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Abstract

In the transition to full deployment of connected vehicles (CVs), the CV penetration rate plays a key
role in bridging the gap between partial and complete traffic information. Several innovative methods
have been proposed to estimate the CV penetration rate using only CV data. However, these methods,
as point estimators, may lead to biased estimations or suboptimal solutions when applied directly in
modeling or system optimization. To avoid these problems, the uncertainty and variability in the CV
penetration rate must be considered. Recently, a probabilistic penetration rate (PPR) model was
developed for estimating such uncertainties. The key model input is a constrained queue length
distribution composed exclusively of queues formed by red signals in undersaturation conditions with
no residual vehicles. However, in real-world scenarios, due to random arrivals, residual vehicles are
commonly carried over from one cycle to another in temporary overflow cycles in undersaturation
conditions, which seriously restricts the applicability of the PPR model. To address this limitation,
this paper proposes a Markov-constrained queue length (MCQL) model that can model the complex
effects of residual vehicles on the CV penetration rate uncertainty. A constrained queue with residual
vehicles is decomposed into four vehicle groups: observable constrained residual vehicles,
unobservable constrained residual vehicles, unconstrained residual vehicles, and new arrivals.
Although the first vehicle group is observable in the former cycle, the focus of this work is to model
the residual vehicles from the second and third vehicle groups in combination with the new arrivals.
The MCQL model includes four sub-models, namely, the residual-vehicle model, convolutional
constrained queue model, constrained residual queue model, and observable residual queue model,
to isolate and derive the distribution of the constrained vehicle set formed by the three latter vehicle
groups. This distribution is then substituted into the PPR model to estimate the uncertainty.
Comprehensive VISSIM simulations and applications to real-world datasets demonstrate that the
proposed MCQL model can accurately model the residual-vehicle effect and estimate the uncertainty.
Thus, the applicability of the PPR model is truly extended to real-world settings, regardless of the
presence of residual vehicles. A simple stochastic CV-based adaptive signal control example
illustrates the potential of the proposed model in real-world applications.

Keywords: Connected vehicle penetration rate uncertainty; probabilistic penetration rate model;
residual vehicle estimation; Markov-constrained queue length model; signal control with uncertainty

1 Introduction

With advancements in communication systems (e.g., 5G), Internet of Things technologies have
undergone rapid development. These frameworks facilitate the seamless connection of various
system components, thereby allowing instant exchange of information. In transportation systems,
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this connectivity enables the sharing of valuable traffic information from connected vehicles (CVs),
such as the location, speed, and acceleration, thereby providing numerous opportunities for the
implementation of beneficial applications. Despite these advancements, the full deployment of
CVs is limited by factors such as budget constraints, privacy security, and individual preferences.
Consequently, a mixed traffic environment, in which both conventional vehicles and CVs coexist,
is expected to prevail. Due to the absence of complete traffic information in such scenarios, the
missing data must be estimated using the partial information obtained from CVs to promote traffic
management and control.

The CV penetration rate, defined as the probability of a vehicle to be a CV, serves as a fundamental
parameter for traffic data scaling and various model estimations and applications. Comert and Cetin
(2009, 2011) and Comert (2013) proposed a series of models that use the given CV penetration
rate and queue length distribution to estimate the queue length at isolated junctions. Feng et al.
(2015) developed a location and speed algorithm for estimating arrival tables in the controlled
optimization of a phase algorithm (Sen and Head, 1997). In this framework, the CV penetration
rate is considered an essential input. Other CV-based methods for queue length estimation include
a Bayesian-network-based model proposed by Hao et al. (2014) and a method based on the
shockwave theory (Argote et al., 2011), both of which assume the CV penetration rate to be known
during model development. Moreover, the CV penetration rate has been applied in the inference
of traffic flow (Wong and Wong, 2015, 2016a, 2016c) and traffic density or accumulation
(Geroliminis and Daganzo, 2008; Ambiihl and Menendez, 2016; Du et al., 2016; Wong and Wong,
2019; Wong et al., 2019a, 2021) using linear data projection (Wong and Wong, 2015, 2016a, 2019;
Wong et al., 2019a). In addition, the CV penetration rate has been introduced as a critical input in
traffic incident impact evaluation (Wong and Wong, 2016b), travel time and speed estimations
(Jenelius et al., 2013, 2015; Rahmani et al., 2015; Tian et al., 2015; Mousa et al., 2017; Khan et
al., 2017; Igbal et al., 2018; Lu et al., 2019), origin—destination estimations (Yang et al., 2017,
Wang et al., 2020; Cao et al., 2021), and time exposure estimation in road safety studies (Meng et
al., 2017b). Notably, due to the dynamic and stochastic nature of transportation systems, the CV
penetration rate is a random variable and is not known in practice. Consequently, estimation of the
CV penetration rate has emerged as a research hotspot in CV-based transportation problems.

CV penetration rates for links outfitted with on-road fixed detectors, such as loop detectors, can be
directly determined using the total vehicle counts measured by the detectors and CV counts from
the CV signals. However, most roadways in a network are not equipped with such detectors owing
to the considerable investment and maintenance costs for universal implementation. Moreover, the
installed detectors may occasionally become non-operational, leading to intrusive installation and
maintenance activities that can significantly disrupt traffic flow and even result in blockages within
the local transportation systems. To estimate the CV penetration rates on links without detectors,
a probability distribution model (Wong and Wong, 2015, 2016a, 2019; Wong et al., 2019a) has
been developed. In this framework, the probability distribution is approximated based on the CV
penetration rates observed on links equipped with detectors. The expectation of this distribution is
then used as an estimate for the CV penetration rates on links without detectors, given their
geographical proximity to the links with detectors. Furthermore, the variance of this distribution
can capture the spatial variations. Notably, this method relies on the assumption of independent
and identically distributed CV penetration rates across different links within the network. However,
this assumption may be violated due to the interconnectivity of roads and heterogeneous
attractiveness of various urban areas. To address this issue, a CV penetration rate estimation model
incorporating land-use variables has been developed (Meng et al., 2017a). Nonetheless, the use of
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local land-use data presents several challenges that hinder the widespread adoption of this model.

Many researchers have attempted to overcome these limitations by estimating the CV penetration
rate based solely on CV data. Under the assumption of Poisson arrival, Comert (2016) proposed a
set of models to estimate the CV penetration rate based on partial CV information. However, the
assumption of Poisson arrival does not always hold in reality, and thus, these models may not be
applicable for generic arrival patterns. By eliminating the assumption of specific arrival patterns,
Wong et al. (2019b) proposed the single-source data penetration rate estimator (SSDPRE), which
is a fully analytical, non-parametric, and unbiased estimator to estimate the CV penetration rate.
This model determines the number of non-CVs preceding the last CV on the stopping locations of
CVs at a signalized junction and uses this partial queue information to combine two estimation
mechanisms—(1) the probability of the first stopping vehicle being a CV and (2) the CV
penetration rate of the deduced partial queue—to estimate the CV penetration rate in an unbiased
manner. Various other methods approximate the distribution of stopping locations of vehicles in
queues through maximum likelihood estimation (Zhao et al., 2019a, 2019b, 2022). Similarly, Wang
et al. (2024) used the method of moment to estimate CV penetration rate and vehicle arrival rate.
Although the aforementioned methods yield valuable insights, they do not take into account the
uncertainty associated with CV penetration rates. Given the dynamic and nonlinear nature of
transportation systems, relying solely on point estimators in model estimation and system
optimization may lead to biased models and suboptimal solutions (Wong and Wong, 2015, 2016,
2019; Wong et. al., 2019; Yin, 2008). For instance, Wong and Wong (2015, 2016, 2019) and Wong
et al. (2019) have proven that estimating traffic models solely based on traffic data constituted from
the means of CV penetration rates, without considering their variability, can result in biased model
parameters and standard errors. Additionally, incorporating the variabilities of parameters in
stochastic optimizations has been shown to be advantageous in formulating strategies to mitigate
traffic intersection violations (Sun et al., 2018), traffic delay and emissions (Han et al., 2016), as
well as human exposure to emissions (Zhang et al., 2013). Furthermore, Jia et al. (2023) conducted
simulation studies to demonstrate that incorporating the CV penetration rate variability into a CV-
based adaptive signal optimization problem can lead to a 15% decrease in average and maximum
driver delay and a 45% decrease in delay variance. Therefore, accurately modeling the uncertainty
of CV penetration rates is crucial to obtain unbiased transport models and optimal solutions.

Utilizing the SSDPRE (Wong et al. 2019), the output from a cycle can be taken as the realized CV
penetration rate for that specific cycle. In oversaturation conditions where the volume-to-capacity
(V/C) ratios consistently exceed one, demand persistently surpasses the capacity. Due to the
continuous carryover in oversaturation conditions, nearly all vehicle identities can be determined
using the bridging queue algorithm proposed in Wong et al. (2019b). This allows for the precise
determination of the population CV penetration rate with a high degree of certainty. Nevertheless,
in undersaturation conditions where the V/C ratios are less than one, vehicle identities cannot be
fully revealed. Due to stochastic arrivals and random appearance of CVs, the realized CV
penetration rate is subject to uncertainty. To quantify such uncertainty, an analytical probabilistic
penetration rate (PPR) model has recently been developed (Jia et al., 2023). A key input of this
model is the constrained queue length! distribution, which depends on the queues of vehicles that
stop at red signals in each traffic light cycle. This distribution can be estimated using probabilistic
dissipation time (PDT) or constant dissipation time (CDT) models derived in undersaturation

! A constrained queue length is defined as the total number of vehicles that are stopped by a red signal over a cycle, which
differs from the usual queue length, i.e., the queue length at a specific moment in time. Figure 1 illustrates the notion of
a constrained queue length.
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conditions without any residual vehicles. However, in real-world scenarios, due to random arrivals,
demand can temporarily exceed capacity, and residual vehicles are commonly carried over from
one cycle to another in temporary overflow cycles under undersaturation conditions. These
temporary overflow cycles are referred to as temporary overflow conditions. As temporary
overflow conditions are common in real-world situations, the applicability of the methods proposed
in Jia et al. (2023) is seriously limited. Neglecting the effects of these residual vehicles in temporary
overflow conditions may lead to inaccurate estimation of the constrained queue length, which can
adversely affect the estimation of the CV penetration rate uncertainty. Considering the highly
nonlinear nature of transportation systems, such unreliable uncertainty estimates can undermine
the effectiveness of the PPR model in practical applications. Therefore, the residual-vehicle effects
must be accurately modeled to ensure the generalizability and effectiveness of the PPR model in
estimating the CV penetration rate uncertainty.

To this end, this paper proposes a Markov-constrained queue length (MCQL) model. A constrained
queue with residual vehicles is generically decomposed into four vehicle groups: observable
constrained residual vehicles (Group 1), unobservable constrained residual vehicles (Group 2),
unconstrained residual vehicles (Group 3), and new arrivals (Group 4). Although the residual
vehicles from Group 1 are observable in the former cycle, the focus of this work is to model the
residual vehicles from Groups 2 and 3 in combination with the new arrivals in Group 4. Four sub-
models, namely, the residual-vehicle model, convolutional constrained queue model, constrained
residual queue model, and observable residual queue model, are introduced to isolate and derive
the distribution of the constrained vehicle set formed by the three latter vehicle groups. This
distribution is then substituted into the PPR model for uncertainty estimation. Extensive numerical
simulations and real-world dataset applications provide strong evidence for the effectiveness of
the proposed MCQL model in accurately capturing residual-vehicle effects and estimating the
uncertainty in the CV penetration rate. Furthermore, a practical demonstration of a stochastic CV-
based adaptive signal control showcases the potential of the MCQL model in system optimizations.
The proposed models can exploit the full capability of the PPR model and enhance its applicability
in real-world situations.

The remainder of this paper is organized as follows. Section 2 introduces the necessary preliminary
knowledge, and Section 3 defines the research problem and notation. Section 4 describes the
formulation of the MCQL model. Section 5 presents details of the comprehensive micro-
simulation study performed based on VISSIM to validate the proposed model. Section 6 describes
the validation of the proposed models using the Next Generation Simulation (NGSIM) dataset
(Federal Highway Administration, 2006). Moreover, a demonstrative example based on stochastic
CV-based adaptive signal control is presented to highlight the significance of modeling residual-
vehicle effects. Section 7 summarizes the findings and implications of the study.

2 Prior Work
2.1 SSDPRE

When approaching a signalized intersection, the arriving vehicles stop at red lights and form
queues. A constrained queue set, ¥, is defined as a set of vehicles that stop at a red light, e.g., the
sets of vehicle trajectories enclosed by the triangles in Figure 1. || = N is the number of vehicles
in a constrained queue; and n and N are the number of CVs and number of observable vehicles in
the constrained queue, respectively. n is observable, and N is estimated by dividing the distance
between the stop bar and rear end of the last CV by the effective vehicle length. The effective
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vehicle length is the average distance between the rear ends of the preceding and following
stopping vehicles. The CVs and non-CVs are assumed to be sufficiently mixed within a link owing
to the lane-changing behaviors of the drivers; and i and m are the indices for the i™" constrained
queue formed in cycle i and total number of constrained queues, respectively. The SSDPRE for
this scenario can be formulated as (Wong et al. 2019)

SSDPRE = Z@Tﬂ’ (1)
where
gi—:i ifn;>1and N; > 1
;= S(ni’Ni) — 1 ifn;=1andN; = 1 . )

ifny=1and N; > 1
0 if ny=0and N; = 0

Thus, p; is taken as realized CV penetration rate for cycle i. The realized CV penetration rates
across cycles form the distribution of the random variable p.

2.2 PPR model

The variance of the distribution of §, Var(p), can be taken as the CV penetration rate uncertainty.
Consider any |¥| = N following any counting distribution such that P(N =i) = ¢, Vi =
0,1,2,...,k. The number of CVs follows a binomial distribution, i.e., n~B(N,p), where p
represents the average CV penetration rate and N > n > 0. In this case, Var(p) can be defined as

Var(®) = lim [¥i, ¢ V,(0.p)] 3)
where
i —i . iN%] /N L
Vz(N;P)={ L A-p" nam +(5) | (D -p? +pa-—pr N>
p=p) if N =1
and
=
V,(n,N) = &) e Umn>1 5
ST ifn=1 (5)
0 ifn=0

Two corollaries of the PPR model are presented in Appendix A.

2.3 PDT and CDT models
The constrained queue length distribution is an essential input of the PPR model. The PDT model
can accurately model this input by using a time interval partitioning notion, which divides a given
interval into the red period, first dissipation period for vehicles arriving in the red period, second
dissipation period for vehicles arriving in the first dissipation period, and so on. For any given
arrival pattern with an average arrival rate of g, a red period of r, and a saturation headway of t,
the constrained queue length distribution can be expressed as
f(k; qr)f(0; gkt) +
P(N = k) = YIL, f (G qr)B(N = k, M = DW;(N = k,M = i) if k € N*, (6)

f(0;qr) ifk=0



[ N O R S

O 00 3 N

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

29

where f(1; qt) represents the probability of arriving 1 vehicles within time t; P;{(N = k, M = i)
is the jt" unique value of the product of the probabilities of observing the remaining k — i vehicles
in the subsequent partitioned time intervals, with Vk € N*, i € [1,k], j € [1,];]; and W;(N =
k, M = i) is the weighting factor of P;(N = k, M = ).

The PDT model achieves a high estimation accuracy, but its implementation is complex. To
alleviate the complexity, a simplified model, i.e., the CDT model, has been developed. The
constrained queue length is assumed to follow a Poisson distribution. The average constrained

queue length, N, is the model parameter of the constrained queue length distribution, where
sqr

No =—— (7)

_s—q'

3 Problem Statement and Notation

3.1 Problem statement

Although PDT and CDT models can estimate the constrained queue length distribution, they can
only be applied to undersaturation scenarios without residual vehicles. Specifically, these models
can represent the newly arriving vehicles in each cycle, such as the constrained queue set of Cycle
1 in Figure 1. However, in practice, residual vehicles often appear owing to temporary high
demands. For example, in Figure 1, vehicles 7, 8, and 9 are residual vehicles that carry over from
Cycle 1 to Cycle 2. Vehicle 7 is the observable constrained residual vehicle from Cycle 1 (Group
1), vehicle 8 is an unobservable constrained residual vehicle from Cycle 1 (Group 2), and vehicle
9 is an unconstrained residual vehicle from Cycle 1 (Group 3). The constrained queue set of Cycle
2i1s {7,8,9, 10, 11, 12, 13}, in which the subset {10, 11, 12, 13} represents new arrivals in the
constrained queue set of Cycle 2 (Group 4), which can be modeled by PDT or CDT models. To
avoid double-counting, vehicle 72 must not be used to estimate 7, in Cycle 2. Thus, in addition to
the new arrivals, the unobservable constrained and unconstrained residual vehicles are random
components that can influence the estimation of p;. Ignoring vehicles 8 and 9 can degrade the
estimation accuracy of the CV penetration rate uncertainty. Therefore, the residual-vehicle effects
must be appropriately modeled in the uncertainty estimation process, especially for near-saturation
situations, which is the motivation for this research.

Cycle 1 / Cycle 2
o 27 f 7 AT S
% (7 % 7%

Legend
mmmm Red < i
i Green N \ i N2(4)
Amber

Trajectory projection

CV trajectory \\\
Veh 1 NC trajectory

<":_\; Constrained queue set

Veh 2 /

Veh3 /Veh4 /\eh5 Veh6/Veh7 Veh 8 Veh9 Veh 10 ehi11 Veh 12 Veh 13

Figure 1: Vehicle trajectories in two consecutive cycles.

2 Vehicle 7 is the last observable vehicle in the constrained queue set of Cycle 1, which is used to estimate §;. Details
of the counting method can be found in the work of Wong et al. (2019).
6
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3.2 Notation

In addition to the previously introduced notation, the following notation is used in this paper:

Table 1. Notation.

Notation Description Example (Figure 1)
Rz(i)1 Number of observable constrained residual vehicles Ril) =1
from cycle i — 1
Rl(f)l Number of unobservable constrained residual Riz) -1
vehicles from cycle i — 1
Rl(f)l Number of unconstrained residual vehicles from R£3) -1
cyclei —1
R,_4 Number of residual vehicles from cycle i — 1, i.e., Ry =3
RD + R + R
N& Number of new arrivals in the constrained queue set N® =4
' of cycle i 2
N; Number of vehicles in the constrained queue set of N, =7
cyclei,ie., Rj_q + Nl.(4)
Q; Number of vehicles in the constrained queue set of Q,=6

cycle i, excluding the observable residual vehicles

carried over from cycle i — 1, i.e., N; — RL(P1

Rr2 Number of constrained residual vehicles from cycle Ril‘z) =2
i—1,ie, R +RZ

Effective green -
Effective red -
Saturation flow -
Cycle length -
Average arrival rate -
Demand of cycle i -
Maximum number of vehicles that can be -
discharged in a cycle

State transition matrix of R;_; -
State space of R;_4 -
Discrete Fourier transform (DFT) function -
Inverse DFT function -

10 awn 3@

> Nw)

B

4 Methodology

For any consecutive cycles i — 1 and i with a temporary high demand, a certain number of residual
vehicles from cycle i — 1 are carried over to cycle i. The CV penetration rate uncertainty is
governed by the combination of this number of residual vehicles and the new arrivals in cycle i,

l(f)l, R l(f)l, and Nl.(4). Although Ni(4) can be obtained
by PDT or CDT models, it is challenging to directly derive Rl(f)l and Rl.(f) . Alternatively, Q; can

1
be expressed as

Q;. This total number of vehicles consists of R

Q; =N, —RY. (8)

Thus, the proposed MCQL model involves three parts, pertaining to the estimations of N;, Ri(i)l,
and Q;. The proposed model is derived based on two fundamental assumptions. First, it is assumed

that connected vehicles (CVs) and non-CVs are adequately mixed within a lane, due to frequent
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lane-changing and overtaking behaviors. As a result, each vehicle has the same probability of being
a CV (p) or a non-CV (1 — p). Second, the state transition of the number of residual vehicles is
assumed to be modeled by a Markov chain, as the number of residual vehicles in the current cycle
depends solely on the number of residual vehicles in the previous cycle, which is consistent with
the Markov property.

4.1 Estimation of N;

N; can be expressed as the sum of Ni(4) and R;_;:
4
Ny =N® +Ri_,. ©)

Nl.(4) can be estimated using PDT or CDT methods, and a residual-vehicle model is proposed to
estimate R;_;. Then, a convolutional constrained queue model is developed for estimating N;.

4.1.1 Residual-vehicle model

Taking into account vehicles arriving according to any counting distribution:
P(D; = k) = py,Vk € N. (10)

The maximum number of vehicles that can be discharged in a cycle, D*, can be estimated as D* =
lgs|, where |-] represents the floor function. If the temporary demand in cycle i — 1, D;_4, is
greater than D*, R;_; > 0. For any consecutive cycles i — 1 and i, if the vehicle arrivals in
different cycles are independent, i.e., P(D; = k|D;_y = j) = P(D; = k), R; depends on R;_, and
D;. Thus, R; can be modeled by a Markov chain.

For any cycle i, consider the Markov random process {R;,i =0, 1, 2, ..., k}, where R; € S, and
§$=1{0,1,2,3,...,s — 1} is the state space of R;. Vj € S, R; = j represents the state of j residual
vehicles from cycle i. The probability of state j is

P(Ri:].):'l'[;, (11)

where Tt/ is the jt" entry of the probability vector m*, which is the stationary distribution

independent of cycle i and represents the probability distribution of the number of residual
vehicles from any cycle. T* can be obtained through the following minimization:
min||mP — 1|3
T

12
s.t.|lwlly = 1,7 >0, (12)
where the state transition matrix, P, is presented in Table 2.
Table 2. State transition matrix.
0 1 2 D D* +1 s—1
R4
0 22;0 Pk Pp*+1 Pp*+2 P2p* P2p*+1 Pp*+s-1
1 g:?)l Pk Pp* Pp*+1 P2p*-1 P2p* Pp*+s-2
2 g:?)z Pk Pp*-1 Pp* P2p*—2 P2p*-1 Pp*+s-3
D* Po %1 P2 Pp* Pp*+1 Ps—1
D*+1 0 Po P1 Pp*—1 Pp* Ps—2
D*+2 0 0 Po Pp*—2 Pp*-1 Ps-3
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Proof. For any consecutive cycles i — 1 and i, under any vehicle arrival pattern, the following
scenarios can be derived: If R;_; = 0, no residual vehicle is carried over from cycle i — 1 to cycle
i. All possible cases in this situation are presented in the first cell of Table 3. If no residual vehicle
is carried over from cycle i to cycle i + 1, i.e., R; = 0, the temporary demand of cycle i, D;, must
be less than or equal to the maximum number of vehicles that can be discharged in a cycle, D,
i.e., D; < D*. The probability of this case, P(R; = O|R;_; = 0), is X2_, p. If R; = 1, D; must be
equal to D* + 1, which means that only one vehicle cannot be discharged in cycle i. In this case,
P(R; = 1|R;_; = 0) = pp+44. All possible cases can be enumerated in a similar manner. When

R,_1 =0, the sum of the probabilities of all these cases must equal 1, i.e.,
Yi—oP(R; = k|R;_; =0) = 1.

Table 3. Enumeration of all possible numbers of residual vehicles carried over from cycles i —

1andi.
Ri—l Ri Di Probability
0 0 < D" Zgiopk
1 D*+1 Pp*+1
2 D* +2 Pp*+2
k, where k = oo D"+ k Pp*ik
1 0 <D"-1 22;61 Dk
! D* Pp~
2 D*+1 Pp*+1
k,where k — oo D*"+k—1 Pp*+k-1
D*+1 0 - 0
1 Po
2 1 D1
k,where k — oo k—1 Dik_1
k', where k' —» o 0 - 0
1 - 0
k'—D* -1 - 0
k, - D* 0 pO
k, where k— oo k—k'+ D" Pik—k' +D*

If R;,_; = 1, one residual vehicle is carried over from cycle i — 1 to cycle i. All possible cases in
this condition are presented in the second cell of Table 3. If R; = 0, D; must be less than or equal

9
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to D* — 1 such that all the newly arrived vehicles and the residual vehicle carried over from cycle
i — 1 can be discharged. Thus, P(R; = O|R;_; = 1) = Y25  px. IfR; = 1, D; must be equal to
D*, and thus, the last vehicle from cycle i is carried over to cycle i + 1. In this case,
P(R; =1|R;,_; = 1) = pp-. All possible cases can be similarly enumerated. Furthermore,
YeeoP(R; = k|R;_1 = 1) = 1. All corresponding cases for R;_; € [0, D*] can be enumerated in
a similar manner.

IfR;,_; = D" + 1, R; must be equal to or greater than 1, i.e., at least one residual vehicle is carried
over from cycle i to cycle i+1 . Therefore, P(R;=0|Ri_.;=D"+1)=0 ,
P(R; =1|R;_; = D"+ 1) =p,, and so on. Again, }.;-oP(R; = k|R;_.y =D*+1)=1. For
R;_4 = D* + 1, a similar enumeration can be performed.

The transition process of the number of residual vehicles between any two consecutive cycles can
be modeled by a Markov chain. The state transition matrix can be constructed based on Table 3.
Notably, although the transition process can be considered a discrete-time and infinite Markov
chain in theory, the number of residual vehicles from any cycle i, R;, is not infinite in real-world
transportation systems. As the probability of the number of residual vehicles being infinite is
negligible, the theoretically infinite space for the number of residual vehicles can be approximated
as a finite space, denoted as § = {0, 1, 2, 3, ..., s — 1}. This approximation enables the construction
of the corresponding state transition matrix P € R¥*%, as shown in Table 2. This finite Markov
chain has the following two properties: (1) It is irreducible, meaning that it only has one
communication class; and (2) it is aperiodic due to the existence of self-transition. Based on the
Markov chain stationary state theorem, a unique stationary distribution exists for such a finite
Markov chain, and its limiting distribution converges to this stationary distribution. Consequently,
the unique stationary distribution can be determined by solving the minimization problem
described in Eq. (12).

QED.

It is important to emphasize that the proposed residual-vehicle model is generic, accommodating
various arrival patterns that could follow any counting distribution. In the numerical experiments
and application presented in Sections 5 and 6, Poisson distributions, which are commonly assumed
as random arrival patterns at isolated junctions, are used for illustrative purposes.

4.1.2 Convolutional constrained queue model

R;_4 can be obtained from the residual-vehicle model, and Nl.(4) can be estimated using PDT or
CDT methods. Referring Eq. (9), the distribution of N; can be derived by enumerating all possible

combinations of R;_; and Nl.(4). A Fourier transformation method can be employed to avoid
tedious enumerations and efficiently perform the calculations. Further details are provided below.

The probability distributions of R;_; and Ni(4), P(Ri-y =j) =m;,vj€{0,1,2,..,5 — 1}, and
P(Ni(4) = j) =a;,Vj €{0,1,2,..,s; — 1}, respectively, can be expressed in the following vector

forms:

* * *
fRi—l = T[0,T[1, ...,T[S_]_,O,O,...,O (13)
s1—1

10
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fNL'(4) = [ao, al, ...,asl_l,O, 0, ...,0], (14)

s—1

where the s; — 1 and s — 1 zeros are augmented entries that ensure that the two vectors have the
same dimensions. The probability distribution of N;, P(N; = j) = b;,Vj € {0,1,2, ...,5 + 51 — 2},
can be obtained as

Fu =7 [P (o) OF (£, )] (1s)

where F is the discrete Fourier transform (DFT) function, F~1is the inverse DFT function, ®
represents element-wise multiplication, and fy, = [bo, by, ..., bsig 1_2].

Proof. Given probability distributions fr,_, and f (s, the following possibilities for N; can be

derived.
If N; =0,thenR;_; = Ni(4) = (. The probability for this case is Tya.

If N; = 1, two cases can be identified: (1) R;_; = 0 and Nl.(4) =lor(2)R;,_; =1land Nl.(4) =0,
the probabilities for which are Tya, are m;a,, respectively. Thus, the total probability for N; = 1
is the sum of these two probabilities, i.e., Tya; + T a,.

If N; = 2, three cases are possible: (1) when R;_; = 0 and Ni(4) = 2, the probability is Tya,; (2)
when R;_; = 1 and Nl.(4) = 1, the probability is mja,; and (3) when R;_; = 2 and Ni(4) = 0, the
probability is 15 a,. Thus, the total probability for N; = 2 is mya, + mja; + m5a,.

All possible values of N; and corresponding probabilities can be enumerated in a similar manner.
For the last possible value of N;, when N; =s+s; —2,R;_1 =s—1, Nl.(4) = s; — 1, and the
corresponding probability is T_;as, ;. Therefore, the probability distribution of N; can be
expressed as

by =Y oM, j =0,1,2,..,5+5 —2, (16)

where b; is the j th entry of the probability vector f n;- Equation (16) can be alternatively expressed
as a one-dimensional discrete linear convolution, as shown in Eq. (17):
fNL' :f}"i—l *f;v(‘l')’ (17)

. . . ! i * * * . Y —
where * represents linear convolution; fr, = [T, U7, ..., TTe_q ]; and fN'(4) = [ao, aq, ...,asl_l].
i

According to convolution theory,

Fui = Fhy *Fryo =R (fay % fyo) (18)

where % represents cyclic convolution; and R(*) is a function that extracts the principal value
sequence, which refers to the first s +s; —1 values in fg,_, % f, . Based on the cyclic
i
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convolution theorem, the following expression can be obtained:

F [R (fRi—l * fNi(4))] =F (fRi—l) OF (le-G))' (19)

Substituting Eq. (19) into Eq. (18) yields the probability distribution of N; as
=F! [F (le@) G)F(le._l)]. (20)
QED.

4.2 Estimation of Rff)l

The constrained residual queue and observable residual queue models are used to estimate the

probability distributions of R( 2) and RY

i1, respectively.

4.2.1 Constrained residual queue model

Given the probability distributions of N;_;, P(N;_; = k), Vk € N, the probability distribution of

R(1 %) can be expressed as

12) _ YRoP(Nioy =k),if j=0
P(Ri- =) = {P(N?_1 =D*+j),if j>0 D

Proof. If N;_; = 0,1, 2, ..., D", all vehicles in the constrained queue can be discharged. Therefore,
no constrained residual queue exists, and P(Rl.(i’lz) = 0) = Zk;o P(N;,_; = k).

If N;_; = D* + 1, one constrained residual vehicle will be carried over to cycle i, i.e., R(1 D=1,
Thus, P(R.(1 2 = 1) = P(N;_; = D" + 1). Similarly, the probabilities of all possible values of

R(1 2) are P(R(1 2 = ) P(N;_; = D* +j),¥j > 0. Therefore, the probability distribution of
R( 2) can be obtained, as shown in Eq. (21).
QED.
4.2.2 Observable residual queue model

Given the probability distribution of Rl(1 12 ), P(R(1 2 = j), vj€{0,1,2,..,1 — 1}, obtained from

the constrained residual queue model; CV penetration rate p; and identity of a vehicle being either
a CV or anon-CV following a Bernoulli distribution with parameter p, the probability distribution

of R( ) 1 can be expressed as

I-1-j
PRY =) = Z fm)x1 vi=01,2,..,1-1, (22)
k=0
where
f (12) = P(RYY = k)HjL 0 vk = 0,1,2, .., 1 — 1, (23)
C(Lifk=jj+1.,1-1
iy = {0, otherwise’ (24)
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xJ: kp = Pxi)'kal 1—j ks ifj=1, (25)
K .
x{ ; Hii—j g ifj>1
C(Lifk=01,..,01—j—1
Hyp-jpe = {0, otherwise’ (26)

i-1

Proof. Given the probability distribution of R® P(R(1 2 = ]) vjie{0,12..,1-1}; CV

penetration rate p; and identity of a vehicle being either a CV or a non-CV following a Bernoulli
distribution with parameter p, Bernoulli(p), the following possibilities can be derived.

If Rl(ilz ) = 0, R( ) 1 must be 0. The probability for this case is P(R(f’l2 ) = 0).

If R(1 e =1, R( ) 1 can either be 0 or 1. If R( ) = 0, i.e., the constrained vehicle is a non-CV, the
corresponding probablhty 1s P(R(1 2 = DA —-p). If R(l) =1, i.e., the constrained vehicle is a
CV, the corresponding probability is P(R(1 2 = Dp.

If R(1 2 = 2, R( ) 1 may be 0, 1, or 2. If R = 0, i.e., all constrained vehicles are non-CVs, the
corresponding probability is P(R(1 2 = 2)(1 —p)2. If R.(l) =1, i.e., the first vehicle in Rl(ilz ) is
a CV and the second vehicle is a non-CV, the corresponding probability is P(R(1 2 = 2)p(1 —p).
If RL(P1 = 2, which means that the first vehicle can either be a CV or a non-CV but the second
vehicle must be a CV, the corresponding probability is P(R.(l’z) = 2)p. Similarly, if R.(l’z) =k,

Vk € Z, all possible value of R( ) can be enumerated along with their corresponding probabilities,
as indicated in Table 4.

Table 4. Enumeration of all possible values of R and corresponding probabilities when R%? = k.

RL(P1 Probability
0 P(RE? = k)(1 —p)*
1 P(RY = kp(1 - p)*~*
2 PR = lop(L=p)*
k P(R(lz) k)p

By grouping the probabilities of the same value of RL(P1 from the enumerations of different values
of Rl( 1, the probability distribution of R(l) can be obtained as follows:

P(RY, =0) = P(R? =0) + P(RTD = 1)(1 —p)+ -+ P(RED = k)1 - p)*
I[P(RED = 0),P(RED = 1), ... P(REY = k)] O [1,1 = p, ... (1 — p) ]| (27)

P(RY, =1)= PRI? = 1)p+ P(RE? = 2)p(1 —p) + -+ P(RL? = k)p(1 — p)*~*

~ PRS2 = 1), P(RED = 2), .., P(RED = )] © .01 - ), op =y, )
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P(RY, =k) = P(REY = k)p = |[P(REY = k)] © [p]],- (29)

Alternatively, the probability distribution of Rl(i)l can be written as in Egs. (22)—(26).
QED.

4.3 Estimation of Q;

This subsection describes the establishment of the MCQL model. The probability distributions of
Ni and RY, . P(N;=j)=b,Vj€{0,1,2..,s+s5-2} and P(RY =j)=c,Vj€

{0,1,2,...,1 — 1}, respectively, can be expressed in the following vector forms:

fNL- = [bo;bl; ---;bs+sl—2]; (30)
and
ngl) = [Co,cl, ...,Cl_l,0,0,...,Ol. (31)
1 s+s,—1-1

The probability distribution of Q;, P(Q; = j) = d;,Vj €{0,1,2,...,s + 5, — [ — 1}, is given by
fo € =F1
oo 1=r[F(r) @ F (re)] (32)

where (0 represents element-wise division; € is a redundant vector; and f, =
[do, dq, e, ds+s1—l—1] is the target probability vector for Q;.

Proof. Rearranging Eq. (8) yields the following expression:

N; = R + ;. (33)
According to the convolutional constrained queue model,
fu=F [ (fo ) OF War 2D (34)
Applying DFT to both sides of Eq. (34), the following expression can be obtained:
F(fy) = F (Fy0 ) OF (o, 2] (35)
As fR(l) >0,F (fR(l)) # 0. Thus, it can be shown that
i-1 i-1
f &l =1
o, &l=r"[F(ry) @F (r,0)] (36)
QED.

The derived distribution of Q; can be substituted into the PPR model to estimate the uncertainty in
the CV penetration rate.

5 Numerical Experiments
Detailed numerical experiments were conducted to evaluate the effectiveness of the proposed
MCQL model in estimating the uncertainty in the CV penetration rate. The probability

distributions of Ni(4), which represent an essential input for the MCQL model, can be estimated by
either the PDT model or the CDT model. The MCQL models combined with the PDT and CDT
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models to capture the residual-vehicle effects are designated as MCQL-P and MCQL-C model,
respectively. As mentioned previously, if the PDT or CDT model was directly used in the
uncertainty estimation of the CV penetration rate, the effects of the residual vehicle would be
ignored. Thus, the performances of the MCQL-P and MCQL-C models were compared with the
PDT and CDT models, respectively, across various cases involving different signal plans, volume-
to-capacity (V/C) ratios, and CV penetration rates. For each case, 1,000 cycles were simulated. By
applying the SSDPRE method (Wong et al., 2019) to each cycle, 1,000 estimates of the CV
penetration rates were obtained. The variance of these estimates served as the ground truth for
evaluating the accuracy and effectiveness of the MCQL-P and MCQL-C models.

To realistically mimic the queuing process, experiments were conducted using the VISSIM
platform in a Windows 10 environment, over a machine equipped with an Intel Core 17-10700
CPU. The vehicles approached the signalized intersection through a single-lane link with a length
of 1 km. The cycle length was set as 60 s, with the green period always ending with a 3-s amber
phase. Vehicle generation followed a Poisson distribution, and the saturation headway was
determined to be 1.59 s. All vehicles in the experiments were cars, and default values were
maintained for the remaining settings. In general, drivers’ reaction times and vehicles’ acceleration
and deceleration times lead to a net loss of red time and dissipation time in capturing the
constrained queue sets. Ignoring these braking and start-up motions would lead to overestimation
of the constrained queue length. To account for these factors, Jia et al. (2023) introduced a constant
time-loss model to calibrate the net loss of red time. Based on the simulations, the net losses of red
times of the PDT and CDT models were determined to be 5.820 s and 9.141 s, respectively. Details
of the calibration procedure can be found in the work of Jia et al. (2023).

Table 5 presents the results obtained using the PDT and MCQL-P models for simulation cases
featuring a constant CV penetration rate of 0.4 with varying signal plans and V/C ratios. Table 6
summarizes the results of the PDT and MCQL-P models for simulation cases with a fixed signal
plan, including a 30-second red period, and varying V/C ratios and CV penetration rates. The
findings clearly illustrate that the proposed MCQL-P model outperforms the PDT model in terms
of absolute percentage errors (APE) while incurring minimal computational time overhead. This
superiority is particularly evident in scenarios characterized by high V/C ratios, where the residual-
vehicle effect is substantial. These results emphasize the importance of incorporating residual-
vehicle effects for accurately estimating the uncertainty in CV penetration rate. Even in low V/C
ratio scenarios, the proposed MCQL-P model consistently performs comparably or slightly better
than the pure PDT model, further demonstrating the universality of the proposed model.

Table 7 compares the performances of the CDT and MCQL-C models in simulation cases with a
constant CV penetration rate of 0.4 but different signal plans and V/C ratios. Table 8 summarizes
the results of the CDT and MCQL-C models for simulation cases with a fixed signal plan including
a 30-s red period but different V/C ratios and CV penetration rates. The CDT model, which is a

simplified model to estimate the distribution of Nl.(4), was less accurate but more robust than the
PDT model. In other words, the CDT model was less sensitive than the PDT model to residual-
vehicle effects. As expected, the proposed MCQL-C model achieved similar or slightly improved
results compared with the CDT model. Notably, the MCQL-P outperformed the MCQL-C model.
Overall, using the proposed MCQL model, the PPR model can be applied to all undersaturation
scenarios, irrespective of the presence of residual vehicles. This improvement can enhance the
practicality of the PPR model.
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Table 5. Comparative performance of PDT and proposed MCQL-P models in scenarios with
varying signal plans and V/C ratios.

Ground PDT Proposed MCQL-P
r V/C truth w/o residual vehicles w/ residual vehicles

Variance  Variance APE (%)  Variance APE (%)
15 0.3 0.17408 0.16213 6.86  0.15868 8.85
15 0.5 0.16787 0.16000 4.69 0.16371 2.48
15 0.7 0.14107 0.12922 8.40  0.13617 3.47
15 0.95 0.09138 0.10175 11.35  0.09039 1.08
30 0.3 0.17076 0.17246 1.00  0.17339 1.54
30 0.5 0.12779 0.13013 1.83  0.13371 4.63
30 0.7 0.08236 0.08345 1.32  0.08250 0.17
30 0.95 0.04013 0.05666 41.19  0.04072 1.47
45 0.3 0.18275 0.17757 2.83  0.17728 2.99
45 0.5 0.15149 0.16055 598  0.15993 5.57
45 0.7 0.10344 0.12411 19.98  0.11097 7.28
45 0.95 0.09052 0.11762 29.94  0.10026 10.76
Mean computing time (s) - - 8.076 - 8.106

Table 6. Comparative performance of PDT and proposed MCQL-P models in scenarios with
varying V/C ratios and CV penetration rates.

Ground PDT Proposed MCQL-P
v/:C p truth w/o residual vehicles w/ residual vehicles

Variance Variance APE (%)  Variance APE (%)
0.3 0.1 0.08075 0.07598 591  0.07571 6.24
0.3 0.4 0.17076 0.17246 1.00  0.17339 1.54
0.3 0.7 0.12647 0.13526 6.95  0.13668 8.07
0.5 0.1 0.07639 0.07244 5.17  0.07307 4.35
0.5 0.4 0.12779 0.13013 1.83  0.13371 4.63
0.5 0.7 0.09021 0.09200 1.98  0.09517 5.50
0.7 0.1 0.05813 0.06097 4.89  0.06044 3.97
0.7 0.4 0.08236 0.08345 1.32  0.08250 0.17
0.7 0.7 0.05347 0.05523 329  0.05474 2.38
0.95 0.1 0.03951 0.05071 28.35  0.03784 4.23
0.95 0.4 0.04013 0.05666 41.19  0.04072 1.47
0.95 0.7 0.02549 0.03710 45.55  0.02785 9.26
Mean computing time (s) - - 8.735 - 8.765

Table 7. Comparative performance of CDT and proposed MCQL-C models in scenarios with
varying signal plans and V/C ratios.

Ground CDT Proposed MCQL-C
r v/:C truth w/o residual vehicles w/ residual vehicles

Variance Variance APE (%)  Variance APE (%)
15 0.3 0.17408 0.17034 2.15  0.15199 12.69
15 0.5 0.16787 0.17649 513 0.18383 9.51
15 0.7 0.14107 0.11758 16.65  0.14675 4.03
15 0.95 0.09138 0.06149 32.71  0.07326 19.83
30 0.3 0.17076 0.18209 6.64  0.18358 7.51
30 0.5 0.12779 0.13244 3.64  0.14203 11.14
30 0.7 0.08236 0.07350 10.76 ~ 0.07791 5.40
30 0.95 0.04013 0.04259 6.13  0.03351 16.50
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45 0.3 0.18275 0.18260 0.08  0.18141 0.73

45 0.5 0.15149 0.16671 10.05  0.16780 10.77
45 0.7 0.10344 0.12575 21.57  0.11335 9.58
45 0.95 0.09052 0.11829 30.68  0.10136 11.98
Mean computing time (s) - - 0.001 - 0.048

Table 8. Comparative performance of CDT and proposed MCQL-C models in scenarios with
varying V/C ratios and CV penetration rates.

Ground CDT Proposed MCQL-C
V/:C p truth w/o residual vehicles w/ residual vehicles

Variance Variance APE (%)  Variance APE (%)
0.3 0.1 0.08075 0.07834 298  0.07742 4.12
0.3 0.4 0.17076 0.18209 6.64  0.18358 7.51
0.3 0.7 0.12647 0.14387 13.76  0.14694 16.19
0.5 0.1 0.07639 0.07450 247  0.07602 0.48
0.5 0.4 0.12779 0.13244 3.64  0.14203 11.14
0.5 0.7 0.09021 0.09087 0.73  0.09961 10.42
0.7 0.1 0.05813 0.06068 439  0.06158 593
0.7 0.4 0.08236 0.07350 10.76  0.07791 5.40
0.7 0.7 0.05347 0.04584 14.27  0.04904 8.29
0.95 0.1 0.03951 0.04794 21.34  0.03659 7.39
0.95 0.4 0.04013 0.04259 6.13  0.03351 16.50
0.95 0.7 0.02549 0.02745 7.69  0.02268 11.02
Mean computing time (s) - - 0.001 - 0.050

6 Application

The performance of the proposed MCQL model was evaluated using the real-world NGSIM
dataset. Additionally, an illustrative example of a stochastic CV-based adaptive signal control was
considered to demonstrate that by modelling the residual vehicle effect in estimating CV
penetration rate uncertainty, the proposed models can further improve the performance of practical
traffic management scenarios under uncertain conditions.

6.1 Real-world validation

The proposed MCQL model was applied to the real-world NGSIM dataset to demonstrate its
applicability and practicality. Specifically, trajectory data from two 15-min periods on November
8,2000,1.e.,12:45-13:00 and 16:00-16:15, were extracted from the arterial road data for Peachtree
Street in Atlanta, Georgia, USA. The validation focused on the southbound through-lane between
Intersections 1 and 2. The cycle lengths and red durations for the two periods were 95 s, 100 s and
62 s, 64 s, respectively. The saturation headway was determined to be 2.044 s.

The CV penetration rate was set as 0.1, 0.4, or 0.7. Each vehicle was randomly assigned to be
either a CV or non-CV, based on the pre-set CV penetration rates. Next, the SSDPRE method was
applied to each constrained queue to obtain a set of estimated CV penetration rates that formed a
distribution. Due to the limited amount of available data (only nine complete cycles in a 15-min
period), the variance of the CV penetration rate distribution exhibited fluctuations caused by the
random seeds used during the CV assignments. To mitigate the effect of this sampling error, the
nine constrained queues were replicated 10,000 times. By repeating this CV assignment to the
replications with different random seeds, 10,000 CV penetration rate distributions and
corresponding variances were obtained. The mean of these 10,000 variances was considered the
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ground truth for evaluation.

As described in the previous section, the performances of the MCQL-P and MCQL-C models were
compared with those of the PDT and CDT models, respectively. The V/C ratios for the two periods
were low, approximately 0.41 and 0.50, which indicated that the residual-vehicle effects were not
significant. Consequently, the proposed methods were expected to perform comparably to the PDT
and CDT models. Tables 9 and 10 indicate that the proposed methods exhibited similar or superior
performance compared with their PDT and CDT counterparts. These results highlight the
versatility of the MCQL model in handling undersaturation scenarios, regardless of the presence
of residual vehicles.

Table 9. Performance comparison of the PDT and proposed MCQL models on the NGSIM

dataset.

PDT Proposed MCQL-P

Period p Ground truth w/o residual vehicles w/ residual vehicles
Variance Variance APE (%)  Variance APE (%)
12:45— 0.1 0.07318 0.07336 0.25 0.07364 0.63
13-00 0.4 0.15138 0.13161 13.06  0.13321 12.00
0.7 0.11441 0.09217 19.44  0.09360 18.19
Mean 1091 10.27
16:00— 0.1 0.06249 0.06774 8.40  0.06809 8.96
1615 0.4 0.10184 0.10435 246  0.10588 3.97
' 0.7 0.07313 0.06962 4.80  0.07082 3.16
Mean 5.22 5.36

Table 10. Performance comparison of the CDT and proposed MCQL models on the NGSIM
dataset.

CDT Proposed MCQL-C

Period p Ground truth w/o residual vehicles w/ rgsidual vehicles
Variance Variance APE (%)  Variance APE (%)
12:45— 0.1 0.07318 0.07463 1.98  0.07529 2.88
13-00 0.4 0.15138 0.13321 12.00  0.13722 9.35
0.7 0.11441 0.09156 19.97  0.09516 16.83
Mean 11.32 9.69
16:00— 0.1 0.06249 0.06852 9.65  0.06940 11.06
1615 0.4 0.10184 0.10248 0.63  0.10641 4.49
0.7 0.07313 0.06624 942  0.06928 5.26
Mean 6.57 6.94

6.2 Illustrative application of stochastic CV-based adaptive signal control

To demonstrate the importance of modeling the residual-vehicle effects, a simple example
application of stochastic CV-based adaptive signal control was implemented based on VISSIM.
Due to limited computational resources, only the more efficient CDT and MCQL-C models were
selected for the illustration. Nevertheless, in real-world scenarios with access to large-scale
computer clusters and high-performance GPUs, both PDT and MCQL-P models can be practically
applied. Two adaptive signal control schemes were considered. In Scheme A, the residual-vehicle
effects were not considered in the CV penetration rate uncertainty estimation, and the optimal
signal plan was identified. In Scheme B, residual-vehicle effects were incorporated into the
estimation of the CV penetration rate uncertainty and stochastic CV-based adaptive signal
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optimizations.

The simulation involved a crossroad with two approaches at an isolated intersection. The traffic
demands for both approaches were generated using Poisson distributions. Two traffic demand
settings were implemented: in Setting 1, approaches 1 and 2 had average flow rates of 800 and 400
vehicles per hour, respectively; and in Setting 2, approaches 1 and 2 had average flow rates of
1,200 and 600 vehicles per hour, respectively. The V/C ratios at the intersection for Settings 1 and
2 were approximately 0.61 and 0.92, respectively. In other words, the residual-vehicle effects were
relatively light and significant in Settings 1 and 2, respectively. The CV penetration rate was set
as 0.1 or 0.4, indicating that each generated vehicle had a 10% or 40% probability of being a CV
and 90% or 60% probability of being a non-CV. A simple red—green—amber signal structure was
used for each approach, with a cycle length of 60 s, an amber time of 3 s, and a clearance time of
5 s. The saturation headway was determined to be 1.59 s. Signal optimization was performed at
the end of each cycle based on the estimated real-time traffic demands.

For any approach j at the isolated intersection, Vj € {1,2}, the total number of vehicle arrivals in
cycle i on approach j, M; ;, is the sum of the number of CVs and the number of non-CVs in cycle

i on approach j and can be estimated by

My =my;+q;(1-p;,)C, (37)

where m; ; represents the number of CV arrivals in cycle i on approach j, g; ; is the real-time
average arrival rate in cycle i on approach j, p; ; is the real-time CV penetration rate in cycle i on
approach j, and C represents the cycle length. The product of g; ; and (1 - j) gives the average
arrival rate of non-CVs in cycle i on approach j. Thus, M; ; and its variability depend on p; ; and
its variability. In addition to m; j, the CV environment enables the observation of n; ; and Ni, i
Based on the CDT or MCQL-C model and Corollary 2 (presented in Appendix A), a likelihood
function can be established to maximize the probability of observing n; ; and N‘i, ; by estimating
the real-time average arrival rate, q; ;, and CV penetration rate, p; ;:

T
max HP(ni_k'j, Ni—k,j)' (38)
qi,j,Pi,j 5=D

where T =0,1,2,...,i — 1 is the number of past cycles considered in the likelithood function
formulation (in this example, T was set as 2). The maximum likelihood estimators q; ; and p; ;
can be considered the estimated real-time average arrival rate in cycle i on approach j, q; ;, and
the estimated real-time CV penetration rate in cycle i on approach j, E(p; ;), respectively. These
estimates can then be used as inputs of the CDT or MCQL-C model and Corollary 1 to estimate
the real-time CV penetration rate variance, Var(p; ;).

In Scheme A, only the CDT model was used for variance estimation. The CV penetration rate p; ;

was assumed to follow a beta distribution with parameters E(p; ;) and Var(pl-,]-), as it was
confined between 0 and 1. Monte Carlo sampling was performed to sample 1,000 pairs of the
possible CV penetration rates for both approaches from the assumed beta distributions. Using Eq.
(37), 1,000 pairs of possible traffic demands were estimated based on the sampled CV penetration
rates. For each pair of traffic demands, the predicted real-time delays of the two approaches for
Scheme A incycle i + 1, D{‘_‘Hlland D{‘_‘H,z, were evaluated using Egs. (B3) and (B4) (presented in
Appendix B), respectively, which ignored the possible residual-vehicle effects. For any signal
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plan, the average total delay over the 1,000 possible traffic demand pairs for the intersection,
E (D{‘_‘H'1 + D{‘_‘FLZ), was considered the objective function, as shown in Eq. (39). The optimal
signal plan was obtained by solving the following minimization problem using a simple line search
method:
min  E(D; + Dy,
Ji+1,19i+1,2
S.t. giv11 + Giv1,2 = 52 (39)
Ji+11 =5
Ji+12 =5

After the initial 30 warm-up cycles with a fixed signal plan, the signal plan was optimized at the
end of each cycle using Eq. (39). A simulation involving 1,000 cycles was conducted, and the
actual delays of all vehicles were recorded. The results for the two traffic demand settings are
presented in Table 11.

In Scheme B, the proposed MCQL-C model was used to estimate the CV penetration rate
uncertainty. The traffic demand estimations were identical to those in Scheme A. However, the
real-time delays of the two approaches for Scheme B in cycle i + 1, D{im and Dﬁu,z ,were
predicted using Egs. (B5) and (B6) (presented in Appendix B), respectively, which take into
account the estimated residual vehicle distribution as the initial state for the next cycle and consider
the presence of residual vehicles in the next cycle. The optimal signal plan with the least average
total delay over the 1,000 possible traffic demand pairs for the intersection, E (Dfﬂ'1 + DiliLz ,
was determined using a simple line search method, while adhering to the same set of constraints
specified in Eq. (39). Similar to Scheme A, after the initial 30 warm-up cycles, the signal plan was
optimized for 1,000 cycles at the end of each cycle according to the described control scheme. The
results for the two traffic demand settings are presented in Table 11.

Table 11. Comparison of stochastic CV-based adaptive signal control schemes with and
without consideration of residual-vehicle effects.

Traffic Metric D Scheme A, w/o Scheme B, w/ Improvement
demand residual vehicles residual vehicles (%)
Average actual delay (s) 0.1 88.4 27.2 69.2
200 veh/h ngimurp actual delay (s) 0.1 1759.8 249.0 85.9
and Variance in actual delay (s?) 0.1 39,891.5 663.0 98.3
400 veh/h Average actual delay (s) 0.4 23.1 21.3 7.8
Maximum actual delay (s) 0.4 171.5 149.8 12.7
Variance in actual delay (s*) 0.4 459.6 300.5 34.6
Average actual delay (s) 0.1 307.3 171.7 44.1
1200 veh/h ngimur'n actual delay (s) 0.1 2594.7 711.0 72.6
and Variance in actual delay (s?) 0.1 127,432.5 15,805.7 87.6
600 veh/h Average actual delay (s) 0.4 279.3 161.2 42.3
Maximum actual delay (s) 0.4 2305.2 664.1 71.2
Variance in actual delay (s*) 0.4 124,045.2 13,413.8 89.2

Table 11 presents the average actual delays, maximum actual delays, and variances in actual delay
for Schemes A and B under various combinations of traffic demand settings and CV penetration
rates. The last column in the table shows the improvement of Scheme B relative to Scheme A
across all three metrics. The results clearly indicate that Scheme B consistently and significantly
outperformed Scheme A across all metrics under different scenarios. The notable improvement
was attributable to the incorporation of residual-vehicle effects in Scheme B. Overall, this simple
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example of stochastic CV-based signal control clearly demonstrates the importance of considering
residual-vehicle effects in model estimation and system optimizations.

7 Conclusions

The CV penetration rate is a critical parameter in CV-based transportation applications. Accurately
estimating the uncertainty in the CV penetration rate is essential for developing unbiased transport
models and deriving optimal solutions for transport system optimizations. Recently, the PPR model
has been proposed as a framework for accurately modeling the uncertainty in the CV penetration
rate. However, the method used to estimate the constrained queue length distribution in the PPR
model does not consider the complex effects of residual vehicles. Neglecting these effects may
lead to improper estimates for the constrained queue length distribution, resulting in inaccurate
estimation of the CV penetration rate uncertainty. This study aims to address this research gap by
incorporating the effects of residual vehicles in the estimation of the constrained queue length. This
framework enables the application of the PPR model in undersaturated traffic conditions,
regardless of the presence of residual vehicles. The proposed approach decomposes a full
constrained queue into four vehicle groups: observable constrained residual vehicles, unobservable
constrained residual vehicles, unconstrained residual vehicles, and new arrivals. The residual-
vehicle effects are modeled using a novel Markov chain process and four analytical sub-models
within the MCQL model, including the residual-vehicle model, convolutional constrained queue
model, constrained residual queue model, and observable residual queue model. The effectiveness
of the proposed models is demonstrated through comprehensive VISSIM simulations and real-
world experiments. Furthermore, a practical example of stochastic CV-based adaptive signal
control is presented to highlight the importance of modeling residual-vehicle effects in improving
the system performance.
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Appendix A. Corollaries of the PPR Model

Corollary 1. Given that N~Pois(4) and n~B(N, p), E(p) and Var(p) can be defined as follows:

k i i—j+1

Al
E(P) = llm e~ p+ZZ Z ( )pf(l P IS, N—j+1)|=p, (A1)
i=1j=
Var@) = Jim, [Z - Vz(i,p)]. (A2)
i=1

Corollary 2. Given that N~Pois(1) and n~B(N, p), the joint probability distribution of n and N
is

( k

7T0+Z7‘[Z(1—p)z' i=0,j=0
Pn=iN=j)={, : (A3)

z ( )p(l P IV =12, k) 2

where t, = P(N =2),vz=0,1,2, ..., k.

Proofs of the corollaries can be found in the work of Jia et al. (2023).
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Appendix B. Estimation of Real-time Delays

This appendix describes a method to estimate the real-time delays of two approaches to an
intersection controlled by a simplified red—green—amber signal structure. To simplify the delay
estimation, the vehicle arrivals are assumed to follow uniform distributions. Figure B illustrates
the general cases for estimating real-time delays for the two approaches in two conditions: (1)
undersaturation conditions without residual vehicles, and (2) temporary overflow conditions with
residual vehicles.

Undersaturation Conditions Temporary Overflow Conditions
R Without Residual Vehicles . With Residual Vehicles
Approach 1 % :‘é} % g
ce oQ
div1a diss §
LE+1 1 L£+Ll
Time >
- o
Approach 2 g § qi_+.1’? -] g ;&,
= i =]
LLi)H,z / Lffﬂ 2
di+1J2 s
. T W
—— Arrival Departure I Effective red Effective green

Figure B. Illustration of real-time delay estimations for two approaches in undersaturation
conditions without residual vehicles and temporary overflow conditions with residual vehicles.

The real-time delays at the intersection are represented by the areas between the arriving and
departing profiles. By applying simple geometry, the predicted real-time delays in cycle i + 1 for
approaches 1 and 2, d; 1 1 and d;4 », can be estimated using Eqs. (B1) and (B2), respectively.

~ _ 2
Qi+1,1ri2+1,1 (Li+1,1 + Qi+1,1ri+1,1) o SGir11 — Liv1
LivaaTina +—5 26 =G if Quag S — = B1)
di+1,1 = i+1,1 ’
l 2Liy11 + Giv11Tiv1,07i411 + Giv1a [2Li+1,1 + §1411(2C — giy11) — 59i+1,1] if G N SGi+1,1 — Lis1
2 i+1,1 c
1 ~ (Lis1z + Giv12m0)* 1 2., SGi+12 — Liv1z
E(ZLHLZ + ir1,270)70 + L;_—NH + qu'ﬂ,z (7’1'+1,z - To) if Giy12 < H_l_—H
diy12 = L (5 = Giv12) To gisz ) (B2)
' P . SGi+1,2 — Lit1,2
5Ltz + Gis1200C — 5 (2C = giv12 — 279)SGit1,2 if Givr2 > =2 R
2 2 To+ Gi+1,2

where 17,1 ; is the effective red in cycle i + 1 on approach j; g;44 ; 18 the effective green in cycle
i + 1 onapproach j; §; 4, is the predicted real-time average arrival rate in cycle i + 1 on approach
J» with §;41; = M; j/C; s is the saturation flow rate; C is the cycle length; 7y is the clearance loss
time consisting of a part of the amber period and all-red clearance time (set as 4 s in this case); and
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Lit+11 and L;4 , are initial states of approaches 1 and 2 in cycle i + 1, respectively.

In Scheme A, the residual-vehicle effects are not considered. Thus, no residual vehicle is carried
over from cycle to cycle, implying that L;1;; = 0and L;41 , = §;4+12(7r;2 — 70). By substituting
these values into Eqgs. (B1) and (B2), the real-time delays of the two approaches in cycle i + 1
under Scheme A, D{‘_‘Hlland D{‘_‘H,z, respectively, can be predicted as follows:

[ 5‘7i+1,17”i2+1,1 . SGi+11
—_— if Giv11 <
DA = 2(s — Giy11) c B3
i+11 = - 2 - ’ ( )
iv117411 T gi+1,1[‘1i+1,1(2(: - 9i+1,1) - 59i+1,1] o~ SGi+11
2 if Qiv1n > —
(1, - [Gir12(riz = 70) + Fivr2m0]® | 1 2. SGi+1,2 — Gir1,2(Ti2 — 7o)
E[Zqi+1,2(ri,2 —1) + qi+1,zro]7"o e (21 — ~) s +E‘Ii+1,z(ri+1,2 - To) if Giv12 < EL _:r At
DA = (5 = Giv1,2) To T Ji+1,2 B4
12 1. ~ 1 e~ SGir12 = Giv12(Ti2 —70) ( )
S [2Gi+12(i2 = 10) + Gi412C]C = 5 2C = gis12 — 270)SGis12 if Giv12 >
2 2 7o+ git12

In Scheme B, the residual-vehicle effects are considered. Therefore, L;y11 = E(R;1) and Lj44 , =
Giv1,2 (rl-,z - ro) + E(R;,), where R; ; and R; ; are random variables representing the number of
residual vehicles for approaches 1 and 2 from cycle i, respectively. The values of R; ; and R; , can
be obtained from the proposed residual-vehicle model. Additionally, if cycle i + 1 is predicted to
be in the temporary overflow state, the residual vehicles from cycle i + 1 will carry over to cycle
i + 2. To capture these potential delays, the predicted delays in cycle i + 2, d;4, 1 and d;4, ,, are
incorporated into the predicted real-time delays of the two approaches in cycle i + 1 under Scheme
B, DiBH,land DiB+1,Za respectively. Assuming identical traffic demands and signal plans in cycle i +
2,d;4,1 and d;4; , can be readily obtained by substituting L;,,, = E(Rl-,l) + Giy11C — SGi+11
and Li;,, = E (Rl-,z) + §i+12C — Sgi+1,2 In the corresponding predicted delay formulas derived
from Egs. (B1) and (B2). The real-time delays of the two approaches in cycle i + 1 under Scheme
B, D1 ;and D}, ,, can be predicted as follows:

S9i+11 — E(R;1)

5 diy11 if Giv11 < C
D! = , B5
t+11 o~ S9i+11 — E(R;1) (B3)
div11 T dizz1 f Giv11 > C
L S9i+12 — EIHLZ(TLZ —19) + E(R;)
dit12 if dit12 < n
B _ To T Ji+1,2
Diy1, = - : (B6)
L S9i+12 — qi+1,2(7"i,2 —19) + E(R;)
div12 + divaz  if Giv12 > ——
0 i+1,2
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