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Abstract—In response to the needs of 6G global communica-
tions, satellite communication networks have emerged as a key
solution. However, the large-scale development of satellite com-
munication networks is constrained by complex system models,
whose modeling is challenging for massive users. Moreover, trans-
mission interference between satellites and users seriously affects
communication performance. To solve these problems, this paper
develops generative artificial intelligence (AI) agents for model
formulation and then applies a mixture of experts (MoE) ap-
proach to design transmission strategies. Specifically, we leverage
large language models (LLMs) to build an interactive modeling
paradigm and utilize retrieval-augmented generation (RAG) to
extract satellite expert knowledge that supports mathematical
modeling. Afterward, by integrating the expertise of multiple
specialized components, we propose an MoE-proximal policy
optimization (PPO) approach to solve the formulated problem.
Each expert can optimize the optimization variables at which
it excels through specialized training through its own network
and then aggregate them through the gating network to perform
joint optimization. The simulation results validate the accuracy
and effectiveness of employing a generative agent for problem
formulation. Furthermore, the superiority of the proposed MoE-
ppo approach over other benchmarks is confirmed in solving the
formulated problem. The adaptability of MoE-PPO to various
customized modeling problems has also been demonstrated.
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I. INTRODUCTION

In the era of 6G, the demand for global communication con-
tinues to increase rapidly, spotlighting the significant role of
satellite communications, particularly due to their unparalleled
advantages in overcoming the constraints faced by ground
communication systems [[]. Among these, low-earth orbit
(LEO) satellite communication networks have emerged as a
pivotal solution to the limitations of ground communication
systems, offering high-speed, low-latency communication ser-
vices with extensive coverage and enhanced security []. This
makes LEO satellite systems critical for ensuring connectivity
in remote areas such as oceans and mountainous regions that
are difficult to reach with traditional communications systems
[3]. Moreover, with an increasing number of satellite users,
there is an urgent need for increased capacity in satellite
communication networks [#]. This surge in demand under-
scores the importance of advancing and refining these systems
to meet future communication requirements, presenting re-
searchers with the challenge of scaling and optimizing satellite
communications to address these evolving requirements [5].
However, to meet these demands, satellite communication
networks face two main challenges as follows.

o Challenge I: The mathematical modeling of satellite
communications is much more complex than that of
ground communications systems [B]. It is necessary
to consider the curvature of the earth, the impact of
the atmosphere on the signal, and the non-uniformity
of communications traffic [[1]. This complexity makes
satellite scenarios (i.e., homogeneous or heterogeneous
systems), channel modeling (i.e., static or dynamic chan-
nels), access protocols (i.e., rate-splitting multiple access
or space-division multiple access), optimization goals
(i.e., energy efficiency (EE) and spectral efficiency (SE))
becomes extremely challenging, which not only sets a
high threshold for newcomers but also poses a challenge
to interdisciplinary researchers who need to understand
the operating mechanism of satellite communications.

o Challenge II:Compared with ground communication sys-
tems, satellite communication networks face more com-
plex challenges in resource allocation [R]. Due to the wide
coverage of satellite communications and the large space



where users are distributed, coupled with the limited re-
sources and fixed beam coverage design of satellites, it is
challenging to meet the diverse and varying requirements
of different kinds of users [9]. Moreover, transmission
interference between satellites, between beams, and be-
tween users seriously affects communication performance
[I0]. Therefore, developing adaptive resource allocation
schemes to mitigate interference and manage resources
effectively is critical to improving the quality of service
(QoS) of satellite communication networks.

To address Challenge I, an interactive generative artificial
intelligent (AI) agent has been introduced [[1]. Generative
Al Agents can integrate the power of large language mod-
els (LLMs) such as ChatGPT and LLaMA with retrieval-
augmented generation (RAG) technologies, aiming to generate
solutions to specific problems through interactive sessions
with human users [[2]. Specifically, the LLM is able to
respond by understanding the deep meaning and context of
natural language and generating detailed answers to specific
questions [M3]. RAG is able to retrieve relevant information
from massive documents, providing LLMs with real-time,
rich background knowledge, allowing LLMs to provide more
accurate and informative content when answering queries [I4].
In the context of optimizing satellite communication networks,
the interactive approach enables the generative Al agent to
deeply understand and adapt to specific application scenarios
and requirements [I3]. For example, when faced with model-
ing challenges, including changes in satellite orbit parameters,
signal propagation characteristics, or complex interference con-
ditions, generative Al agents can refine a problem definition
and collect necessary data to generate a more accurate and
adaptive system model by interacting with human users and
network environments.

To address Challenge II, the mixture of experts (MoE)
model has been introduced. MoE integrates multiple special-
ized deep neural network (DNN) components, i.e., experts,
to handle complex tasks [I6]. Specifically, each expert is
fine-tuned and specialized for a specific type of sub-task or
sub-dataset, providing expertise in efficient problem-solving
capabilities within their domain, which can be more effective
than monolithic models [I]. MoE uses a gating network
technique to divide larger tasks into smaller, more manageable
units and dynamically select the most appropriate combination
of experts to handle these tasks based on the input data
characteristics. Unlike traditional neural network models, MoE
selectively activates a subset of experts based on specific input
features, thereby improving the model’s processing efficiency
and performance [IR]. In satellite communication networks,
MoE can provide customized solutions for various challenges
based on different experts, such as spectrum allocation, signal
interference reduction, and energy efficiency optimization. For
example, under dynamically changing communication envi-
ronments and diverse requirements of different users, MoE
can achieve effective resource allocation and interference
management by selecting a combination of experts that are
most suitable for handling current signal conditions and user
distribution [1Y].

Inspired by the above discussion, as shown in Fig. [, this

paper first studies a framework for modeling using generative
Al agents and then optimizes the transmission strategy of
satellite communication networks through an MoE model. For
the generative Al agents, unlike traditional system model-
ing, which typically relies on the designer’s knowledge and
experience to manually formulate mathematical models, our
generative Al agents leverage the vast knowledge embedded
in LLMs and the precise contextual information provided
by RAG to customize and adapt the modeling process to
specific satellite communication needs. For the transmission
strategy, instead of using a single comprehensive solution
system to optimize all variables or employing a multi-agent
system to address different aspects, our proposed MoE ap-
proach utilizes multiple specialized experts, each focusing on
optimizing specific variables, thereby improving efficiency. 7o
the best of the authors’ knowledge, this is the first work in the
networking field to adopt generative Al agents for customized
modeling and then solve the formulated problem by MoE."
The contributions of this work are summarized as follows.

o We introduce a generative Al agent framework to cus-
tomize system problem formulation. This approach ef-
fectively addresses the diverse modeling requirements
within satellite communication networks via a two-layer
semantic router and RAG. The framework leverages
the rich knowledge of LLMs and the satellite expertise
derived by RAG to provide precise modeling solutions
for specific problems in satellite communication networks.
(For Challenge 1)

« Based on different satellite scenarios, we employ differ-
ent access strategies, channel models, and optimization
objectives for heterogeneous and homogeneous satellite
networks through the generative Al agent framework to
customize our system modeling. This step ensures that
the models accurately reflect the complexity and specific
requirements of the actual communication environment
in both LEO and Geostationary Earth Orbit (GEO) satel-
lite networks. By doing so, we enable a more efficient
selection of modeling parameters based on designers’
requirements, reducing the risk of errors and saving time.
(For Challenge I)

e We propose an MoE-based proximal policy optimization
(PPO) method to optimize the formulated problem gener-
ated by the generative Al agent. Specifically, each expert
can optimize the optimization variables for which it has
been trained through its network and then aggregate them
through the gating network to perform joint optimization,
which can maximize the efficiency of spectrum resource
utilization while meeting communication quality require-
ments. (For Challenge II)

The rest of this paper is organized as follows. The related
work is reviewed in Section H. Section M shows our pro-
posed Generative Al Agent framework. An MoE-based PPO
approach is proposed in Section M. Section M conducts some
simulations of the proposed generative Al agent framework
and MoE-based PPO approach. Finally, we conclude the whole
work in Section M.

Uhttps://github.com/RickyZang/GAl-agent-satellite



II. RELATED WORK

In this section, we review literature across three domains,
i.e., satellite communication networks, Generative Al Agents,
and the MoE paradigm, highlighting the advancements and
identifying gaps that our work aims to bridge.

A. Satellite Communication Networks

Recent advancements in satellite communication networks
have garnered significant attention due to their potential ben-
efits of global connectivity. For instance, Chen et. al. [B]
proposed federated learning in LEO satellite communication
networks to support massively interconnected devices and re-
duce communication overheads, showing through simulations
that the method significantly reduces latency and improves
satellite communication performance in 6G systems. Also, in
[20], an optimization problem for maximizing the sum rate in
massive MIMO LEO satellite networks, considering both im-
perfect successive interference cancellation (SIC) and channel
state information (CSI). Similarly, Huang et. al. [2T] addressed
the sum rate maximization problem in LEO satellite-terrestrial
networks utilizing RSMA and proposed a PPO-based approach
to meet diverse QoS requirements. Khan et. al. [2Z] focused
on sum rate maximization in heterogeneous satellite net-
works, introducing efficient subcarrier beam assignment and
power allocation strategies for secondary LEO satellites while
managing interference with primary GEO satellites. Besides
spectral efficiency, in [23], the system EE was maximized in
integrated satellite-terrestrial radio access networks by jointly
optimizing the cache sharing vector, block placement vector,
and power allocation vector, where the information EH QoS
requirements of users and the power budget are considered as
constraints. Despite these contributions, the complex models
inherent in these efforts may create barriers to understanding
for newcomers to the field, which requires a framework that
makes entry into this field of research more accessible.

B. Generative Al Agent

The field of generative Al has seen significant interest,
particularly in its application to interactive agents [24]. For
instance, Wang et. al. [25] developed an interactive chatbot
leveraging LLMs to mimic character-specific personality traits,
achieving a high correlation (i.e., about 82.8%) with human
perception. Also, The SWIFTSAGE framework, introduced
by Lin et. al. [26], combines behavioral cloning with LLM
prompting for enhanced action planning in complex tasks.
Furthermore, generating agents are also used in the networking
field. For instance, Du et. al. [[3] demonstrated a generative
Al agent empowered by LLMs to simulate user interactions,
offering insights into real-time Quality of Experience (QoE)
feedback, where experiments showed that using the proposed
agent can improve performance by 15%. Also, Zhang et. al.
[I2] proposed an optimization framework including environ-
ment, action, brain, and perception by using an Generative
Al Agent, where pluggable LLM and RAG modules are
employed for decision-making knowledge base and contextual
memory. However, these aforementioned works focus mainly

o Generative Al agent for problem formulation
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Fig. 1. The outline of the paper. Specifically, to address the challenges
of complex modeling and difficulty in solving formulated problems within
satellite communication networks, we introduce a generative Al agent and
an MoE approach. The generative Al agent is tasked with formulating the
optimization problems, while the MoE framework is employed to effectively
solve the optimization problems formulated by the generative Al agent.

on direct policy generation and do not consider the potential
for customized and selective system modeling and network
configuration.

C. Mixture-of-Experts

The MoE model, initially introduced by Jacobs et. al.
[277], represented a shift in supervised learning, facilitating
parallel processing by multiple specialized networks. With the
emergence of deep neural networks (DNN), Eigen et. al. [¥]
proposed an architecture that can extend multiple experts in
parallel on each neural network layer. Each expert has its own
weight matrix, and then the gating network distributes the
weights to multiple experts, requiring all experts to perform
calculations during reasoning. In the era of large models,
Du et. al. [29] developed a large model combining LLM
and MoE, where MoE can dynamically select only the most
relevant experts for the current task to be calculated, thereby
reducing the computation of floating-point operations. Thanks
to these developments and advantages, MoE is also used in
networking fields. For instance, Jaiswal et. al. [30] leveraged
MOoE for a data-driven transfer learning approach, enhancing
radio map models through a combination of location-based and
independent expertise. Also, Lopez et. al. [B1] applied an MoE-
based learning scheme to joint source-channel coding (JSCC),
demonstrating the MoE models’ versatility and robustness.
Nonetheless, existing works focus mainly on MoE to enhance
model architecture rather than exploiting its potential for
resource optimization in networking. Therefore, this is the
primary focus of this work to fill the gap.

III. GENERATIVE Al AGENT FRAMEWORK

As shown in Fig. [, to address Challenge I, this section
proposes a generative Al agent to achieve customized model
formulation.



A. Dataset Construction

Due to the curvature of the earth, the influence of the
atmosphere on signals of satellites, mathematical modeling
of satellite communications is difficult and complex, where
main four aspects (i.e., scenarios, access protocols, channel
models, and optimization goals) should be considered. Thus,
in the process of customizing a satellite communication model,
the first step is to establish a specialized database due to the
lack of ready-made databases. To support subsequent problem
formulation, we need to build such a database based on the
above four aspects so that the generated Al agent can perform
generation.

1) Scenarios: There are significant differences in satellite
communication models in different scenarios. Therefore, we
consider two typical scenarios, i.e., the homogeneous satellite
communication model and the heterogeneous satellite commu-
nication model [32].

For the homogeneous scenarios, we consider a downlink
LEO satellite and terrestrial network, where an Nr-antenna
LEO satellite serves K single-antenna LEO ground users
(LGUs). Let E{|sy|?} = 1 where k € X = {1, ..., K}. Thus,
the transmit signal is given by

K
X = E Wi Sks
k=1

where w;, € CNT*1 denotes the beamforming vector associ-
ated with the stream s.

For the heterogeneous scenarios, we consider a downlink
heterogeneous satellite network composed of one Ny;-antenna
GEO satellite and one Nr-antenna LEO satellite, where these
satellites use the same spectrum. The GEO satellite serves
M single-antenna GEO ground users (GGUs) and each LEO
satellite serves K LGUs. For clarity, Let E{|s;|?} = 1 and
E{|sm|?} = 1. We use 0 to denote the index of the GEO
satellite, m € M = {1,2,..., M} to denote the index of the
m-th GGU and k € X = {1,2, ..., K'} to denote the index of
the k-th LGU. Thus, the transmit signals of GEO and LEO
are, respectively, given by

ey

M
Xg = Z W Sm, )
m=1
and
K
X1, = Z WieSk. (3)
k=1

2) Access Protocols: In different satellite communication
scenarios, the selected access protocols, such as SDMA and
RSMA, will also have different impacts on system modeling.
For example, when we choose the heterogeneous scenario,
for SDMA, it allows to use spatial separation technology to
allow the system to serve multiple ground users simultaneously.
Thus, the corresponding SINR at the m-th GGU and the k-th
LGU are, respectively, given by

H
|hG,me ‘2

Ty ({Wk}) =M

K )
Z |hg,mwml ‘2 + Z |h£{mwk|2 + 0-2
m’'#m k=1

“)

and
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®

M
> w2+ 3 e w2 + o
k' £k m=1

where hg ,,, and hy, ;; denote the direct channel vector between
GEO and the m-th GGU as well as channel vector between
LEO and the k-th LGU, respectively. 02 and o7 denote the
corresponding Gaussian noise at m-th GGU and k-th LGU,
respectively.

For RSMA, it decomposes signals into common and private
parts to improve system performance. To mitigate the co-
channel interference in heterogeneous scenarios, the 1-layer
RSMA scheme is adopted at the LEO satellite [B3]. Thus, the
corresponding SINR at the m-th GGU is given by

T ({WZ, weY)
|hg,mvvm|2

M K ’
> MG Wor 2+ 3 il Wi I + [, we 2 +02
m’'#m k=1

(6)
where w§ € CNt*! and wh € CNt*! denote the LEO
satellite beamforming vectors associated with the common
signal stream and private signal stream, respectively. Next, the
corresponding common SINR and private SINR at the k-th
LGU are, respectively, given by

H
|hL,k-W

F(]; ({wz’ WC}) = M Y
H H

> \hL,kWZ,k/P + > |hg Wi |2 4 07
k'=1 m=1

@)
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3) Channel Models: Channel modeling in satellite commu-
nication models is quite different, such as fixed and time-
varying channels [B4]. For the fixed channel model, it assumes
that the channel statistical characteristics remain unchanged
over a long time, where the corresponding channel model is

expressed by
/ c
h= —)2
GSGk(47rfcdS) g)

where G ; and G}, denote the satellite antenna gain and the user
antenna gain, respectively. c is the light speed, f. is the carrier
frequency, and d; is the distance between the corresponding
satellite and the user. g is the small-scale fading vector with
Rician distribution. For notational simplification, we omit the
index of hy, ;, and hg ,, here.

For the time-varying channel model, it is typically that
channel statistical characteristics such as Doppler shift change
rapidly with time. Following Jakes model [335], keeping the
large-scale fading in (8) unchanged, the small-scale fading
vector g is modeled as a first-order complex Gauss Markov
process, i.e.,

©))

g(t) = pg(t —1) + 1 - p’e

(10)



In (), e denotes the additive complex Gaussian noise with
the same distribution as g and the correlation coefficient p is
determined by

p = Jo(2m faTy), (11)

where Jy(+), Ts, and f4 denote the first kind zero-order Bessel
function, the time interval between adjacent instants, and the
maximum Doppler frequency, respectively.

4) Optimization Goals: The optimization goals of satellite
communications focus on improving various performance in-
dicators, such as maximizing SE and EE [36].

For SE, the achievable information rate at the m-th GGU
is given by

m ({Wi, W}) = logy (1 + Iy ({Wg, w°})).

Similarly, the achievable information rates of the common sig-
nal part and the private part at the k-th LGU are, respectively,
given by

Ry ({wi, w})

(12)

H),  a3)

= logy (1 +T% ({wy, w°

and

R ({w}) =logy(1 4+ T ({w}})). (14)

To guarantee that the common signal is successfully decoded
at all LGUs, the rate of the common message should be chosen
as miny RS, ({w},, w}). Denote ¢y, as the data rate for receiving
the common message at the k-th LGU, which should satisfy
that

K

ch < min R§ ({wh, w°}). (15)
k=1 F

Then, the sum achievable rate of the LEO area is expressed

as
K
R({wE,w,cx}) = (cx+ RE({WE}).  (16)
k=1

For EE, it is a ratio of the sum achievable rate to the total
power consumption and the system EE at the LEO area is
expressed by

R({wszc’ Ck})

17
Py ({wp, we}) a7

E ({W};Z,chck}) =

where

Pr ({wh.w}) = (nw +Z||wk||>+Pc, (1)

with ¢ € [1,00) and P being the power amplifier efficiency
factor and the constant power consumption by circuit modules,
respectively.

Remark 1. It can be observed that human users need to
carefully configure the above four aspects to build a reason-
able satellite model manually. Nonetheless, errors are prone
to occur during model building due to the varying situations
and multiple choices. For example, if the user neglects rate
ordering when choosing RSMA as the access protocol or
mistakenly adopts stable channels to communicate with rapidly
moving satellites, the model correctness and the corresponding

communication efficiency might be significantly affected.

To this end, a generative Al agent framework is constructed,
as shown in Fig. D. Specifically, we first utilize LLMs to
establish a conversational modeling procedure. In each round
of interaction, the semantic router [37] integrated into LLM
extracts task-relevant semantics from users’ natural language
and invokes the corresponding function calls. Since LLMs
are trained on general knowledge and lack satellite expertise,
we build a RAG [[I4] system, which contains massive expert
knowledge regarding satellite communications to support com-
plicated mathematical modeling. The RAG functions called
by the semantic router retrieve relevant knowledge from the
dataset. Afterward, the agent leverages LLMs to analyze the
retrieved knowledge and generate the configurations of each
modeling aspect step-by-step, based on user descriptions and
requirements. Next, we introduce the detailed design.

B. Semantic Router

As shown in Fig. 0, we segment the entire expertise dataset
into four blocks, each corresponding to one aspect mentioned
in Section III-A. Moreover, each block contains two sub-
blocks, corresponding to the specific configurations in each
aspect. In this case, to generate accurate system models, the
prerequisite for our generative agent is to locate the correct
sub-block for expertise retrieval. The semantic router acts
as the nerves of agents, transforming users’ descriptions in
natural language to the calling for the specific sub-block.
To do so, it employs a two-layer structure, in which layer-
1 routing realizes the mapping between user description and
block. Afterward, the layer-2 routing further determines which
sub-block to call. The two routing selection layers are based
on semantic similarity [B7]. Specifically, denoting a user
description/query as ¢ € q, the semantic router will use an
encoder E, to encode it as text embeddings, i.e., E,(g). Here,
text embeddings play a crucial role in bridging humans and
LLMs by encoding natural language into a numerical format
that neural networks can process. In this paper, we leverage
the pre-trained text-embedding-ada-002 [38] model to generate
embeddings of textual inputs. By training on large corpora, this
model acquires outstanding contextual understanding capabil-
ities, projecting each word/phrase into the continuous feature
space with minimized conflicts. Moreover, we adopt the widely
used cosine distance [B7] to measure the semantic similarity
between two embeddings.

The labels of blocks and sub-blocks are b; and (b;, s’ )
where b; and s’ (i € {1,2,3,4},j € {1,2}) refer to the aspect
and conﬁguratlon respectively. For instance, bs = “channel
model”, s3 = “SDMA”, and s3 = “RSMA” (see Fig. ). Using
cosine similarity as the metric for similarity measurement, the
layer-1 routing of query ¢ can be defined as follows:

¢
> (B
- , (19)

¢
> (B ¢z )[k)?
k=1

min | 1.0 —
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Fig. 2. The design of generative Al agent for satellite communication modeling. A: The two-layer semantic router. The expertise knowledge is organized
into 4 blocks, each of which contains 2 sub-blocks. B: The answer generation for satellite communications modeling.

where ¢ denotes the length of text embeddings. From this
equation, we can observe that the user query will be routed to
the block whose label is the most relevant. Similarly, layer-2
routing repeats Eq. (19) while aiming to further route g to the
most relevant sub-block.

Remark 2. The semantic router is presented to enhance
the efficiency of RAG for satellite communications modeling.
This is because the rate of correct retrieval decreases with
the increasing knowledge volume. By organizing expertise
knowledge into eight sub-blocks, the space for retrieval can
be reduced by eight times, making our proposal suitable for
complicated satellite communication modeling. Moreover, we
note that the block and sub-block configuration is customizable.
Users can include/remove blocks/sub-blocks according to the
specific application scenarios. After routing the user query
to the specific sub-block, the RAG-assisted modeling can be
performed, which is discussed in the next part.

C. Retrieval-Augmented Generation

RAG aims to retrieve relevant expertise from the knowledge
sub-block to support satellite communications modeling. Such
a process can be modeled as using input sequence ¢ to
fetch knowledge z, subsequently utilized as supplementary
context for helping LLMs to generate the modeling answers
m. Inspired by [T4], we develop our RAG system atop RAG-
Sequence, utilizing identical knowledge to forecast each token
within the target sequence. As illustrated in Fig. O, our system
encompasses two pivotal elements: (i) a retrieval mechanism
Pn(2]q) characterized by parameters 7, tasked with deriving a
truncated distribution over knowledge embeddings in response
to a query ¢, and (ii) a generative module pg(m;|q, z,m1.i—1),
parameterized by 6, responsible for the sequential generation
of tokens, each contingent upon the antecedent ¢ — 1 tokens
m1.;—1, the initial query g, and retrieved knowledge z. Such a
process encompasses the marginalization of the seq2seq prob-
ability pgeq(m|z) via a top-K approximation [[I4], formalized

as follows:

Pseq(mlq) ~ pn(2lq)p(m|z, q)

>

zetop—K(p(-|q))

L
= Z pn(2lq) Hpa(mi\q,Z,mlzz‘—ﬁ,

z€top—K(p(-|q)) i
(20)

where L represents the length of the sequence. Note that top-
K approximation is utilized to bring diversity to model output.
Next, we introduce the retriever and generator design, as well
as the training and inference paradigms.

Algorithm 1: Generative Al agent for satellite commu-
nications modeling

1 Input : User query, embedding models, LLM;
2 Initialize environment;

3 Listen to user query q = {ql, qo, ...
4 for each q in q do

5 Encode ¢ and acquire embeddings Eq(q);

6 for each i in {1, 2, 3, 4} do

7 Calculate cosine similarity between E,(g) and
L E,(b;) based on (II);

8 Route to the corresponding block i; # layer-1
routing

9 for each j in {1, 2} do

10 Calculate cosine similarity between E,(¢) and
L Eq(s}) based on (I9);

11 Route to the corresponding sub-block j; # layer-2
routing

12 for each chunk in the sub-block do

13 L Calculate cosine similarity between Eq(¢) and
the chunk based on (I9);

14 Fetch the most prevalent knowledge chunks;

15 Call LLM to generate answers for ¢ based on
retrieved knowledge;

»Gn}

16 Output : The entire satellite communications model
containing scenario, access protocol, channel, and
optimization goal;




1) Retrieval Mechanism: The retriever function p,(z|q) is
predicated on the dense passage retriever (DPR) model [I4],
embracing a bi-encoder architecture, i.e.,

pn(2]q) o exp (E,(2) "Eq(q))

where E,(z) is a dense representation of the knowledge
produced by the aforementioned text encoder [B9], and Eq(q)
denotes the query representation produced by a query encoder.
Due to its strong representation ability, such encoders are now
usually implemented on top of LLM, such as text-embedding-
ada-002 [BR], i.e.,

E,(z) =LLM.(z) & Eq(¢q) = LLM,(q).

21

(22)

The knowledge in the selected sub-block is split into multiple
chunks. Based on Eq. (21), the most relevant chunks can be
retrieved to support the generation of satellite communications
modeling.

2) Generative Module: The generative module is plug-
gable and can be served by any mainstream LLM. Here, we
adopt a generative pre-trained transformer (GPT) to realize
po(m;|q, z,m1.;—1), organizing retrieved knowledge and gen-
erating coherent and context-aware answers about satellite
communications modeling.

3) Training Approaches: The training scheme jointly opti-
mizes the retriever and generator without explicit directives
on document retrieval. The objective minimizes the negative
marginal log-likelihood of the target sequences across a corpus
of input/output pairs (g;,m;), employing stochastic gradient
descent Adam.

4) Generation Strategies: During inference, RAG-Sequence
models adopt distinct approximations to pgeq(m|g). This
paradigm requires searching on each document z, merging
hypotheses across documents to form a candidate set. The
likelihood pgeq(m|q) is then deduced by aggregating gen-
erator probabilities pg(m;|q, z, m1.,—1) across the document
set, thereby generating rational and accurate answers about
satellite communications modeling according to user descrip-
tions/queries. In summary, Algorithm [ illustrates the process
of performing customized satellite communications modeling
via the proposed generative Al agent.

D. Problem Formulation

Using such a framework, human users can effectively tai-
lor optimization problems to meet their unique requirements
and objectives. For instance, when selecting a heterogeneous
scenario with RSMA in a time-varying channel and focusing
on SE, the human users aim to enhance the sum rate in LEO
satellite regions. This involves a complex joint optimization of
transmit private beamforming vectors {w} }, common beam-
forming vectors {w°}, and common rates {c}, constrained
by the achievable rate requirements at GGUs and LGUs. Note
that the sum rate maximization in time-varying channels for
heterogeneous satellite networks with RSMA has remained
an open issue thus far, where generative Al agent can help

construct the formulated problem, i.e.,
max R ({w},w c,})
{wh,we,cr}

(23a)

K

st WP+ DT IWEIP < Paax,  (23b)
k=1
Ry, ({wy, w}) > Eaqus (23¢)
Ry ({wy, W, cr}) > ELau, (23d)
K
> e <minRE({whw})  (23e)
k=1
cp 20, (23f)
Vm € M,Vn € N,Vk € K. (23g)

In constraint (3H), P,ax denotes the maximum power budget
at LEO satellite. In constraints (23d) and (23d), {ggu and
ércu denote the minimum required achievable information
rate threshold of each GGU and LGU, respectively. Constraints
(Z3d) and (P3T) guarantee that the common message can be
successfully decoded by each LGU.

Remark 3. It is worth noting that Problem (23) is just one
of many potential configurations that a generative Al agent
can customize. The framework is universally adaptable and
can incorporate various human user-defined needs based on
the database from above four aspects, such as non-orthgonal
multiple access (NOMA) in protocols and reconfigurable intel-
ligent surface (RIS) in scenarios. This adaptability highlights
the utility of generative Al agents in building complex models
that can be time-consuming to model and highly error-prone
if relying solely on human expertise.

Proposition 1. For any how customized modeling is adopted
based on the above four aspects (i.e., scenarios, access proto-
cols, channel models, and optimization goals), the formulated
problem is an NP-hard problem.

Proof. To prove the NP-hardness of formulated problem, it
is equivalent to reducing the formulated problem to one
of the proven NP-hard problems. Particularly, for any how
customized modeling is adopted, with given some optimiza-
tion variables such as {c;} or w° the formulated problem
is reduced to a multi-ratio fractional programming problem,
which has been reported to be an NP-hard problem in [0]. [J

IV. PROPOSED PPO WITH MOE APPROACH

As demonstrated in Proposition 1, due to the existence of
heterogeneous variables and the complexity of the optimiza-
tion environment, Problem (Z3) is an NP-hard problem, which
poses a significant challenge in finding reasonable solutions.
Therefore, in this section, we introduce an MoE-PPO approach.
Note that generative Al agent can generate a variety of
optimization problems, we focus on addressing one of the most
challenging formulated problems, i.e., (Z3), constructed by the
generative Al agent. For other simpler formulated problems
that the proposed AI agent constructs, fewer experts and a
more straightforward action space can be used.

A. Overview of MoE

1) Architecture of the MoE Model: MOoE is the integration
of multiple specialized sub-networks (i.e., “experts”) under the



guidance of a central “gating network™ [A1]. This design con-
sists of multiple expert networks (F1, Fs, ..., Ef), each with
unique parameters and running simultaneously. The central
gating network labeled G, generates a weight vector that
enables the model to direct attention to the most relevant
experts based on the current input.

In the MoE architecture, each expert is usually designed as a
feed-forward neural network, processing inputs independently
and producing outputs with the same dimensions, where the
core function of the MoE model is described as

T
y=> Go(x)Ei), (24)
i=1
In (24), E;(z) is the output from the i-th expert network for
a given input. The gating network G, (x) typically utilizes a
Softmax function, i.e.,
1

- 1+4exp(—z-W,)’

Go() (25)
where W, is a learnable weight matrix. This design ensures
that the MOE model leverages the most pertinent experts
for any specific input through G, (x)’s selective activation
mechanism, thereby optimizing the model’s performance.

2) MoE Model Training: For the training stage, MoE
involves adjusting the parameters of the expert network and
the gating network to minimize the loss function that reflects
the difference between the predicted output and the real output,
where the loss function based on mean-squared error (MSE)
is defined as

B 2
L= (yb - ZGo(xb)iEi(xb)> . @6
b=1 1=1

where B represents the total number of training samples, y3
denotes the actual output for the b-th sample, and x; denotes
the corresponding input. Next, we introduce an MOE-PPO
framework, showing how to integrate task decomposition and
policy optimization to further improve the learning perfor-
mance of PPO.

B. Mixture-of-Experts with PPO (MoE-PPO) Framework

Integrating the MoE with the PPO approach, we enhance the
policy’s capacity to model complex behaviors in environments.
Specifically, the MoE-PPO framework adopts an actor-critic
structure, where the actor network, parameterized by 6,, en-
capsulates a dynamic ensemble of expert policies for decision-
making. Concurrently, the critic network, parameterized by O,
assesses the state-value function, Vg, (s), guiding the actor’s
policy improvement.

1) Actor network with MoE: The actor network in the MoE-
PPO framework is defined as

I

o, (atst) = Zwei(st)ﬂwi(aﬂst)a (27)
i=1

where each 7y, represents an expert policy within the mixture,

and wy, (s¢) denotes the dynamic weighting of expert ¢ for

state s;, managed by the routing function parameterized by 6.

2) Gating Function with PPO: The gating function in the
MOE model plays a crucial role by dynamically selecting and
aggregating expert policies based on the current state s;. These
selecting and aggregating processes, however, involves making
decisions from a categorical distribution, which presents chal-
lenges for optimization within the PPO framework. To tackle
this issue, a new approach to estimate the gradient of the actor
network under gating function is introduced.

Given a state s¢, the value of advantage A, (s, al) decides
the contribution of each expert policy my, to final action
decisions. For each available action a! sampled from the
respective expert policy my, (-|s¢), we compute the advantage
Ay (s, al), reflecting the expected return of selecting a} in
state s;. The optimal expert policy for s; is identified as the
one yielding the highest advantage.

Definition 1 (Back propagation maximization). For optimizing
actor network, the gradient related to the expert i, denoted as
grad, a is estimated using the back propagation maximization
approach, i.e.,

grad@Ai = 69Ai vf)Ai T, (st), (28)

where

6‘9/\1: = ]]‘{i:arg max; A(,,(st,az)} - 7TeAi (St)a (29)

with ]l{i:argmaxj Ag(si,al)} bemg an indicator function that
equals 1 if expert i’s action a; maximizes the advantage
Ay (se,al) over all experts, and 0 otherwise.

Based on the back propagation maximization, the MOE-
PPO can be effectively optimized to refine the overall strategy
g, from multiple experts’ policies.

3) Objective Function with MOE: To align the MOE frame-
work within the PPO, the surrogate objective function is
adapted to accommodate the MoE while maintaining the core
principles of PPO [A2], which is expressed by

7(0) = B [pu (02 47, G0)

mo, (atlst)
Toqu (at]st)
the chosen action under the current policy to the old policy,
reflecting the essence of the importance sampling technique
used in PPO to estimate the expected advantage of the policy
update. A; is the advantage function, which is used for
highlighting the role of each expert in the collective policy
through their weighted contributions to the estimated rewards,
ie.,

where p; (0) = denotes the probability ratio of

T gold
oA

: = ?"(St, at) + ’)/Vggld(st_i_l) — VG%Id (St). 31D

However, the monotonic improvement theory requires that
T, (ar[s¢) and mgqa(ay|s;) satisty the following trust region
constraint, i.e.,

Ev [KL (o, (arls)|moga(ails)) | <e,

where KL(-) represents the Kullback-Leibler divergence func-
tion, and ¢ is a positive hyperparameter.

(32)

To facilitate the computation, J (64) with 04 satisfying (B2)
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Fig. 3. The diagram of the proposed MoE-PPO approach.

can be approximated by

JCLIP (OA) — (33)
. Toold . Togld

E {mln (pt (0a) A, Lclip(pe(0a),1—€,14+e) A4 )} ,

where clip(-) is the clip function to restrain p;(04) to lie in
the range [1 — ¢,1 4 £] and € is a hyperparameter which is
decayed during training stage.

4) Policy and Critic Update Mechanisms: The parameters
of both the actor and critic networks are refined through mini-
batch stochastic gradient descent (SGD) using experiences
sampled from the environment, where their update rules are,
respectively, formulated as

o =08 —eay 3 (Vo

CLIP (9A)) (34)

and
1B
Oc =03 —ac5 Y Vec (Voo (s1) = Viar (1))° . (35)
t=1
where JCMP (4) reflects the realization of the CLIP-modified
objective function, and Vi, (s:) represents the target value for
the state s;, which is computed by

Viar (s¢) = 7 (s¢,2¢) + -+ + 7" Voo (sent1),  (36)

where v € [0,1] denotes a discount factor. For clarity, the
diagram of the proposed MoE-PPO approach is shown in
Fig. B.

Remark 4. Note that, in our proposed MoE-PPO approach,
we use a back-propagation maximization method to update
the experts. This method uses the gradient of the most

advantageous function value across all experts to update
each expert, effectively allowing the best-performing expert to
guide the improvement of the other experts. Additionally, the
gating network dynamically adjusts weights, ensuring that the
influence of poorly performing experts is mitigated. By doing
so, the impact of the worst-performing experts on the whole
network is significantly minimized. Such the back-propagation
maximization method and gating network have been adopted
in existing studies, e.g., [43] and [44].

C. MDP Formulation

In MDP, we define the framework through the components
(8, A, R,~). These components encapsulate the state space S,
action space A, reward function R, and a discount factor ~,
where the detailed designs are shown as follows.

1) Action Space: In action space, each expert is assigned
to generate specific actions in terms of {wg}, wC, and c.
Considering the complexity of handling complex-valued beam-
forming vectors in neural networks and inspired by [43], a
decomposition approach is adopted, where each beamforming
vector {w,} (including {w}'} and w® ) is split into its
magnitude and a unit-norm direction vector, i.e.,

K +1}.

In (B1), ||w,|| denotes the magnitude of the corresponding
transmit power and W, denotes the unit-norm beam direction
vector.

For the magnitude of the corresponding transmit power
, it is determined by the hyperbolic tangent function to
ensure that the power constraints are met, which is expressed
by

Wy = ||Wy || Wy, Vo € {1,2, ..., 37)

”W ” - /Pmax exp( POW) exp( POW) 1
2 exp(; OW) + exp(—z;OW) ’

hyperbolic tangent function
exp(zFPOW) _exp(—zPOW) (38)

where eig(r%ow)ﬁig(fr%ow) € [—1,+1] is employed as an
activation function to guarantee that the outputs of the deep
neural networks (DNNs), i.e., the selected transmit power
satlsfy the corresponding constraints [46]. 20OV = f(W

EOW +b!) denotes the output of the activation function Wlth
respect to the corresponding selected transmit power. f(-), W,
POV’ and ' denote the activation function of the current
layer, the corresponding weight, the output in the previous
layer and the corresponding bias, respectively.

For the unit-norm beam direction vector w,, following [45],
we leverage the maximum ratio transmission (MRT) and zero
forcing (ZF) strategies, i.e.,

SR e
Wv = ||ZkK:1 flI_I:{kH’ B ’ (39)
meys Ho# K+,

where I~1L7;c = hﬂ . and vy is the k-th column of
V = [vi,..,vk] where V = G#(GGH)™! and G =
(hy, 1, ..., hy, k]

For the achievable rate of the common message {c}, it is
also determined by the hyperbolic tangent function to ensure



that the common rate constraints are met, which is expressed
by

i B (i W) exp(aOM) — exp(~

2 exp(z{OM) + exp(—a{OM)

£

Cr = +1

hyperbolic tangent function

(40)

where QZ%OM denotes the output of the activation function with
respect to the corresponding selected achievable rate of the
common message.

Therefore, the action space is defined as

A= {{wi},we {er}},

where the cardinal number of the action space A is (2K + 1).

(41)

2) State Space: The action space comprises the set of
current information of all the users u € REE+M)x1 (he
selected action vector a, and the instant reward r.

For the current information of all users u, it is expressed by

o {0} (0 )

where Féc), F;CP), and I',, represent the corresponding SINR
of GGU and LGU in the last time step.

(42)

For the selected action vector a, it is chosen from the set
of possible actions A, which reflects the strategy implemented
in the last time step. The instant reward r is generated from
the state and the chosen action, which indicates the efficacy
with which the agent addresses the described problem. In
the subsequent subsection, we provide a definition of instant
reward r relevant to our proposed approach.

Therefore, the state space is defined as
S = {ua,r}, 3)
where the cardinal number of the state space 8 is (4K +M+1).

3) Reward Function: The reward function considers both
the objective function and the constraints of the Problem,
which comprises two elements: the direct reward term, which
reflects the unconstrained energy efficiency (EE), and the
penalty term, which ensures compliance with the constraints.
To harmonize the relationship between the direct reward and
the penalty term, we define a penalty-based reward function
that balances these two aspects, i.e.,

r =R ({wg, v ci}) (44)
X (QPOW X QCom X QLEO X QGEO),
Penalty term
where
2 K 2
Lo [[we]” + 322 (Wl < Pax, Yk € X,
QPow = k}:{l
0, [[wel* + 3 IWRI* > Paax, Vk € X,
k=1
(45)

1, YK a< min Rf, ({w}, w}), ¥k € X,
Q m —
co 0, 4L, e > min By ({wh,w)), Vk € K,
(46)
0 _ 17 mkian ({w25w07ck}) > SLGU7 vk € j{,
LEO T, min Ry, ({w), w, e1}) < €Lau, Vk € X,
47)
and
QO 17 H}ran(Rm ({Wiawc})) > SGEOa Ym € Ma
GEO = !
0, min(R,, ({w},w°})) < &aro, Vm € M.

m
(48)
Qprow> Qcom, QLro, and Qgro respectively represent the
penalties for actions without satisfying the power budget re-
quirement (P3H), the common message decoding requirement
(3d), the LEO QoS requirement (P3d), and the GEO QoS
requirement (Z3d).

Remark 5. The penalty terms have been widely used to
guarantee a feasible solution, which, however, may induce
sparse rewards and high variance. Hence, we only adopt
the penalty for the complicated constraint, i.e., (I3H)-(234),
while the simple constraint, i.e., (E3f) is guaranteed via the
activation function based on (EQ).

Note that a non-zero reward is awarded only when all the
constraints of Problem Py are met, which means that our
objective can be achieved. Therefore, for the agent to receive
positive rewards, it must optimize the sum rate and ensure
that all constraints are fully satisfied. In summary, Algorithm
@ describes the training procedure for the proposed MoE-PPO
approach.

V. SIMULATION RESULTS

This section presents simulations to evaluate our proposed
generative Al agent framework and our MoE-PPO approach.

A. Simulation Parameters and Setup

1) Scenario Settings: Since our customized system is based
on heterogeneous scenarios, the simulated scenario is com-
posed of one LEO and one GEO. The number of antennas
at GGU and LGU are both set as 8. The number of GGU
and LGU are both set to 2. The power budget of GEO and
LEO are both set to 50 dBm. Following [21], the achievable
information rate requirements of GGU and LGU are set as
1 b/s/Hz and 0.1 b/s/Hz, respectively. The noise power of
each GGU and LGU are both set as -104 dBm/Hz. Moreover,
the remaining hyper-parameters are summarized in Table L.

2) Generative Al Agent Settings: The generative Al agent
is implemented as follows. First, the encoders for user descrip-
tion and expertise knowledge are realized by OpenAIEmbed-
dings [B8]. The LLM for analyzing retrieved knowledge and
generating satellite communication models is GPT-3.5 [&1].
Finally, the semantic router, agent memory, and conversation
chain are developed atop LangChain libraries [4].



The user query & answers from generative Al agent

You are an expert in satellite commutations. Help me formulation the optimization
problem in satellite communications based on your learned and local knowledge.

—

Multi

)
Of course, | am happy to help you with satellite communication modeling. ]

Aent

Query 1 ~
My application covers a wide range and is complicated. Show me the stakeholders | &
and relationship in the satellite network. Answer using your local knowledge.

User

Scenario

\/arym;!
u

Channel

LEO satellite: Serve single-antenna LEO ground users (LGUs).
Ground users: Include GGUs and LGUs, receiving satellite communication services.

[°.9)

@ GEO satellite: Serve multiple single-antenna GEO ground users (GGUs).
&

Agent

Query 2 n
[ The satellite states and environment are changing with time, which kind of channel } (Y

| should use? Answer based on your local knowledge. U‘
ser

0.9
fThe wireless environment changes rapidly, the time-varying channel model should
be used. This model considers factors such as satellite antenna gain Gg, user

' ent
model g antenna gain Gy, carrier frequency f;, distance ds, and small-scale fading g:
h= [G.G c 2 g(t): where g(t) is modeled as a first-order complex
The 5L (4“frds) 8 )Gauss Markov process. )
expertise Query 3 ~
knowledge; Since heterogeneous satellite networks are considered, to mitigate interference, |
please use the RSMA protocol at the LEO satellite. U‘ i

ser

- Using RSMA at the LEO, the transmit signals generated by the GEO satellite is
RSMA M
XG = L, WimSm
[ The transmit signals generated by the LEO satellite is
xL=w°s(+Zf‘w£s,f y.
Query 4
;\rz?gsgl I would like to maximize the system sum rate of LEO satellite area. Show me the O
formulated problem. Use your local knowledge /<l
User
— ~
- To maximize sum rate, the optimization problem can be formulated as
P 2 - >
Sunae max R({wE, wC, i) s.t. [[WE|" + [[WE]|"< Prax, Rin((WF, W) > Ecu,
P.C - s P .C s
Ric ((Wh, WS, 1) 2 €16u, Zfzq e min RE(W, wE)), ¢ 20,
EE where ¢y and &gy denote the information QoS of each GGU and LGU, Py ax
Coal denotes the maximum power budget. Y,
Query 5 n
The situation changes. Now, the wireless environment is fixed. What should | do -
to revise the formulated problem accordingly. /il
Fixed User
— If the satellite environment remains fixed. The time-varying channels need to be
revised as a fixed channel. To revise the model for a fixed satellite environment,
q the dynamic components related to satellite movement, distance variations, and
Channel other time-varying parameters should be removed.
model - ¢ 2 i - i
h = |GGy (Mtfcd) 2. where g is the small-scale fading.
N 4

Fig. 4. The process of satellite communication modeling using proposed generative Al agent. (A): The user description and answers of generative Al agent.
The words with key semantics are highlighted in yellow. (B): The retrieval from expertise knowledge.

Algorithm 2: The proposed MoE-PPO approach

1 Input : Episodes, exploration steps, update episodes,
learning rate, channel status information, number of
experts;

2 Initialize environment;

3 Observe initial state sg for each itertion do

4 for each exploration step t do

5 Each expert makes its own action a; based on
sub-policies;

6 Aggregate actions a; = {w}, W, c;} based on
the current state s, and gating mechanism;

7 Obtain the current reward 7¢;

8 Observe the next state sy41;

9 Store transition (s¢, ag, r¢, S¢+1) in D;

10 for each update step t do

11 Sample B mini-batch of transitions from D
from all experts;

Update actor network 64 and critic network 6¢
via SGD according to (34) and (B3) for half
episodes of total update episodes;

Calculate advantage function A(s,a) for all
experts and obtain the maximization value
A'(s,a) through Back-propagation
maximization approach;

Update state s; <— S¢y1;

12

13

14

Output : The actions {w}), w°, ¢ };

3) MoE-PPO Approach Settings: For the proposed MoE-
PPO approach, the whole structure is set as a four-layer
feed-forward deep neural network, i.e., one input layer, one
output layer, and two hidden layers. The total number of input
ports and output ports are (4K + M + 1) and (2K + 1),
respectively. Moreover, the remaining hyper-parameters are
also summarized in Table 0.

TABLE I
HYPER PARAMETERS SETTINGS
[ System Parameter [ Value ]
Carrier frequency f. 4 GHZ
Satellite antenna gain G 35 dBi
LEO altitude 300 KM
GEO altitude 4000 KM
Doppler frequency fq 10Hz
Time interval 7, 2 x 10~ %s
Rician factor 4
The number of NN layers 4
Clipping parameter € 0.2
DNN optimizer Adam
Activation function ReLU and Tanh
Hidden layer size 256
Learning rate « 3x107?
Discount factory 0
Clipped probability ratio p 0.2
Memory size 40960
Time slots 10
Batch size 2048

B. The Effectiveness of Generative AI Agent

1) Satellite Communications Modeling: First, we evaluate
the effectiveness of the proposed generative Al agent in
customizing satellite communication models. As shown in Fig.
B, the users apply the role assignment strategy at the beginning,
enabling the LLM to recall pre-trained satellite knowledge by
asking it to act as satellite experts. Then, the users describe the
requirements for the satellite communication model from four
aspects. We can observe that our agent can precisely capture
critical semantic keys from user natural language descriptions
and call the corresponding RAG database. Then, the LLM can
leverage the retrieved knowledge to generate coherent answers
about satellite communications modeling according to user
requests. Note that even though the user query is vague, the
semantic router can still find the most relevant sub-block by
semantic similarity. For instance, the agent precisely routes to
the time-varying channel without explicit mention by users.
In this case of Fig. B, the user’s requirement corresponds to
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a multiple-satellite network using RSMA protocol and time-
varying channels, with the goal of maximizing the system
EE. We can observe that the Al agent successfully constructs
the entire model using 6 rounds of interactions, reaching the
minimum for accomplishing five-step modeling (one extra
round is for role assignment). Moreover, with the varying
network conditions, the user requirement may change over
time. Our agent can associate the requirement change to the
parts of the models and revise such parts automatically, thus
avoiding human-caused errors. As illustrated in Fig. B, the
agent precisely updates the channel model from Rayleigh
fading to Rician when the network dynamics decrease.

2) Generation Accuracy: Next, we evaluate the accuracy
of the generated model under different agent settings. For
our proposed generative Al agent, it leverages RAG to help
human users perform customized satellite communications
modeling. Expert modeling knowledge is fed to the agent
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Fig. 7. The effectiveness of the different numbers of experts.

through chunked embeddings. If the correct knowledge chunk®
that corresponds to the specific user-described scenario is
retrieved, the generated answer can be authentic and rational.
Therefore, to check the authenticity and rationality of the
generated content, the metric named retrieval rate (RR) [49]
can be utilized as accuracy. Specifically, RR indicates the ratio
that the generative Al agent successfully retrieves the correct
knowledge chunk and constructs the answer. Here, we adjust
two hyperparameters in RAG, namely the chunk size and the
number of chunks. The former means the number of tokens
in each chunk; the latter means the number of chunks that
can be retrieved at one time. Note that generation accuracy is
defined as n./5, which means the number of correct answers
among all five queries in Fig. B. Fig. B demonstrates that
low chunk size and number lead to poor generation accuracy.
This is because the RAG system cannot fetch expertise to
support answer generation. However, if retrieving too much
redundant expertise, the LLM of the agent can hardly analyze
it effectively, resulting in poor accuracy as well. Therefore,
we set chunk size and number to be 500 and 5, respectively,
which ensures that our agent can generate precise models with
the minimum number of retrieved tokens (2500 in total).

C. The Effectiveness of PPO with MoE Approach

1) The Convergence of PPO with MoE Approach: Fig. B
illustrates the convergence behavior of the proposed MoE-
PPO approach in comparison to some different benchmarks,
such as the traditional PPO, greedy, and random selection
strategies. The figure reveals that both the MoE-PPO and
the standard PPO approaches demonstrate convergence as
the number of episodes increases. It shows that MoE-PPO
consistently surpasses the performance of PPO (i.e., about
5%), achieving higher sum rates in each iteration. The per-
formance enhancements of MoE-PPO can be attributed to

2Chunk is the unit of embedding segments. To increase the retrieval
efficiency, in each sub-block, the agent splits the expert knowledge embedding
into multiple chunks [I4].



I MoE
IPPO

~ ©
T

o

EN

Achievables sum rate (bit/s/Hz)
w [6;]

N

3 4 5
Number of LGUs K

Fig. 8. The effectiveness of MoE-PPO under different number of LGUs.

5.5 T T T
I PPO+RSMA

[ IMoE+SDMA
5 |EEIPPO+SDMA
I MoE+RSMA ———

»
o

42.6%

Achievables sum rate (b/s/Hz)
w o .
|

[\
o
T

6 8 10 12
Number of antenna NT

Fig. 9. SDMA design versus RSMA design by using different approaches.

the integration of the MoE framework, which utilizes expert
policy specialization and adaptive policy weights to more
effectively navigate the policy space. To further validate the
effectiveness of MoE-PPO, its comparison with the greedy and
random baselines after convergence underscores a significant
improvement (i.e., about 220% and 38%). This improvement is
facilitated by MoE-PPO’s enhanced collaborative capabilities
and more efficient utilization of the state-action space using
gating network.

To validate the adaptability of the proposed MoE-PPO
approach, we conducted studies under varying protocols (i.e.,
considering SDMA) and optimization goals (i.e., considering
EE or power minimization).

2) Different Number of Experts: To illustrate the impact of
the number of experts on optimization outcomes, we consider
the scenarios with different numbers of experts:

e I=1: One expert
{wh, we e}

optimizes all variables, i.e.,

e I=2: Two experts handle the tasks, with one expert
optimizing the beamforming variables, i.e., {w}, w°}, and
another expert focusing on the common rate variables
{ex}-

e I=3: Three experts handle the tasks, where the first
expert is responsible for optimizing private beamforming
variables, i.e., {WE}, the second is responsible for opti-
mizing common beamforming variables, i.e., w°, and the
third expert is responsible for optimizing common rate
variables, i.e., {cy}.

o I=5: Five experts are involved, with each expert special-
izing in the optimization of a specific variable.

Fig. [ illustrates the impact of varying the number of experts
within the MoE-PPO framework on system performance. As
depicted in Fig. [I(a), the MoE-PPO approach converges across
the different numbers of experts, with the achievable sum rate
improving as the number of experts increases. Notably, when
the number of experts is set to three, the system achieves the
highest sum rate. This optimal performance is attributed to the
allocation of experts to distinct variable categories, enabling
each expert to specialize in and optimize variables within their
expertise domain, followed by an effective gating process that
aggregates the optimized variables. In contrast, a decrease
in performance is observed when the number of experts is
five. This counterintuitive result can be explained by over-
segmentation of the optimization task; each expert optimizes
a single variable, leading to errors in the gating process due
to lack of visibility into other variables or their corresponding
category variables. Furthermore, Fig. (b) presents the aver-
age running time with the different numbers of experts. An
exponential increase in running time is observed with more
experts, a consequence of the additional computational over-
head required to calculate and aggregate the decisions from a
greater number of experts. Therefore, to balance effectiveness
and efficiency, the number of experts should be equal to the
types of variables to ensure that each expert can fully utilize
their expertise without incurring excessive computational costs
or gating errors.

3) Different number of LGUs: Fig. B illustrates the achiev-
able sum rate as a function of the number of LGUs. It is
observed that the achievable sum rate decreases as the number
of users increases for both the proposed MoE-PPO approach
and the pure PPO approach. This decline occurs because,
with increasing users, the approach must allocate more com-
munication resources to users with poor channel quality to
meet constraints, reducing the overall sum rate. Moreover, it
is evident that the proposed MoE-PPO method consistently
outperforms the PPO method, where the MoE-PPO approach
achieves an 8.3% higher sum rate compared to the PPO
approach when there are 2 LGUs. This superiority is due
to the MoE’s ability to leverage multiple specialized experts
to handle different aspects of the optimization problem more
effectively. Specifically, MoE-PPO can dynamically select the
most relevant experts, optimizing resource allocation more
efficiently than a single comprehensive network.
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D. The Adaptability of the generative Al agent and MoE-PPO
approach

1) MoE-PPO approach for different access protocols from
generative Al agent construction: Fig. B presents the achiev-
able sum rate obtained by RSMA and SDMA versus the
number of transmit antennas /NV;. It shows that the achievable
sum rate increases with the number of NV; for all considered
protocols and approaches. This increment is attributable to
the additional spatial degrees of freedom provided by more
antennas, which help mitigate interference and enhance system
capacity. Moreover, it is observed that the system perfor-
mance under RSMA outperforms that under SDMA (about
42.6% gain). This superiority of RSMA can be ascribed to
the employment of successive interference cancellation (SIC)
techniques, which effectively remove a part of the interference.
Additionally, under each antenna configuration, our MoE-
PPO approach always surpasses the PPO approach, which is
consistent with the previous simulations.

2) MoE-PPO approach for different optimization goals
from generative Al agent construction: Furthermore, Fig. [0
illustrates the different system performance of the proposed
MoE-PPO approach under a time-varying mode with differ-
ent optimization goals, i.e., EE maximization and transmit
power minimization. In this context, the corresponding reward
functions for MoE-PPO approach are respectively designed as
follows.

o For EE maximization:
TEE =EE ({Wg, WC, Ck;})

X (QPOW X QCom X QLEO X QGEO)a

Penalty term

(49)

o For power minimization:

Penalty term

(QPOW X QCom X QLEO X QGEO)
rp = . (50)
Pr ({wp,we})

It is observed that whether maximizing EE or minimizing
power consumpution, our proposed MoE-PPO approach al-
ways outperforms the traditional PPO (about 10% and 12%)
with the increment of episodes. The reason is that the MoE
structure is able to efficiently allocate computing resources
because each expert can operate in parallel to solve different
variables in which they specialize. This parallelism facilitates
deep exploration of the state space, resulting in better policy
updates at each stage. Next, it also demonstrates the adaptabil-
ity of the proposed MoE-PPO approach, confirming its ability
to meet different channel conditions and optimization goals.

VI. CONCLUSION

This paper proposed a generative Al agent framework and
an MoE-PPO method for network modeling and transmission
strategy design in satellite communications networks, respec-
tively. Specifically, the proposed framework utilized LLM
and RAG for adaptive system modeling and configuration
automation, while MoE-PPO optimized resource allocation
and interference management by integrating expert knowl-
edges. Simulation results confirmed the effectiveness of the
generative Al agent framework and MoE-PPO approach in
satellite communication networks.
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