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Abstract—Ensuring accurate and efficient perception and mo-
tion planning is critical for the safety of autonomous vehicles.
Addressing these pivotal challenges, this paper introduces a
novel motion planning method employing a Lidar point cloud-
based potential field (PF). Our approach innovatively extracts the
drivable area boundary from point cloud, enhancing computa-
tional efficiency and reducing common perception errors, such as
missed detections and inaccurate obstacle shape estimation. Built
upon this drivable area boundary, the PF effectively represents
the cost of traversing diverse areas. The PF is integrated into a
model predictive control (MPC) framework to generate control
commands considering vehicle dynamics, constraints, collision
avoidance, and passenger comfort. Given the highly nonlinear
nature of simultaneous longitudinal and lateral motion planning,
an efficient Frenet frame-based trajectory sampling method is
developed to provide an initial guess of the optimal trajectory
for this complex motion planning task. The perception module
has been validated in real bus tests, confirming its reliability and
efficiency, and the entire motion planning methodology has been
rigorously tested through simulations. These simulations show
that our method efficiently generates smooth and safe control
commands, even in challenging scenarios where the obstacle
vehicle suddenly changes its lane, and remains robust under
considerable state observation noise.

Index Terms—Motion Planning, Model Predictive Control,
Potential Field, Drivable Area Detection, Point Cloud

I. INTRODUCTION
A. Motivation

UTONOMOUS vehicles have the potential in increas-

ing traffic flow and reducing accidents [1]]. Critical to
realizing this potential are the interconnected tasks of per-
ception, motion planning, and trajectory tracking control. The
efficiency and accuracy of these modules are significant, espe-
cially in dynamic and unpredictable driving environments [2].
Current perception methods struggle with real-time processing,
often requiring high-end GPUs. More critically, these methods
inadequately address the Out of Distribution (OOD) challenge,
failing to recognize rare or unforeseen obstacles—a signifi-
cant limitation in data-driven approaches trained on limited
datasets. Furthermore, the conventional bounding box repre-
sentation of the obstacles lacks flexibility for irregular-shape

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

* Corresponding author

M. Ning and A. Khajepour are with the Department of Mechanical and
Mechatronics Engineering, University of Waterloo, Ontario, N2L3G1, Canada
(e-mail: {minghao.ning;a.khajepour} @uwaterloo.ca)

E. Hashemi is with the Mechanical Engineering Department, University of
Alberta, Alberta, TOG1H9, Canada (e-mail: ehashemi@ualberta.ca)

C. Sun is with the Department of Data and Systems Engineering, University
of Hong Kong, Pok Fu Lam, Hong Kong, China (e-mail: c¢87sun@hku.hk)

, Member, IEEE, Amir Khajepour-, Senior Member, IEEE,
, Senior Member, IEEE, Chen Sun

, Member, IEEE

obstacles such as curbs. Using this representation directly in
motion planning complicates the boundary constraints, particu-
larly when dealing with numerous obstacles, thus significantly
limiting efficiency. Moreover, motion planning considering ve-
hicle dynamics, constraints, collision avoidance, and passenger
comfort is inherently complex and computationally demanding
due to the nonlinear nature of the motion model and the
obstacle avoidance constraints.

Our research is motivated by the need for a novel method
that not only processes perception data efficiently and ac-
curately, but also seamlessly integrates it into the motion
planning module, thus enhancing the overall safety and per-
formance of autonomous vehicles.

B. Related Research

1) Perception: The perception module’s efficacy relies on
its sensors and associated algorithms. Cameras and Lidars
are prevalent sensors for autonomous vehicles. While cameras
offer detailed color and texture data, they are susceptible to
varying light conditions and can struggle with low-texture
scenarios. Lidars, on the other hand, actively emit laser beams
to gauge distances unaffected by illumination and have supe-
rior distance resolution and geometric detail. This precision
is crucial for subsequent motion planning. Therefore, this
research will employ a Lidar sensor for environmental sensing.

The perception algorithms can be categorized into two
groups: data driven methods and model based methods. The
data driven methods train convolutional neural networks to
estimate 2D or 3D bounding boxes [3], [4]. However, these
methods often fail with unseen cases due to the limited number
of classes in training datasets. For example, KITTI [5]] and
nuScenes [6] contain only a few classes, making networks
trained on them ineffective when encountering unseen ob-
stacles like geese. Besides, the trade-off between the neural
networks’ accuracy and runtime is still an open question. On
the contrary, classical model based point cloud processing
methods can detect objects efficiently and accurately. They use
the geometry information of obstacles and can still perform
well when facing uncommon obstacles. Region of Interest,
ground removal, clustering and shape estimation are the key
components of such model based methods [7]], [8].

In this paper, to get the environment information in an
accurate and fast way, a method to build potential field
(PF) directly from the point cloud is proposed. The high-
definition (HD) map information and an efficient ground point
removal method are used to extract all Lidar points above
the road surface or the obstacle points. Instead of doing a


https://orcid.org/0000-0003-4333-5524
https://orcid.org/0000-0002-1998-6100
https://orcid.org/0000-0002-6236-7516
https://orcid.org/0000-0001-8772-9627

Generate Potential Field from Point Cloud

Fast Motion Planning

Adaptive Grid Ground
Removal

| HD map | | Localization |

Clustering &
Drivable Area Detection

Increasing Cost
0 —» 100

Approximate
prediction model
and PF

Steering Angle

New QP &
Solve QP

Control Sequence
& Update operating

Sampling points
PF from based
Drivable Initial Acceleration
Area Guess Iterative MPC

Fig. 1. Overview of the proposed fast and safe point cloud based motion planning method. The framework encompasses two primary steps: 1) Generating
Potential Field from Point Cloud: This step uses point cloud data to create a potential field, reducing perception errors and computational cost. An HD
map-guided adaptive grid ground removal method can detect any obstacle above the ground surface. Obstacle points are then clustered, and a convex hull
is calculated for each cluster, effectively reducing data volume by representing nearby points as groups. The drivable area is extracted and a potential field
is calculated, providing a simplified, smoother representation for the motion planner. 2) Fast Motion Planning: This step optimizes longitudinal and lateral
motion control commands simultaneously. It employs Frenet frame trajectory sampling to provide an initial trajectory guess, and the motion planning MPC

is solved iteratively from this initial guess.

complicated clustering and then estimating the 3D bounding
box of obstacle, which is time consuming and not flexible, a
fast way to extract the convex hull of the obstacle points is
used. The convex hull of a group of points is a tight fitting
convex boundary around the points, which is a concise and
accurate representation of the obstacle boundary.

2) Motion planning: Motion planning for autonomous ve-
hicles is a complex problem as it needs to consider obstacle
avoidance, vehicle dynamic constraints and passenger comfort
simultaneously. Many motion planning methods have been
proposed during the past decades. Some classical methods aim
to handle static obstacles [9]—[11]].

Recently, many optimization based methods have been
proposed to consider the movement of obstacles, they optimize
an objective function of the vehicle and obstacle states in
addition to states and input constraints. There are two ways to
find the optimal trajectory: exhaustive searching and numerical
optimization. The exhaustive searching based methods search
the optimal trajectory within spatial temporal domain, but
their performance is highly related to the sampling density
[12]. They can generate better trajectories by increasing the
sampling density, but at the cost of increased computational
resources. Frenet coordinate system has been widely used
to reduce the search complexity of the spatial domain by
using the center of the road as a reference. Among the nu-
merical optimization based methods, model predictive control
(MPC) is a good framework because it can consider obstacle
avoidance, vehicle dynamic constraints and passenger comfort
simultaneously [[13[]-[17].

However, the MPC based motion planning is inherently a
nonlinear problem due to vehicle dynamics coupling, non-
convex obstacle constraints and non-convex PF cost. The
original nonlinear problem is hard to solve in real-time, so
simplification like decoupling the vehicle motion into longi-
tudinal and lateral motion for planning, and approximation

or quadratifying the PFs are usually needed. The choice of
the operating points for the simplification and approximation
will determine the optimality of the generated trajectory.
Previous methods usually use constant velocity assumption
to find the operating points, which may not be suitable for
complex driving scenarios. To address this, a multiphase
overtaking maneuver planning is proposed in [18]], where an
initial guess, obtained from the outer adaptive gradient-assisted
particle swarm optimization algorithm, is used to warmly
start the inner gradient-based optimization layer. However, this
method may encounter limitations due to its generation of
initial guesses without prior waypoint information, potentially
impacting performance in diverse driving conditions. The
waypoint information is used in [19] to generate feasible
lane change maneuvers via the exponential functions, then the
generated reference path is tracked by a Model Predictive Path-
following Control (MPFC) method.

Parallel to these model-based methods, the data-driven deep
neural networks have also shown promising strides in opti-
mal motion planning [20]—[22]]. Despite these advancements,
the inherent “black box” nature of neural networks poses
interpretability challenges. This lack of transparent decision-
making processes in neural network outputs has restrained
their widespread adoption in safety-sensitive applications.

From the literature review, finding the optimal trajectory
is complex and time-consuming, approaches via exhaustive
search or numerical optimization have their own advantages
and disadvantages. The search based methods are efficient
if the sampling density is low, they can escape from local
optimum to approximate the global optimum, but they cannot
reach the global optimum unless the sampling density is high
enough. In contrast, the simplified and approximated MPC
methods can reach the global optimum if given a good initial
solution. Simplification and approximation should be done at
proper operating points to reduce the optimization error.



We introduce a novel approach that builds upon these
insights. By sampling an initial guess of the optimal trajectory
in the Frenet frame, we establish a strong starting point for
our MPC-based motion planning. This allows us to efficiently
find the optimal solution for motion planning without com-
promising performance, even in the challenging situations.

3) Contributions:

e Development of an efficient method to generate safe
drivable areas and potential fields directly from Lidar
point cloud data, addressing the critical need for speed
and accuracy in the perception phase.

o Introduction of a novel framework for simultaneous
planning of longitudinal and lateral motions using the
proposed drivable area and PF, effectively bridging the
gap between perception and motion planning.

« Implementation of an efficient solution for the non-linear
challenges in motion planning, utilizing a sampling-based
initial guess within the Frenet frame to provide a robust
starting point for our motion planning MPC.

C. Paper Organization

This paper is organized as follows: Section II details our
method for constructing PF from Lidar point cloud data
and developing the corresponding PF-based motion planning
MPC. It also introduces our approach for solving the motion
planning MPC in real-time using an iterative process with
an initial guess. Section III presents real-world tests that
validate the safety and efficiency of our PF generation method.
In Section IV, we provide simulation results to demonstrate
the advantages of our proposed motion planning method.
Finally, Section V concludes the paper and outlines future
work directions.

II. POINT CLOUD BASED MOTION PLANNING
A. Generating Potential Field from Lidar Point Cloud

The point cloud is used directly to generate potential field,
it aims to represent the environment with fewer perception
errors at a lower computational cost.

It consists of three steps: first an adaptive grid ground
segmentation is employed to remove ground points; then the
remaining obstacle points are clustered and a convex hull
that envelops the obstacle points is extracted for each cluster;
finally, the drivable area boundaries are built based on the
obstacle and road boundaries to generate the PF based on the
distance from the vehicle to the drivable area boundaries.

1) Adaptive Grid Ground Removal: This part plays a
crucial role in the Lidar based detection. The algorithm is
shown in Algorithm [T} by leveraging HD map information,
it divides the point cloud into multiple grids, and estimates a
plane model for each grid. This allows for a more accurate
and robust estimation of road surface compared to fitting
only one ground plane model for the entire point cloud, as
it adapts to various conditions and mitigates the impact of
noise. For the region closest to the vehicle, it first selects
candidate ground points based on the height of the Lidar
sensor placement. It then iteratively estimates the road surface
model. This estimation serves as the initial value for ground

Algorithm 1: Adaptive Grid Ground Removal

Input : A list of points P = {Py,---, Py}, a list of
grids G = {G1, -+ , G} sorted by the
distance to the vehicle, where N denotes
the number of points and M denotes the
number of grids.

: A list of boolean values denoting if it’s an
obstacle point O = {Oy,--- ,0pn}, a list of
estimated ground plane models
F= {Z = fl(x7y)a”' )R = fﬂl(xvy)}'
Initialize: Set height of the Lidar h, set threshold

parameters {T1,--- ,Tar}, set the maximum
number of iterations Ny,.. Set initial
nearby ground fit fo = —hp.

1 fori=1to M do

2 Find points P; in grid G;, set f! = fi_1.

3 for j =1 to Ny do

4 Find inliers

Prn = {Pul(lzx — f7 (x, y)|l < To), Pr € Pi}

5 Fit a new model f/"" by minimizing the

estimation error of the inliers Py,,.

fin =mins > p cp, (2 — fr,yr))?

Output

6 if f/ ~ f/" then
7 ‘ converge and early stop
8 Set the boolean value of inliers as False, save f;.

estimation in other regions. One of the key strengths of the
adaptive grid ground removal algorithm is its ability to adjust
road surface fitting thresholds based on the distance from
the vehicle. More stringent fitting thresholds are set for areas
closer to the vehicle, while more lenient thresholds are applied
to regions further away. This method ensures that all points
above the road surface are detected for use in subsequent
detection modules.

2) Clustering and Extracting Obstacle Boundary: The ob-
stacle points are then clustered and the convex hull is calcu-
lated for each cluster. They can reduce the amount of data
by grouping the nearby points together and only using several
boundary points to represent each group.

In this work, obstacle points from the 3D point cloud are
first projected onto a bird-eye view, a 2D representation, with
a resolution of Ap to facilitate the clustering process. This
projection transforms the 3D coordinates of each point into a
pixel coordinate of 2D plane. The morphological dilation and
erosion operations are then applied to this 2D representation
for effective clustering of obstacle points. To group points
within a distance of e, a circular structuring element (kernel)
of size 2¢/Ap + 1 is used in these operations. As shown in
Fig.[2] the example points are sparsely distributed, the dilation
operation expands the white region from these example points
so that nearby points are connected, the erosion operation
shrinks the white region so that the original shapes the obstacle
points are kept. After the erosion operation, the original
example points are clustered into two separate objects, then
the boundary points for each object are extracted as shown as
the red and blue points. In this example, only six points are



(a) Example points

(b) Dilation

(c) Erosion (d) Boundary points

Fig. 2. An example of clustering and using convex hull to represent obstacles:
(a) Example points, (b) Dilation connects and separates the points into two
groups, (c) Erosion restores the original shape, and (d) The boundary points
of the convex hull are used to represent the obstacle concisely.

needed to represent the original points.

3) Extract Drivable Area Boundaries and Creating PF:
After obtaining the obstacle boundaries, traditional meth-
ods construct separate PFs for different obstacles and road
boundaries, subsequently summing these PFs as an overall
representation of the environment [16]], [17], [23]. This could
lead to the common issue of PF based motion planning,
getting stuck at local optimum. As depicted in Fig. [3a] the
combined attractive PF guiding the ego vehicle forward and
the repulsive PFs from obstacles and road boundaries trap
the vehicle behind the obstacle. To address this, we extract
drivable area boundaries to construct the PF, which, as shown
in Fig. [3b] will direct the ego vehicle to turn left and overtake
the obstacle ahead.

To extract the drivable area boundary, the obstacle boundary
region and the road boundary are first expanded by r meters
as the safety zone. This step is to take the dimension of
ego vehicle into consideration, so that the ego vehicle will
not hit into the obstacle or road boundary. Then the left-side
and right-side drivable area boundaries can be founded by the
following steps: The longitudinal axis s is first discretized to
a predefined resolution As along the lane; The boundaries
are searched forwardly starting from the first point. For cases
where there is no obstacle, the expanded road boundaries are
directly used as the left-side and right-side boundaries. For
cases where obstacle exists, depth first search (DFS) algorithm
is used, the boundaries that have the widest feasible spacing
will be selected. If the search along this selection fails in the
middle due to fully blockage, it will back-trace and try other
directions. An example is shown in Fig. [I] where the smooth
red lines represent the extracted drivable area boundaries.

The drivable area boundaries can be treated as the polyline-
shaped non-crossable objects, and the potential field function
(I) can be used to build the PF, where x and y are at
the obstacle coordinates, a and b are intensity and shape
parameters of the PF, respectively, and X and Yy are the

Obstacle

Obstacle

Ego Vehicle

Ego Vehicle

(a) Adding up PFs (b) Drivable Area Boundary

Fig. 3. Two Different Ways to Build the PF: (a) Demonstrates the conventional
way to handle obstacles and road boundaries individually when defining the
PF and then simply adding them up as the overall PF. This will trap the ego
vehicle in a local optimum to stop behind the obstacle. (b) Illustrates the
proposed method of extracting drivable area boundaries to construct the PF,
which can mitigate this issue. The combination of potential fields (shown in
red and green) can guide the ego vehicle to execute a left turn and bypass
the front obstacle.

white broken line obstacles
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Fig. 4. An example of generated PF for a two-lane case.

normalization term in longitudinal and lateral direction. The
shortest distance from the ego vehicle to the boundaries will
used to calculate the PF.

Uncle,) = (5 - (1)

EP+GEP
For a multi-lane road, the potential field of white broken
line can be calculated using the function (2.
x 1
Ucla,y) =aexp (=b((5=)° + (G-)) @
XN Yn
An example of the generated PF for a case where two
obstacle cars on a two-lane road is shown in Fig. 4] note the
values larger than 100 have been trimmed. It can clearly show
the collision risk at different positions.

B. Motion Planning Method Design and Solution

The motion planning MPC algorithm can be generally
divided into two parts: designing the motion planning MPC
model, and solving it in real-time.

1) Vehicle Dynamics Model: Kinematic and dynamic bi-
cycle model are two commonly used models. The kinematic
bicycle model assumes the velocity vectors at front and rear
wheels are in the direction of the orientation of two wheels
respectively, it can only perform well when the vehicle speed
is low. While the dynamic model is more suitable for higher
speed cases where the small steering angle assumption usually
holds, it considers the impact of tire forces, making it a better
representation of the vehicle during dynamic maneuvers. Here
the dynamic bicycle model is introduced, as shown in Fig. [3
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Fig. 5. Dynamic Bicycle Model.

The equations of motion of this dynamic model are:

m(& —gr) = Fpr (3a)
m(§j + @r) = (Fepcosdy + Fep) (3b)
Li = (l§Fcpcos oy — 1. Fp) 3¢)

X = dcos(ip) — ysin(ep) (3d)

Y = @ sin(p) + ¢ cos(p) (3e)

where X and Y are the coordinates of the center of gravity

(CoG) in the global frame. 2 and y are longitudinal and lateral
velocities in the local vehicle frame. ¢ is the heading angle,
r is the yaw rate. m is the vehicle’s mass, I, is the moment
of inertia of the vehicle around z-axis. [y and [,. represent the
distance from the CoG to the front and rear axles, respectively.
F.; and F,, are the lateral forces of front and rear tires. F,r
is the total longitudinal force, and a = F,r/m is used later
for convenience. The control inputs are the front steering angle
07 and a.

Assuming small df, cos §; ~ 1, and the vehicle is operating
within normal driving conditions with small lateral accelera-
tion where tire forces remain in the linear region. So the linear
tire model in [16]] is valid in our case:

Fep = 2Cas(d; — 2 i

y'_lrr
'i: )

) (4a)

Fcr = 20047’(_

(4b)

where Cl is the lateral cornering stiffness of each front tire,
Cy is the lateral cornering stiffness of each rear tire. The
factor 2 accounts for the fact that there are two front wheels
and two rear wheels.

By combining the above equations, state space model can
be derived based on the dynamic bicycle model as:

2= A'(p)z+ B'(p)u+ D'(p) s
y=C'z2+w )
jj"singbcp—&—chos@gb
—& cos PP+ yTsin 0,

—py

T

0

0

where the state vector z = [X,Y, 2,9, 0, |7,

,D'(p) =

o O O
oo = O
o= O O
o o oo
_— o o o
o O o o

the control

input vector u = [a,d¢]7, the observation vector y =
[X,Y,&,¢]T, and w denotes the noise term. The vector p =
[T, uT]T denotes the operating points where the linearization
is performed. The choice of # and @ plays an important role
in the prediction model accuracy. A common choice is using
the current fixed vehicle velocity and heading angle. But this
may fails especially when ego vehicle performs lane change
maneuver. In this research, the anticipated vehicle states from
the initial guess of the optimal trajectory are used as the
operating points to get a more accurate prediction model.

Using forward Euler method, Eqn.(3)) can be represented as
a discrete, multi-input, multi-output model

z(k+1) = Agz(k) + Bru(k) + Dy, y(k) = Crz(k) (6)

where A, = I + A'(p)Ts, By, = B'(p)Ts, Dy, = D'(p)Ts,
Cr = C', Ts is the sampling time, z(k), y(k), and u(k)
denote the state, output state, and control variable values at
time k, respectively. The prediction (/V,) and control (N;
N, < N,) horizons are the future steps over which vehicle
states are predicted and control inputs optimized, respectively,
with control input held constant beyond N, steps.

The goal of the motion planner and controller is to track the
desired trajectory accurately in real time and to ensure stability,
comfort and safety. The cost function of the motion planning
MPC consists of three parts, a) output reference tracking, b)
manipulated variable move suppression, ¢) crash mitigation.
The motion planning MPC can be summarized as:

manHy

+|\U( ) —u(k — D} + PE(y(k))
S.t. Z(/{ + 1) :Akz(k) + Bku(k) + Dy,
y(k) =Cz(k) (7)
Umin <’LL(]€) < Umax
Aumin ( ) ( - ]-) S Aumax
Ymin <Z/(k’) < Ymax
u(k) =u(k —1),if k > N,
for k =1,--- N,

— yres (B[,

where .5 is the reference value of the output sequence, @,
R are the weight matrices, PF' is the potential field. The first
term of the objective function represents the error between
output and reference, which reflects the precise tracking in the
control objective; the second term represents the magnitude of
the control increment, which reflects the stability and comfort
in the control objective; the last term represents the cost of
the risk of collision, which reflects the crash mitigation in
the trajectory planning task. It also includes three types of
constraints: control constraints, control increment constraints,
and output constraints.

2) Sampling based Initial Guess: The Frenet frame based
trajectory sampling is developed to act as an initial guess of
the optimal trajectory generated from the above MPC method.
The Frenet coordinate system is widely used when sampling
trajectories. It uses the road center as the reference line, and
the position is represented by the longitudinal distance along
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Fig. 6. Frenet coordinate system.

the reference line s and lateral offset from the reference line
d, as shown in Fig. [6]

The trajectory sampling uses a time-varying polynomial that
connects an initial state with a desired state to describe the
longitudinal and lateral motions [24]] [25]. To make sure the
generated trajectory is comfortable and smooth, the quintic
polynomial is selected because it can minimize the jerk [26],
where the jerk is defined as the change of acceleration over
time. This quintic polynomial is a reasonable approximation
for speed variation in many typical driving scenarios, where
the vehicle usually doesn’t change speed abruptly.

Let the motion state at ¢ = 0 be [z, &0, Zo] and the desired
state at ¢ = T be [xT7th,djT], where xo and x7 are the
starting and ending positions, £y and &7 are the velocities,
Zo and @ are the accelerations, and the = can be represented
either for lateral (d) or longitudinal (s) movements. The quintic
polynomial f,(¢) for either type of motion is:

fo(t) = ago + agit + agot® + azst® + apat* + azst®

st fm(o)::EOa fx((]):(ﬂo, fz(o)::EOa (8)
N fZ(T) =T, fz(T) =ar, fm(T) =ir

However, for the cases when the vehicle is expected to
maintain a constant speed, and the longitudinal ending position
constraint f,(T") = sy doesn’t exist, so the above f,(t) will
be reduced to a quartic polynomial.

The Frenet frame based trajectory sampling first defines a
series of candidate desired ending states where each state is
denoted as z(T") = [sr, $7, 81, dr, dT, JT], then it generates
trajectories based on the above fy(t) and f,(t), finally it
selects the trajectory that minimizes the cost function. The
candidate ending states are predefined as

{T € {linspace(Tiin, Tmax; N1)}, s7 = NaN,
$7 € {linspace(s7, .., $1...., Nv)}, 87 =0, 9)
dr € {0, Wine }, dr = 0,dr = 0}

where linspace(a, b, N) generates an array from a to b with N
values. sy = NaN means no constraint exists on f5(7') = s,
enabling automatic computation of the longitudinal distance
over a minimum-jerk trajectory. The st .. s7,., and N,
specify a set of ending longitudinal velocities so that the

0 0 cos(p) —sin(@) —isin(@) — ¢ cos(p) 0 0 0
0 0 sin(p) cos(@) z cos(@) — ysin(@) 0 0 0
) 00 0 ® 0 (] ) 1 0
A (p) = 0 0 _()5 _Q(Ca;‘ﬁgcar) 0 —ZT‘ + 2(lrca:n;ffcaf) ,B (p) = 0 2Cay¢
00 0 0 0 1 0 0
_0 0 2(1,,ca}zfizfcaf) 0 B z(lﬁca;zgzicm.) ] 0 %flﬂ

vehicle can adjust its velocity. Lastly, the lane width wise
facilitates lane change maneuvers.

To select the best trajectory, the cost function of each
trajectory is defined as

J:U}JSJS+deJd+wJUPF+wJUJv (10)

where Js; and J; represent the jerk cost of longitudinal and
lateral motions, respectively. PF' represents the collision cost.
J, represents the difference between the ending longitudinal
velocity and target longitudinal velocity. wy,, wy,, wy, and
w,, are the weight parameters.

3) Iterative MPC: The accuracy of the approximated PF
and the accuracy of the prediction model are two key fac-
tors determining the optimum solution. To have accurate
PF and prediction model approximation, the operating point
p = [z, u"]T should be close to the optimal solution of the
original nonconvex problem. The accuracy of the prediction
model (5) is mainly determined by the longitudinal velocity
and the heading angle. One option for the operating point at
time k is pp = [zg, uffl]T, which means the current state zj
and previous control u_; are chosen as the operating point
to approximate the Ay, By and Dy, and then to predict the
next state z;1. However, this is problematic for the quadratic
programming (QP) based MPC because it uses recursive calcu-
lations of the state space model to predict the future. However,
the prediction model needs to be predefined for each step in the
prediction horizon to create the recursive calculations before
the optimization. To avoid this issue, another option is to
assume the longitudinal velocity and heading angle are fixed.
But this is not a good assumption when the ego vehicle needs
to change its velocity or heading. Besides, to approximate
the PF accurately, the operating points consisting of vehicle
positions are also needed to be close to the predicted states
over the prediction horizon given the optimal control sequence.

In this work, the motion planning MPC is solved in an iter-
ative way, as shown in Algorithm [2| At the first iteration, the
reference trajectory sampled from Frenet frame method is used
as the operating points to approximate the prediction model
and the PF. Once the prediction model and the PF are defined,
the MPC can be converted to a QP problem, and the control
sequence U*(k) at i-th iteration can be solved efficiently. For
following iterations, the control sequence U‘(k) is applied to
the vehicle motion equations, so the state sequence S*(k) at i-
th iteration can be calculated, and this state sequence is used as
the operating points again to approximate the prediction model
and the PF, so a new QP problem can be formed, then the new
control sequence U**1(k) can be calculated. The above steps
will be repeated until convergence or the maximum number
of iterations is reached.



Algorithm 2: Iterative MPC
Input

: Current state and previous control Z, (k),
weight matrices () and R, constraints.
Output : Optimal control solution U (k).
Initialize: Set operating points p° based on Frenet

planner result.

1 for i =0 to Ny, do

2 Approximate prediction model matrices and PF at
operating points p;

Convert the MPC to a QP problem QPM PC*;

Solve and get new control sequence U+ (k).

if U'(k) ~ U*T'(k) then
\ converge and early stop

Infer new operating points p**! by applying
U1 (k) to vehicle motion equations.

8 return U'T1(k)

N R W

III. EXPERIMENTAL RESULTS

In this section, the generation of drivable area boundary
from point cloud is examined using real data collected by the
Waterloo all-weather autonomous shuttle (WATonoBus) from
the Mechatronic Vehicle Systems Lab, shown in Fig[7] The
center Robosense-32 Lidar and two blind spot Bpearl Lidars
offer 360-degree coverage around the bus. The localization
module, Trimble APX-18 Land, consists of a high-precision
IMU and GNSS system with Real Time Kinematic (RTK),
which is capable of providing a centimeter-level global posi-
tion. The computation unit is an NVIDIA Jetson AGX Orin.

A. Dataset and Parameters

The dataset under consideration contains three complete
loops around the Ringroad at the University of Waterloo. Each
loop spans approximately 2.7 kilometers and takes roughly
10 minutes to complete. It has high traffic volume, including
not just typical participants such as cars, trucks, buses, and
pedestrians, but also uncommon objects like geese. Moreover,
the Ringroad’s physical characteristics further enhance the
complexity of the dataset. It features curves and slopes, chal-
lenging for ground surface estimation. The utilized point cloud
data is a combination of points from three Lidars, providing a
comprehensive overview of the environment. To manage data
size and complexity, this point cloud data is then downsampled

GPS/

Rear Blind Spot Lidar
Center Camera

Front Blind
Spot Lidar

Right Camera’

Left Camera

_—

Center Lidar

Fig. 7. WATonoBus for real data collection.

(a) Detect Geese

(b) Inaccurate HD Map

Fig. 8. Safety demonstration examples: (a) Illustrates the proposed method’s
ability to identify and accurately adjust the drivable area boundaries to small,
low-ground-clearance objects in real-world traffic conditions; the camera view
shows the difficulty for the vision system to detect such small and low-texture
objects. (b) Demonstrates robustness when using an inaccurate HD map, the
yellow line denotes the right curb position from the HD map, the blue points
denote the obstacle points, and the red lines show the generated safe drivable
area boundary.

using a voxel size of 0.05m. This method ensures both the
manageability of the data and the preservation of key details
necessary for the study.

The parameters used in the proposed method are summa-
rized: the pixel resolution Ap is 0.1m/pixel, the clustering
distance threshold ¢ is 0.2m, the safety expansion distance
r is 1m, the drivable space resolution As is 0.1m, and the
height of Lidar Ay, is 0.9m.

B. Evaluation and Detection

The proposed drivable area boundary method shows robust
safety features in various challenging scenarios. Firstly, it
demonstrates the ability to detect uncommon and small-sized
objects, an essential attribute to any perception system in au-
tonomous driving. This is exemplified in Fig. [8a] a screenshot
showing our method successfully identifying geese from a
significant distance of 18 meters, and the generated drivable
area boundary leaves room for the geese and car. This level
of detection performance significantly enhances the overall
safety of the autonomous driving system, ensuring its reliable
operation in complex and dynamic traffic conditions.

Moreover, our method exhibits resilience when confronted
with outdated or inaccurate HD map data, a common issue in
real-world applications. As an illustration, Fig. [8b] depicts a
situation where recent construction has shifted the actual po-
sition of the right curb, encroaching into what was previously
the road according to the HD map. Despite this discrepancy,
our method successfully identifies points from the sidewalk as
obstacle points and generates a safe drivable area boundary.
This capability further emphasizes the safety and adaptability
of our proposed method, as it can ensure safe navigation even
in the face of infrastructural changes or mapping inaccuracies.
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Fig. 9. Box plot representation of the runtime distribution for different
components of our proposed method and the DBSCAN clustering method.
The plot illustrates the mean runtime, medians, and quartiles for our adaptive
grid ground removal, our clustering approach, and drivable area computation,
compared to the DBSCAN method. Our methods demonstrate lower mean
runtimes and lower variances, indicating higher efficiency and more consistent
performance.

C. Efficiency Demonstration

Efficiency is another key aspect of the proposed method.
The proposed method, implemented in C++, exhibits high
computational efficiency. On average, the method uses only
4% of the CPU capacity of the Jetson AGX Orin to generate
the drivable area boundary from point cloud in 20ms.

The runtime distribution is depicted in Fig. 0] where we
compare the performance of different components of our
method — adaptive grid ground removal, our own clustering
approach, and drivable area boundary computation — against
the popular clustering method, DBSCAN [27]]. To clarify,
DBSCAN is used here as a comparative algorithm, not as
part of our clustering approach. Our method involves a unique
clustering technique distinct from DBSCAN.

The adaptive grid ground removal exhibits a mean runtime
of 15.44ms, and the majority of its runtime measurements
are less than 23ms. Meanwhile, our clustering approach and
drivable area boundary computation both demonstrate great
performance. They have mean runtimes of just 1.8ms and
2.06ms respectively, and exhibit low variance. In contrast,
the DBSCAN method has a higher mean runtime of 6.51ms
and a larger variance, indicating less consistent performance.
This variance becomes more pronounced in scenarios with
larger obstacles, such as buses, where the runtime can easily
exceed 30ms. This is indicative of less consistent performance,
particularly in complex environments.

This low CPU utilization, coupled with the short and
consistent runtime, underscores the efficiency of our approach,
making it suitable for real-time applications that require rapid
processing and responsiveness.

IV. SIMULATION RESULTS

The performance of the proposed motion planning MPC is
evaluated through simulations. The designed motion planning
MPC is implemented in Matlab, and Eqn.(3) is used to repre-
sent the vehicle dynamics in the simulations. The parameters
of the simulation vehicle are summarized in Table [

A. Double Lane Change Scenario

In this case, the ego vehicle drives along a two-lane straight
dry road with two other driving cars. One car drives along the

TABLE I
PARAMETERS OF SIMULATION VEHICLE

Parameter Description Value  Unit
m Total mass of vehicle 2270 kg
I, Yaw moment of inertia of vehicle 4600 kgm2
ly Dist. (Long.) from CoG to front tires 1.4 m
Iy Dist. (Long.) from CoG to rear tires 1.6 m
Cuoy Cornering stiftness of front tires 63500  N/rad
Car Cornering stiffness of rear tires 65000  N/rad

right lane at 6 m/s, the other drives along the left lane at
8 m/s. The desired speed of ego vehicle is set to be 11.1
m/s (40 km/h), so the ego vehicle is expected to do two
lane change maneuvers to overtake the two obstacle cars. The
control horizon N, = 6, the prediction horizon N, = 20, the
sampling time T = 0.1s, the maximum number of iterations
for finding the optimal solution Np,,x = 10.

The efficacy of our method is evaluated by comparing
the simulation results obtained with and without the use of
the Frenet planner for generating initial guess trajectories, as
well as against the MPFC [[19]]. So the benefits of proposed
method using the initial guess trajectory can be established.
The trajectories and associated results from the simulations
are depicted in Fig. [I0] and Fig.[IT] The red trajectory denotes
the low speed obstacle car on the right lane, and the yellow
one denotes the high speed obstacle car on the left lane.

First, for the case without Frenet planner, the center of the
right lane is used as the reference path to calculate the tracking
error in the motion planning MPC. By building the PF based
on the proposed drivable area boundaries, even without using
the Frenet planner to come up with an initial guess of the
optimal trajectory, the motion planning MPC can still generate
control commands so that the ego vehicle can drive along the
road without crashing into obstacle cars or getting stuck behind
the obstacle cars. However, it takes too much time to solve
the MPC problem when lane change maneuver is performed,
nearly 100ms is required during the simulation time from 6s
to 10s. Taking about 100ms to generate a control command
is not acceptable for autonomous driving application where
high-delaying may lead to risk of collision. Furthermore, the
generated steering angle, lateral velocity, and yaw rate lack
smoothness, potentially diminishing passenger comfort. The
tracking error term in MPC, which penalizes large deviation
from the center of the right lane, can also induce dangerously
close proximity to obstacles during overtaking (T=6s).

Then, for the case with Frenet planner, the initial path
generated from the Frenet planner is utilized as the starting
search point for the motion planning MPC, shown as the
black dotted line, where the time interval between two dots
is Ty = 0.1s. The trajectory inferred based on the generated
control commands is shown as the green dotted line. When the
ego vehicle starts to change its lane (from T=1s to T=2s), the
initial guess shows a harsh maneuver trajectory necessitating
a large steering angle due to the lack of control constraints
during the sampling procedure. However, the proposed method
mitigates this by generating a safer, smoother trajectory. When
the ego vehicle is bypassing the red obstacle car (from T=4s
to T=8s), the initial guess merges to the center of the left
lane, while the proposed method generates a trajectory that
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Fig. 11. Comparative results in the double lane change scenario.

is shifted by about 20cm in lateral direction to keep a proper
lateral distance to the red car. Compared with the previous one,
the performance of the motion planner with the initial guess
is much better. The computation time is much shorter, most
of the MPC problems are solved within 20ms. In average, the
computation time of previous method is 33.8ms, the proposed
method is 12.9ms, the computation time is reduced by 62%.
The generated steering angle is much smoother. Also, the
lateral distance to obstacle when performing lane change is
larger, which could help improve the safety.

Lastly, the comparative MPFC produces a trajectory that is
similar to that of our proposed method. Despite a marginally
shorter average computation time of 12.1ms, the MPFC shows
less smoothness in control commands, particularly steering
angle responses around 9s. This is attributed to the MPFC’s
strategy of treating each obstacle individually when generating
the reference path. At that time, both the double lane change
maneuver triggered by the red car and the single lane change
maneuver triggered by the yellow car are received by the
MPFC, then the MPFC has to choose one of them to follow.
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Fig. 12. Comparative results in the slow down and lane change scenario.

Such nature of handling obstacles individually can lead to
inconsistent reference paths, resulting in unsmooth control
commands. In contrast, the proposed method processes the
obstacles collectively, so our method is able to generate more
consistent control commands, ensuring passenger comfort.

B. Slow Down and Lane Change Scenario

In this case, the red car drives slowly along the right lane
at 8 m/s, and two cars drives along the left lane at 13 m/s.
Initially, the left lane is occupied by the cars, so the ego vehicle
is expected to decelerate and maintain a safe distance to the red
car before safely executing a left lane change. The simulation
results and trajectories are shown in Fig. [I2] and Fig. [I3]

Both the proposed method and the MPFC successfully
manage the slow down and eventual lane change. Nevertheless,
our method exhibits adept control by matching the longitudinal
velocity of the red car at 8 m/s and maintaining a larger safety
distance. The trajectory generated by our method reflects
a smoother transition, which is especially noticeable in the
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Fig. 14. Simulation trajectories of proposed method where front vehicle does a sudden lane change.

steady lateral velocity and consistent yaw rate as the vehicle
executes the lane change.

The advantages of our method extend to the control com-
mand profile. During the critical phase of deceleration and lane
switching, our method ensures that the vehicle’s acceleration
and steering inputs are modulated in a gradual, controlled fash-
ion, which enhances the comfort and safety of the passengers.
In contrast, the MPFC method, while effective in performing
the maneuver, exhibits a less refined control command profile,
leading to less predictable vehicle behavior.

C. Challenging Scenario

To further verify the effectiveness and safety of the proposed
motion planning MPC, a more challenging case is built. Here,
the yellow obstacle car will do a sudden lane change when the
ego vehicle is performing the lane change. The ego vehicle
is expected to keep a safe distance from the yellow car and
overtake it when it’s safe. The simulation results with Frenet
based initial guess are shown in Fig. [I4] and Fig. [T5]

The yellow obstacle car suddenly changes its lane when the
ego vehicle is about to finish changing to the right lane at
T=11s. The proposed method controls the ego vehicle to first
decelerate to avoid collision, and then change to left lane. In
this case, the computation time increases a little to handle the
unexpected situation from T=11s to T=15s, however, the worst
case of the computation time is still less than 40ms, and the
average computation time is 17.4ms, so real-time can still be
achieved. Also, the generated steering angle is still smooth.
To be noted, in order to reduce the time spent in sampling
and searching of the Frenet planner, the sampling space is
sparse, so the sampled trajectory from Frenet planner doesn’t
reduce the longitudinal velocity properly (T=12-13s), but the
proposed motion planning method managed to decelerate
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Fig. 15. Simulation results where front vehicle does a sudden lane change.

greatly to keep a safe distance, as shown as the green line
is shorter than the black line, and the smallest longitudinal
distance between the ego vehicle and the yellow car during
this sudden lane change period is still larger than 10m. So this
case demonstrates the safety and effectiveness of the proposed
motion planning MPC.

D. Impact of Model Uncertainty

To further evaluate the performance of the proposed method
under model uncertainty, a Monte-Carlo simulation with 200
iterations is conducted with the challenging scenario. Gaussian
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TABLE II
PARAMETERS OF GAUSSIAN NOISE

States Description o Value Unit
X X position of vehicle 1 m
Y Y position of vehicle 0.15 m
T longitudinal velocity of vehicle 0.5 m/s
© yaw angle of vehicle 1 degree

noises is introduced to the vehicle dynamics model (5)) to simu-
late the effect of uncertainties in vehicle position, velocity and
yaw angle, as detailed in Table [ll The generated trajectories
are shown in Fig. [T expressed in the form of density map.
The timestamps are noted via orange position points at the cor-
responding time as the nearby time text. No collision happens
during the simulation even with the model uncertainty and
unexpected lane change of the yellow car. At time T=12.5s, the
worst case still keeps a longitudinal distance of 8m from the
yellow car, which prevents the potential collision and ensures
the safety. The generated control commands are not as smooth
as the previous case without model uncertainty, it’s mainly
because the proposed Frenet initial guess planner is trying to
keep the vehicle in the center of the lane. So the generated
control commands will be affected if there is noise in the
vehicle position and yaw angle. However, the comfort related
metrics like maximum acceleration, maximum jerk, maximum
yaw rate are still guaranteed by the constraints in Eqn. [/| So
the generated control commands are still safe and comfortable.

The box plot in Fig. [T7] shows the computation time distri-
bution across the 200 Monte-Carlo simulations. The average
computation time is 19.3ms, and 97.2% of the computation
time is less than 37.8ms. The worst case can still output
optimal control commands within 60ms. So the proposed
method can still achieve real-time performance even with the
model uncertainty.
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Fig. 17. Computation times across Monte-Carlo simulations.

V. CONCLUSIONS AND FUTURE WORKS

In this research, a fast and safe motion planning method
that generates optimal longitudinal and lateral control com-
mands based on the potential field built from point cloud
was proposed. The innovation lies in the method’s capability
to swiftly detect obstacles with high accuracy, construct the
drivable area boundaries, and avoid local optima, enhancing
safety and efficiency. The proposed method to build PF from
point cloud is fast, and ensures all obstacles can be detected. It
can address the problem of the ego vehicle becoming trapped
in local optima by constructing PF based on the drivable area
boundaries. The MPC was used to model the motion planning
due to its capacity to consider vehicle dynamics, constraints,
collision avoidance and comfort simultaneously. To solve this
complex motion planning model, an iterative way that uses
Frenet based planner as initial guess of the optimal solution
was proposed.

Experimental results show the proposed generation of PF
from point cloud can handle small objects and discrepancies
in HD map within 20ms with a modest 4% of the CPU capac-
ity. The simulations underscored the method’s effectiveness
in dynamic scenarios, showcasing a significant reduction in
computational time and maintaining smooth and consistent
control commands even in the presence of sudden, unpre-
dictable maneuvers by other vehicles. The maintenance of
a safe distance under varying conditions and the method’s
computational efficiency, particularly in real-time applications,
are notable achievements of this research.

In future work, the obstacle’s motion will be estimated using
the historical positions to have a better obstacle prediction
instead of assuming a constant velocity model. The theoret-
ical uncertainty analysis will be done and the experimental
verification of the developed motion planning method will be
conducted on a real car.
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