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Abstract—Federated Learning (FL) is a privacy-preserving
computing paradigm that enables participants to collaboratively
train a global model without exchanging their raw personal
data. Due to frequent communication and data heterogeneity of
devices with unique local data distributions, FL faces a significant
issue with slow convergence speed. To achieve fast convergence,
existing methods adjust hyperparameters in FL to reduce the
volume of model updates, the number of participating devices,
and local iterations. However, most focus on only part of the
hyperparameters and primarily rely on analytical optimization.
A more integrated and dynamic coordination of all hyperpa-
rameters is needed. To address this issue, we first propose an
efficient FL framework enabled by rand-m sparsification and
stochastic quantization methods. For this framework, we conduct
a rigorous theoretical analysis to explore the trade-offs among
quantization level, sparsification level, device participation, and
local iteration. To improve convergence speed, we also design a
Deep Reinforcement Learning (DRL)-based strategy to dynam-
ically coordinate these hyperparameters. Experimental results
show that our method can improve convergence speed by at
least 8% compared to the existing approaches.

Index Terms—Federated learning, Quantization, Sparsifica-
tion, Deep Reinforcement Learning.

I. INTRODUCTION

Federated Learning (FL) is a popular distributed machine
learning method that can protect privacy without sharing raw
data [1] [2] [3] [4] [5] [6]. In general, a typical FL system
consists of multiple devices connected to the central server,
following a three-step workflow. Firstly, the central server
selects participating devices, synchronizes their local models
with the latest global model and then participating devices
compute model updates using their training data. Secondly,
participating devices upload their model updates to the central
server. Thirdly, the central server aggregates these updates
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using an aggregation algorithm. FL tasks repeat these steps
until the global model convergence.

Although FL has the advantage of privacy protection, its
convergence speed is often limited by communication time and
device heterogeneity [7]. During the FL process, the frequent
and large exchange of model updates between devices and the
central server results in significant communication time. Gra-
dient quantization and sparsification reduce communication
time by compressing the size of model updates [8]. Gradient
quantization reduces the size of transmitted model updates
by converting model gradients from high-precision to low-
precision formats [9]. Gradient sparsification further reduces
the communication cost by transmitting only important ele-
ments and ignoring less significant ones [10]. The quantization
level and sparsification level together determine the degree of
model update compression.

Due to differences in local computing and communication
resources on devices, applying uniform training hyperparame-
ters (local iterations and device participation) and compression
hyperparameters (quantization and sparsification levels) can
cause synchronization delays on some devices, slowing down
global model convergence [11]. Moreover, these hyperparam-
eters are closely related to the convergence accuracy of the
global model. If they are not set properly, the accuracy of the
model may drop significantly [12].

An instinct method that adjusts hyperparameters in FL
has been devised to solve the aforementioned challenges.
Specifically, it modifies quantization level or sparsification
level to diminish the communication time between servers
and devices [8] [12] [13], tunes the number of local iterations
(i.e., the number of updates performed on local data during
each communication round, which differ from epochs that
represent full passes through the dataset) [14] [15] [16], or
chooses a subset of devices [16] [17] [18] to reduce the impact
of device heterogeneity on convergence speed. For example,
G. Yan et al. dynamically adjusted the quantization level
and sparsification level based on the norm of the gradients,
communication budget, and remaining iterations, improving
accuracy under communication budget constraints [8]. Y. Liu
et al. decomposed the research problem into multiple sub-
problems and iteratively solved for the number of local itera-
tions to guarantee the convergence of the global model [15].
H. Zhang et al. utilized a priority-weight-based optimization
model to automatically adjust the number of devices and train-
ing iterations in FL, thereby reducing system overhead [16].

However, the previous studies do not solve the following
issues. First, previous works focus on coordinating only part
of training hyperparameters and compression hyperparameters,



2

which can lead to suboptimal performance because the full
range of hyperparameters affecting convergence speed and
accuracy are not considered holistically. Second, there is no
comprehensive theoretical analysis that simultaneously coordi-
nates all these hyperparameters. Third, most existing methods
rely on analytical optimization approaches, where optimization
problems are solved through predefined algorithms that do not
adapt well to changes during training. Deep Reinforcement
Learning (DRL), which optimizes decisions through interac-
tion with the environment, can adaptively adjust strategies to
overcome these limitations [19]. Nevertheless, current DRL
optimization methods typically focus on a subset of hyperpa-
rameters and have not yet considered the joint optimization of
both all training and compression hyperparameters.

Therefore, in this paper, we propose a fast convergence
method for FL by adjusting training hyperparameters simulta-
neously. Specifically, we first integrate rand-m sparsification
and stochastic quantization in FL to cover all compression
avenues, ensuring unbiased compression for stable conver-
gence. Then, we conduct a theoretical analysis to derive a
convergence bound. Based on the convergence bound, we
formulate a dynamic strategy based on DRL to adjust these
hyperparameters in heterogeneous scenarios. The main contri-
butions of this paper are summarized as follows:

• We propose an efficient framework for FL enabled by the
integration of rand-m sparsification and stochastic quan-
tization methods and formulate an optimization problem
to achieve fast convergence while maintaining model
accuracy.

• We conduct a theoretical analysis for the proposed frame-
work and derive a convergence bound to minimize com-
munication time while maximizing accuracy.

• Considering the convergence bound, we utilize DRL to
find optimal strategies to simultaneously adjust quan-
tization level, sparsification level, the number of local
iterations, and device participation.

• Experimental results show that our method reduces the
convergence time by at least 8% compared with the state-
of-the-art method Fedeco [15].

II. RELATED WORK

In this section, we first review the concepts of quantization,
sparsification, and deep reinforcement learning. Then, we
discuss existing work related to hyperparameter adjustment
in FL.

A. Quantization and Sparsification for FL

Gradient quantization and gradient sparsification were ini-
tially applied in distributed machine learning to reduce com-
munication costs and time. These techniques were later ex-
tended to FL and became one of the most widely used
methods for reducing communication overhead. Stochastic
quantization and rand-m sparsification are the most com-
monly used gradient quantization and sparsification methods.
Stochastic quantization reduces the amount of transmitted
data by probabilistically rounding model updates to lower
precision, ensuring unbiased estimates while balancing model

accuracy and communication efficiency [20]. Rand-m spar-
sification randomly selects important elements for transmis-
sion while ignoring less significant ones [21]. Concurrently,
researchers also explored different aspects of these methods.
For example, SU. Stich et al. introduced an error feedback
mechanism to improve compressed gradients, ensuring that
accumulated errors over multiple communication rounds are
mitigated [22]. C. Li et al. proposed a communication-efficient
FL algorithm that leverages compressed sensing to efficiently
transmit compressed model updates, enabling rapid and precise
model convergence [23].

B. Deep Reinforcement Learning for FL

DRL is a machine learning paradigm where an agent learns
optimal strategies through interaction with their environment,
using a reward-based feedback system. In FL, DRL is often
used to address challenges related to the dynamic nature of
training environments, such as device selection and resource
allocation. For instance, F. Zheng et al. proposed a DRL-
based client selection algorithm that balances client resources
and data heterogeneity, accelerating model convergence and
enhancing performance [24]. T. Zhao et al. developed a
DRL framework to allocate communication and computational
resources, significantly reducing overhead while maintaining
accuracy in FL [25].

C. Hyperparameter Adjustment in FL

In FL, achieving fast convergence in the presence of device
heterogeneity is a challenge. Proper hyperparameter adjust-
ment is key to reducing communication time and adapting to
heterogeneous environments, thereby improving convergence
speed while ensuring accuracy. Existing methods for hyper-
parameter adjustment in FL can be broadly categorized into
two types: adjusting training hyperparameters and compression
hyperparameters.

Some studies focus on the optimization of training hyperpa-
rameters. W. Shi et al. used a heuristic greedy strategy to select
devices minimizing model update time, balancing learning
efficiency and latency [18]. B. Luo et al. optimized device
selection and local iterations using control variable analysis to
ensure convergence while minimizing costs [26]. W. Sun et
al. adaptively adjusted local iterations based on a Lyapunov
dynamic deficit queue, improving performance under resource
constraints [27]. Y. Liu et al. adaptively set local iterations by
decomposing the problem into sub-problems to ensure model
convergence [15]. Q. Chen et al. proposed a DRL-assisted
system where heterogeneous devices adjust local iterations
via locally deployed DRL models [11]. M. Kundroo et al.
dynamically adjusted training iterations by monitoring client
loss values to improve convergence and performance [28].
H. Zhang et al. used a priority-weight optimization model to
automatically adjust device selection and iterations, reducing
system overhead [16].

Similarly, compression hyperparameters are also being in-
vestigated. MK. Nori et al. leveraged the interdependency
between local updates and gradient compression to jointly and
dynamically adjust local iterations and sparsification levels,
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TABLE I: Key notions

Symbol Semantics

I set of devices {1, ..., i, ..., n}
Rk devices participating in k-th communication round
rk number of participating devices in k-th communication round
D(i) data distribution on device i

S(i) set of samples on device i

ωk global model in k-th communication round
ω
(i)
k local model derived by local training ωk−1 on device i

ω⋆ optimal model of the global objective function
δ
(i)
k number of local iteration in k-th communication round on device i

η learning rate of FL
B batch size of FL
e epoch size of FL
c
(i)
u available bandwidths for uploading on device i

c
(i)
d available bandwidths for downloading on device i

v(i) time required to compute a single batch on device i

f (i)(·) local objective function of FL
F (·) global objective function of FL
ℓ(·) loss function of FL
C(·) compression operation of FL
Hb(·) quantization use b bits
Hm(·) sparsification retains m elements
g(i)(·) gradient on device i

accelerating the convergence of FL and improving model
accuracy [12]. G. Yan et al. dynamically adjusted the quan-
tization level and sparsification level based on the norm of
the gradients, communication budget, and remaining iterations,
improving accuracy under communication budget constraints
[8].

While these methods adjust certain hyperparameters, they
overlook the joint optimization of quantization level, spar-
sification level, the number of local iterations, and device
participation, which hinders their efficiency. There is also
a lack of a theoretical framework to guide the dynamic
optimization of these hyperparameters, which is crucial for
developing an efficient FL system.

III. SYSTEM MODEL

This section outlines the FL framework, including the
interaction between the device and the central server, the
communication and computation time for FL, and the use of
sparsification and quantization to reduce communication time.

We consider a FL system comprising a set of n het-
erogeneous devices, denoted as I = {1, ..., i, ..., n}, and a
central server. Each device i possesses a local data distribution
D(i), which contains individual training samples (x, y). The
objective function f (i)(ω) of each device i is defined by the
expected loss over its data distribution as

f (i)(ω) = E(x,y)∼D(i) [ℓ(ω, (x, y))], (1)

where E[·] denotes the expectation, ω represents the model
parameters, and ℓ is the loss function. Furthermore, we can
express f (i)(ω) as an average loss over a set of samples S(i)
drawn from D(i), which is denotes as

f (i)(ω) =
1

|S(i)|
∑

(x,y)∈S(i)

ℓ(ω, (x, y)), (2)

where |S(i)| indicates the size of samples on device i. The
global objective function of the FL system, which aims to
aggregate learning objectives across all devices, is formulated
as

F (ω) =

∑n
i=1

∑
(x,y)∈S(i) ℓ(ω, (x, y))∑n

i=1 |S(i)|
=

n∑
i=1

|S(i)|
|S| f (i)(ω),

(3)
where |S| denotes the total number of samples across all
devices, denoted as |S| =

∑n
i=1 |S(i)|. The goal of FL is

to collaboratively train an optimal global model ω⋆ that mini-
mizes the global objective function F (ω). Table I summarizes
the key notations used in this paper.

A. Workflow of Federated Learning

In the k-th communication round of the FL process, the
central server selects a subset of devices Rk ⊆ I, where
|Rk| = rk, to participate in training. rk is the number of partic-
ipating devices at each communication round. Subsequently,
each device downloads the latest global model ωk from the
central server. Given the Mini-Batch size |B(i)k | and the epoch
size e

(i)
k for local training, the total number of local iterations

is,

δ
(i)
k =

⌈
|S(i)|
|B(i)k |

⌉
e
(i)
k . (4)

All participating devices fix the number of local iterations
to δk and each participating device updates the local model by
conducting δk iterations. The update process at each iteration
is defined as


ω
(i)
k,t = ω

(i)
k,t−1 − ηg(i)(ω

(i)
k,t−1,B

(i)
k,t−1), 1 < t < δk,

ω
(i)
k,1 = ωk, t = 1,

ω
(i)
k,δk

= ω
(i)
k+1, t = δk,

(5)

where t is the current local iteration, g(i)(ω
(i)
k,t−1,B

(i)
k,t−1)

represents the gradient computed by a batch of local samples
B(i)k,t−1 with the learning rate η.

After all participating devices complete local training, they
compress their model updates and transmit them back to
the central server. The compression operation is described
in Section III-B. The central server then aggregates these
compressed updates to obtain the new global model for the
next communication round. The aggregation process can be
described as

ωk+1 = ωk +
1

rk

rk∑
i=1

C(ω
(i)
k+1 − ωk)

= ωk +
1

rk

rk∑
i=1

C(∆ω
(i)
k+1),

(6)

where C(·) denotes the compression operation applied to
the model updates, and 1

rk

∑rk
i=1 C(∆ω

(i)
k+1) represents the

average of the compressed updates from rk devices that
participate in the k-th communication round.
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B. Sparsification and Quantization

To reduce the volume of model update transmission in
FL, our method incorporates compression techniques that
efficiently compress model updates when sending them to the
server. We utilize unbiased compressors due to their ability to
maintain robustness. Thus, our framework integrates rand-m
sparsification and stochastic quantization to compress model
updates. The compression operator C(∆ω) in our method
is formulated as Hb(Hm(∆ω)), where Hb(·) represents the
quantization operation that compresses model updates to b bits,
and Hm(·) denotes the sparsification process that retains only
m significant elements of the model update ∆ω.

Rand-m sparsification. Hm(∆ω) is utilized to the model
update ∆ω by randomly selecting m

(i)
k elements in ∆ω, am-

plifying these selected elements by d

m
(i)
k

(where d is the total
number of elements in ∆ω) times, and setting the remaining
elements to zero. This amplification ensures that the expected
value of the model update remains unbiased, even though
only a subset of elements is transmitted. The sparsification
level m(i)

k of device i in the k-th communication round can
dynamically vary based on network conditions and resource
constraints.

Stochastic quantization. After using the sparsification op-
eration to the model updates, we obtain a sparsified vector
(Hm(∆ω) = ∆ω̂). Subsequently, a stochastic quantization
process is executed on each element of this sparsified vec-
tor. Specifically, the quantization of the j-th element of the
sparsified vector is executed as follows:

Hb(∆ω̂(j)) = ||∆ω̂||2 · sgn(∆ω̂(j)) · ζ(∆ω̂(j), z), (7)

where ||∆ω̂||2 denotes the l2-norm of the sparsified vector
∆ω̂, and sgn(∆ω̂(j)) = {+1,−1} indicates the sign of ∆ω̂(j).
The quantization level z is approximately exponential to the
number of bits b

(i)
k used for quantization. When using b bits

to quantize ∆ω̂(j), one bit is allocated for its sign, and the
remaining b

(i)
k − 1 bits are used to represent the function

ζ(∆ω̂(j), z), resulting in a quantization level of z = 2b
(i)
k −1−1.

ζ(∆ω̂(j), z) indicates an unbiased stochastic quantizer, map-
ping the scalar |∆ω̂(j)|

||∆ω̂(j)||2
to one of the values in the set

{0, 1
z ,

2
z , . . . ,

z
z}. If |∆ω̂(j)|

||∆ω̂(j)||2
falls within the interval [ lz ,

l+1
z ],

then ζ(∆ω̂(j), z) is probabilistically determined as

ζ(∆ω̂(j), z) =

{
l
z , with probability 1− pr,
l+1
z , with probability pr,

(8)

where pr = z
|∆ω̂(j)|

||∆ω̂(j)||2
− l.

This stochastic quantization process allows for a trade-
off between the precision of the model updates and the
convergence speed. The more bits used for quantization, the
finer the precision of each update. The quantization level z

is only affected by quantization bit-width b
(i)
k . Adjusting b

(i)
k

is to adjust z. Hence, quantization bit-width b
(i)
k of device i

in the k-th communication round can be adjusted dynamically
depending on network conditions and resource constraints.

C. Communication and Computation Time Model of FL

The training time per communication round within this FL
system is influenced by the uploading time, downloading time,
and local computation time of participating devices. Firstly,
based on the sparsification and quantization transmission, the
uploading time λ

(i)
u,k and downloading time λ

(i)
d,k of participat-

ing device i in k-th communication round can be described as
[15] [29] [30],

λ
(i)
u,k =

m
(i)
k (b

(i)
k + log2 d) + u

c
(i)
u,k

, (9)

λ
(i)
d,k =

du

c
(i)
d,k

, (10)

where the term m
(i)
k (b

(i)
k + log2 d) + u encapsulates the total

number of bits required for a model update. log2 d indicates
the number of bits required to uniquely identify each non-zero
element’s index in the sparsified model update. The variable
u denotes the size of a parameter unit in a single-precision
floating-point format [8] [13]. This is used to represent the
magnitude of elements in the model update as well as the
quantization norm. The terms c

(i)
u,k and c

(i)
d,k denote the avail-

able bandwidths for uploading and downloading for device i
in k-th communication round, respectively. These bandwidths
are not static and can fluctuate during the FL process due to
varying network conditions.

Secondly, the computation time λ
(i)
c,k for device i during

the k-th communication round is determined by the local
processing of model updates. It is directly influenced by the
number of local iterations δk and local computing capability,
which can be denoted as,

λ
(i)
c,k = v

(i)
k δ

(i)
k , (11)

where v
(i)
k represents the time required to compute a single

batch of samples on device i. v(i)k is not static and can fluctuate
during the FL process due to varying computing capability.

The training time per communication round is ultimately
determined by the longest training time taken among all
participants. Thus, the total training time λtotal,k for the k-
th communication round is given by

λtotal,k = max
i∈Rk

(λ
(i)
u,k + λ

(i)
d,k + λ

(i)
c,k). (12)

where λ
(i)
u,k+λ

(i)
d,k+λ

(i)
c,k represents the training time of device

i in the k-th communication round.

D. Problem Formulation

In this paper, we focus on improving convergence speed
while maintaining model accuracy. To achieve this objective,
we need to design an optimized FL process that dynamically
selects participating devices for each communication round
Rk and coordinates hyperparameters for each selected device,
including epoch size e

(i)
k (Note: We adjust the local epochs

to modify the local iterations), sparsification level m
(i)
k , and

quantization bit-width d
(i)
k . Therefore, the objective can be
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defined as the minimization of the global objective function
F (ω) and the total training time of all communication rounds∑K

k=1 λtotal,k, which can be given by

minF (ω) +

K∑
k=1

λtotal,k, (13a)

subject to

Rk ⊆ I, (13b)

e
(i)
k ∈ Z+,∀k, (13c)

m
(i)
k ∈ Z+,∀i ∈ Rk,∀k, (13d)

b
(i)
k ∈ Z+,∀i ∈ Rk,∀k, (13e)

v
(i)
min ≤ v

(i)
k ≤ v(i)max, (13f)

c
(i)
u,min ≤ c

(i)
u,k ≤ c(i)u,max, (13g)

c
(i)
d,min ≤ c

(i)
d,k ≤ c

(i)
d,max. (13h)

Constraints (13f), (13g), and (13h) impose the minimum and
maximum limits for the computing capability, and bandwidths
for uploading and downloading, respectively. We note that
since this optimization problem is NP-hard and non-convex,
it is difficult to find an optimal solution.

IV. THEORETICAL ANALYSIS

Since F (ω) can only be obtained after FL is completed,
it cannot be used to guide the FL process. Furthermore,∑K

k=1 λtotal,k can only be determined after the commu-
nication round is completed. Therefore, we transform our
optimization problem, which rewrites the expression in (13)
towards two goals. That is, we use the theoretical conver-
gence bound instead of F (ω) and use the difference in
training time between adjacent communication rounds instead
of

∑K
k=1 λtotal,k.

Theoretical Convergence Bound: The convergence bound
acts as a direct and measurable objective for optimization,
streamlining the complexity of minimizing F (ω). Inspired by
[8] and [31], we proceed to derive our theoretical convergence
bound based on the following assumptions.

Assumption 1. The local objective function f (i)(·)
are L-smooth with respect to ω, i.e., for any ω, ω′ ∈
Rd,

∥∥∇f (i)(ω)−∇f (i)(ω′)
∥∥ ≤ L ∥ω − ω′∥.

Assumption 2. Gradients g(i)(ω) are unbiased and
variance bounded, i.e., E[g(i)(ω)] = ∇f (i)(ω) and
E[
∥∥g(i)(ω)−∇f (i)(ω))

∥∥2] ≤ σ2.
According to Section III-B, the compression operator C(·)

is unbiased, which can be denoted as E[C(ω)|ω] = ω, and its
variance bounded by the squared l2-norm of its input, which
can be given by E[||C(ω)−ω||2|ω] ≤ (d−m

m + d
4b
)||ω||2. Given

that machine learning objectives are not necessarily convex,
our convergence bound is derived without assuming µ-strong
convexity [31].

Theorem 1. For ease of analysis and computation, we
consider a simplified derivation approach by fixing r, δ, m,
and d. The theoretical convergence bound is given by

1

Kδ

K∑
k=1

δ∑
t=1

E
[
∥∇F (ω̄k,t)∥2

]
≤

2L(F (ω0)− F ∗)√
Kδ

+
N1√
Kδ

+N2
δ − 1

Kδ
,

(14)

where N1, N2 and ω̄k,t are defined as

N1 =
(1 + (d−m

m + d
4b
))σ2

n

(
1 +

n(n− r)

r(n− 1)

)
,

N2 =
σ2

n
(n+ 1),

ω̄k,t =
1

n

∑
i∈I

ω
(i)
k,t.

Proof. Considering the sequence of ω̄k,t = 1
n

∑
i∈I ω

(i)
k,t

under the conditions where Assumptions 1 and 2 are satisfied,
according to [31], the convergence bound can be given by

1

Kδ

K∑
k=1

δ∑
t=1

E ∥∇F (ω̄k,t)∥2 ≤

2L(F (ω0)− F ∗)√
Kδ

+
N1√
Kδ

+N2
δ − 1

Kδ
,

(15)

where N1 and N2 are defined as

N1 =
(1 + q)σ2

n

(
1 +

n(n− r)

r(n− 1)

)
,

N2 =
σ2

n
(n+ 1).

The constant X equals
√

n
4(n−r) (1 + q), where q represents

the variance of the compression error relative to the squared
l2-norm of its input. The stepsize is defined as η = 1

L
√
Kδ

.
The total number of iterations Kδ and the period length δ
satisfy

Kδ ≥ 2 and τ ≤
√
X

2 + 0.8− X
8

√
Kδ. (16)

According to [31], if a vector undergoes Rand-m sparsification
followed by stochastic quantization, q equals to (1 + (d−m

m +
d
4b
)) [8]. By substituting it into (15), Theorem 1 is derived

to present the theoretical convergence bound of the proposed
method.

Given our optimization goal, we aim to achieve rapid
convergence by adjusting hyperparameters r, e, m, and d while
maintaining high accuracy. According to the convergence
bound derived from Theorem 1, the term N1√

Kδ
+ N2

δ−1
Kδ

effectively provides immediate feedback on the impact of
these hyperparameter adjustments. Consequently, we utilize
N1√
Kδ

+ N2
δ−1
Kδ as an approximation to replace the F (ω) in

the optimization objective. For computational convenience, it
is generally assumed that K is a large value [29]. Therefore,
N1 is adopted as our final metric to substitute for F (ω) [32].

Difference in Training Time: Due to the unpredictability of
the total time of all communication rounds before global model
convergence, we use the difference in training time between
adjacent communication rounds, i.e., λtotal,k − λtotal,k−1, as
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a metric. This approach allows us to measure communication
efficiency improvements between consecutive rounds. This
differential evaluation encourages the system to accelerate
convergence.

Replacing the global objective F (ω) with the convergence
bound and the total training time

∑K
k=1 λtotal,k with the

difference in training time between adjacent communication
rounds, we can reformulate our optimization objective as

min N1 + λtotal,k − λtotal,k−1,

s.t. Rk ⊆ I,
e
(i)
k ∈ Z+,∀k,
m

(i)
k ∈ Z+,∀i ∈ Rk,∀k,

b
(i)
k ∈ Z+,∀i ∈ Rk,∀k,
v
(i)
min ≤ v

(i)
k ≤ v(i)max,

c
(i)
u,min ≤ c

(i)
u,k ≤ c(i)u,max,

c
(i)
d,min ≤ c

(i)
d,k ≤ c

(i)
d,max.

(17)

V. DEEP REINFORCEMENT LEARNING FOR FAST
CONVERGENCE

A. MDP-Based Device Delection and Hyperparameters Con-
figuration

To tackle this NP-hard optimization problem presented in
(17), we design a Markov Decision Process (MDP) formulated
as M = (S,A,P,R, γ) and employ a DRL framework to
navigate the action space. Within this framework, an agent
iteratively selects actions based on the observed state, leading
to state transitions and rewards. The goal is to enhance the
cumulative reward through an optimal policy that dictates the
best action for any given state. The components of this MDP
are detailed as

1) State Space (S). The state for commu-
nication round k is denoted as s(k) =

{{λ(i)
c,k}i∈I , {λ(i)

u,k}i∈I , {λ(i)
d,k}i∈I , {e(i)k−1}i∈I ,

{m(i)
k−1}i∈I , {b(i)k−1}i∈I}, where each component

represent the set of computation time, uploading time,
downloading time, epoch size, sparsification level and
quantization bit-width, respectively.

2) Action Space (A). Actions in communication
round k entail selecting devices and configuring
their hyperparameters, formalized as a(k) =

{Rk, {e(i)k }i∈Rk
, {m(i)

k }i∈Rk
, {b(i)k }i∈Rk

}, a(k) ∈ A.
3) Policy (π). The policy maps states to actions, denoted

as π : S → A. For a given communication round k,
the executed action a(k) is determined by the strategy
a(k) = π(s(k)), which aligns actions with the current
state s(k).

4) Reward (ρ). At the communication round k, the agent
formulates its action a(k), informed by the current
state s(k). The impact of each action, specifically its
influence on the convergence speed and accuracy of the
global model, is quantified using the reward function
ρ(s(k), a(k)). The reward for a given action during
communication round k is represented as

ρ(s(k), a(k)) = λtotal,k−1 − λtotal,k −N1(k), (18)

where N1(k) represents the result obtained from in-
putting action a(k) into the N1 function. The overall
objective of the system is to maximize the cumulative
reward over time, which is represented as

Φ =

K∑
k=1

γρ(s(k), a(k))), (19)

where γ ∈ (0, 1] is the discount factor for the reward.
5) Next State (S′). The transition of the system to a subse-

quent state, s(k+1), is triggered by the implementation
of action a(k) within the current state s(k).

The primary objective is to achieve fast convergence while
maintaining accuracy. To achieve this, the DRL agent focuses
on maximizing the cumulative reward. It explores various
actions to optimize rewards and find the optimal action, which
can be denoted as

a∗ = argmaxE

[
K∑

k=1

γρ(s(k), a(k))

]
. (20)

B. Training and Models of DRL

In our MDP model, we encounter a scenario where both
the action and state spaces are continuous and have high
dimensions. To solve this issue, the Deep Deterministic Policy
Gradient (DDPG) method [33] is employed. The strength of
DDPG is the ability to handle complex action and state spaces
with numerous variables and ensure stable decision-making,
which is suitable for our problem context. As shown in Fig. 1,
the DDPG framework is composed of an actor network to
decide upon actions, a critic network to assess the value of
these actions, and target networks to ensure learning stability.
Additionally, DDPG leverages an experience replay buffer to
enhance the learning efficiency and robustness, which archives
state transitions including the current state, executed action,
observed reward, and the subsequent state.

Actor Network. The actor network analyzes the current
state s(k) and selects the convergence hyperparameters and
participating devices. This process utilizes a function within
the actor network that maps system states to actions, which is
denoted as

a(k) = π(s(k)|θπ), (21)

where θπ denotes the parameters of the actor network. To
refine these parameters, the network employs a policy gradient
approach for optimization, which is given by

∇θπJ =
1

κ

κ∑
j=1

[
∇aQ(sj , a|θQ)|a=π(sj |θπ)∇θππ(sj)

]
, (22)

where κ represents the number of samples drawn from the set
of experiences (s(k), a(k), ρ(k), s(k + 1)). It is verified that
the deterministic policy gradient is equivalent to the stochastic
policy gradient ∇π(a|s, θπ) [34]. Therefore, the deterministic
strategy gradient is shown as

∇π(a|s, θπ) ≈ Eπ

[
∇aQ(s, a|θQ)|a=π(sj |θπ)∇θππ(s)

]
. (23)
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Fig. 1: Model Architecture of Our Proposed Dynamic Hyperparameter Configuration Method based on DDPG (DHC-DDPG).

In each DRL training iteration, a mini-batch of experiences
is randomly chosen from the replay buffer to adjust the
parameters of the actor network, which is denoted as

θπ = θπ + ηπE
[
∇aQ(sj , a|θQ)|a=π(sj |θπ)∇θππ(sj)

]
, (24)

where ηπ is the learning rate of the actor network.
Critic Network. The critic network assesses the perfor-

mance of the policy π(s(k)|θπ) and estimate the value of
state-action pairs via the Q-function Qπ(s(k), a(k)|θQ). This
function predicts the total expected rewards of selecting action
a(k) in state s(k), following the Bellman equation for Q-
values as

Qπ(s(k), a(k)|θQ) =
E
[
ρ(s(k), a(k)) + γQ(s(k + 1), π(s(k + 1)|θQ))

]
.

(25)

Besides, the critic network compares predicted action out-
comes with target predictions derived from the target network,
facilitating precise adjustments to the training parameters θQ.
The loss function can be defined as

L(θQ) = E
[(
Qπ(s(k), a(k)|θQ)− Ytarget

)2]
, (26)

where Ytarget is determined by immediate and projected future
rewards as

Ytarget(k) = ρ(s(k), a(k))+

γQ′
(
s(k + 1), π′

(
s(k + 1)|θπ

′
)
|θQ

′
)
,

(27)

where θπ
′

and θQ
′

denote the parameters of the target net-
works, which are periodically updated to reflect the learning
of the primary networks but are kept constant to stabilize
training in between updates. Training of the critic network is
executed through the processing of mini-batches of experience
tuples (s(k), a(k), ρ(k), s(k+1)) randomly sampled from the
replay buffer. This iterative training mechanism is guided by
an update rule designed to minimize the defined loss function,
which can be given by

θQ = θQ+

ηQE
[
2
(
Ytarget,j −Q(sj , aj |θQ)

)
∇Q(sj , aj)

]
.

(28)

Target Network and Experience Replay. To ensure the
stability of our training process, target networks for the critic
Q′ and actor π′ are utilized to serve as slower-moving versions
of the main networks and smooth out the training updates.
The parameters of these target networks are softly updated at
intervals, which can be given by

θQ
′
= τθQ + (1− τ)θQ

′
,

θπ
′
= τθπ + (1− τ)θπ

′
,

(29)

where τ ∈ (0, 1] constrains the change of the target value.

C. Workflow of Our Method

Devices

Device 1

Device 2

Device 3
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…

Communication Rounds

Training
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Dataset 4

!!

Training

Dataset 2

!!
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……

Central ServerDHC-DDPG for State 
Acquisition

State: s(k)
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Global Model

Local Iteration
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Sparsification
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Sparsification
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Sparsification
Quantification

Local Model Updates

Communication Times

Model Aggregation
& DHC-DDPG for Update

Fig. 2: Integration of FL Framework and DHC-DDPG.

Fig. 1 presents the model architecture of our proposed dy-
namic hyperparameter configuration method based on DDPG
(DHC-DDPG) and Fig. 2 shows the integrated framework
of DHC-DDPG and FL to dynamically set hyperparameters
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Algorithm 1 FL based on DHC-DDPG running on the server

1: Input: Initial model parameters ω1, DHC-DDPG param-
eters θπ, θQ

2: θπ
′ ← θπ , θQ

′ ← θQ

3: Initialize replay buffer and initialize state s(1)
4: for each communication round k = 1,. . .,K do
5: Calculate a(k) by putting s(k) into actor network

6: {δ(i)k }i∈Rk
← {

⌈
|S(i)|
|B(i)

k |

⌉
e
(i)
k }i∈Rk

7: δk ← int(mean({δ(i)k }i∈Rk
))

8: for each device i ∈ Rk in parallel do
9: C(∆ω

(i)
k+1), λ

(i)
u,k+1, λ

(i)
d,k+1, λ

(i)
c,k+1

← DEVICE(i, ωk, δk,m
(i)
k , b

(i)
k )

10: end for
11: Update the global model ωk+1 by using (6)
12: Calculate reward ρ(s(k), a(k)) by using (18)
13: Obtain s(k+1) based on FL communication round k
14: If the replay buffer is full, remove the oldest entry
15: Store (s(k), a(k), ρ(k), s(k + 1)) in replay buffer
16: Sample κ experiences (s(j), a(j), ρ(j), s(j + 1))
17: Calculate the target value Ytarget,j by using (27)
18: Update the actor network π(s|θπ) by using (24)
19: Update the critic network Q(s, a|θQ) by using (28)
20: Update θπ

′
and θQ

′
by using (29)

21: end for
22: Output: The global model ωK+1

Algorithm 2 FL based on DHC-DDPG running on the device

1: Input: Device index i, global model ωk, local iteration
size δk, sparsification level m

(i)
k , quantization bit-width

b
(i)
k

2: for t = 1, ..., δk do
3: Update the local model ω(i)

k+1 by using (5)
4: end for
5: ∆ω

(i)
k+1 ← ω

(i)
k+1 − ωk

6: Calculate λ
(i)
u,k+1 by using (9)

7: Calculate λ
(i)
d,k+1 by using (10)

8: Calculate λ
(i)
c,k+1 by using (11)

9: Calculate C(∆ω
(i)
k+1) by using (7)

10: Output: Compressed model update C(∆ω
(i)
k+1), uploading

time λ
(i)
u,k+1, downloading time λ

(i)
d,k+1, computation time

λ
(i)
c,k+1

and device selection in FL. Algorithms 1 and 2 illustrate the
workflow and integration of FL and DHC-DDPG. Next, we
present the implementation details of DHC-DDPG and its
integration into FL by providing a description of Algorithms
1 and 2.

The framework first initializes global model parameters ω1.
The DHC-DDPG parameters θπ, θQ, and their respective target
networks also need to be initialized. Additionally, a replay
buffer is created to store experience samples and the initial
state s(1) is established. During communication round k, the

actor network of DHC-DDPG takes the state s(k) as input to
calculate the action a(k). Fig. 1 shows the architecture of the
actor network in DHC-DDPG. Specifically, all parts in s(k)
are concatenated and then pass through three fully connected
layers to produce the action a(k). Following this, the number
of local iteration δk is calculated by {δ(i)k }i∈Rk

in a(k) and
the central server selects the participating devices based on
Rk from a(k). As shown in Algorithm 2, the selected devices
update their local models according to δk, m

(i)
k , and b

(i)
k

provided by a(k) and subsequently upload their compressed
model updates to the central server. In addition to model
updates, each participating device also needs to report the
uploading time, downloading time, and computation time of
the device in this communication round to the central server,
which can be calculated using Equations (9), (10), and (11)
given in Section III-C. Once the central server receives all
updates, it performs model aggregation and obtains the new
global model.

Next, the reward ρ(s(k), a(k)) is calculated. The next state
s(k + 1) is updated by replacing old λc,k, λu,k, λd,k, e,m,
and b of participating devices in s(k) with new ones. The
central server checks whether the replay buffer is full. If it
is full, replay buffer removes the oldest entry. Then it stores
the new transition in the replay buffer. Finally, the central
server samples κ experiences for batch processing, computes
target values to update both the actor and critic networks, and
proceeds to update their target networks accordingly.

Having outlined the overall process, we now perform a
complexity analysis of the DHC-DDPG process based on
[35]. Given the structure of the actor and critic networks
in the DDPG algorithm, where the actor net has Tla layers
each with Tna neurons, and the critic network has Tlc layers
each with Tnc neurons, we perform an analysis on the time
complexity of the algorithm. For the actor net, the complexity
of forward propagation through one layer involves operations
for all Tna neurons, approximated as O(T 2

na). Thus, the
total complexity for the actor network’s forward propagation
across all Tla layers is O(Tla × T 2

na). Similarly, for the
critic network with Tlc layers and Tnc neurons per layer,
the forward propagation complexity is O(Tlc × T 2

nc). The
complexity of backward propagation is analogous to that of
forward propagation, given the need to calculate gradients for
each neuron across all layers. The complexity of interacting
with the environment is denoted as O(E), independent of the
network architecture. With B experiences in the replay buffer,
the complexity involved in sampling and updating operations
is approximated as O(B). Combining these components, the
overall time complexity of the DDPG algorithm, considering
one update step that includes both networks’ operations, envi-
ronment interaction, and experience replay, can be represented
as, O(Tla × T 2

na + Tlc × T 2
nc + E +B).

VI. EVALUATION

In this section, we evaluate the performance of our method
using various experiments. We assess its efficiency, scalability,
computational demands, and convergence behavior through a
series of benchmarks and comparisons with baseline methods.
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Fig. 3: Distribution of Samples Across Devices.

We provide a detailed analysis of key aspects of DHC-DDPG
such as actor network loss, policy network loss, and reward
trends. We also provide an analysis of the adaptability of the
DHC-DDPG decision-making process.

A. Experimental Setup

Dataset and Preprocessing: In our experiments, we use the
MNIST, FashionMNIST, CIFAR-10, and UCI-HAR datasets
to evaluate the performance of our method. MNIST and
FashionMNIST consist of grayscale images of handwritten
digits and fashion items, respectively, while CIFAR-10 con-
tains different color images, and UCI-HAR involves human
activity recognition data. The MNIST, FashionMNIST, and
CIFAR-10 datasets are distributed across 20 devices, while
the UCI-HAR dataset is distributed across 40 devices. Similar
to the approach described in [36], Fig. 3 illustrates how we
distribute the data across devices and different colors represent
different devices. To simulate non-independent and identically
distributed (non-IID) and unbalanced scenarios, we control the
sampling frequency of each class in the dataset. Specifically,
the majority of classes can be sampled multiple times, while
certain classes are sampled only once (e.g., in a 10-class
dataset, 4 classes are sampled once, while in a 6-class dataset,
1 class is sampled once). Each device samples twice from the
available classes. The data is then distributed to the devices
based on the sampling results. In this way, each device contains
samples from at least one class and no more than two classes.

Local Model Setting: We tailor the model for each dataset,
and the model architectures are shown in Table II. Addition-
ally, Table III shows the default FL hyperparameters used
in our experiments. Since our method dynamically adjusts
hyperparameters, the default hyperparameters in this table are
mainly used for the baseline settings.

DHC-DDPG Configuration: In configuring the DHC-
DDPG algorithm for our experiments, we use the Adam
optimizer for both the actor and critic networks. The key
hyperparameters, including learning rates, weight decay, and
the reward parameter σ, are detailed in Table IV.

Baseline Methods: We compare the proposed method with
several state-of-the-art FL methods, including 1) FedAvg [37]:
The foundational algorithm of FL. 2) FedPAQ [31]: This
method optimizes FL through periodic averaging, quantization,
and selective participation but maintains static hyperparameter
settings. 3) DTEI [30]: This method leverages digital twin and

DRL to optimize FL for quicker convergence and improved
accuracy through strategic device selection. 4) Qsparse [21]:
This method lowers communication costs and speeds up
convergence by blending sparsification, quantization, and error
compensation. 5) Fedeco [15]: This method adaptively sets
local iterations by decomposing the problem into sub-problems
to ensure model convergence.

Dynamic Scenario: Our dynamic scenario simulations are
similar to the approach outlined in [38]. To simulate computing
capabilities (i.e., the time to compute a batch), we randomly
assign devices into three categories: high, medium, and low.
The average computation times for these categories are 0.5,
0.7, and 1 second per batch, respectively. Each device is
randomly assigned to one category. During the FL process, the
processing speed of each device fluctuates within a standard
deviation of 0.02 seconds around its assigned average. To
simulate network conditions (i.e., the bandwidths for upload-
ing and downloading), we randomly divide devices into high-
bandwidth and low-bandwidth types. For high-bandwidth de-
vices, average download and upload bandwidths are 30 Mbps
and 8 Mbps, respectively. For low-bandwidth devices, they are
5 Mbps and 0.5 Mbps. Each device is randomly assigned to
one category. During the FL process, network speeds fluctuate.
In the high-bandwidth group, download bandwidths vary by
5 Mbps and upload bandwidths by 2 Mbps. In the low-
bandwidth group, download bandwidths vary by 1 Mbps and
upload bandwidths by 0.2 Mbps.

B. Performance Comparison

In this section, we conduct a performance comparison
between our method and the baselines, focusing on the ac-
curacy of the global model over communication rounds. Fig.
4 illustrates the convergence performance of the different
methods on the MNIST, FashionMNIST, CIFAR-10, and UCI-
HAR datasets.

On the CIFAR-10 dataset, baselines show slightly better
accuracy in the first 30 rounds. However, after about 30
rounds, our method starts to outperform them, maintaining
higher accuracy and stabilizing at around 0.8 by 60 rounds. In
contrast, the accuracies of the methods such as DTEI, FedAvg,
and Qsparse remain close to 0.75, with small improvement
over time. For the FashionMNIST dataset, all methods reach
an accuracy of around 0.97 by the 35 rounds. As shown in the
zoomed-in section, our method converges faster and remains
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TABLE II: Model Architecture for MNIST / FashionMNIST, CIFAR-10, and UCI-HAR

Dataset Layers
MNIST / FashionMNIST 2 × (Conv2D with 32 and 64 filters (3×3), ReLU), MaxPooling (2×2), Dropout(0.25)

Flatten, Dense layer with 128 units, ReLU, Dropout(0.5), Dense layer with class num units, Softmax
CIFAR-10 Conv2D with 32 filters (3×3), BatchNorm, ReLU

Conv2D with 64 filters (3×3), BatchNorm, ReLU, MaxPooling (2×2)
Conv2D with 128 filters (3×3), BatchNorm, ReLU
Dropout(0.5), MaxPooling (2×2), Flatten, Dense layer with 512 units, ReLU, Dropout(0.5), Dense layer with class num units, Softmax

UCI-HAR 4 × Dense layer with 512, 256, 128, 64 units, ReLU, Dropout(0.5)
Flatten, Dense layer with class num units, Softmax

0 25 50 75 100 125 150
Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

CIFAR-10

DTEI
FedPAQ
FedAvg
Qsparse
Fedeco
Ours

0 25 50 75 100 125 150
Communication Round

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

FashionM
IST

DTEI
FedPAQ
FedAvg
Qsparse
Fedeco
Ours

0 25 50 75 100 125 150
Communication Round

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

M
IST

DTEI
FedPAQ
FedAvg
Qsparse
Fedeco
Ours

0 25 50 75 100 125 150
Communication Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

UCI-HAR

DTEI
FedPAQ
FedAvg
Qsparse
Fedeco
Ours

25 30 35
0.94

0.96

0.98

1.00

25 30 35
0.94

0.96

0.98

1.00

Fig. 4: Convergence Performance of Various Methods on Each Dataset.

TABLE III: Default Hyperparameters of FL

Dataset Epoch Batch
Size

Learning
Rate

(Momen-
tum)

Participant
Num.

Quant.
Level

Spars.
Level

MNIST 5 256 0.5 (-) 10 3
80% of
model
param.

FashionMNIST 10 256 0.5 (-) 10 3
CIFAR-10 10 256 0.001

(0.9)
10 3

UCI-HAR 1 256 0.005
(0.0009)

20 3

TABLE IV: Default Hyperparameters of Our DHC-DDPG on
All Dataset

Learning Rate of
Actor Network

Learning Rate of
Critic Network

Decay of Critic
Network

σ

0.001 0.001 0.1 0.001

more stable in accuracy. The MNIST dataset shows similar
trends to FashionMNIST, with all methods reaching near-
peak accuracy quickly. Our method shows a slight advantage
in convergence speed, reaching a higher accuracy of about
0.97 within the first 20 rounds. On the UCI-HAR dataset,
our method performs significantly better, stabilizing around
0.8 after 25 rounds. Other methods, such as FedAvg and
DTEI, exhibit more fluctuations and tend to hover around
0.65 accuracy. Overall, the advantage of our method lies in
its ability to adjust hyperparameters dynamically and adapt
to heterogeneous and non-IID data distributions. This enables
faster convergence and higher final accuracy compared to other
methods.

Methods like FedPAQ and Qsparse, which apply quantiza-
tion and sparsification, perform similarly to FedAvg on some
datasets. This is likely because quantization and sparsification

help reduce local model overfitting to local data while pre-
serving important model updates in non-IID and unbalanced
scenarios.

C. Efficiency Analysis of Training Time in FL
Fig. 5 compares the training time required by different

methods to reach target accuracies on all datasets in our
simulation scenario. On the CIFAR-10 dataset, our method
reaches a target accuracy of 75% in 7.23 hours (i.e., 7 hours, 13
minutes, and 48 seconds). In comparison, FedPAQ and FedAvg
require significantly more time, taking 15.59 and 32.13 hours,
respectively. Qsparse and DTEI also take around 10 to 30
hours. This results in our method being 76.1% faster than
DTEI and 77.5% faster than FedAvg. On the FashionMNIST
dataset, our method achieves 97% accuracy in just 0.82 hours,
whereas FedAvg takes over twice as long at 2.01 hours.
Fedeco and DTEI require 1.73 and 1.88 hours, respectively.
On the MNIST dataset, our method reaches 95% accuracy in
0.61 hours. FedAvg needs over 3 hours to achieve the same
accuracy, while other methods take approximately 2 hours.
On the UCI-HAR dataset, our method achieves 60% accuracy
in 0.57 hours. FedAvg and FedPAQ take significantly longer,
at 2.26 and 4.35 hours, respectively. Fedeco shows a smaller
difference, reaching 60% accuracy in 0.62 hours, which is
about 8.8% longer than our method. Our method consistently
demonstrates a substantial reduction in training time to achieve
target accuracy across various datasets compared to other
methods. This efficiency is particularly notable on larger and
more complex datasets such as CIFAR-10.

To further understand the advantage of our method, we
analyze the average training time per communication round.
While our method shows a significant overall time reduction,
the per-round advantage is less pronounced, as shown in
Fig. 6. On the CIFAR-10 dataset, our method takes 0.26
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Fig. 5: Training Time to Reach Target Accuracy on Each Dataset.
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Fig. 6: Average Training Time per Communication Round on
Each Dataset.

hours per communication round, which is almost the same
as Fedeco, FedAvg, and FedPAQ. Likewise, for the MNIST
dataset, the per-round time of our method is nearly the same
as that of Qsparse and Fedeco. This suggests that the primary
advantage of our method lies in reducing the total number of
communication rounds, rather than optimizing the time spent
in each communication round. While our method is highly
efficient overall, there is still potential to reduce the per-round
time for further improvements.

D. Scalability Evaluation with Increasing Devices
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Fig. 7: Convergence Performance of Various Methods on
CIFAR-10 with 40 and 60 Devices.

To evaluate the scalability of our method, we conduct ex-
periments on the CIFAR-10 dataset with an increased number
of devices. Specifically, we perform the test with 40 and 60
devices to observe how accuracy evolves over communication
rounds. As shown in Fig. 7, our method maintains high
accuracy with the increasing number of devices. For the
experiment with 40 devices, our method reaches an accuracy
of around 0.8 in about 25 communication rounds. It shows
faster convergence speed than those of the other methods.
Other methods including FedPAQ, FedAvg, and Qsparse take

longer to reach similar accuracy levels. In the experiment
with 60 devices, our method also shows better performance. It
maintains an accuracy close to 0.8 with fewer communication
rounds. The baseline methods converge more slowly and
reach lower final accuracies. These results demonstrate the
scalability of our method in FL scenarios with larger numbers
of devices. Even as the number of devices increases, our
method maintains consistent performance.

E. Analysis of Computational Demands

We compare the computational demands of our method
with two baseline methods: DTEI and Fedeco. As shown in
Fig. 8, the comparison is based on the runtime per iteration
for each method on four datasets. The reason for selecting
these baselines is that, similar to our method, they both utilize
optimization strategies for improving the FL process. On the
CIFAR-10 dataset, our method demonstrates an overhead of
0.0072 seconds per iteration. This overhead is marginally
better than DTEI’s 0.0097 seconds, and significantly more
efficient compared to Fedeco’s 0.1231 seconds. For the Fash-
ionMNIST and MNIST datasets, the computational demands
of our method are 0.0064 and 0.0067 seconds, respectively.
On the UCI-HAR dataset, our method incurs a runtime of
0.0179 seconds per iteration, which is marginally higher
than DTEI’s 0.0152 seconds but remains substantially more
efficient than Fedeco’s 0.1179 seconds. Although our method
does not always outperform DTEI in computational overhead,
our method is significantly better in terms of convergence
speed and accuracy compared with DTEI. Furthermore, our
computational overhead is consistently lower than that of
Fedeco on all datasets.

F. Analysis of Loss and Reward Convergence in DHC-DDPG

Fig. 9 presents actor network loss, policy network loss,
and reward trends of DHC-DDPG in our method over com-
munication rounds. Each dataset requires a different number
of communication rounds to reach convergence, which we
annotate in Fig. 9.

It is observed that the actor network loss across all datasets
decreases sharply and approaches near-zero values as the
number of communication rounds increases. During the ini-
tial phase of training, the loss exhibits volatility. This early
instability gives way to stabilization over time, likely due to
the accumulation of more varied data in the replay buffer.
The FashionMNIST dataset shows the most rapid decline in
loss, dropping to below 0.02 within the first 20 rounds but
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Fig. 8: Runtime per Iteration of DHC-DDPG and Baselines on Each Dataset.
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also displays the greatest volatility. On the other hand, the
CIFAR-10 dataset demonstrates minimal fluctuations, con-
sistently maintaining a low loss under 0.1 throughout the
communication rounds. This indicates that the actor network
loss tends to be more stable on complex datasets like CIFAR-
10.

In the initial stages, the policy network loss spikes for all
datasets. This spike indicates the exploratory learning phase as
the algorithm adjusts to the environment. The FashionMNIST
dataset shows the most pronounced fluctuations, suggesting
a complex learning process. In contrast, CIFAR-10 exhibits
a smoother reduction in loss, maintaining values typically
below 0.05. As training advances, the policy network loss on
each dataset gradually decreases. It stabilizes as the network
converges toward optimal policy formulation.

Rewards for all datasets fluctuate, reflecting the trial-and-
error throughout the phase. Over time, our method refines its
policies, and we see a general trend of increasing rewards.
Especially in the CIFAR-10 dataset, the rewards trend higher.
Meanwhile, the other datasets, while exhibiting more erratic
reward patterns, eventually show a sharp increase. This sharp
increase signifies that our method has adapted to the varied
learning challenges presented by each dataset.

G. Adaptive Decision-Making of DHC-DDPG

To investigate how DHC-DDPG tailors these hyperparam-
eters to train each dataset, we track and analyze the selected
actions throughout training, including how many devices are
selected for participation in each communication round, how
quantization bit-width and sparsification level are adjusted
over time, and what the number of epochs per device is
set (Note: We adjust the local epochs to modify the local
iterations). However, it is too complex to display all the details
for every device in every communication round. To simplify
the presentation, we show the average values of quantization

bit-width and sparsification level for each communication
round, as shown in Fig. 10.

In the CIFAR-10 dataset, our method employs an incre-
mental adjustment strategy, where the quantization bit-width
starts low but gradually rises, reaching a peak of approximately
12 by the 60-th communication round. This gradual increase
is necessary given the complexity of the CIFAR-10 dataset,
which has over 4 million parameters. Concurrently, a conserva-
tive adjustment to sparsification is observed, maintaining a low
rate of zero-valued parameters to avoid significant information
loss. The epoch also shows a significant increase, which
indicates a strategic investment in computational resources to
refine model accuracy. It is also apparent that CIFAR-10 re-
quires a higher number of devices for participation, leveraging
computational resources to enhance model accuracy.

For MNIST, FashionMNIST, and UCI-HAR, the quantiza-
tion bit-widths remain consistently low throughout the process,
indicating a strategy of aggressive compression. This method
is well-suited to these simpler datasets and their smaller
model sizes, allowing for significant data compression without
notably impacting model performance. Despite this aggressive
approach to quantization, these three datasets exhibit a con-
servative pattern in sparsification. This reveals a preference
to leverage quantization over sparsification, potentially to
maintain the essential representational capacity of the neural
networks.

In terms of epochs, the FashionMNIST dataset shows a
marked increase, suggesting an appreciation for the benefits
of increased local iterations within computational resource
constraints. Conversely, the results from MNIST and UCI-
HAR maintain a stable and relatively lower count of epochs,
indicating that for simpler datasets, higher epochs do not
necessarily yield substantial accuracy gains.

MNIST, FashionMNIST, and UCI-HAR engage a similar
number of devices per communication round. This indicates
that extensive device involvement is not necessary for these
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Fig. 10: Adaptive Hyperparameter Configuration on Each Dataset.

datasets. Our method adjusts the number of participating
devices according to the specific challenges and objectives
of each dataset. It efficiently balances computational demand
against learning efficiency.

VII. CONCLUSION

This paper introduced a new framework designed to acceler-
ate FL convergence while maintaining global model accuracy.
By integrating adaptive quantization, sparsification, and device
selection, we formulated an optimization problem to achieve
FL fast convergence. We conducted a theoretical analysis for
the proposed framework and derive a convergence bound. We
dynamically adjusted multiple hyperparameters affecting FL
convergence using DRL, based on a reward derived from
this convergence bound. Experimental results confirmed that
our method performs well in heterogeneous scenarios and
outperforms existing FL methods.

VIII. FUTURE WORK

While our method shows substantial improvements in con-
vergence speed, there are still areas for further enhancement,
particularly in terms of the efficiency within a single com-
munication round. Specifically, there is room to optimize
average training time and reduce runtime during each com-
munication round. Another area that needs improvement is
ensuring fairness in device selection, as the current method
may introduce slight imbalances. A most efficient FL system
requires addressing both these aspects—optimizing the per-
round performance and ensuring fair device participation.
These are key areas for future research and refinement in de-
veloping a more comprehensive and balanced FL framework.
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