑁𝑖𝑖−1 = 𝐷𝐷∗ + 𝑗𝑗),∀𝑗𝑗 > 0. Therefore, the probability distribution of 14 

𝑅𝑅𝑖𝑖−1
(1,2) can be obtained, as shown in Eq. (21).  15 

QED. 16 

4.2.2 Observable residual queue model 17 

Given the probability distribution of 𝑅𝑅𝑖𝑖−1
(1,2), 𝑃𝑃�𝑅𝑅𝑖𝑖−1

(1,2) = 𝑗𝑗�, ∀𝑗𝑗 ∈ {0, 1, 2, … , 𝑙𝑙 − 1}, obtained from 18 

the constrained residual queue model; CV penetration rate 𝑝𝑝; and identity of a vehicle being either 19 
a CV or a non-CV following a Bernoulli distribution with parameter 𝑝𝑝, the probability distribution 20 
of 𝑅𝑅𝑖𝑖−1

(1)  can be expressed as  21 

𝑃𝑃(𝑅𝑅𝑖𝑖−1
(1) = 𝑗𝑗) = � 𝑓𝑓

𝑅𝑅𝑖𝑖−1
(1,2)
𝑗𝑗,𝑘𝑘 𝑥𝑥1−𝑝𝑝

𝑗𝑗,𝑘𝑘
𝑙𝑙−1−𝑗𝑗

𝑘𝑘=0

, ∀𝑗𝑗 = 0, 1, 2, … , 𝑙𝑙 − 1, (22) 

where 22 
𝑓𝑓
𝑅𝑅𝑖𝑖−1

(1,2)
𝑗𝑗,𝑘𝑘 = 𝑃𝑃�𝑅𝑅𝑖𝑖−1

(1,2) = 𝑘𝑘�𝐻𝐻𝑙𝑙,𝑙𝑙−𝑗𝑗,𝑘𝑘
−1 ,∀𝑘𝑘 = 0, 1, 2, … , 𝑙𝑙 − 1, (23) 

𝐻𝐻𝑙𝑙,𝑙𝑙−𝑗𝑗,𝑘𝑘
−1 = �1, 𝑖𝑖𝑖𝑖 𝑘𝑘 = 𝑗𝑗, 𝑗𝑗 + 1, … , 𝑙𝑙 − 1

0,                        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, (24) 
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𝑥𝑥1−𝑝𝑝
𝑗𝑗,𝑘𝑘 = �

(1 − 𝑝𝑝)𝑘𝑘,                    𝑖𝑖𝑖𝑖 𝑗𝑗 = 0
𝑝𝑝𝑥𝑥1−𝑝𝑝

0,𝑘𝑘 𝐻𝐻𝑙𝑙,𝑙𝑙−𝑗𝑗,𝑘𝑘,            𝑖𝑖𝑖𝑖 𝑗𝑗 = 1

 𝑥𝑥1−𝑝𝑝
𝑗𝑗−1,𝑘𝑘𝐻𝐻𝑙𝑙,𝑙𝑙−𝑗𝑗,𝑘𝑘,          𝑖𝑖𝑖𝑖 𝑗𝑗 > 1

, (25) 

𝐻𝐻𝑙𝑙,𝑙𝑙−𝑗𝑗,𝑘𝑘 = �1, 𝑖𝑖𝑖𝑖 𝑘𝑘 = 0, 1, … , 𝑙𝑙 − 𝑗𝑗 − 1
0,                        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . (26) 

Proof. Given the probability distribution of 𝑅𝑅𝑖𝑖−1
(1,2) ,  𝑃𝑃�𝑅𝑅𝑖𝑖−1

(1,2) = 𝑗𝑗�,∀𝑗𝑗 ∈ {0, 1, 2, … , 𝑙𝑙 − 1} ; CV 1 

penetration rate 𝑝𝑝; and identity of a vehicle being either a CV or a non-CV following a Bernoulli 2 
distribution with parameter 𝑝𝑝, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝), the following possibilities can be derived. 3 

If 𝑅𝑅𝑖𝑖−1
(1,2) = 0, 𝑅𝑅𝑖𝑖−1

(1)  must be 0. The probability for this case is 𝑃𝑃(𝑅𝑅𝑖𝑖−1
(1,2) = 0). 4 

If 𝑅𝑅𝑖𝑖−1
(1,2) = 1, 𝑅𝑅𝑖𝑖−1

(1)  can either be 0 or 1. If 𝑅𝑅𝑖𝑖−1
(1) = 0, i.e., the constrained vehicle is a non-CV, the 5 

corresponding probability is 𝑃𝑃(𝑅𝑅𝑖𝑖−1
(1,2) = 1)(1 − 𝑝𝑝). If 𝑅𝑅𝑖𝑖−1

(1) = 1, i.e., the constrained vehicle is a 6 

CV, the corresponding probability is 𝑃𝑃(𝑅𝑅𝑖𝑖−1
(1,2) = 1)𝑝𝑝. 7 

If 𝑅𝑅𝑖𝑖−1
(1,2) = 2, 𝑅𝑅𝑖𝑖−1

(1)  may be 0, 1, or 2. If 𝑅𝑅𝑖𝑖−1
(1) = 0, i.e., all constrained vehicles are non-CVs, the 8 

corresponding probability is 𝑃𝑃(𝑅𝑅𝑖𝑖−1
(1,2) = 2)(1 − 𝑝𝑝)2. If 𝑅𝑅𝑖𝑖−1

(1) = 1, i.e., the first vehicle in 𝑅𝑅𝑖𝑖−1
(1,2) is 9 

a CV and the second vehicle is a non-CV, the corresponding probability is 𝑃𝑃(𝑅𝑅𝑖𝑖−1
(1,2) = 2)𝑝𝑝(1 − 𝑝𝑝). 10 

If 𝑅𝑅𝑖𝑖−1
(1) = 2, which means that the first vehicle can either be a CV or a non-CV but the second 11 

vehicle must be a CV, the corresponding probability is 𝑃𝑃(𝑅𝑅𝑖𝑖−1
(1,2) = 2)𝑝𝑝. Similarly, if 𝑅𝑅𝑖𝑖−1

(1,2) = 𝑘𝑘, 12 

∀𝑘𝑘 ∈ ℤ, all possible value of 𝑅𝑅𝑖𝑖−1
(1)  can be enumerated along with their corresponding probabilities, 13 

as indicated in Table 4. 14 

Table 4. Enumeration of all possible values of 𝑅𝑅𝑖𝑖−1
(1)  and corresponding probabilities when 𝑅𝑅𝑖𝑖−1(1,2) = 𝑘𝑘. 15 

𝑅𝑅𝑖𝑖−1
(1)  Probability 
0 𝑃𝑃(𝑅𝑅𝑖𝑖−1

(1,2) = 𝑘𝑘)(1 − 𝑝𝑝)𝑘𝑘 
1 𝑃𝑃(𝑅𝑅𝑖𝑖−1

(1,2) = 𝑘𝑘)𝑝𝑝(1 − 𝑝𝑝)𝑘𝑘−1 
2 𝑃𝑃(𝑅𝑅𝑖𝑖−1

(1,2) = 𝑘𝑘)𝑝𝑝(1 − 𝑝𝑝)𝑘𝑘−2 
  ⋮   ⋮ 
k 𝑃𝑃(𝑅𝑅𝑖𝑖−1

(1,2) = 𝑘𝑘)𝑝𝑝 

By grouping the probabilities of the same value of 𝑅𝑅𝑖𝑖−1
(1)  from the enumerations of different values 16 

of 𝑅𝑅𝑖𝑖−1
(1,2), the probability distribution of 𝑅𝑅𝑖𝑖−1

(1)  can be obtained as follows: 17 
𝑃𝑃�𝑅𝑅𝑖𝑖−1

(1) = 0� =  𝑃𝑃�𝑅𝑅𝑖𝑖−1
(1,2) = 0� + 𝑃𝑃�𝑅𝑅𝑖𝑖−1

(1,2) = 1�(1 − p) + ⋯+ 𝑃𝑃�𝑅𝑅𝑖𝑖−1
(1,2) = 𝑘𝑘�(1 − 𝑝𝑝)𝑘𝑘  

                         = ��𝑃𝑃�𝑅𝑅𝑖𝑖−1
(1,2) = 0�,𝑃𝑃�𝑅𝑅𝑖𝑖−1

(1,2) = 1�, … ,𝑃𝑃�𝑅𝑅𝑖𝑖−1
(1,2) = 𝑘𝑘�� ⊙ [1, 1 − 𝑝𝑝, … , (1 − 𝑝𝑝)𝑘𝑘]�

1
,  

 
(27) 

𝑃𝑃�𝑅𝑅𝑖𝑖−1
(1) = 1� =  𝑃𝑃�𝑅𝑅𝑖𝑖−1

(1,2) = 1�𝑝𝑝 + 𝑃𝑃�𝑅𝑅𝑖𝑖−1
(1,2) = 2�𝑝𝑝(1 − 𝑝𝑝) + ⋯+ 𝑃𝑃�𝑅𝑅𝑖𝑖−1

(1,2) = 𝑘𝑘�𝑝𝑝(1 − 𝑝𝑝)𝑘𝑘−1  
                         = ��𝑃𝑃�𝑅𝑅𝑖𝑖−1

(1,2) = 1�,𝑃𝑃�𝑅𝑅𝑖𝑖−1
(1,2) = 2�, … ,𝑃𝑃�𝑅𝑅𝑖𝑖−1

(1,2) = 𝑘𝑘�� ⊙ [𝑝𝑝, 𝑝𝑝(1 − 𝑝𝑝), … , 𝑝𝑝(1 − 𝑝𝑝)𝑘𝑘−1]�
1

,  (28) 

⋮ 18 
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𝑃𝑃�𝑅𝑅𝑖𝑖−1
(1) = 𝑘𝑘� = 𝑃𝑃�𝑅𝑅𝑖𝑖−1

(1,2) = 𝑘𝑘�𝑝𝑝 = ��𝑃𝑃�𝑅𝑅𝑖𝑖−1
(1,2) = 𝑘𝑘�� ⊙ [𝑝𝑝]�

1
.  (29) 

Alternatively, the probability distribution of 𝑅𝑅𝑖𝑖−1
(1)  can be written as in Eqs. (22)–(26). 1 

QED. 2 

4.3 Estimation of 𝑸𝑸𝒊𝒊 3 

This subsection describes the establishment of the MCQL model. The probability distributions of 4 

𝑁𝑁𝑖𝑖  and 𝑅𝑅𝑖𝑖−1
(1) , 𝑃𝑃(𝑁𝑁𝑖𝑖 = 𝑗𝑗) = 𝑏𝑏𝑗𝑗 ,∀𝑗𝑗 ∈ {0, 1, 2, … , 𝑠𝑠 + 𝑠𝑠1 − 2}  and 𝑃𝑃�𝑅𝑅𝑖𝑖−1

(1) = 𝑗𝑗� = 𝑐𝑐𝑗𝑗,∀𝑗𝑗 ∈5 

{0, 1, 2, … , 𝑙𝑙 − 1}, respectively, can be expressed in the following vector forms: 6 
𝒇𝒇𝑁𝑁𝑖𝑖 = �𝑏𝑏0,𝑏𝑏1, … , 𝑏𝑏𝑠𝑠+𝑠𝑠1−2�, (30) 

 7 
and 8 

𝒇𝒇𝑅𝑅𝑖𝑖−1
(1) = �𝑐𝑐0, 𝑐𝑐1, … , 𝑐𝑐𝑙𝑙−1, 0, 0, … , 0�������

𝑠𝑠+𝑠𝑠1−𝑙𝑙−1
�. (31) 

 9 
The probability distribution of 𝑄𝑄𝑖𝑖, 𝑃𝑃(𝑄𝑄𝑖𝑖 = 𝑗𝑗) = 𝑑𝑑𝑗𝑗 ,∀𝑗𝑗 ∈ {0, 1, 2, … , 𝑠𝑠 + 𝑠𝑠1 − 𝑙𝑙 − 1}, is given by 10 

�𝒇𝒇𝑄𝑄𝑖𝑖 𝜺𝜺� = 𝐹𝐹−1 �𝐹𝐹 �𝒇𝒇𝑁𝑁𝑖𝑖� ⊘ 𝐹𝐹 �𝒇𝒇𝑅𝑅𝑖𝑖−1
(1) ��, (32) 

 11 
where ⊘  represents element-wise division; 𝜺𝜺  is a redundant vector; and 𝒇𝒇𝑄𝑄𝑖𝑖 =12 
�𝑑𝑑0,𝑑𝑑1, … , 𝑑𝑑𝑠𝑠+𝑠𝑠1−𝑙𝑙−1� is the target probability vector for 𝑄𝑄𝑖𝑖. 13 

Proof. Rearranging Eq. (8) yields the following expression:  14 
𝑁𝑁𝑖𝑖 = 𝑅𝑅𝑖𝑖−1

(1) + 𝑄𝑄𝑖𝑖. (33) 

According to the convolutional constrained queue model, 15 

𝒇𝒇𝑁𝑁𝑖𝑖 = 𝐹𝐹−1 �𝐹𝐹 �𝒇𝒇𝑅𝑅𝑖𝑖−1
(1) �⨀𝐹𝐹([𝒇𝒇𝑄𝑄𝑖𝑖 𝜺𝜺])�. (34) 

Applying DFT to both sides of Eq. (34), the following expression can be obtained: 16 

𝐹𝐹(𝒇𝒇𝑁𝑁𝑖𝑖) = 𝐹𝐹 �𝒇𝒇𝑅𝑅𝑖𝑖−1
(1) �⨀𝐹𝐹��𝒇𝒇𝑄𝑄𝑖𝑖 𝜺𝜺��. (35) 

As 𝒇𝒇𝑅𝑅𝑖𝑖−1
(1) > 𝟎𝟎, 𝐹𝐹 �𝒇𝒇𝑅𝑅𝑖𝑖−1

(1) � ≠ 𝟎𝟎. Thus, it can be shown that  17 

�𝒇𝒇𝑄𝑄𝑖𝑖 𝜺𝜺� = 𝐹𝐹−1 �𝐹𝐹 �𝒇𝒇𝑁𝑁𝑖𝑖� ⊘ 𝐹𝐹 �𝒇𝒇𝑅𝑅𝑖𝑖−1
(1) ��. (36) 

QED. 18 

The derived distribution of 𝑄𝑄𝑖𝑖 can be substituted into the PPR model to estimate the uncertainty in 19 
the CV penetration rate.  20 

5 Numerical Experiments 21 
Detailed numerical experiments were conducted to evaluate the effectiveness of the proposed 22 
MCQL model in estimating the uncertainty in the CV penetration rate. The probability 23 
distributions of 𝑁𝑁𝑖𝑖

(4), which represent an essential input for the MCQL model, can be estimated by 24 
either the PDT model or the CDT model. The MCQL models combined with the PDT and CDT 25 



 15 

models to capture the residual-vehicle effects are designated as MCQL-P and MCQL-C model, 1 
respectively. As mentioned previously, if the PDT or CDT model was directly used in the 2 
uncertainty estimation of the CV penetration rate, the effects of the residual vehicle would be 3 
ignored. Thus, the performances of the MCQL-P and MCQL-C models were compared with the 4 
PDT and CDT models, respectively, across various cases involving different signal plans, volume-5 
to-capacity (V/C) ratios, and CV penetration rates. For each case, 1,000 cycles were simulated. By 6 
applying the SSDPRE method (Wong et al., 2019) to each cycle, 1,000 estimates of the CV 7 
penetration rates were obtained. The variance of these estimates served as the ground truth for 8 
evaluating the accuracy and effectiveness of the MCQL-P and MCQL-C models. 9 

To realistically mimic the queuing process, experiments were conducted using the VISSIM 10 
platform in a Windows 10 environment, over a machine equipped with an Intel Core i7-10700 11 
CPU. The vehicles approached the signalized intersection through a single-lane link with a length 12 
of 1 km. The cycle length was set as 60 s, with the green period always ending with a 3-s amber 13 
phase. Vehicle generation followed a Poisson distribution, and the saturation headway was 14 
determined to be 1.59 s. All vehicles in the experiments were cars, and default values were 15 
maintained for the remaining settings. In general, drivers’ reaction times and vehicles’ acceleration 16 
and deceleration times lead to a net loss of red time and dissipation time in capturing the 17 
constrained queue sets. Ignoring these braking and start-up motions would lead to overestimation 18 
of the constrained queue length. To account for these factors, Jia et al. (2023) introduced a constant 19 
time-loss model to calibrate the net loss of red time. Based on the simulations, the net losses of red 20 
times of the PDT and CDT models were determined to be 5.820 s and 9.141 s, respectively. Details 21 
of the calibration procedure can be found in the work of Jia et al. (2023). 22 

Table 5 presents the results obtained using the PDT and MCQL-P models for simulation cases 23 
featuring a constant CV penetration rate of 0.4 with varying signal plans and V/C ratios. Table 6 24 
summarizes the results of the PDT and MCQL-P models for simulation cases with a fixed signal 25 
plan, including a 30-second red period, and varying V/C ratios and CV penetration rates. The 26 
findings clearly illustrate that the proposed MCQL-P model outperforms the PDT model in terms 27 
of absolute percentage errors (APE) while incurring minimal computational time overhead. This 28 
superiority is particularly evident in scenarios characterized by high V/C ratios, where the residual-29 
vehicle effect is substantial. These results emphasize the importance of incorporating residual-30 
vehicle effects for accurately estimating the uncertainty in CV penetration rate. Even in low V/C 31 
ratio scenarios, the proposed MCQL-P model consistently performs comparably or slightly better 32 
than the pure PDT model, further demonstrating the universality of the proposed model. 33 

Table 7 compares the performances of the CDT and MCQL-C models in simulation cases with a 34 
constant CV penetration rate of 0.4 but different signal plans and V/C ratios. Table 8 summarizes 35 
the results of the CDT and MCQL-C models for simulation cases with a fixed signal plan including 36 
a 30-s red period but different V/C ratios and CV penetration rates. The CDT model, which is a 37 
simplified model to estimate the distribution of 𝑁𝑁𝑖𝑖

(4), was less accurate but more robust than the 38 
PDT model. In other words, the CDT model was less sensitive than the PDT model to residual-39 
vehicle effects. As expected, the proposed MCQL-C model achieved similar or slightly improved 40 
results compared with the CDT model. Notably, the MCQL-P outperformed the MCQL-C model. 41 
Overall, using the proposed MCQL model, the PPR model can be applied to all undersaturation 42 
scenarios, irrespective of the presence of residual vehicles. This improvement can enhance the 43 
practicality of the PPR model.  44 
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Table 5. Comparative performance of PDT and proposed MCQL-P models in scenarios with 1 
varying signal plans and V/C ratios. 2 

r V/C 
Ground 

truth 
PDT 

w/o residual vehicles 
Proposed MCQL-P 
w/ residual vehicles  

Variance Variance APE (%) Variance APE (%) 
15 0.3 0.17408 0.16213 6.86 0.15868 8.85 
15 0.5 0.16787 0.16000 4.69 0.16371 2.48 
15 0.7 0.14107 0.12922 8.40 0.13617 3.47 
15 0.95 0.09138 0.10175 11.35 0.09039 1.08 
30 0.3 0.17076 0.17246 1.00 0.17339 1.54 
30 0.5 0.12779 0.13013 1.83 0.13371 4.63 
30 0.7 0.08236 0.08345 1.32 0.08250 0.17 
30 0.95 0.04013 0.05666 41.19 0.04072 1.47 
45 0.3 0.18275 0.17757 2.83 0.17728 2.99 
45 0.5 0.15149 0.16055 5.98 0.15993 5.57 
45 0.7 0.10344 0.12411 19.98 0.11097 7.28 
45 0.95 0.09052 0.11762 29.94 0.10026 10.76 
Mean computing time (s) - - 8.076 - 8.106 

Table 6. Comparative performance of PDT and proposed MCQL-P models in scenarios with 3 
varying V/C ratios and CV penetration rates. 4 

V/C p 
Ground 

truth 
PDT 

w/o residual vehicles 
Proposed MCQL-P 
w/ residual vehicles 

Variance Variance APE (%) Variance APE (%) 
0.3 0.1 0.08075 0.07598 5.91 0.07571 6.24 
0.3 0.4 0.17076 0.17246 1.00 0.17339 1.54 
0.3 0.7 0.12647 0.13526 6.95 0.13668 8.07 
0.5 0.1 0.07639 0.07244 5.17 0.07307 4.35 
0.5 0.4 0.12779 0.13013 1.83 0.13371 4.63 
0.5 0.7 0.09021 0.09200 1.98 0.09517 5.50 
0.7 0.1 0.05813 0.06097 4.89 0.06044 3.97 
0.7 0.4 0.08236 0.08345 1.32 0.08250 0.17 
0.7 0.7 0.05347 0.05523 3.29 0.05474 2.38 
0.95 0.1 0.03951 0.05071 28.35 0.03784 4.23 
0.95 0.4 0.04013 0.05666 41.19 0.04072 1.47 
0.95 0.7 0.02549 0.03710 45.55 0.02785 9.26 
Mean computing time (s) - - 8.735 - 8.765 

Table 7. Comparative performance of CDT and proposed MCQL-C models in scenarios with 5 
varying signal plans and V/C ratios. 6 

r V/C 
Ground 

truth 
CDT 

w/o residual vehicles 
Proposed MCQL-C 
w/ residual vehicles 

Variance Variance APE (%) Variance APE (%) 
15 0.3 0.17408 0.17034 2.15 0.15199 12.69 
15 0.5 0.16787 0.17649 5.13 0.18383 9.51 
15 0.7 0.14107 0.11758 16.65 0.14675 4.03 
15 0.95 0.09138 0.06149 32.71 0.07326 19.83 
30 0.3 0.17076 0.18209 6.64 0.18358 7.51 
30 0.5 0.12779 0.13244 3.64 0.14203 11.14 
30 0.7 0.08236 0.07350 10.76 0.07791 5.40 
30 0.95 0.04013 0.04259 6.13 0.03351 16.50 
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45 0.3 0.18275 0.18260 0.08 0.18141 0.73 
45 0.5 0.15149 0.16671 10.05 0.16780 10.77 
45 0.7 0.10344 0.12575 21.57 0.11335 9.58 
45 0.95 0.09052 0.11829 30.68 0.10136 11.98 
Mean computing time (s) - - 0.001 - 0.048 

Table 8. Comparative performance of CDT and proposed MCQL-C models in scenarios with 1 
varying V/C ratios and CV penetration rates. 2 

V/C p 
Ground 

truth 
CDT 

w/o residual vehicles 
Proposed MCQL-C 
w/ residual vehicles 

Variance Variance APE (%) Variance APE (%) 
0.3 0.1 0.08075 0.07834 2.98 0.07742 4.12 
0.3 0.4 0.17076 0.18209 6.64 0.18358 7.51 
0.3 0.7 0.12647 0.14387 13.76 0.14694 16.19 
0.5 0.1 0.07639 0.07450 2.47 0.07602 0.48 
0.5 0.4 0.12779 0.13244 3.64 0.14203 11.14 
0.5 0.7 0.09021 0.09087 0.73 0.09961 10.42 
0.7 0.1 0.05813 0.06068 4.39 0.06158 5.93 
0.7 0.4 0.08236 0.07350 10.76 0.07791 5.40 
0.7 0.7 0.05347 0.04584 14.27 0.04904 8.29 
0.95 0.1 0.03951 0.04794 21.34 0.03659 7.39 
0.95 0.4 0.04013 0.04259 6.13 0.03351 16.50 
0.95 0.7 0.02549 0.02745 7.69 0.02268 11.02 
Mean computing time (s) - - 0.001 - 0.050 

6 Application 3 
The performance of the proposed MCQL model was evaluated using the real-world NGSIM 4 
dataset. Additionally, an illustrative example of a stochastic CV-based adaptive signal control was 5 
considered to demonstrate that by modelling the residual vehicle effect in estimating CV 6 
penetration rate uncertainty, the proposed models can further improve the performance of practical 7 
traffic management scenarios under uncertain conditions. 8 

6.1 Real-world validation 9 

The proposed MCQL model was applied to the real-world NGSIM dataset to demonstrate its 10 
applicability and practicality. Specifically, trajectory data from two 15-min periods on November 11 
8, 2006, i.e., 12:45–13:00 and 16:00–16:15, were extracted from the arterial road data for Peachtree 12 
Street in Atlanta, Georgia, USA. The validation focused on the southbound through-lane between 13 
Intersections 1 and 2. The cycle lengths and red durations for the two periods were 95 s, 100 s and 14 
62 s, 64 s, respectively. The saturation headway was determined to be 2.044 s.  15 

The CV penetration rate was set as 0.1, 0.4, or 0.7. Each vehicle was randomly assigned to be 16 
either a CV or non-CV, based on the pre-set CV penetration rates. Next, the SSDPRE method was 17 
applied to each constrained queue to obtain a set of estimated CV penetration rates that formed a 18 
distribution. Due to the limited amount of available data (only nine complete cycles in a 15-min 19 
period), the variance of the CV penetration rate distribution exhibited fluctuations caused by the 20 
random seeds used during the CV assignments. To mitigate the effect of this sampling error, the 21 
nine constrained queues were replicated 10,000 times. By repeating this CV assignment to the 22 
replications with different random seeds, 10,000 CV penetration rate distributions and 23 
corresponding variances were obtained. The mean of these 10,000 variances was considered the 24 
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ground truth for evaluation. 1 

As described in the previous section, the performances of the MCQL-P and MCQL-C models were 2 
compared with those of the PDT and CDT models, respectively. The V/C ratios for the two periods 3 
were low, approximately 0.41 and 0.50, which indicated that the residual-vehicle effects were not 4 
significant. Consequently, the proposed methods were expected to perform comparably to the PDT 5 
and CDT models. Tables 9 and 10 indicate that the proposed methods exhibited similar or superior 6 
performance compared with their PDT and CDT counterparts. These results highlight the 7 
versatility of the MCQL model in handling undersaturation scenarios, regardless of the presence 8 
of residual vehicles. 9 

Table 9. Performance comparison of the PDT and proposed MCQL models on the NGSIM 10 
dataset. 11 

Period p Ground truth PDT 
w/o residual vehicles 

Proposed MCQL-P 
w/ residual vehicles 

Variance Variance APE (%) Variance APE (%) 

12:45–
13:00 

0.1 0.07318 0.07336 0.25 0.07364 0.63 
0.4 0.15138 0.13161 13.06 0.13321 12.00 
0.7 0.11441 0.09217 19.44 0.09360 18.19 

Mean    10.91  10.27 

16:00–
16:15 

0.1 0.06249 0.06774 8.40 0.06809 8.96 
0.4 0.10184 0.10435 2.46 0.10588 3.97 
0.7 0.07313 0.06962 4.80 0.07082 3.16 

Mean    5.22  5.36 

Table 10. Performance comparison of the CDT and proposed MCQL models on the NGSIM 12 
dataset.  13 

Period p Ground truth CDT 
w/o residual vehicles 

Proposed MCQL-C 
w/ residual vehicles 

Variance Variance APE (%) Variance APE (%) 

12:45–
13:00 

0.1 0.07318 0.07463 1.98 0.07529 2.88 
0.4 0.15138 0.13321 12.00 0.13722 9.35 
0.7 0.11441 0.09156 19.97 0.09516 16.83 

Mean    11.32  9.69 

16:00–
16:15 

0.1 0.06249 0.06852 9.65 0.06940 11.06 
0.4 0.10184 0.10248 0.63 0.10641 4.49 
0.7 0.07313 0.06624 9.42 0.06928 5.26 

Mean    6.57  6.94 

6.2 Illustrative application of stochastic CV-based adaptive signal control 14 

To demonstrate the importance of modeling the residual-vehicle effects, a simple example 15 
application of stochastic CV-based adaptive signal control was implemented based on VISSIM. 16 
Due to limited computational resources, only the more efficient CDT and MCQL-C models were 17 
selected for the illustration. Nevertheless, in real-world scenarios with access to large-scale 18 
computer clusters and high-performance GPUs, both PDT and MCQL-P models can be practically 19 
applied. Two adaptive signal control schemes were considered. In Scheme A, the residual-vehicle 20 
effects were not considered in the CV penetration rate uncertainty estimation, and the optimal 21 
signal plan was identified. In Scheme B, residual-vehicle effects were incorporated into the 22 
estimation of the CV penetration rate uncertainty and stochastic CV-based adaptive signal 23 
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optimizations.  1 

The simulation involved a crossroad with two approaches at an isolated intersection. The traffic 2 
demands for both approaches were generated using Poisson distributions. Two traffic demand 3 
settings were implemented: in Setting 1, approaches 1 and 2 had average flow rates of 800 and 400 4 
vehicles per hour, respectively; and in Setting 2, approaches 1 and 2 had average flow rates of 5 
1,200 and 600 vehicles per hour, respectively. The V/C ratios at the intersection for Settings 1 and 6 
2 were approximately 0.61 and 0.92, respectively. In other words, the residual-vehicle effects were 7 
relatively light and significant in Settings 1 and 2, respectively. The CV penetration rate was set 8 
as 0.1 or 0.4, indicating that each generated vehicle had a 10% or 40% probability of being a CV 9 
and 90% or 60% probability of being a non-CV. A simple red–green–amber signal structure was 10 
used for each approach, with a cycle length of 60 s, an amber time of 3 s, and a clearance time of 11 
5 s. The saturation headway was determined to be 1.59 s. Signal optimization was performed at 12 
the end of each cycle based on the estimated real-time traffic demands. 13 

For any approach 𝑗𝑗 at the isolated intersection, ∀𝑗𝑗 ∈ {1,2}, the total number of vehicle arrivals in 14 
cycle 𝑖𝑖 on approach 𝑗𝑗, 𝑀𝑀𝑖𝑖,𝑗𝑗, is the sum of the number of CVs and the number of non-CVs in cycle 15 
𝑖𝑖 on approach 𝑗𝑗 and can be estimated by 16 

𝑀𝑀𝑖𝑖,𝑗𝑗 = 𝑚𝑚𝑖𝑖,𝑗𝑗 + 𝑞𝑞𝑖𝑖,𝑗𝑗�1 − 𝑝𝑝𝑖𝑖,𝑗𝑗�𝐶𝐶, (37) 

where 𝑚𝑚𝑖𝑖,𝑗𝑗  represents the number of CV arrivals in cycle 𝑖𝑖 on approach 𝑗𝑗, 𝑞𝑞𝑖𝑖,𝑗𝑗  is the real-time 17 
average arrival rate in cycle 𝑖𝑖 on approach 𝑗𝑗, 𝑝𝑝𝑖𝑖,𝑗𝑗 is the real-time CV penetration rate in cycle 𝑖𝑖 on 18 
approach 𝑗𝑗, and 𝐶𝐶 represents the cycle length. The product of 𝑞𝑞𝑖𝑖,𝑗𝑗 and �1 − 𝑝𝑝𝑖𝑖,𝑗𝑗� gives the average 19 
arrival rate of non-CVs in cycle 𝑖𝑖 on approach 𝑗𝑗. Thus, 𝑀𝑀𝑖𝑖,𝑗𝑗 and its variability depend on 𝑝𝑝𝑖𝑖,𝑗𝑗 and 20 
its variability. In addition to 𝑚𝑚𝑖𝑖,𝑗𝑗, the CV environment enables the observation of 𝑛𝑛𝑖𝑖,𝑗𝑗 and 𝑁𝑁�𝑖𝑖,𝑗𝑗. 21 
Based on the CDT or MCQL-C model and Corollary 2 (presented in Appendix A), a likelihood 22 
function can be established to maximize the probability of observing 𝑛𝑛𝑖𝑖,𝑗𝑗 and 𝑁𝑁�𝑖𝑖,𝑗𝑗 by estimating 23 
the real-time average arrival rate, 𝑞𝑞𝑖𝑖,𝑗𝑗, and CV penetration rate, 𝑝𝑝𝑖𝑖,𝑗𝑗: 24 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞𝑖𝑖,𝑗𝑗,𝑝𝑝𝑖𝑖,𝑗𝑗

�𝑃𝑃(𝑛𝑛𝑖𝑖−𝑘𝑘,𝑗𝑗,𝑁𝑁�𝑖𝑖−𝑘𝑘,𝑗𝑗)
𝑇𝑇

𝑘𝑘=0

, (38) 

where 𝑇𝑇 = 0, 1, 2, … , 𝑖𝑖 − 1 is the number of past cycles considered in the likelihood function 25 
formulation (in this example, 𝑇𝑇 was set as 2). The maximum likelihood estimators 𝑞𝑞𝑖𝑖,𝑗𝑗∗  and  𝑝𝑝𝑖𝑖,𝑗𝑗∗  26 
can be considered the estimated real-time average arrival rate in cycle 𝑖𝑖 on approach 𝑗𝑗, 𝑞𝑞𝑖𝑖,𝑗𝑗, and 27 
the estimated real-time CV penetration rate in cycle 𝑖𝑖 on approach 𝑗𝑗, 𝐸𝐸(𝑝𝑝𝑖𝑖,𝑗𝑗), respectively. These 28 
estimates can then be used as inputs of the CDT or MCQL-C model and Corollary 1 to estimate 29 
the real-time CV penetration rate variance, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝𝑖𝑖,𝑗𝑗).  30 

In Scheme A, only the CDT model was used for variance estimation. The CV penetration rate 𝑝𝑝𝑖𝑖,𝑗𝑗 31 
was assumed to follow a beta distribution with parameters 𝐸𝐸(𝑝𝑝𝑖𝑖,𝑗𝑗)  and 𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝𝑖𝑖,𝑗𝑗� , as it was 32 
confined between 0 and 1. Monte Carlo sampling was performed to sample 1,000 pairs of the 33 
possible CV penetration rates for both approaches from the assumed beta distributions. Using Eq. 34 
(37), 1,000 pairs of possible traffic demands were estimated based on the sampled CV penetration 35 
rates. For each pair of traffic demands, the predicted real-time delays of the two approaches for 36 
Scheme A in cycle 𝑖𝑖 + 1, 𝐷𝐷𝑖𝑖+1,1

𝐴𝐴 and 𝐷𝐷𝑖𝑖+1,2
𝐴𝐴 , were evaluated using Eqs. (B3) and (B4) (presented in 37 

Appendix B), respectively, which ignored the possible residual-vehicle effects. For any signal 38 
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plan, the average total delay over the 1,000 possible traffic demand pairs for the intersection, 1 
𝐸𝐸�𝐷𝐷𝑖𝑖+1,1

𝐴𝐴 + 𝐷𝐷𝑖𝑖+1,2
𝐴𝐴 �, was considered the objective function, as shown in Eq. (39). The optimal 2 

signal plan was obtained by solving the following minimization problem using a simple line search 3 
method: 4 

min
𝑔𝑔𝑖𝑖+1,1,𝑔𝑔𝑖𝑖+1,2

𝐸𝐸�𝐷𝐷𝑖𝑖+1,1
𝐴𝐴 + 𝐷𝐷𝑖𝑖+1,2

𝐴𝐴 � 

𝑠𝑠. 𝑡𝑡.  𝑔𝑔𝑖𝑖+1,1 + 𝑔𝑔𝑖𝑖+1,2 = 52 
𝑔𝑔𝑖𝑖+1,1 ≥ 5 
𝑔𝑔𝑖𝑖+1,2 ≥ 5 

(39) 

After the initial 30 warm-up cycles with a fixed signal plan, the signal plan was optimized at the 5 
end of each cycle using Eq. (39). A simulation involving 1,000 cycles was conducted, and the 6 
actual delays of all vehicles were recorded. The results for the two traffic demand settings are 7 
presented in Table 11. 8 

In Scheme B, the proposed MCQL-C model was used to estimate the CV penetration rate 9 
uncertainty. The traffic demand estimations were identical to those in Scheme A. However, the 10 
real-time delays of the two approaches for Scheme B in cycle 𝑖𝑖 + 1 , 𝐷𝐷𝑖𝑖+1,1

𝐵𝐵 and 𝐷𝐷𝑖𝑖+1,2
𝐵𝐵 ,were 11 

predicted using Eqs. (B5) and (B6) (presented in Appendix B), respectively, which take into 12 
account the estimated residual vehicle distribution as the initial state for the next cycle and consider 13 
the presence of residual vehicles in the next cycle. The optimal signal plan with the least average 14 
total delay over the 1,000 possible traffic demand pairs for the intersection, 𝐸𝐸�𝐷𝐷𝑖𝑖+1,1

𝐵𝐵 + 𝐷𝐷𝑖𝑖+1,2
𝐵𝐵 �, 15 

was determined using a simple line search method, while adhering to the same set of constraints 16 
specified in Eq. (39). Similar to Scheme A, after the initial 30 warm-up cycles, the signal plan was 17 
optimized for 1,000 cycles at the end of each cycle according to the described control scheme. The 18 
results for the two traffic demand settings are presented in Table 11. 19 

Table 11. Comparison of stochastic CV-based adaptive signal control schemes with and 20 
without consideration of residual-vehicle effects. 21 

Traffic 
demand Metric p Scheme A, w/o 

residual vehicles 
Scheme B, w/ 

residual vehicles 
Improvement 

(%) 

800 veh/h 
and 

400 veh/h 

Average actual delay (s) 0.1 88.4 27.2 69.2 
Maximum actual delay (s) 0.1 1759.8 249.0 85.9 

Variance in actual delay (s2) 0.1 39,891.5 663.0 98.3 
Average actual delay (s) 0.4 23.1 21.3 7.8 

Maximum actual delay (s) 0.4 171.5 149.8 12.7 
Variance in actual delay (s2) 0.4 459.6 300.5 34.6 

1200 veh/h 
and 

600 veh/h 

Average actual delay (s) 0.1 307.3 171.7 44.1 
Maximum actual delay (s) 0.1 2594.7 711.0 72.6 

Variance in actual delay (s2) 0.1 127,432.5 15,805.7 87.6 
Average actual delay (s) 0.4 279.3 161.2 42.3 

Maximum actual delay (s) 0.4 2305.2 664.1 71.2 
Variance in actual delay (s2) 0.4 124,045.2 13,413.8 89.2 

Table 11 presents the average actual delays, maximum actual delays, and variances in actual delay 22 
for Schemes A and B under various combinations of traffic demand settings and CV penetration 23 
rates. The last column in the table shows the improvement of Scheme B relative to Scheme A 24 
across all three metrics. The results clearly indicate that Scheme B consistently and significantly 25 
outperformed Scheme A across all metrics under different scenarios. The notable improvement 26 
was attributable to the incorporation of residual-vehicle effects in Scheme B. Overall, this simple 27 



 21 

example of stochastic CV-based signal control clearly demonstrates the importance of considering 1 
residual-vehicle effects in model estimation and system optimizations. 2 

7 Conclusions 3 
The CV penetration rate is a critical parameter in CV-based transportation applications. Accurately 4 
estimating the uncertainty in the CV penetration rate is essential for developing unbiased transport 5 
models and deriving optimal solutions for transport system optimizations. Recently, the PPR model 6 
has been proposed as a framework for accurately modeling the uncertainty in the CV penetration 7 
rate. However, the method used to estimate the constrained queue length distribution in the PPR 8 
model does not consider the complex effects of residual vehicles. Neglecting these effects may 9 
lead to improper estimates for the constrained queue length distribution, resulting in inaccurate 10 
estimation of the CV penetration rate uncertainty. This study aims to address this research gap by 11 
incorporating the effects of residual vehicles in the estimation of the constrained queue length. This 12 
framework enables the application of the PPR model in undersaturated traffic conditions, 13 
regardless of the presence of residual vehicles. The proposed approach decomposes a full 14 
constrained queue into four vehicle groups: observable constrained residual vehicles, unobservable 15 
constrained residual vehicles, unconstrained residual vehicles, and new arrivals. The residual-16 
vehicle effects are modeled using a novel Markov chain process and four analytical sub-models 17 
within the MCQL model, including the residual-vehicle model, convolutional constrained queue 18 
model, constrained residual queue model, and observable residual queue model. The effectiveness 19 
of the proposed models is demonstrated through comprehensive VISSIM simulations and real-20 
world experiments. Furthermore, a practical example of stochastic CV-based adaptive signal 21 
control is presented to highlight the importance of modeling residual-vehicle effects in improving 22 
the system performance. 23 
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Appendix A. Corollaries of the PPR Model 1 

Corollary 1. Given that 𝑁𝑁~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆) and 𝑛𝑛~𝐵𝐵(𝑁𝑁,𝑝𝑝), 𝐸𝐸(𝑝𝑝�) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝�) can be defined as follows: 2 

𝐸𝐸(𝑝𝑝�) = lim
𝑘𝑘→+∞

�𝑒𝑒−𝜆𝜆𝑝𝑝 + �� �
𝜆𝜆𝑖𝑖𝑒𝑒−𝜆𝜆

𝑖𝑖!
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𝑖𝑖 − 𝑚𝑚
𝑗𝑗 − 1
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𝑖𝑖

𝑗𝑗=1

𝑝𝑝𝑗𝑗(1 − 𝑝𝑝)𝑖𝑖−𝑗𝑗𝑆𝑆(𝑖𝑖,𝑁𝑁 − 𝑗𝑗 + 1)
𝑘𝑘

𝑖𝑖=1

� = 𝑝𝑝, (A1) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝�) = lim
𝑘𝑘→+∞

��
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𝑉𝑉2(𝑖𝑖,𝑝𝑝)� . (A2) 

Corollary 2. Given that 𝑁𝑁~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆) and 𝑛𝑛~𝐵𝐵(𝑁𝑁,𝑝𝑝), the joint probability distribution of 𝑛𝑛 and 𝑁𝑁� 3 
is 4 

𝑃𝑃�𝑛𝑛 = 𝑖𝑖,𝑁𝑁� = 𝑗𝑗� =

⎩
⎪
⎨

⎪
⎧𝜋𝜋0 + �𝜋𝜋𝑧𝑧
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�𝜋𝜋𝑧𝑧 �
𝑗𝑗 − 1
𝑖𝑖 − 1

� 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝)𝑧𝑧−𝑖𝑖,∀𝑖𝑖, 𝑗𝑗 = 1, 2, … , 𝑘𝑘, 𝑗𝑗 ≥ 𝑖𝑖
𝑘𝑘

𝑧𝑧=𝑗𝑗

, (A3) 

where 𝜋𝜋𝑧𝑧 = 𝑃𝑃(𝑁𝑁 = 𝑧𝑧),∀𝑧𝑧 = 0, 1, 2, … ,𝑘𝑘. 5 

Proofs of the corollaries can be found in the work of Jia et al. (2023). 6 

  7 
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Appendix B. Estimation of Real-time Delays 1 

This appendix describes a method to estimate the real-time delays of two approaches to an 2 
intersection controlled by a simplified red–green–amber signal structure. To simplify the delay 3 
estimation, the vehicle arrivals are assumed to follow uniform distributions. Figure B illustrates 4 
the general cases for estimating real-time delays for the two approaches in two conditions: (1) 5 
undersaturation conditions without residual vehicles, and (2) temporary overflow conditions with 6 
residual vehicles.  7 

 8 
Figure B. Illustration of real-time delay estimations for two approaches in undersaturation 9 
conditions without residual vehicles and temporary overflow conditions with residual vehicles.  10 

The real-time delays at the intersection are represented by the areas between the arriving and 11 
departing profiles. By applying simple geometry, the predicted real-time delays in cycle 𝑖𝑖 + 1 for 12 
approaches 1 and 2, 𝑑𝑑𝑖𝑖+1,1 and 𝑑𝑑𝑖𝑖+1,2, can be estimated using Eqs. (B1) and (B2), respectively. 13 

𝑑𝑑𝑖𝑖+1,1 =

⎩
⎪
⎨

⎪
⎧       𝐿𝐿𝑖𝑖+1,1𝑟𝑟𝑖𝑖+1,1 +

𝑞𝑞�𝑖𝑖+1,1𝑟𝑟𝑖𝑖+1,1
2

2
+
�𝐿𝐿𝑖𝑖+1,1 + 𝑞𝑞�𝑖𝑖+1,1𝑟𝑟𝑖𝑖+1,1�

2

2(𝑠𝑠 − 𝑞𝑞�𝑖𝑖+1,1)
                                                𝑖𝑖𝑖𝑖 𝑞𝑞�𝑖𝑖+1,1 ≤

𝑠𝑠𝑔𝑔𝑖𝑖+1,1 − 𝐿𝐿𝑖𝑖+1,1

𝐶𝐶
 

   
(2𝐿𝐿𝑖𝑖+1,1 + 𝑞𝑞�𝑖𝑖+1,1𝑟𝑟𝑖𝑖+1,1)𝑟𝑟𝑖𝑖+1,1 + 𝑔𝑔𝑖𝑖+1,1�2𝐿𝐿𝑖𝑖+1,1 + 𝑞𝑞�𝑖𝑖+1,1�2𝐶𝐶 − 𝑔𝑔𝑖𝑖+1,1� − 𝑠𝑠𝑔𝑔𝑖𝑖+1,1�

2
   𝑖𝑖𝑖𝑖 𝑞𝑞�𝑖𝑖+1,1 >

𝑠𝑠𝑔𝑔𝑖𝑖+1,1 − 𝐿𝐿𝑖𝑖+1,1

𝐶𝐶

, (B1) 

𝑑𝑑𝑖𝑖+1,2 =

⎩
⎪
⎨

⎪
⎧1

2
(2𝐿𝐿𝑖𝑖+1,2 + 𝑞𝑞�𝑖𝑖+1,2𝑟𝑟0)𝑟𝑟0 +

(𝐿𝐿𝑖𝑖+1,2 + 𝑞𝑞�𝑖𝑖+1,2𝑟𝑟0)2

2(𝑠𝑠 − 𝑞𝑞�𝑖𝑖+1,2)
+

1
2
𝑞𝑞�𝑖𝑖+1,2�𝑟𝑟𝑖𝑖+1,2 − 𝑟𝑟0�

2 𝑖𝑖𝑖𝑖 𝑞𝑞�𝑖𝑖+1,2 ≤
𝑠𝑠𝑔𝑔𝑖𝑖+1,2 − 𝐿𝐿𝑖𝑖+1,2

𝑟𝑟0 + 𝑔𝑔𝑖𝑖+1,2
 

1
2

(2𝐿𝐿𝑖𝑖+1,2 + 𝑞𝑞�𝑖𝑖+1,2𝐶𝐶)𝐶𝐶 −
1
2

(2𝐶𝐶 − 𝑔𝑔𝑖𝑖+1,2 − 2𝑟𝑟0)𝑠𝑠𝑔𝑔𝑖𝑖+1,2                          𝑖𝑖𝑖𝑖 𝑞𝑞�𝑖𝑖+1,2 >
𝑠𝑠𝑔𝑔𝑖𝑖+1,2 − 𝐿𝐿𝑖𝑖+1,2

𝑟𝑟0 + 𝑔𝑔𝑖𝑖+1,2

, (B2) 

where 𝑟𝑟𝑖𝑖+1,𝑗𝑗 is the effective red in cycle 𝑖𝑖 + 1 on approach 𝑗𝑗; 𝑔𝑔𝑖𝑖+1,𝑗𝑗 is the effective green in cycle 14 
𝑖𝑖 + 1 on approach 𝑗𝑗; 𝑞𝑞�𝑖𝑖+1,𝑗𝑗 is the predicted real-time average arrival rate in cycle 𝑖𝑖 + 1 on approach 15 
𝑗𝑗, with 𝑞𝑞�𝑖𝑖+1,𝑗𝑗 = 𝑀𝑀𝑖𝑖,𝑗𝑗/𝐶𝐶; 𝑠𝑠 is the saturation flow rate; 𝐶𝐶 is the cycle length; 𝑟𝑟0 is the clearance loss 16 
time consisting of a part of the amber period and all-red clearance time (set as 4 s in this case); and 17 



 27 

𝐿𝐿𝑖𝑖+1,1 and 𝐿𝐿𝑖𝑖+1,2 are initial states of approaches 1 and 2 in cycle 𝑖𝑖 + 1, respectively. 1 

In Scheme A, the residual-vehicle effects are not considered. Thus, no residual vehicle is carried 2 
over from cycle to cycle, implying that 𝐿𝐿𝑖𝑖+1,1 = 0 and 𝐿𝐿𝑖𝑖+1,2 = 𝑞𝑞�𝑖𝑖+1,2(𝑟𝑟𝑖𝑖,2 − 𝑟𝑟0). By substituting 3 
these values into Eqs. (B1) and (B2), the real-time delays of the two approaches in cycle 𝑖𝑖 + 1  4 
under Scheme A, 𝐷𝐷𝑖𝑖+1,1

𝐴𝐴 and 𝐷𝐷𝑖𝑖+1,2
𝐴𝐴 , respectively, can be predicted as follows: 5 

𝐷𝐷𝑖𝑖+1,1
𝐴𝐴 =

⎩
⎪
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⎪
⎧      

𝑠𝑠𝑞𝑞�𝑖𝑖+1,1𝑟𝑟𝑖𝑖+1,1
2

2(𝑠𝑠 − 𝑞𝑞�𝑖𝑖+1,1)
                                                                     𝑖𝑖𝑖𝑖 𝑞𝑞�𝑖𝑖+1,1 ≤

𝑠𝑠𝑔𝑔𝑖𝑖+1,1

𝐶𝐶
 

   
𝑞𝑞�𝑖𝑖+1,1𝑟𝑟𝑖𝑖+1,1

2 + 𝑔𝑔𝑖𝑖+1,1�𝑞𝑞�𝑖𝑖+1,1�2𝐶𝐶 − 𝑔𝑔𝑖𝑖+1,1� − 𝑠𝑠𝑔𝑔𝑖𝑖+1,1�
2

   𝑖𝑖𝑖𝑖 𝑞𝑞�𝑖𝑖+1,1 >
𝑠𝑠𝑔𝑔𝑖𝑖+1,1

𝐶𝐶

, (B3) 

𝐷𝐷𝑖𝑖+1,2
𝐴𝐴 =

⎩
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⎨

⎪
⎧1

2
�2𝑞𝑞�𝑖𝑖+1,2(𝑟𝑟𝑖𝑖,2 − 𝑟𝑟0)  + 𝑞𝑞�𝑖𝑖+1,2𝑟𝑟0�𝑟𝑟0 +

[𝑞𝑞�𝑖𝑖+1,2�𝑟𝑟𝑖𝑖,2 − 𝑟𝑟0� + 𝑞𝑞�𝑖𝑖+1,2𝑟𝑟0]2

2(𝑠𝑠 − 𝑞𝑞�𝑖𝑖+1,2)
+

1
2
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2
 𝑖𝑖𝑖𝑖 𝑞𝑞�𝑖𝑖+1,2 ≤

𝑠𝑠𝑔𝑔𝑖𝑖+1,2 − 𝑞𝑞�𝑖𝑖+1,2(𝑟𝑟𝑖𝑖,2 − 𝑟𝑟0) 
𝑟𝑟0 + 𝑔𝑔𝑖𝑖+1,2

 

1
2
�2𝑞𝑞�𝑖𝑖+1,2(𝑟𝑟𝑖𝑖,2 − 𝑟𝑟0)  + 𝑞𝑞�𝑖𝑖+1,2𝐶𝐶�𝐶𝐶 −

1
2

(2𝐶𝐶 − 𝑔𝑔𝑖𝑖+1,2 − 2𝑟𝑟0)𝑠𝑠𝑔𝑔𝑖𝑖+1,2                                               𝑖𝑖𝑖𝑖 𝑞𝑞�𝑖𝑖+1,2 >
𝑠𝑠𝑔𝑔𝑖𝑖+1,2 − 𝑞𝑞�𝑖𝑖+1,2(𝑟𝑟𝑖𝑖,2 − 𝑟𝑟0) 

𝑟𝑟0 + 𝑔𝑔𝑖𝑖+1,2

, (B4) 

In Scheme B, the residual-vehicle effects are considered. Therefore, 𝐿𝐿𝑖𝑖+1,1 = 𝐸𝐸(𝑅𝑅𝑖𝑖,1) and 𝐿𝐿𝑖𝑖+1,2 =6 
𝑞𝑞�𝑖𝑖+1,2�𝑟𝑟𝑖𝑖,2 − 𝑟𝑟0� + 𝐸𝐸(𝑅𝑅𝑖𝑖,2), where 𝑅𝑅𝑖𝑖,1 and 𝑅𝑅𝑖𝑖,2 are random variables representing the number of 7 
residual vehicles for approaches 1 and 2 from cycle 𝑖𝑖, respectively. The values of 𝑅𝑅𝑖𝑖,1 and 𝑅𝑅𝑖𝑖,2 can 8 
be obtained from the proposed residual-vehicle model. Additionally, if cycle 𝑖𝑖 + 1 is predicted to 9 
be in the temporary overflow state, the residual vehicles from cycle 𝑖𝑖 + 1 will carry over to cycle 10 
𝑖𝑖 + 2. To capture these potential delays, the predicted delays in cycle 𝑖𝑖 + 2, 𝑑𝑑𝑖𝑖+2,1 and 𝑑𝑑𝑖𝑖+2,2, are 11 
incorporated into the predicted real-time delays of the two approaches in cycle 𝑖𝑖 + 1 under Scheme 12 
B, 𝐷𝐷𝑖𝑖+1,1

𝐵𝐵 and 𝐷𝐷𝑖𝑖+1,2
𝐵𝐵 , respectively. Assuming identical traffic demands and signal plans in cycle 𝑖𝑖 +13 

2, 𝑑𝑑𝑖𝑖+2,1 and 𝑑𝑑𝑖𝑖+2,2 can be readily obtained by substituting 𝐿𝐿𝑖𝑖+2,1 = 𝐸𝐸�𝑅𝑅𝑖𝑖,1� + 𝑞𝑞�𝑖𝑖+1,1𝐶𝐶 − 𝑠𝑠𝑔𝑔𝑖𝑖+1,1 14 
and 𝐿𝐿𝑖𝑖+2,2 = 𝐸𝐸�𝑅𝑅𝑖𝑖,2� + 𝑞𝑞�𝑖𝑖+1,2𝐶𝐶 − 𝑠𝑠𝑔𝑔𝑖𝑖+1,2 in the corresponding predicted delay formulas derived 15 
from Eqs. (B1) and (B2). The real-time delays of the two approaches in cycle 𝑖𝑖 + 1 under Scheme 16 
B, 𝐷𝐷𝑖𝑖+1,1

𝐵𝐵 and 𝐷𝐷𝑖𝑖+1,2
𝐵𝐵 , can be predicted as follows: 17 

𝐷𝐷𝑖𝑖+1,1
B = �

      𝑑𝑑𝑖𝑖+1,1                 𝑖𝑖𝑖𝑖 𝑞𝑞�𝑖𝑖+1,1 ≤
𝑠𝑠𝑔𝑔𝑖𝑖+1,1 − 𝐸𝐸(𝑅𝑅𝑖𝑖,1)

𝐶𝐶
 

   𝑑𝑑𝑖𝑖+1,1 + 𝑑𝑑𝑖𝑖+2,1   𝑖𝑖𝑖𝑖 𝑞𝑞�𝑖𝑖+1,1 >
𝑠𝑠𝑔𝑔𝑖𝑖+1,1 − 𝐸𝐸(𝑅𝑅𝑖𝑖,1)

𝐶𝐶

, (B5) 

𝐷𝐷𝑖𝑖+1,2
𝐵𝐵 =

⎩
⎪
⎨

⎪
⎧𝑑𝑑𝑖𝑖+1,2                      𝑖𝑖𝑖𝑖 𝑞𝑞�𝑖𝑖+1,2 ≤

𝑠𝑠𝑔𝑔𝑖𝑖+1,2 − 𝑞𝑞�𝑖𝑖+1,2�𝑟𝑟𝑖𝑖,2 − 𝑟𝑟0� + 𝐸𝐸(𝑅𝑅𝑖𝑖,2)

𝑟𝑟0 + 𝑔𝑔𝑖𝑖+1,2
 

𝑑𝑑𝑖𝑖+1,2 + 𝑑𝑑𝑖𝑖+2,2     𝑖𝑖𝑖𝑖 𝑞𝑞�𝑖𝑖+1,2 >
𝑠𝑠𝑔𝑔𝑖𝑖+1,2 − 𝑞𝑞�𝑖𝑖+1,2�𝑟𝑟𝑖𝑖,2 − 𝑟𝑟0� + 𝐸𝐸(𝑅𝑅𝑖𝑖,2)

𝑟𝑟0 + 𝑔𝑔𝑖𝑖+1,2

. (B6) 

 18 
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