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Abstract—The development of Generative AI (GAI) and AI-
generated content (AIGC) has been significantly improved by
pretrained foundation models and prompt-based methods. To
boost the quality and reduce the latency of AIGC generation,
prompt engineering and edge computing are introduced, demand-
ing a multi-dimensional resource allocation approach. Thus, we
use the generative diffusion model (GDM) and contract theory
to design a two-stage, multi-dimensional resource allocation
framework. In the first stage, we employ an approximation
approach to quantitatively assess the relationship between the
level of prompt optimization, the number of diffusion denoising
steps, and the quality of AIGC generation. Based on the quality
function, we formulate models for the utilities of an AI-generated
content Service Provider (ASP) and users, leading to a non-
convex quality-based contract problem optimizing the level of
prompt optimization and the number of diffusion denoising steps.
To address the time-consuming process of solving the non-convex
problem due to variable cost of the ASP and gain preferences of
the users, a GDM-based scheme is proposed to optimize quality-
based contract items. In the second stage, for each group of
users who choose the same quality-based contract items, a non-
convex latency-based contract problem optimizing the CPU cycle
frequency and network transmission rate is formulated, then the
GDM-based scheme is also applied to find the optimal latency-
based contract items. Numerical results show that the proposed
GDM-based contract generation scheme is very advantageous
in improving the quality of AIGC generation and decreasing
the latency of AIGC generation, compared to other standard
schemes.

Index Terms—Edge computing, prompt engineering, AI-
generated content, contract theory, generative diffusion model.
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I. INTRODUCTION

As a cornerstone of Artificial Intelligence Generated Con-
tent (AIGC), Generative Artificial Intelligence (GAI) is pro-
jected to contribute approximately 7 trillion to the global
economy, enhancing the overall economic impact of Artificial
Intelligence (AI) by around 50% [1]. Specifically, in natural
language processing, GAI could generate nearly 2 trillion
dollars in value through advanced applications such as chatbots
and text summarization. For example, ChatGPT exemplifies
this with its sophisticated conversational capabilities. In com-
puter vision, GAI facilitates image editing and virtual reality,
also expected to add nearly 2 trillion dollars in value. For
example, DALL-E 3 illustrates this by converting textual de-
scriptions into images, blending linguistic comprehension with
visual creativity, underscoring the expanding role of machines
in creative domains traditionally dominated by humans.

For many years, GAI has been the subject of research
and has gone through multiple iterations. In particular, the
introduction of Pretrained Foundation Models (PFMs) and
prompt-based techniques has made it much easier to create
GAI and AIGC. The ”PFM + prompt” paradigm expands its
applications beyond multimedia creation, including channel
coding [1], network design [2], and defenses [3]. However,
the paradigm faces challenges such as resource limitations and
low-quality prompts.
• Resource Limitations: PFMs, densely packed with an

extensive array of parameters, are notably resource-
intensive. For example, deploying models such as GPT-
3 requires at least one NVIDIA Ampere or a newer
GPU, equipped with no less than eight gigabytes of GPU
memory. Additionally, each cycle of generative inference
consumes a considerable amount of computing power.
This significant resource consumption undeniably poses a
formidable barrier for numerous mobile users constrained
by limited resources [4].

• Low-Quality Prompts: Users without proper training
often find it challenging to create effective professional
prompts for PFMs, especially when dealing with com-
plex downstream tasks or when the PFM has hidden
requirements. Poor-quality prompts can degrade the gen-
eration quality of PFMs and result in more frequent re-
generations, leading to increased service delays [5].

However, there is hope in the potential of edge computing
and prompt engineering to tackle these challenges. Edge
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servers enable the local deployment of PFMs to act as AI-
generated Content Service Providers (ASPs), offering AIGC
services to mobile users [6]. The effectiveness of these mobile-
edge AIGC services hinges on the strategic use of prompt
engineering [5]. In this context, prompt engineering addresses
the challenges of network resource optimization by treating
prompts as critical variables. These prompts are carefully
chosen, designed, and optimized to meet user needs while
complying with network limitations. The benefits of this
approach in prompt engineering are multifold.

• Improving Quality of AIGC Generation: The useful-
ness of PFMs may increase by providing the most appro-
priate prompts. The results in [7] found that optimizing
the prompts can increase user satisfaction with produced
images by 380%.

• Reducing Latency of AIGC Generation: Reducing the
number of generation attempts directly decreases service
latency, which, in turn, enhances user satisfaction, as
satisfaction is inversely related to latency [4].

• Reducing Energy Consumption: Mobile edge networks
are heavily dependent on resource efficiency. Reducing
the number of re-generations may help save bandwidth
and computing resources.

Despite these advantages, the following challenges are
faced. Firstly, how do we quantify the relationship between
the level of prompt optimization and the quality of AIGC
generation, and identify the optimal level to meet the quality
needs of users for AIGC services? Secondly, to improve the
Quality of Experience (QoE) for users, multi-dimensional
resource optimization strategies such as the level of prompt
optimization, the number of diffusion denoising steps, CPU
cycle frequency, and network transmission rate, must be im-
plemented in resource-sparse edge networks. Lastly, ASPs that
provide AIGC services require users to make payments to
access these services. Since users are driven to maximize their
own benefits, it is unrealistic to expect them to unconditionally
comply with the ASPs’ instructions.

Thus, we propose a two-stage, multi-dimensional resource
allocation framework that utilizes a Generative Diffusion
Model (GDM) and contract theory to enhance the quality
and reduce the latency of AIGC generation. Although this
paper primarily focuses on text-generated image services, the
framework is adaptable to other types of AIGC services as
well. In the first stage, a neural image assessment model
[8] is used to assess the quality of image generation. Sub-
sequently, an approximation approach is used to quantify
the relationship between the level of prompt optimization,
the number of diffusion denoising steps, and the quality of
image generation. This method is a common practice in the
literature and has been adopted in other studies, such as [9],
[10]. Based on the approximation relationship, we establish
models for the utilities of an ASP and users, leading to
a non-convex quality-based contract problem optimizing the
level of prompt optimization and the number of diffusion
denoising steps. Variable gain per quality of image generation
and variable cost of the ASP in mobile environments require
the continual re-solution of the non-convex problem, making

it more time-consuming to obtain the optimal quality-based
contract items using conventional mathematical techniques.
Fortunately, a GDM-based scheme is capable of handling the
above issue [1]. It has been applied in various areas, such
as blockchain, vehicular networks, vehicular metaverses, and
information sharing in full-duplex semantic communications
[1]. Thus, we employ the GDM-based scheme for optimal
quality-based contract items. In the second stage, users first
select a quality-based contract item that aligns with their type
of gain per quality. Then, for each group of users who choose
the same quality-based contract items, we formulate a non-
convex latency-based contract problem optimizing the CPU
cycle frequency and network transmission rate. The GDM-
based scheme is also applied to find the optimal solution for
the latency-based contract problem. The main contributions of
this paper are summarized as follows:
• A curve approximation approach is employed to model

users’ QoE including the quality of AIGC generation
and the latency reduction of AIGC generation. Based
on the QoE, a quality-based contract problem and a
latency-based contract problem between the ASP and
users are formulated to maximize the utility of the ASP
sequentially.

• Due to the users’ variable gain and the ASP’ variable
cost, non-convex quality-based and latency-based con-
tract problems must be solved repeatedly, which takes
longer using traditional mathematical methods. To ef-
ficiently find the optimal quality-latency-based contract
items, we propose a novel two-stage GDM-based scheme.

• Numerical results show that the proposed two-stage
GDM-based contract generation scheme is very advanta-
geous in improving the quality of AIGC generation and
decreasing the latency of AIGC generation, compared to
other baseline schemes. The effectiveness of the proposed
scheme has also been confirmed.

The rest of this paper is structured as follows. The related
work is presented in Section II. The system model is pre-
sented in Section III. GDM-based quality contract design is
introduced in Section IV. GDM-based latency contract design
is introduced in Section V. Section VI shows the performance
evaluation. Section VII concludes this paper. Table I lists the
notation frequently used in the paper.

II. RELATED WORK

Recently, much attention has been paid to AIGC services in
edge computing, including improving their performance and
implementing incentive mechanisms. This section will focus
on two of the most pertinent aspects of our research.

A. Performance Enhancement for AIGC services

Enhancing the performance of AIGC services within edge
networks necessitates the strategic optimization of wireless
resource allocation. The authors in [11] and [12] introduced
a system for efficient model management and resource al-
location to meet user needs, proposed a metric called ’age
of context’ for task relevance, and optimized edge server
caching considering latency, energy, and accuracy. The authors
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TABLE I: Summary of main notations.

Notation Definition Notation Definition
M the number of users A the quality of image generation

D the latency reduction of image generation g
re-generate the image for the g-th time until the
image generation quality is met

ζ
the probability of achieving a certain threshold
A for the quality of image generation E[D]

the expected latency reduction with the g-th
generation of successful result

I
the number of types of gain per quality of
image generation θA

i
the type of the ith gain per quality of image
generation

qA
i

the probability that a user’s type belongs to the
type of the ith gain per quality lAi the level of prompt optimization for type-θA

i user

sA
i

the number of diffusion denoising steps for
type-θA

i user pA
i the reward paid to the ASP for type-θA

i user

σ1,i
the cost per level of prompt optimization for
type-θA

i user σ2,i
the cost per number of diffusion denoising steps for
type-θA

i user

ρ the parameter vector fitted by experiments Mi
the number of the users choosing the quality-based
contract item ΦA

i = (lAi , s
A
i , p

A
i )

mi
a user choosing the quality-based contract item
ΦA

i = (lAi , s
A
i , p

A
i )

θT
j (θA

i )
the type of the jth gain per expected latency
reduction with the type of the ith gain per quality

J
the number of types of gain per expected
latency reduction for Mi users qT

j (θA
i )

the probability that a user’s type of gain per
expected latency reduction belongs to type-θT

j (θA
i )

tmax
j (θA

i ) the maximum latency for type-θT
j (θA

i ) user b1,j(θA
i )

the cost per computation energy consumption of
optimizing the prompt for type-θT

j (θA
i ) user

b2,j(θA
i )

the cost per computation energy consumption
of executing diffusion denoising for
type-θT

j (θA
i ) user

b3,j(θA
i )

the cost per communication energy consumption
for type-θT

j (θA
i ) user

δj(θA
i )

the CPU frequency per level of prompt
optimization for type-θT

j (θA
i ) user ηj(θA

i )
the CPU frequency per number of diffusion
denoising steps for type-θT

j (θA
i ) user

dj(θA
i )

the size of the diffusion denoising result for
type-θT

j (θA
i ) user hj(θA

i )
the status of wireless connection for type-θT

j (θA
i )

user

κj(θA
i )

the effective switched capacitance for
type-θT

j (θA
i ) user xT

j (θA
i )

the CPU frequency for optimizing prompt for
type-θT

j (θA
i ) user

yT
j (θA

i )
the CPU frequency for diffusion denoising for
type-θT

j (θA
i ) user rT

j (θA
i ) the network transmission rate for type-θT

j (θA
i ) user

KA or KT
the number of iterations for adding noise in the
quality-based or latency-based contract
generation model

φA
k or φT

k

the features of sample after iteratively adding k
times of noise the features of sample in the
quality-based or latency-based contract generation
model

πA
ωA (φA|eA) or
πT
ωT (φT(θA

i )|eT(θA
i ))

the quality-based or latency-based contract
design policy NA or N T Gaussian distribution in the quality-based or

latency-based contract generation model

µA
ωA or µT

ωT
the mean in the quality-based or latency-based
contract generation model ΣωA or ΣωT

the covariance matrix in the quality-based or
latency-based contract generation model

εA
ωA or εT

ωT
the quality-based or latency-based contract
design network ωA or ωT the weights of the quality-based or latency-based

contract design network

εA
ωA or εT

ωT
the quality-based or latency-based contract
design network HA

v or HT
v

the weights of the quality-based or latency-based
contract evaluation network

LA(ωA) or LT(ωT)
the loss function in the quality-based or
latency-based contract generation model NA or NT the batch size in the quality-based or latency-based

contract generation model

γA or γT the discount factor in the quality-based or
latency-based contract generation model τA or τT the soft target update parameter in the quality-based

or latency-based contract generation model

εA or εT the exploration noise in the quality-based or
latency-based contract generation model BA or BT the replay buffer in the quality-based or

latency-based contract generation model

proposed a model linking computational resources with user
quality metrics and recommend a deep reinforcement learning
algorithm for the optimal selection of ASPs in wireless edge
networks [15]. The authors in [13] proposed a novel deep q-
network-based algorithm to address the challenge of selecting
an ASP in healthcare consumer electronics, optimizing service
provision and energy consumption through a markov decision
process model. The authors initially proposed an AI-generated
optimal decision algorithm using diffusion models for a better
selection of ASPs. Furthermore, they improved it by integrat-
ing deep reinforcement learning, creating the soft actor-critic
algorithm for deep diffusion for more efficient ASP selection
[14]. The authors of [16] developed an algorithm using multi-
agent reinforcement learning and soft actor critic methods to

efficiently schedule AIGC workloads across multiple, distant
data centers, excelling in resource utilization, cost-efficiency
and reduction of carbon emissions.

B. Incentive Mechanism for AIGC services

Previous studies have taken an optimistic view that all edge
servers owned by ASPs will contribute their resources without
any conditions, which is not realistic in the real world due to
the costs associated with running AIGC services. Therefore,
in [17], the authors suggested a novel multiscale sequential
perception approach to predict user skeletons from wireless
signals and applied game theory to create a pricing strategy
for service provisioning. The above work assumes that ASPs
fully understand users’ preferences of QoE, such as service
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TABLE II: Performance Enhancement and Incentive Mechanism for AIGC Services in Edge Network.

Ref. Optimization strategy Optimization goal Optimization approach

[11], [12] Caching and offloading decisions
Minimize the system cost including the
switching cost, the accuracy cost, the
transmission cost, and the inference cost

Least context algorithm

[13] ASP selection decision Maximize quality and minimize energy of
AIGC services DQN-based algorithm

[14] Number of diffusion steps Maximize human-aware content quality of
AIGC services

Diffusion model-based
AI-generated optimal decision
algorithm

[15] ASP selection decision Maximize the quality of generated content
reward and a congestion penalty

Deep reinforcement
learning-enabled algorithm

[16] Duration of each task execution Maximize the utility of the system related
to revenue and energy cost

Algorithm based on multi-agent
reinforcement learning and
actor-critic methods

[17] Basic fee and unit price, computing
resources Maximize user’s utility Generative AI-aided game theory

[18] Latency of AIGC service Security-latency metric Generative AI-aided contract

[19] Data update frequency Maximize satisfaction function of AIGC
services Contract theory

[20] Offloading decisions
maximize the task completion rate and
minimize the average response time of
AIGC services

Vision language model
empowered contract theory

This paper
Level of prompt optimization, CPU cycle
frequency, network transmission rate,
number of diffusion denoising steps

Quality and latency of prompt engineering
based AIGC services

Two-stage GDM-based contract
design

delay, which is unrealistic and complicates the alignment of
rewards with service quality. Thus, in [18], the authors used
contract theory to create flexible contracts that motivate ASPs
to provide their resources for AIGC mobile services. In [19],
the authors use Age of Information (AoI) as a metric to
measure the freshness of the data for AIGC fine-tuning. Sub-
sequently, a contract theory model based on AoI is proposed
to motivate UAVs to contribute fresh data. The aforementioned
work mainly addresses service latency, overlooking the crucial
aspect of service accuracy, which is vital for AIGC services.
Thus, in [4], a framework is presented to improve user QoE
and lower energy consumption in AIGC services, using edge
devices and prompt engineering in a mobile edge environment.
The authors in [20] integrated diffusion-based AIGC models
for low-light image enhancement in night time teleoperation,
utilizing the vision language model empowered contract theory
for automated difficulty assessment and differential pricing
under information asymmetry.

In order to further improve the efficiency of resource
utilization, it is essential to design multi-dimensional resource
allocation strategies, such as level of prompt optimization,
number of diffusion denoising steps, CPU cycle frequency,
and network transmission rate, yet existing research has not
explored this. Thus, we merge a diffusion model and contract
theory to propose a two-tiered, multi-dimensional resource al-
location framework with a focus on the users’ QoE, including
result quality and latency efficiency. A comparison of our work
with what already exists is shown in Table II.

III. SYSTEM MODEL

To illustrate the workflow of the GDM-based contract
theory framework, we initially focus on a text-generated image
service, subsequently introducing the concept of Quality of
Experience (QoE). This workflow is also adaptable to various
other AIGC services.

A. Workflow of Framework

We consider an ASP and M users. The workflow of the
GDM-based contract theory framework can be accomplished
by taking the following steps.

Step 1. Training of Quality-based and Latency-based
Contract Generation Models: The ASP uses history records
to train a quality-based contract generation model and a
latency-based contract generation model based on the GDM,
respectively. More details are given in Sections IV and V.

Step 2. Quality-based Contract Generation and Se-
lection: Taking the environmental parameters as input, the
ASP uses the quality-based contract generation model to
generate quality-based contract items denoted as ΦA. The
input environmental parameters for the quality-based contract
generation model are denoted as a vector eA and include the
number of types of gain per quality of image generation,
the type vector of gain per quality, the probability vector,
the cost vector per level of prompt optimization, and the
cost vector per number of diffusion denoising steps. Those
parameters are denoted as I , θA = [θA

1 , . . . , θ
A
i , . . . , θ

A
I ],

qA = [qA
1 , . . . , q

A
i , . . . , q

A
I ], σ1 = [σ1,1, . . . , σ1,i, . . . , σ1,I ],

and σ2 = [σ2,1, . . . , σ2,i, . . . , σ2,I ]. Here, θA
i is the type of

the i-th gain per quality, qA
i is the probability that a user’s

type belongs to the type of the i-th gain per quality, σ1,i
is the cost per level of prompt optimization for the type of
the i-th gain per quality, and σ2,i is the cost per number
of diffusion denoising steps for the type of the i-th gain
per quality. Each quality-based contract item is denoted as
ΦA
i = (lAi , s

A
i , p

A
i ), i ∈ {1, . . . , I} where lAi is the level of

prompt optimization, sA
i is the number of diffusion denoising

steps, and pA
i is the reward paid to the ASP. Then, the users

choose the quality-based contract item that suits their gain
types per quality.

Step 3. Latency-based Contract Generation and
Selection: The ASP counts the number of the users that
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Fig. 1: Workflow of GDM-based contract theory framework. Step 1. The ASP trains two GDM-based models for quality-based
and latency-based contract generation; Step 2. Based on the input environmental parameters eA, the quality-based contract
generation model generates quality-based contract items i.e., ΦA =

{
ΦA
i , i = {1, . . . , I}

}
; Step 3. The number of type-θA

i

users who select the same quality-based contract item is counted, each quality-based contract item ΦA
i , and the environmental

parameters eT(θA
i ) are then used as inputs in a latency-based contract generation model to generate corresponding latency-

focused contract items i.e., ΦT(θA
i ) =

{
ΦT
j (θ

A
i ), j = {1, . . . , J}

}
; Step 4. Execute the selected quality-latency-based contract.

have chosen the same quality-based contract item ΦA
i , which

is denoted as Mi. The latency-based contract generation
model takes as input each quality-based contract item ΦA

i

and the number Mi, along with the input environmental
parameters denoted as a vector eT(θA

i ), and produces the
latency-based contract items denoted as ΦT(θA

i ). The vector
eT(θA

i ) includes the number of types of gain per expected
latency reduction, the probability vector, the maximum latency
vector, the cost vector per computation energy consumption
of optimizing the prompt, the cost vector per computation
energy consumption of executing diffusion denoising, the
cost vector per communication energy consumption, the
type vector of gain per expected latency reduction, the
CPU frequency vector per level of prompt optimization, the
CPU frequency vector per number of diffusion denoising
steps, the size vector of the diffusion denoising result,
and the status vector of wireless connection, the effective
switched capacitance. Those parameters are denoted as
J , qT(θA

i ) = [qT
1(θA

i ), . . . , qT
j (θA

i ), . . . , qT
J(θA

i )], tmax =
[tmax
1 , . . . , tmax

j , . . . , tmax
J ], b1 = [b1,1, . . . , b1,j , . . . , b1,J ],

b2 = [b2,1, . . . , b2,j , . . . , b2,J ], b3 = [b3,1, . . . , b3,j , . . . , b3,J ],
θT(θA

i ) = [θT
1(θA

i ), . . . , θT
j (θA

i ), . . . , θT
J(θA

i )],
δ = [δ1, . . . , δj , . . . , δJ ], η = [η1, . . . , ηj , . . . , ηJ ],
d = [d1, . . . , dj , . . . , dJ ], h = [h1, . . . , hj , . . . , hJ ],
and κ = [κ1, . . . , κj , . . . , κJ ]. A more detailed
explanation for those parameters refers to Table
I. Each latency-based contract item is denoted as

ΦT
j (θ

A
i ) = (xT

j (θ
A
i ), yT

j (θA
i ), rT

j (θA
i ), pT

j (θ
A
i )), j ∈ {1, . . . , J}

where xT
j (θ

A
i ) is the CPU frequency for optimizing prompt,

yT
j (θA

i ) is the CPU frequency for diffusion denoising, rT
j (θA

i )
is the network transmission rate, and pT

j (θ
A
i )) is the reward

paid to the ASP. Then, the users choose the latency-based
contract item that suits their types of gain per expected
latency reduction.

Step 4. Selected Quality-Latency-based Contract Execu-
tion: For each selected contract items ΦA

i , i ∈ {1, . . . , I} and
ΦT
j (θ

A
i ), i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, the contract execution

includes four stages. Step 4-1: Each user uploads its original
prompt to the ASP. Step 4-2: The ASP is capable of optimizing
the original prompt of image generation, with the level of
prompt optimization lAi and the CPU frequency xT

j (θ
A
i ). Step4-

3: Based on the optimized prompt, the ASP performs the
diffusion denoising steps according to the number of diffusion
denoising steps sA

i and the CPU frequency yT
j (θA

i ). Step4-4:
After the diffusion denoising steps have been completed, the
denoised images are sent to the users with the network trans-
mission rate rT

j (θA
i ). Step4-5: The users use several metrics to

assess the quality of the generated result, such as neural image
assessment [8]. If the quality of image generation meets the
user’s requirement, the image generation service is considered
to be successful and the user will send the rewards pA

i and
pT
j (θ

A
i ) to the ASP.
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B. Quality of Experience

The QoE has two components: the quality of image gener-
ation and the latency reduction of image generation denoted
as A and D.

1) Quality of Image Generation: As the number of diffu-
sion denoising steps increases, the quality of image generation
improves [15], [21]. As the level of prompt optimization
increases, the quality of image generation increases [4]. We
have also verified the above result through the results of our
experiments in Section VI. The relationship between the level
of prompt optimization, the number of diffusion denoising
steps, and the quality of image generation is defined as follows:

A = A(lA, sA,ρ) (1)

where ρ is the parameter vector fitted by experiments, ρ ≥ 0,
lA and sA are positive integers.

2) Latency Reduction of Image generation: For each user,
when lA and sA are both fixed, the total latency of obtaining
the generated result includes three parts. The first part is
the latency of optimizing the prompt. Motivated by [15],
[21], [22], the latency for optimizing the prompt is defined
as δlA

xT , where δ is the CPU frequency per level of prompt
optimization, xT is the CPU frequency for optimizing the
prompt. Referring to [15], [21], [22], the second part is the
latency of diffusion denoising denoted as ηsA

yT , where η is the
CPU frequency per number of diffusion denoisin steps, and yT

is the CPU frequency for diffusion denoising. Furthermore, the
third part is the transmission latency denoted as d

rT , where d is
the size of the diffusion denoising result and rT is the network
transmission rate [23]. Thus, the total latency is δlA

xT + ηsA

yT + d
rT .

Based on the total latency, we obtain the total latency reduction
as follows:

D = tmax − δlA

xT −
ηsA

yT −
d

rT , (2)

where tmax is the maximum latency.
The experimental results in [4] showed that the probability

of achieving a specific quality threshold A in image generation
increases with higher levels of prompt optimization and an
increased number of diffusion denoising steps. We define the
probability as ζ

(
A
(
lA, sA

)
> A

)
and related to l, s, and A.

To simplify the representation, the notation of the probability
ζ
(
A
(
lA, sA

)
> A

)
is reduced to ζlA,sA . If the generated image

fails to satisfy the user’s quality requirements, it requires
regeneration. This cycle continues until the desired quality
is attained, at which point the service ends. The aforemen-
tioned process can be modeled mathematically to ascertain
the expected latency reduction for the g-th iteration of image
generation to meet the user’s standards, expressed as:

E[D] = ζlA,sA(1− ζlA,sA)g−1
[
tmax − g

(
δlA

xT +
ηsA

yT +
d

rT

)]
.

(3)
It should be noted that we consider g = 1 in the paper. In
future work, we will explore g > 1.

IV. GENERATIVE DIFFUSION MODEL FOR
QUALITY-BASED CONTRACT DESIGN

Based on the quality of image generation, the utilities of
the users and ASP are modeled. Then, a quality-based contract
problem is formulated. Continuously, a GDM-based scheme is
used to solve optimal quality-based contract items in a more
efficient way. Finally, we analyze the complexity of the GDM-
based scheme.

A. Utilities of User and AIGC Service Provider

The higher the quality of image generation, the higher the
gain for the user. Referring to [24], the gain of user m is
θA
mA(lm, sm,ρ) where θm is the gain per quality of image

generation. The user m must pay a reward pA
m to the ASP.

Thus, the utility of the user m is

uA
m = θA

mA(lAm, s
A
m,ρ)− pA

m. (4)

However, due to self-interest, user m is reluctant to disclose
information about its gain per quality to the ASP. Without
knowledge of the user m’s gain per quality, it becomes
challenging for the ASP to determine the optimal level of
prompt optimization and the number of diffusion denoising
steps needed to maximize its own payoffs while also setting
an appropriate fee for user m. In such cases, many studies,
such as the authors in [25] and [26] , assume that the ASP
possesses knowledge of the probability distribution of gain
per quality types based on statistical data while knowing the
total number of users across all types,i.e., M . Additionally,
the probability that a user’s gain type per quality is of type θA

i

is represented by qA
i . To determine the amount of a particular

type, we apply the method discussed in [27] and then multiply
its probability by the total number of users across all types.
Consequently, we have the quantity of users whose gain type
per quality falls into type-θA

i is MqA
i = Mi. Based on

statistical information from the mobile data market, the ASP
can classify the users into different types to characterize their
heterogeneity, using some well-known data mining methods,
e.g., k-means. According to their heterogeneity for a given gain
per quality, we classify the users into I types and sorted in
ascending order θA

1 ≤ · · · ≤ θA
i ≤ · · · ≤ θA

I . Specifically, the
user m whose gain per quality falls into i-th gain per quality
is denoted as type-θA

i user. Thus, the utilities of these users
belonging to type-θA

i can be defined as

uA
i = θA

i A(lAi , s
A
i ,ρ)− pA

i . (5)

The cost required for the ASP to provide service to a type-
θA
i user is defined as σ1,ilAi +σ2,is

A
i , where σ1,i is the cost per

level of prompt optimization and σ2,i is the cost per number
of diffusion denoising steps. For all the types, the utility of
the ASP is defined as

UA
sp =

I∑
i=1

MqA
i (pA

i − σ1,ilAi − σ2,isA
i ). (6)



7

B. Quality-based Contract Formulation

The lack of awareness of the ASP regarding the users’
specific gain per quality, which pertains to their privacy, leads
to an imbalance of information. This information asymmetry
can be addressed by applying contract theory to determine
the most suitable contract items for the ASP’s consumers.
In this context, the ASP acts as the main entity responsible
for designing quality-based contracts, while the users are
considered agents who select the contract item that aligns with
their respective type. The quality-based contract item can be
denoted as ΦA =

{
ΦA
i = (lAi , s

A
i , p

A
i ), i = {1, . . . , I}

}
, where

ΦA
i is made for a type-θA

i user. In order to establish a feasible
quality-based contract with asymmetric information, we intro-
duce the following conditions for Individual Rationality (IR)
and Incentive Compatibility (IC). The IR condition encourages
user engagement and guarantees a non-negative utility. The
mathematical expression for the IR conditions, applicable to a
type-θA

i user, can be represented as follows:

θA
i A(lAi , s

A
i ,ρ)− pA

i ≥ 0, i ∈ {1, . . . , I}. (7)

The IC conditions ensure that each type-θA
i user can achieve

its maximum utility when selecting the quality-based contract
item based on its own corresponding type. The mathematical
expression for the IC conditions, applicable to a type-θA

i user,
can be represented as follows:

θA
i A(lAi , s

A
i ,ρ)− pA

i ≥θA
i A(lA

i′
, sA
i′
,ρ)− pA

i′
,

∀i, i
′
∈ {1, . . . , I}.

(8)

To maximize the utility of the ASP under the IR and IC
conditions, a quality-based contract problem is formulated as
follows:

Problem 1: max
lAi ,s

A
i ,p

A
i

UA
sp

s.t. (7), and (8), i, i
′
∈ {1, . . . , I},

lA,min
i ≤ lAi ≤ l

A,max
i , li ∈ Z+, i ∈ {1, . . . , I},

sA,min
i ≤ sA

i ≤ s
A,max
i , si ∈ Z+, i ∈ {1, . . . , I},

pA,min
i ≤ pA

i ≤ p
A,max
i , i ∈ {1, . . . , I},

(9)

where lA,min
i , sA,min

i and pA,min
i are the minimum value of

the optimization variables, lA,max
i , sA,max

i and pA,max
i are the

maximum value of the optimization variables. In Problem 1,
since the objective function is non-convex and the constraints
are non-convex sets, it is difficult to solve Problem 1. The
ASP’s variable cost expenses and the users’ variable gain per
quality require solving the non-convex quality-based contract
problem repeatedly, which takes longer delay using traditional
mathematical methods. Fortunately, a GDM-based scheme is
capable of handling this issue [1].

C. GDM-based Scheme for Quality-based Contract Problem

1) Generative Diffusion Model: GDM, a pioneering deep-
generative model, operates by progressively modifying the
data distribution in its forward diffusion phase through the
incremental addition of Gaussian noise. In this phase, Gaussian

noise is systematically added to an initial sample, denoted as
φ0, over K iterations, resulting in a sequence of samples
(φ1,φ2, ...,φK). As the iteration count K increases, the
distinct characteristics of the original sample φ0 are gradually
obliterated, ultimately transforming into pure Gaussian noise.
This process can be succinctly described as follows:

Q (φ1, . . . ,φK | φ0) =

K∏
k=1

Q (φk | φk−1) , (10)

Q (φk | φk−1) := N
(
φk;

√
1− βkφk−1, βkI

)
, (11)

where βk is a parameter that controls the influence of noise
on the progress. Equation (11) suggests that, when provided
with the sample φk−1, the sample φk at the k-th step follows
a Gaussian distribution with a mean of

√
1− βkφk−1 and a

variance of βkI. The dependence of these parameters solely on
the previous sample φk−1 indicates that the diffusion process
qualifies as a Markov process.

In the reverse diffusion process Q (φk−1 | φk,φ0), when
βk is sufficiently small, it aligns with the forward diffusion
process’s posterior probability distribution Q (φk | φk−1). For
the generation of authentic samples, the model Pω (φ0:K)
must iteratively sample from Gaussian noise φK and learn the
precise parameters ω based on training data. This procedure
can be depicted as follows:

Pω (φ0:K) = P (φK)

K∏
k=1

Pω (φk−1 | φk) , (12)

Pω (φk−1 | φk) = N (φk−1;µω (φk, k) ,Σω (φk, k)) , (13)

where P (φK) = N (φK ; 0, I). Ultimately, the process of
reverse diffusion can be accomplished by employing a highly
trained Pθ (φk−1 | φk) to estimate Q (φk−1 | φk,φ0).

2) Training Phase: We first define the environment,
quality-based contract design networks, and quality-based con-
tract evaluation networks. The environment is defined by a
vector eA, which is the set of all variables that impact the
optimal design of a quality-based contract, i.e.,

eA =
{
qA,σ1,σ2,θ

A,M, I
}
. (14)

The diffusion model network known as the quality-based
contract design policy, symbolized by πA

ωA(φA|eA), assigns
environment states to quality-based contract designs using
the weights ωA. Its primary objective, through the policy
πA
ωA(φA|eA), is to generate a deterministic quality-based con-

tract design aimed at optimizing the expected total reward over
a series of time steps. This policy πA

ωA(φA|eA), utilizes the
reverse mechanism of a conditional diffusion model, as shown
below:

πA
ωA(φA | eA) = PA

ωA

(
φ0:KA

| eA
)

= NA
(
φK

A
; 0, IA

) KA∏
k=1

PA
ωA

(
φk−1,A | φk,A, eA) , (15)

where PA
ωA(φk−1,A|φk,A, eA) can be

modeled as a Gaussian distribution
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NA
(
φk−1,A;µA

ωA

(
φk,A, eA, k

)
,ΣωA

(
φk,A, eA, k

))
.

According to [28], PA
ωA(φk−1,A|φk,A, eA) can be modeled as

a noise prediction model, with the covariance matrix fixed as
follows:

ΣωA

(
φk,A, eA, k

)
= βA

k IA, (16)

and the mean constructed as:

µA
ωA

(
φk,A, eA, k

)
=

1√
αA
k

φk,A − βA
k√

1− ᾱA
k

εA
ω

(
φk,A, eA, k

) .
(17)

We commence by sampling φK
A ∼ NA(0, IA) and then

proceed with the reverse diffusion chain, parameterized by ωA

as

φk−1,A | φk,A

=
φk,A√
αA
k

− βA
k√

αA
k

(
1− ᾱA

k

)εA
ω

(
φk,A, eA, k

)
+
√
βA
k ε

A.

(18)

Effective training of the quality-based contract design pol-
icy πA

ωA within the vector eA involves the development
of a quality-based contract design network εA

ωA . Following
DDPM’s guidelines [28], we set εA to 0 when k = 1
to improve sample quality. For the training of the quality-
based contract design network εA

ωA , the Q-function from deep
reinforcement learning (DRL) serves as inspiration, leading
to the establishment of the quality-based contract evaluation
network HA

v . This network associates an environment-contract
pair,

{
eA,ΦA

}
, with a value indicative of the anticipated cu-

mulative reward for adhering to a quality-based contract design
policy from the current state. By minimizing the loss function
LA(ωA) through double Q-learning, the most effective quality-
based contract design policy can be determined. The loss
function is defined as follows:

πA = arg min
πA
ωA

LA(ωA) = −Eφ0,A∼πA
ωA

[
HA
υ

(
eA,φ0,A)] .

(19)
The network of evaluating quality-based contracts employs

the double Q-learning method for its training [29]. It involves
the formulation of two primary networks, designated as HA

υA
1

and HA
υA
2
, and their corresponding target counterparts, named

HA
υA,′
1

and HA
υA,′
2

, along with πA
ωA,′ . The goal is to optimize υA

n

for n = 1, 2 through minimization of the objective

Eφ0,A
k+1∼π

A

ωA,′

[∣∣∣∣∣∣ (r(eA,φAk ) + γA min
n=1,2

HA

υA,′
n

(eA,φ0,A
k+1)

)
−HA

υA
n

(eA,φAk )
∣∣∣∣∣∣2] .

(20)

3) Inference Stage: During the inference stage, the trained
quality-based contract design network is used to generate
efficient quality-based contract items based on current en-
vironmental circumstances. The quality-based contract items
generated maximize the utility of the ASP while satisfying the
IC and IR constraints of the users.

The detailed algorithm for the GDM-based optimal quality-
based contract is shown in Algorithm 1. In the analysis of
the complexity of Algorithm 1, the weights in the quality-
based contract design and evaluation networks are denoted
ψA
a and ψA

c , respectively. The initialization complexity stands
at O

(
2ψA

a + 2ψA
c

)
. The complexity of action generation in-

creases to O
(
KAψA

a

)
. Replay buffer activities maintain a stor-

age complexity of O(1) and minibatch sampling complexity
of O(NA). Each update to quality-based contract design and
evaluation networks incurs complexities O

(
ψA
c

)
and O

(
ψA
a

)
,

respectively. Updates to the target network have linear com-
plexity in relation to parameter numbers. Consequently, the
computational complexity in the training phase is adjusted to
O
(
ZA
e Z

A
s

(
KAψA

a + ψA
c

))
. In the inference phase, to generate

optimal quality-based contract items via the trained network,
the complexity is O

(
ψA
a

)
, assuming that reward observation

and exploration noise generation are constant-time operations.
Thus, combining the training phase complexity and the in-
ference phase complexity, the algorithm’s total complexity is
O
(
ZA
e Z

A
s

(
KAψA

a + ψA
c

))
.

V. GENERATIVE DIFFUSION MODEL FOR LATENCY-BASED
CONTRACT DESIGN

After M users select the quality-based contract items, the
ASP counts the number of the users that have chosen the same
quaility-based contract item (lAi , s

A
i , p

A
i ), i ∈ {1, . . . , I}. The

number of the users is denoted as Mi, i ∈ {1, . . . , I} and we
obtain

∑I
i=1Mi = M . Here, the user choosing the quaility-

based contract item (lAi , s
A
i , p

A
i ) is mi ∈ {1, . . . , Ni}. For each

(lAi , s
A
i , p

A
i ) and Ni, i ∈ {1, . . . , I}, based on the expected

latency reduction of image generation, the utilities of the users
and ASP are modeled. Then, a latency-based contract problem
is formulated. Finally, a GDM-based scheme is also used to
solve the optimal latency-based contract items.

A. Utilities of User and AIGC Service Provider
The higher the expected latency reduction of image genera-

tion, the higher the gain of the user ni. Referring to [30], the
gain of the user mi is θT

m(θA
i )E[D](xT

m(θA
i ), yT

m(θA
i ), rT

m(θA
i ))

where θT
m(θA

i ) is the type of gain per expected latency reduc-
tion with the type of gain per quality θA

i . The user mi must
pay a reward pT

n(θA
i ) to the ASP. Thus, the utility of user mi

is

uT
m(θA

i ) = θT
m(θA

i )E[D](xT
m(θA

i ), yT
m(θA

i ), rT
m(θA

i ))− pT
m(θA

i ).
(21)

However, Mi self-interest users may not provide information
about their types of gain per expected latency reduction to the
ASP. According to historical records, Mi users with different
types of gain per expected latency reduction are classified
into J types and sorted in ascending order θT

1(θA
i ) ≤ · · · ≤

θT
j (θA

i ) ≤ · · · ≤ θT
J(θA

i ). A user with a gain per quality of
type-θA

i and gain per expected latency reduction of type-θT
j

is referred to as type-θT
j (θA

i ) user for the sake of simplicity.
Thus, the utilities of the users belonging to type-θT

j (θA
i ) can

be defined as

uT
j (θ

A
i ) = θT

j (θA
i )E[D](xT

j (θ
A
i ), yT

j (θA
i ), rT

j (θA
i ))− pT

j (θ
A
i ).
(22)
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Algorithm 1: Algorithm for GDM-based Optimal
Quality-based Contract

1: Training Phase:
2: Input hyper-parameters: number of iterations to add

noise KA, batch size NA, discount factor γA, soft target
update parameter τA, exploration noise εA.

3: Initialize replay buffer BA, quality-based contract design
network εA

ω with weights ωA, quality-based contract
evaluation network HA

υA with weights υA, target
quality-based contract design network εA

ωA,′ with weights
ωA,′ , target quality-based contract evaluation network
HA
υA,′ with weights υA,′ .

4: for Episode = 1 to Max episode ZA
e do

5: Initialize a random process NA for quality-based
contract design exploration

6: for Step = 1 to Max step ZA
s do

7: Observe the current environment eA
k

8: Set φK
A

k as Gaussian noise. Generate a
quality-based contract design φ0,A

k by denoising φK
A

k

using εA
ωA according to (32)

9: Add the exploration noise εA to φ0,A
k

10: Execute quality-based contract design φ0,A
k and

observe the reward defined as

λA
k = UA

sp,k +

I∑
i=1

PA [ζA
i θ

A
i,kA(lAi,k, s

A
i,k,ρ)− rA

i,k

]
+

I∑
i=1

I∑
i′=1,i′ 6=i

PA [ζA
i θ

A
i,kA(lAi,k, s

A
i,k,ρ)− rA

i,k

−ζA
i θ

A
i,kA(lA

i′ ,k
, sA
i′ ,k

,ρ) + rA
i′ ,k

]
,

where PA(·) is a penalty function. It implements a
certain penalty when the IC and IR constraints are not
satisfied. The penalty is denoted as ξA.

11: Store the record (eA
k ,φ

0,A
k , λA

k ) in replay buffer BA

12: Sample a random minibatch of NA records
(eA
z ,φ

0,A
z , λA

z ) from BA

13: Set yA
z = λA

z + γAH
′

εA,′ (e
A
z ,φ

′0,A
k ), where φ

′0,A
k is

obtained using εA
ωA,′

14: Update the quality-based contract evaluation
network by minimizing the loss
LA = 1

NA

∑
z(y

A
z −HυA(eA

z ,φ
A
z ))

15: Update the quality-based contract design network
by computing the policy gradient
5ωεω ≈ 1

NA

∑
k5φ0,AHυA(eA,φ0,A)|eA=eA

z
5ωA εA

ωA |eA
z

16: Update the target networks:
ωA,′ ← τAωA + (1− τA)ωA,′ and
υA,′ ← τAυA + (1− τA)υA,′

17: end for
18: end for
19: return The trained quality-based contract design

network εA
ω

20: Inference Phase:
21: Input the environment vector eA

22: Generate the optimal quality-based contract design φ0,A

by denoising Gaussian noise using εA
ωA according to (32)

23: The optimal quality-based contract design φ0,A

In addition, providing the image generation service
consumes certain computational and communication re-
sources. Referring to [23], [31], the cost of the com-
putation energy consumption of optimizing a prompt
is defined as gb1,j(θ

A
i )δj(θ

A
i )κ1,j(θ

A
i )lAi (xT

j (θ
A
i ))2 where

b1,j(θ
A
i ) is the cost per computation energy consumption

of optimizing the prompt and κ1,j(θ
A
i ) is the effective

switched capacitance. Similarly, the cost of the energy con-
sumption of executing diffusion denoising is defined as
gb2,j(θ

A
i )ηj(θ

A
i )κ2,j(θ

A
i )sA

i (yT
j (θA

i ))2 where b2,j(θ
A
i ) is the

cost per computation energy consumption of executing dif-
fusion denoising and κ2,j(θA

i ) is the effective switched capac-
itance. According to [31], the cost of the communication en-
ergy consumption is denoted as

gb3,j(θ
A
i )dj(θ

A
i )r

T
j(θ

A
i )(θ

A
i )

(hj(θA
i ))

2 where
b3,j(θ

A
i ) is the cost per communication energy consumption

and hj(θ
A
i ) is the status of wireless connection. The ASP

provides the image generation services and receives rewards
from the users. The reward from the type-θT

j (θA
i ) user is

pT
j (θ

A
i ). The ASP receives utility is the difference between the

reward gained from the type-θT
j (θA

i ) user and the total energy
consumption, which is given as

UT
sp,j(θ

A
i ) = pT

j (θ
A
i )− gb1,j(θA

i )δj(θ
A
i )κ1,j(θ

A
i )lAi (xT

j (θ
A
i ))2

− gb2,j(θA
i )ηj(θ

A
i )κ2,js

A
i (yT

j (θA
i ))2

−
gb3,j(θ

A
i )dj(θ

A
i )rT

j (θA
i )(θA

i )

(hj(θA
i ))2

.

(23)
For all the types, the utility of the ASP is defined as

UT
sp(θA

i ) =

J∑
j=1

Miq
T
j (θA

i )UT
sp,j(θ

A
i ), (24)

where qT
j (θA

i ) is the probability that a user’s type of gain per
expected latency reduction belongs to type-θT

j (θA
i ).

B. Latency-based Contract Formulation

Similarly, the latency-based contract
item can be denoted as ΦT(θA

i ) ={
ΦT
j (θ

A
i ) = (xT

j (θ
A
i ), yT

j (θA
i ), rT

j (θA
i ), pT

j (θ
A
i )), j ∈ {1, . . . , J}

}
where ΦT

j (θ
A
i ) is made for type-θT

j (θA
i ) user. The mathematical

expression for the IR conditions, applicable to a type-θT
j (θA

i )
user, can be represented as follows:

θT
j (θA

i )E[D](xT
j (θ

A
i ), yT

j (θA
i ), rT

j (θA
i ))− pT

j (θ
A
i ) ≥ 0,

j ∈ {1, . . . , J}.
(25)

The mathematical expression for the IC conditions, applicable
to a type-θT

j (θA
i ) user, can be represented as follows:

θT
j (θA

i )E[D](xT
j (θ

A
i ), yT

j (θA
i ), rT

j (θA
i ))− pT

j (θ
A
i ) ≥

θT
j (θA

i )E[D](xT
j′

(θA
i ), yT

j′
(θA
i ), rT

j′
(θA
i ))− pT

j′
(θA
i ),

∀j, j
′
∈ {1, . . . , J}.

(26)
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To maximize the utility of the ASP under the IR and IC
conditions, a latency-based contract problem is also formulated
as follows:

Problem 2: max
xT
j(θ

A
i ),y

T
j(θ

A
i ),r

T
j(θ

A
i ),p

T
j(θ

A
i )
UT

sp(θA
i )

s.t. (25), and (26), j, j
′
∈ {1, . . . , J},

xT
j (θ

A
i ), yT

j (θA
i ), rT

j (θA
i ), pT

j (θ
A
i ) ≥ 0,

j ∈ {1, . . . , J}.

(27)

Since the objective function and constraints are not concave
functions in Problem 2, it is difficult to use traditional methods
to solve directly Problem 2.

C. GDM-based Scheme for Latency-based Contract Problem

The GDM-based scheme is also used to find the optimal
latency-based contract items.

1) Training Phase: We first define the environment,
latency-based contract design networks, and latency-based
contract evaluation networks. The environment is represented
as a vector eT(θA

i ), which includes all factors that impact the
optimal design of a latency-based contract.

eT(θA
i ) =

{
tmax(θA

i ), b1(θA
i ), b2(θA

i ), b3(θA
i ),θT(θA

i ), qT(θA
i ),

δ(θA
i ),η,d(θA

i ),h(θA
i ),κ1(θA

i ),κ2(θA
i ), lAi , s

A
i ,Mi, J

}
.

(28)
A latency-based contract design policy, denoted by
πT
ωT(φT(θA

i )|eT(θA
i )). Then, we use the reverse process

of a conditional diffusion model to represent the latency-
based contract design policy as follows:

πT
ωT(φT(θA

i ) | eT(θA
i )) = P T

ωT

(
φ0:KT

(θA
i ) | eT(θA

i )
)

= N T
(
φK

T
(θA
i ); 0, IT

) KT∏
k=1

P T
ωT(θA

i ),
(29)

where P T
ωT(θA

i ) is a simplified form of
P T
ωT(φk−1,T(θA

i )|φk,T(θA
i ), eT(θA

i )). According to [28],
P T
ωT(θA

i ) can be also modeled as a noise prediction model,
with the covariance matrix fixed as:

ΣωT

(
φk,T(θA

i ), eT(θA
i ), k

)
= βT

kI
T, (30)

and the mean is defined as follows:

µT
ωT

(
φk,T(θA

i ), eT(θA
i ), k

)
=

1√
αT
k

φk,T(θA
i )− βT

k√
1− ᾱT

k

εT
ωT

(
φk,T(θA

i ), eT(θA
i ), k

) .

(31)

We begin by sampling φK
T ∼ N T(0, IT) and then proceed

with the reverse diffusion chain, parameterized by ωT:

φk−1,T(θA
i ) | φk,T(θA

i ) =
φk,T(θA

i )√
αT
k

− βT
k√

αT
k

(
1− ᾱT

k

)εT
ωT

(
φk,T(θA

i ), eT(θA
i ), k

)
+
√
βT
kε

T.

(32)

We train a network, denoted as εT
ωT , to generate latency-

based contracts. This network is then used to train a latency-
based contract design policy, denoted as πT

ωT in complex
and high-dimensional environments, denoted as eT(θA

i ). In
the same way, we can also obtain the optimal latency-based
contract design policy by minimizing the loss function LT(ωT)
using double Q-learning in the following manner:

πT = arg min
πT
ωT

LT(ωT)

= −Eφ0,T(θA
i )∼πT

ωT

[
HT
υT

(
eT(θA

i ),φ0,T(θA
i )
)]
.

(33)

The network of evaluating latency-based contracts also
employs the double Q-learning method for its training. It
involves the formulation of two primary networks, designated
as HT

υT
1

and HT
υT
2
, and their corresponding target counterparts,

named HT
υT,′
1

, HT
υT,′
2

and πT
ωT,′ . The goal is to optimize υT

i,n for
n = 1, 2 through minimization of the objective

Eφ0,T
k+1(θ

A
i )∼πT

ω
T,′
i

[∣∣∣∣∣∣ (r(eT(θA
i ),φT

k(θA
i ))+

γT min
n=1,2

HT
υT,′
n

(eT(θA
i ),φ0,T

k+1(θA
i ))

)
−HT

υT,′
n

(eT(θA
i ),φT

k(θA
i ))
∣∣∣∣∣∣2] .

(34)
2) Inference Stage: The trained latency-based contract de-

sign network is used during the inference phase to generate
efficient latency-based contract items based on current envi-
ronmental parameters.

VI. SIMULATION RESULTS

First, we employ an approximation approach to quantita-
tively evaluate the relationship between the level of prompt
optimization, the number of diffusion denoising steps, and the
quality of image generation, which is a common practice in
the literature and has been adopted in other works, such as
[9], [10]. Second, the approximation approach is also used
to quantitatively assess the relationship between the level
of prompt optimization, the number of diffusion denoising
steps, and the probability that the quality of image generation
exceeds the threshold A. According to the data shown in
Fig. 4, certain generated images do not meet the production
criteria for user prompt word requests when the image quality
falls below A = 4.5; for example, (sA, sT) = (5, 3) or
(sA, sT) = (5, 2). Furthermore, other images do not meet
the criteria if the quality is less than A = 5.0, such as
(sA, sT) = (7, 1) in our dataset. To obtain more consistent
results in the simulation experiment, we established the qual-
ity threshold at A = 5.0. Note that this threshold might
differ for various datasets. However, our analysis method is
still applicable to other datasets. Third, we introduce the
setting of the GDM. Fourth, we evaluate the two-stage GDM-
based contract generation scheme and demonstrate its superior
performance compared to an existing DRL-based contract
generation scheme. Continuously, the validity of the generated
quality-latency contract is verified. Finally, we analyze the
impact of prompt optimization on performance.
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(a) Real experimental data.

(b) Fitted function.

Fig. 2: Real experimental data and fitted function.

A. Quantity of Quality of Image Generation

We employ an approximation approach to determine the
relationship between the level of prompt optimization, the
number of diffusion denoising steps, and the quality of image
generation. The steps are as follows. In the first step, we define
an original prompt, for instance, an apple on the desk. In the
second step, referring to [32], we use a fixed learning algo-
rithm to adjust different level l to optimize the original prompt.
In the third step, the optimized prompt is inputted into the
Stable Diffusion XL model [33], and the number of diffusion
denoising steps is varied to obtain different output images. In
the fourth step, the neural image assessment model [8] is used
to access the quality of each image. These steps are performed
L×S times to obtain the set {Al,s|l ∈ [1, L], s ∈ [1, S]}, where
L is the maximum level and S is the maximum number
of diffusion denoising steps. In the fifth step, repeating the
above steps 100 times to obtain the average experimental
result, which is shown in Fig. 2(a). As the level of prompt
optimization level and the number of diffusion denoising steps
increase, the average quality of image generation improves. To
numerically analyze the experimental results, we define A as
follows:

A = ρ1 ln(ρ2l + 1)− ρ3l + ρ4 ln(ρ5s+ 1)− ρ6s. (35)

The algorithm for non-linear least squares modifies the values
of ρ in order to minimize the sum of squared errors. The spe-
cific values for ρ1 = 9.7417, ρ2 = 0.0978, ρ3 = 0.7647, ρ4 =
0.5158, ρ5 = 3497.8463, and ρ6 = 0.0307 are used in this

optimization process. The results of the fitted function are
shown in Fig. 2(b). The above approximation approach can
be extended to a wide variety of AIGC services.

B. Quantity of Probability of Image Generation Quality Ex-
ceeding a Threshold

We then use the frequency to approximate the probability
ζ
(
A
(
lA, sA

)
> A

)
, as illustrated in Fig. 3. In Fig. 3, as the

Fig. 3: Probability ζ
(
A
(
lA, sA

)
> A

)
with different combi-

nations of lA and sA.

level of prompt optimization and the number of diffusion
denoising steps increase, the probability ζ

(
A
(
lA, sA

)
> A

)
increases. Note that most of the results generated are invalid
when the number of inference steps is less than or equal to 3,
as shown in Fig. 4. Therefore, the lower bound of the diffusion
denoising step is set to sA,min = 4.

C. Setting of GDM

Experimental Platform. Our algorithms are tested on a
platform featuring Ubuntu 20.04 as the operating system,
powered by an AMD Ryzen Threadripper PRO 3975WX with
32 cores CPU and complemented by an NVIDIA RTX A5000
GPU for enhanced performance.

GDM Design We utilize the diffusion model as the basis
of the contract design network and two contract evaluation
networks with the same structure to reduce the issue of
overestimation, as reported in [14]. The configurations of the
contract design and evaluation networks are described in Table
III. For the quality-based contract generation model and the
latency-based contract generation model, Table IV summarizes
the detailed settings for other training hyperparameters in our
experiments. According to [18], for the quality-based contract
generation, we set M = 20 and I = 2; θA

1 and θA
2 are

randomly sampled within [1, 200] and [200, 400] respectively;
qA
1 and qA

2 are generated randomly; σ1 and σ2 are randomly
sampled within [1, 10]. According to [15], [21], [23], for the
latency-based contract generation, we set M1 = M2 = 10
and J1 = J2 = 2; θT

1,1 and qT
2,1 are randomly sampled

within [1, 25] while θT
1,2 and qT

2,2 are randomly sampled within
[25, 50]; qT

1,1, qT
1,2, qT

2,1 and qT
2,2 are generated randomly; l and

s are randomly sampled within [1, 20] and [0, 3] respectively;
d is randomly sampled within [5, 8]×105 bit; tmax is randomly
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A
1s

A
3s

A
5s

A
7s

A
9sNumber of diffusion denoising steps

Level of prompt 

optimization

A
3l

A high-quality photograph of a juicy, ripe, red apple on a polished 

wooden desk. The close-up shot emphasizes the crisp texture of the 

apple with soft lighting and a minimalist composition. The natural 

colors and HD resolution enhance the professional aesthetic.  This 

stunning image is perfect for Instagram and currently trending on the 

platform. It showcases the artistry of still life and fruit photography.

Optimized Prompt Quality of Generated Image

A
2l

Focus on the key aspects of the prompt: close-up of a juicy red apple 

on a clean desk, soft lighting, HD resolution, minimalist style. This 

professional still life photograph features natural colors and crisp 

details. It is a high-quality image trending on Instagram and 

ArtStation, admired by photographers. Exclude blurry/out of focus 

and low-quality/pixelated elements.

A
1l

Desk with red apple, close-up shot in HD, soft lighting, minimalist 

composition, crisp and shiny. Depth of field and macro photography 

for natural colors. No text, no blurriness.

A
0l An apple on the desk

Fig. 4: Quality of generated image with different combinations of lA and sA.

TABLE III: Structure of Contract Design and Evaluation
Networks

Networks Layer Activation Units

Design

SinusoidalPosEmb
FullyConnect
FullyConnect
Concatenation
FullyConnect
FullyConnect
FullyConnect

-
Tanh
-
-
Tanh
Tanh
Tanh

16
32
16
-
256
256
12

Evaluation

FullyConnect
FullyConnect
FullyConnect
FullyConnect

Mish
Mish
Mish
-

256
256
256
1

TABLE IV: Summary of Training Hyperparameter.

Hyperparameter Setting in
Quality-based
Contract
Generation Model

Setting in
Latency-based
Contract
Generation Model

Learning rate of the
contract design network

8× 10−9 10−6

Learning rate of the
contract evaluation
network

8× 10−9 10−6

Soft target update
parameter

τA = 0.005 τT = 0.005

Batch size NA = 106 NT = 106

Discount factor γA = 0.95 γT = 0.95
Number of iterations
for adding noise

KA = 3 KT = 3

Maximum capacity of
the replay buffer

BA = 106 BT = 106

Exploration Noise εA = 0.01 εT = 0.01
Max episode ZA

e = 1000 ZT
e = 1000

Max step ZA
s = 1 ZT

s = 1
Penalty ξA = −300 ξT = −200

sampled within [1, 4] s; b1 and b2 are randomly sampled within
[8, 10]×107; b3 is randomly sampled within [3, 5]×10−4; h is
randomly sampled within [3, 5]×106; κ1 and κ2 are randomly
sampled within [1, 4]×10−28; η1 and η2 are randomly sampled
within [3000, 5000] cycles/bit.

D. Efficiency of Two-stage GDM-based Contract Generation
Scheme
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Fig. 5: Training process of GDM-based and DRL-based qual-
ity contract generation schemes.

1) GDM-based quality contract design: Fig. 5 shows the
test reward curves of our GDM-based quality contract gener-
ation (GQCG) scheme and the DRL-based quality contract
generation (DQCG) scheme. Our proposed GQCG scheme
consistently outperforms the DQCG scheme when the same
parameters are used. This is because the quality contract
generation policy in our scheme is fine-tuned by the diffusion
process, which reduces the effect of randomness and noise [1].

For a given environment state, we verify the validity of the
generated quality contract items. Fig. 6 shows the validation of
the IC and IR constraints in the proposed GDM-based quality
contract design. We evaluate the utilities of different users
with various types of gain per quality when selecting different
quality-based contract items from the ASP. From Fig. 6, we
validate that our quality-based contract design satisfies the IR
and IC constraints. A user with an arbitrary type achieves the
maximal utility with a non-negative value only when accepting
the quality contract item matched with its type. The selection
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Fig. 6: Utility of user versus types of quality
contract item.
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Fig. 7: Quality-based contract value under different
types.

process of the quality contract item enables the types of user
to be indirectly revealed to the ASP. This means that quality-
based contract design is effective in solving the information
asymmetry problem for the ASP. Fig. 7 shows the number
of diffusion denoising steps, the level of prompt optimization,
and the reward for ASP with respect to different types of gain
per quality. To increase the quality of the inferred results, users
with the higher types need to give more rewards to increase the
number of diffusion denoising steps and the level of prompt
optimization.

2) GDM-based latency contract design: The curves in Fig.
8 illustrate that our GDM-based latency contract generation
(GLCG) scheme is more effective than the conventional DRL-
based latency contract generation (DLCG) scheme when the
same parameters are employed. The reason is similar to the
reason for the results in Fig. 5.

For a given environment state, we will verify the validity
of the generated latency-based contract items. After 20 users
select the quality-based contract items, the ASP implements
a latency-based contract design for these users selecting the
same quality-based contract item. 10 users choose (lA1 , s

A
1 , p

A
1 ),

their maximum requested time is tmax = 3s. 10 users choose
(lA2 , s

A
2 , p

A
2 ), their maximum requested latency is tmax = 4s.

The reason is similar to the reason for the results in Fig. 6.
Fig. 9 validates the IC and IR constraints in the proposed
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Fig. 8: Training process of GDM-based and DRL-based la-
tency contract generation schemes.
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Fig. 9: Verification of latency-based contract design under
different quality-based contract items.

latency-based contract design with various quality-based con-
tract items, such as tmax, lA, and sA. Fig. 10 shows CPU
cycle for optimizing prompt and diffusion denoising, network
transmission rate, and the reward for the ASP under different
quality-based contract items.
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Fig. 10: Latency-based contract value under different quality-
based contract items.

E. Impact of prompt optimization on performance

Fig. 11 shows the impact of prompt optimization on quality-
based contract design. The first approach is not to optimize the
prompt. The second approach is to use prompt optimization,
which is the approach proposed in this paper. Fig. 11 illustrates
that the use of prompt optimization can be beneficial to
improve both the ASP utility in Fig. 11 (a), the users’ utilities
in Fig. 11(b), and the quality of the diffusion denoising result
in Fig. 11(c). In addition, as the type of gain per quality
increases, so does the ASP utility, users’ utilities, and the
quality of the diffusion denoising result. Particularly, for type-
θA
1 and type-θA

2 users, the quality of the diffusion denoising
result is improved by 8% and 2%, respectively. The causes are
summarized below. Due to the lack of prompt optimization,
the quality of the generated images decreases, resulting in a
significant drop in user satisfaction. However, the reduction
in the amount users are willing to pay a reward may only
decrease linearly, creating an asymmetry that directly impacts
user utility. For example, a user who expects to generate
a high-quality landscape image for use as wallpaper may
receive a blurry, low-detail image due to the lack of prompt
optimization. Although the user experiences significant disap-
pointment, they can only reduce their payment from 20 dollars

to 15 dollars rather than refuse to pay entirely. This linear
reduction in payment fails to fully capture the user’s strong
dissatisfaction, ultimately leading to a substantial decrease in
overall utility and perceived value.

Once users have chosen the same quality-based contract
item, e.g. lA = 2, sA = 17, Fig. 12 displays the impact of
prompt optimization on latency-based contract design. Those
who employed prompt optimization selected a high-quality
contract item, i.e. lA = 2, sA = 17, while those who did
not use prompt optimization chose a contract item of lesser
quality, i.e. lA = 0, sA = 17. The results illustrate that prompt
optimization can be beneficial for enhancing the ASP utility
in Fig. 12 (a), as well as for the users’ utilities in Fig. 12
(b), and the expected latency reduction in Fig 12 (c). The
explanation for the results shown in Fig. 12 (a) and Fig. 12
(b) is analogous to the reasoning behind the results in Fig.
11. To explain the results in Fig. 12 (c), when the number of
diffusion denoising iterations is constant, employing prompt
optimization boosts the likelihood of producing an image that
meets the user’s quality requirements. This, in turn, reduces
the probability of needing to regenerate the image, thereby
enhancing the total expected latency reduction. Additionally,
as the gain per quality increases, the ASP utility, user utilities,
and expected latency reduction all improve. For instance, for
type-θT

2(θA
2 ) users, the expected latency reduction is increased

by 22%.

VII. CONCLUSION

In this paper, we propose a two-stage, multi-dimensional
resource allocation framework based on a GDM and contract
theory. First, based on the quality of AIGC generation, we
establish a model for the user and ASP utilities, leading to a
quality contract problem. Its objective is to maximize the util-
ity of the ASP. Then, a GDM-based scheme optimizes quality-
based contract items. Users choose quality-based contract
items based on their types of gain per quality, and then a non-
convex latency-based contract problem is formulated for each
group of users selecting identical quality-based contract items.
The optimal latency-based contract items are again resolved
using the GDM-based scheme. The numerical results show
that the proposed GDM-based scheme is very advantageous
to improve the quality of AIGC generation and decrease
the latency of AIGC generation, compared to other standard
schemes. Future work will focus on the design of a multitask
incentive mechanism considering the effects of the irrational
behavior of mobile terminals on the behavioral decisions of
mobile terminals and ASPs.
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