
1

Joint Batching and Scheduling for

High-Throughput Multiuser Edge AI with

Asynchronous Task Arrivals

Yihan Cang, Graduate Student Member, IEEE, Ming Chen, Member, IEEE,

and Kaibin Huang, Fellow, IEEE

Abstract

Edge artificial intelligence (AI) in the sixth-generation networks will provide inference services at

the network edge to enrich the capabilities of mobile devices and lengthen their battery lives. As

a well-known technique in computing, batching can boost the computation throughput at an edge

server by assembling multiple tasks into a batch that is fed into a pre-trained prediction model. This

reduces the memory-access frequency and hence accelerates the execution of each task. In a multiuser

edge-AI system, the end-to-end latency depends not only on computation but also on communication,

i.e., multiuser task uploading over a multi-access channel. In this paper, we study joint batching and

(task) scheduling to maximise the throughput (i.e., the number of completed tasks) under the practical

assumptions of heterogeneous task arrivals and deadlines. The design aims to optimise the number of

batches, their starting time instants, and the task-batch association that determines batch sizes. The

joint optimisation problem is complex due to multiple coupled variables as mentioned and numerous

constraints including heterogeneous tasks arrivals and deadlines, the causality requirements on multi-task

execution, and limited radio resources. Underpinning the problem is a basic tradeoff between the size

of batch and waiting time for tasks in the batch to be uploaded and executed. Our approach of solving

the formulated mixed-integer problem is to transform it into a convex problem via integer relaxation

method and ℓ0-norm approximation. This results in an efficient alternating optimization algorithm for

finding a close-to-optimal solution. Specifically, it iterates between solving two sub-problems, optimal

Y. Cang is with Department of Electrical and Electronic Engineering at The University of Hong Kong, Hong Kong,
and also with National Mobile Communications Research Laboratory, Southeast University, Nanjing 211111, China (email:
yhcang@hku.hk).

M. Chen is with National Mobile Communications Research Laboratory, Southeast University, Nanjing 211111, China, and
also with Purple Mountain Laboratories, Nanjing 211100, China (email: chenming@seu.edu.cn).

K. Huang is with Department of Electrical and Electronic Engineering at The University of Hong Kong, Hong Kong (email:
huangkb@eee.hku.hk). Corresponding author: K. Huang.

July 28, 2023 DRAFT

2

task-batch association and optimal batch starting time. The former is a linear program whose solution

can be found using a derived scheme of greedy task selection while that of the latter is derived in

closed form. In addition, we also design the optimal algorithm from leveraging spectrum holes, which

are caused by fixed bandwidth allocation to devices and their asynchronized multi-batch task execution,

to admit unscheduled tasks so as to further enhance throughput. Simulation results demonstrate that the

proposed framework of joint batching and resource allocation can substantially enhance the throughput

of multiuser edge-AI as opposed to a number of simpler benchmarking schemes, e.g., equal-bandwidth

allocation, greedy batching and single-batch execution.

Index Terms

Edge AI, edge inference, batching, scheduling, radio resource allocation.

I. INTRODUCTION

Edge Artificial Intelligence (AI), a key feature of the sixth-generation (6G) mobile networks,

will feature ubiquitous deployment of AI algorithms at the network edge to provide inference

services to users [1], [2]. Then Internet-of-Things (IoT) devices can rely on the services to

acquire intelligent capabilities ranging from visual perception to natural language processing.

Realizing efficient edge AI in practice has to overcome both the communication and computing

bottlenecks. The former results from many devices uploading high-dimensional data features to

an edge server over a resource constrained multi-access channel. The second refers to the well

known von Neumann bottleneck where frequent data shuttling between memory and processors

(e.g., loading of AI model parameters) can incur as much as 90% of total computation latency

and energy [3], [4]. The consideration of end-to-end system performance makes it important

to simultaneously overcome the two bottlenecks, which motivates this work. To this end, we

design a framework of integrating batching (i.e., task execution in batches to alleviate the von

Neumann bottleneck) and device scheduling to enhance the throughput of an edge AI system

under the practical assumptions of heterogeneous task arrivals and deadlines.

The area of edge AI, also called edge inference, involves cross-disciplinary research integrating

wireless communication and AI to improve the end-to-end system performance [1], [5]. Many

relevant algorithms are designed based on a popular architecture called split inference that

partitions a global deep neural network into an on-device and a server sub-models, which are

connected by a wireless channel [5], [6]. Given the architecture, a rich set of techniques have

been designed to improve the communication efficiency including pruning the features extracted

July 28, 2023 DRAFT

3

using the on-device sub-model [7], [8], jointly training the sub-model and channel encoder [5],

progressive transmission [9], and distributed data compression using the information-bottleneck

approach [10], [11]. Controlling the model splitting point for split inference introduces another

dimension for improving the communication efficiency. In [6], the point is jointly optimized

with computation-resource allocation for a multi-core CPU to minimize the end-to-end latency of

multiuser tasks. From the perspective of implementation, edge AI algorithms can be deployed on

the mobile edge computing (MEC) platform, a focus of 5G development, to exploit its strengths

in enabling latency-critical applications such as virtual reality (see, e.g., [12]). Furthermore,

various practical issues for edge AI deployment have been addressed by researchers such as

joint management of communication and computation resources (see, e.g., [13]), heterogeneous

devices [14], and random task arrivals (see, e.g., [15]).

In the context of multiuser edge AI, batching is mentioned earlier to be an effective technique

for breaking the von Neumann bottleneck so that an edge server can serve more users. Specif-

ically, the advantage of batching lies in reusing the part of AI model loaded into a graphics

processing unit (GPU) for multiple tasks to avoid frequent memory access [16]. As a result, the

computation latency per task is reduced and hence the throughput increases [17]. As mentioned,

batching should be jointly designed with radio resource allocation to achieve optimal end-

to-end performance for multiuser edge AI. Such designs are crucial for 6G AI empowered

tactile applications such as augmented reality (AR) and autonomous driving. In particular, AR

requires latency lower than 20 ms in order to guarantee an immersive virtual experience for

users. However, at its nascent stage, the mentioned area currently has few results [13], [18]. In

[18], utilizing the tree-search method, the optimization problem of joint bandwidth allocation and

task scheduling to maximize throughput is solved by proposing an efficient tree-search algorithm

with intelligent tree pruning. On the other hand, the minimisation of user energy consumption

is studied in [13] under inference latency constraints. To solve the problem, different algorithms

are presented for joint task scheduling and transmission-time control, which allow both online

and offline implementation. For simplicity, backlogged tasks and single-batch optimization are

assumed in prior work. On one hand, as queuing time is not accounted for, the existing designs

cannot provide a guarantee on end-to-end latency between a task arrival and its completion

where tasks may find difficulty in supporting real-time applications which require immediate

execution of randomly arriving multiuser tasks. On the other hand, techniques from single-batch

optimization are inefficient when dealing with the cases with a large number of concurrent tasks

July 28, 2023 DRAFT

4

with asynchronous arrivals or with a low arrival rate. In both cases, they can potentially result

in long waiting time for those tasks that arrive earlier than others. Optimally forming multiple

batches can perform better in such cases but its joint design with radio resource allocation

remains as an open problem.

It is worth mentioning that the issue of asynchronous task arrivals has been addressed in several

studies in the MEC area [19]–[21]. Without targeting a specific task or application, these studies

are all based on a generic processor model where computing speeds are measured in, for example,

the number of clock cycles required for processing a bit [22]. Furthermore, the processor speed is

assumed to be controllable by adjusting its clock frequency that changes its energy consumption

following a measurement based model [23]. Based on such models, computation-and-radio

resources can be jointly managed to maximize the system energy efficiency or throughput under

tasks’ deadline requirements [24]. Due to model abstraction, computing issues as elaborated by

the von Neumann and batching have not been studied in the MEC literature. Thereby, the existing

solutions are inadequate for solving the current problem of joint batching and scheduling (JBAS)

for multiuser edge AI.

In this work, we make an attempt to solve this problem targeting a high-throughput multiuser

edge AI systems under the practical assumptions of asynchronous task arrivals and heterogeneous

task deadlines. The problem is challenging for two reasons. First, there are numerous batching

related parameters to optimize, namely the number of batches, starting time of individual batches,

and the task-batch association. Second, meeting the task deadlines requires the control of end-to-

end latency of each task that sums its communication and computation latency. This introduces

coupling between batching and scheduling as well as radio resource allocation to scheduled de-

vices. By developing efficient approaches to solve the complex problem, we develop a framework

for optimal JBAS.

The main contributions of this work are summarized as follows.

• Optimal Joint Batching and Scheduling: The framework of JBAS is designed by solving

the JBAS optimization problem. First, we simplify the problem by converting it into an

equivalent problem where one variable, the number of batches, is removed. Our technique

is to set the number of batches equal to its maximum by allowing empty batches. Second,

the equivalent problem, which is a mixed-integer non-linear program, is made tractable

by approximation through the methods of integer relaxation and ℓ0-norm approximation.

The resultant convex problem can be efficiently solved using a proposed algorithm that

July 28, 2023 DRAFT

5

alternatively solves the following two sub-problems.

– Optimization of task-batch association: The sub-problem is a linear program and its

solution can be found using a derived scheme of greedy task selection. The scheme

assigns each task to the most suitable batch as measured by a derived metric that

accounts for different factors such as batching gain and the task’s arrival time and

uploading latency.

– Optimization of batch starting time: Given the optimal task-batch association, the

optimal starting time of each batch is derived in closed form. It is found to be the

latest time a batch can start under the deadline and batch causality constraints so that

the tasks in the batch use the least radio resources.

• Exploitation of Spectrum Holes: The combined effects of synchronized computation

duration of tasks in a same batch, their asynchronous arrivals, and heterogeneous uploading

durations create spectrum holes that refer to unused frequency-time resource blocks. We

design a spectrum-hole allocation algorithm to optimally exploit spectrum holes to enhance

the throughput by admitting originally unscheduled tasks. The corresponding optimization

problem is transformed into a sequence of single-batch sub-problems, each attempting to

jointly add new tasks to a specific batch and distribute spectrum holes among them. The

optimal solution for each sub-problem can be found by a linear search that sequentially

tests the sub-problem’s feasibility given the number of new scheduled tasks.

Simulations verify that the proposed JBAS algorithm yields significant performance gains as

opposed to existing schemes, especially in the scenarios with tight resource constraints. More-

over, the proposed spectrum-hole allocation scheme is shown to yield significant throughput

enhancement.

The rest of the paper is organized as follows. The system model is described in Section II. The

problem of optimal JBAS is formulated in Section III and solved in Section IV. We present the

design of the spectrum-hole allocation algorithm in Section V. In Section VI, the extensions to

online design with new arriving tasks and frequency-selective channels are discussed. Simulation

results are presented in Section VII followed by concluding remarks in Section VIII.

II. SYSTEM MODEL

Consider a single-cell system including K devices and an edge server that doubles as an

access point, as shown in Fig. 1. Each device has a single task that offloads a single data sample

July 28, 2023 DRAFT

6

Fig. 1. Edge inference system with asynchronous task arrivals.

(e.g., an image or a video clip) to the server for inference. These tasks are assumed to share

a common pre-trained prediction model, such as a large-scale classifier capable of discerning

hundreds of object classes [25]. To reduce communication overhead and protect privacy, each

scheduled device uploads a feature vector extracted from raw data using a local model. Prior

to data uploading, each device communicates to the server over a control channel the profile of

its coming task containing the extracted feature size, arrival instant, and deadline requirement.

Relevant models and metrics are described in the following sub-sections.

A. Task and Batching Models

Tasks arrive at devices at random time instants with different sizes and distinctive end-to-end

delay requirements. An arbitrary device, say device k, has to finish a task within the duration of[
T

(a)
k , T

(d)
k

]
, where T (a)

k and T (d)
k respectively represent the task-arrival time instant and deadline.

The duration consists of three parts: 1) feature uploading phase, 2) task inference phase, and

3) result downloading phase [26]. Due to the relatively small size of inference result (e.g., an

object label) and high transmit power of the server, the duration of the result downloading phase

is assumed negligible. To enhance the throughput, the server assembles received tasks into a

number of batches, denoted as N , which are fed sequentially to the prediction model. Let tn

with n ∈ {1, 2, · · · , N} denote the time instant when the processing of the n-th batch begins. It

follows that t1 < t2 < · · · < tN . To facilitate batching, let πk,n represent the association between

July 28, 2023 DRAFT

7

task k and the n-th batch. If the task k is included in the n-th batch, πk,n = 1; otherwise,

πk,n = 0. Since each task should be executed at most once,

N∑
n=1

πk,n ≤ 1, ∀k ∈ K, (1)

where K denotes the set of devices. The server decision on not sewing a device, say device k,

corresponds to
∑N

n=1 πk,n = 0. Then batching reduces to determining the association indicators

{πk,n}. Upon forming batches, the server sequentially inputs batches of feature vectors into the

inference model and downloads results as soon as a batch is executed.

B. Uplink Communication Model

For simplicity, we consider a frequency non-selective channel that emerges as propagation

distances keep reducing and the extension to frequency-selective channels is provided in Section

VI.B. Its bandwidth B is divided into K sub-channels that are assigned to the scheduled

devices. The bandwidth allocated to device k is denoted as Bk. Assume that the channels keep

unchanged during the transmission period. The server is assumed to acquire accurate channel

state information (CSI) useful for resource allocation and device scheduling. The spectrum

efficiency of the channel between device k and the server (in bits/second/Hz) is

rk = log2

(
1 +

pkhk
σ2

)
, ∀k ∈ K, (2)

where pk represents the transmit power, hk the channel power gain, and σ2 the additive white

Gaussian noise power. We can write the duration of feature uploading for task/device k as

τ ok =

(
N∑

n=1

πk,ntn

)
− T (a)

k , ∀k ∈ K, (3)

where T (a)
k is the task-arrival instant as defined previously. Let ℓk represent the number of bits

in extracted features for task k. Then ℓk = τ okBkrk. From (3),

Bk =
ℓk[(∑N

n=1 πk,ntn

)
− T (a)

k

]
rk
, ∀k ∈ K. (4)

C. Inference Model

Consider inference with batching [17]. For the n-th batch, all the uploaded feature vectors

satisfying πk,n = 1 are assembled and input as a batch into the server inference model. The trained

July 28, 2023 DRAFT

8

model comprises multiple sequential layers. When processing a batch, the server sequentially

loads each layer from the memory and then executes the batch until the batch traverses all layers.

As found in the literature, the inference delay increases approximately linearly as the batch size

becomes large [17], [27]. Given the association between tasks and batches, {πk,n}, the inference

delay of the n-th batch can be modelled as [13], [17], [18]

dn (πn) = aπn + b, ∀n ∈ {1, · · · , N}, (5)

where the batch size πn =
∑K

k=1 πk,n is a positive integer. Note that dn(πn) is a monotonically

increasing function. In the model in (5), a and b depend on the specific inference model [13],

[18]. Specifically, a represents the inference delay per task and b the delay of memory access.

III. PROBLEM FORMULATION

In this section, the design of JBAS is formulated as an optimization problem with the criterion

of maximum system throughput, i.e., the number of completed tasks. According to the inference

delay model in (5), increasing the batch size can reduce the inference delay per task. However,

due to heterogeneous task arrival instants and deadlines, waiting for more tasks to arrive to form

a batch hinders the completion of those with early deadlines. On the other hand, to start a batch

earlier requires more radio resources so as to finish uploading the associated tasks in time. As

a result, there exist two tradeoffs: one between the batch size and batch starting instant and the

other between communication and computation resources. Furthermore, the association between

tasks and batches also needs to be optimized.

Several practical constraints are considered. The first is the task-causality constraint, namely

that the processing of a batch cannot begin until the arrivals of all associated tasks:

πk,nT
(a)
k < tn, ∀k ∈ K,∀n ∈ {1, · · · , N}. (6)

The second constraint enforces the deadline requirements of scheduled tasks:

πk,n [tn + dn (πn)] ≤ T
(d)
k , ∀k ∈ K, ∀n ∈ {1, · · · , N}. (7)

Note that when a task, say task k, is not associated with the n-th batch, i.e., πk,n = 0, constraints

(6) and (7) are always satisfied. The third constraint reflects sequential batch processing, namely

July 28, 2023 DRAFT

9

that the (n+ 1)-th batch is not processed until the n-th batch finishes its inference:

tn + dn (πn) ≤ tn+1, ∀n ∈ {1, · · · , N − 1}. (8)

Last, the bandwidth constraint is given as

K∑
k=1

N∑
n=1

πk,n
ℓk
rkτ ok

≤ B. (9)

Under the above constraints, we aim at optimizing the bandwidth allocation, the number of

batches, their starting instants, as well as the task-batch association. Note that a task that is not

assigned to any batch is not scheduled for execution. Then the JBAS optimization problem is

formulated as

(P1)

max
{tn},{πk,n},N

K∑
k=1

N∑
n=1

πk,n,

s.t. πk,nT
(a)
k < tn, ∀k ∈ K,∀n ∈ {1, · · · , N},

πk,n [tn + dn (πn)] ≤ T
(d)
k , ∀k ∈ K,∀n ∈ {1, · · · , N},

tn + dn (πn) ≤ tn+1, ∀n ∈ {1, · · · , N − 1},
K∑
k=1

N∑
n=1

πk,n
ℓk
rkτ ok

≤ B,

N∑
n=1

πk,n ≤ 1, ∀k ∈ K,

πk,n ∈ {0, 1}, ∀k ∈ K,∀n ∈ {1, · · · , N},

N ∈ Z+, N ≤ K.

Problem (P1) is non-convex and NP-hard to solve due to the binary task-batch association

indicators as well as the coupling between optimization variables [18], [28]. Furthermore, the

variable number of batches, N , can change the cardinalities of batch starting instants, {tn}, as

well as the association indicators, {πk,n}, further complicating this problem.

IV. OPTIMAL JBAS ALGORITHM

In this section, we design an efficient algorithm for JBAS by approximately solving Problem

(P1). The proposed solution approach is to transform the problem to an equivalent, simpler one

with the number of bathes fixed. Then applying the method of integer relaxation allows the

July 28, 2023 DRAFT

10

equivalent problem to be solved using an alternating optimization algorithm. Its complexity is

analyzed.

A. A Tractable Solution Approach

1) An Equivalent Problem: First, Problem (P1) can be transformed into the following equiv-

alent problem:

(P2)

max
{tn},{πk,n},N

K∑
k=1

N∑
n=1

πk,n,

s.t. πk,nT
(a)
k < tn, ∀k ∈ K,∀n ∈ {1, · · · , N},

tn + dn (πn) ≤ T
(d)
k + (1− πk,n) Ξ, ∀k ∈ K,∀n ∈ {1, · · · , N},

tn + dn (πn) ≤ tn+1, ∀n ∈ {1, · · · , N − 1},
K∑
k=1

N∑
n=1

πk,n
ℓk

rk

(
tn − T (a)

k

) ≤ B,

N∑
n=1

πk,n ≤ 1, ∀k ∈ K,

πk,n ∈ {0, 1}, ∀k ∈ K,∀n ∈ {1, · · · , N},

N ∈ Z+, N ≤ K.

where the constant Ξ ≜ maxk∈K T
(d)
k + dN (K). Problem (P2) is different from the conventional

mixed integer nonlinear programming (MINLP) problem since the number of variables varies

with the number of batches, N . Without loss of generality, we propose to mend the difference

by fixing N as N = K by allowing the existence of empty batches. This results in the following

MINLP problem:

(P3)

max
{tn},{πk,n}

K∑
k=1

N∑
n=1

πk,n,

s.t. πk,nT
(a)
k < tn, ∀k ∈ K,∀n ∈ {1, · · · , N},

tn + dn (πn) ≤ T
(d)
k + (1− πk,n) Ξ, ∀k ∈ K,∀n ∈ {1, · · · , N},

tn + dn (πn) ≤ tn+1, ∀n ∈ {1, · · · , N − 1},
K∑
k=1

N∑
n=1

πk,n
ℓk

rk

(
tn − T (a)

k

) ≤ B,

July 28, 2023 DRAFT

11

N∑
n=1

πk,n ≤ 1, ∀k ∈ K,

πk,n ∈ {0, 1}, ∀k ∈ K,∀n ∈ {1, · · · , N},

where the corresponding inference delay evolves as:

dn (πn) =

aπn + b, if πn > 0,

0, if πn = 0,
(10)

for all n. The following theorem gives the equivalence between Problems (P2) and (P3).

Theorem 1. Problems (P3) and (P2) are equivalent in the sense that their optimal objectives

are identical.

The proof is provided in Appendix A. □

Theorem 1 allows us to solve Problem (P2) by solving Problem (P3) that leverages MINLP.

2) Integer Relaxation and Alternating Optimization: To solve (P3), the method of integer

relaxation is adopted to obtain an approximate solution (see e.g., [29]). Specifically, the binary

variables {πk,n} are relaxed as continuous ones belonging to [0, 1]. It should be emphasized that

the relaxation does not compromise the optimaliy as discussed in Remark 2. Due to the existence

of empty batches, the inference delay function dn (πn) has a step at πn = 0, making Problem

(P3) nonconvex. To address the issue, it can be rewritten in a form comprising ℓ0-norm as

dn (πn) = aπn + b1{πn} = aπn + b ∥πn∥0 , (11)

where ∥ · ∥0 is ℓ0-norm and 1{x} is the indicator function that is 1 if x > 0 and 0 otherwise.

The non-smooth ℓ0-norm can be well approximated by a series of convex weighted ℓ1-norms,

which is a commonly used technique in compressive sensing (see e.g., [30], [31]). Using this

technique, the ℓ0-norm term in (11) can be approximated by an asymptotically equivalent term

as ∥∥∥∥∥
K∑
k=1

πk,n

∥∥∥∥∥
0

= lim
δ→0

ln
(
1 + δ−1

∑K
k=1 πk,n

)
ln (1 + δ−1)

. (12)

Since the logarithmic function is concave and upper bounded by the first-order term of Taylor’s

expansion, we have

July 28, 2023 DRAFT

12

∥∥∥∥∥
K∑
k=1

πk,n

∥∥∥∥∥
0

≤θ(r)n

K∑
k=1

πk,n + ψ(r)
n , (13)

with

θ(r)n =
δ−1

(
1 + δ−1

∑K
k=1 π

(r)
k,n

)−1

ln (1 + δ−1)
, (14)

and

ψ(r)
n =

ln
(
1 + δ−1

∑K
k=1 π

(r)
k,n

)
+
(
1 + δ−1

∑K
k=1 π

(r)
k,n

)−1

− 1

ln (1 + δ−1)
, (15)

where π
(r)
k,n represents the value of πk,n at the previous iteration and δ is a sufficiently small

constant. The equality in (13) holds if and only if πk,n = π
(r)
k,n for all (n, k). Through the

above iterative updates of θ(r)n and ψ(r)
n , the difference between ∥πn∥0 and its first-order term of

Taylor’s expansion diminishes until the equality in (13) holds. Then substituting (13) into (11),

the inference delay function can be approximated as

dn (πn) ≈
(
a+ bθ(r)n

) K∑
k=1

πk,n + bψ(r)
n , ∀n, (16)

which is continuous and linear. Using (16), Problem (P3) can be approximated as

(P4)

max
{tn},{πk,n}

K∑
k=1

N∑
n=1

πk,n,

s.t. πk,nT
(a)
k < tn, ∀k ∈ K,∀n ∈ {1, · · · , N},

tn +
(
a+ bθ(r)n

) K∑
k=1

πk,n + bψ(r)
n ≤ T

(d)
k + (1− πk,n) Ξ,∀k ∈ K,∀n ∈ {1, · · · , N},

tn +
(
a+ bθ(r)n

) K∑
k=1

πk,n + bψ(r)
n ≤ tn+1, ∀n ∈ {1, · · · , N − 1},

K∑
k=1

N∑
n=1

πk,n
ℓk

rk

(
tn − T (a)

k

) ≤ B,

N∑
n=1

πk,n ≤ 1, ∀k ∈ K,

0 ≤ πk,n ≤ 1, ∀k ∈ K,∀n ∈ {1, · · · , N}.

July 28, 2023 DRAFT

13

This problem is convex and can be readily solved utilizing the approach of alternating optimiza-

tion. We propose to alternate solving two reduced-dimension sub-problems as described in the

following sub-sections. As a result, the complexity is dramatically reduced as opposed to directly

solving Problem (P4) and furthermore useful insight can be obtained. It is worth mentioning

that alternating optimization provides no guarantee on reaching the global optimal point since

the constraints in Problem (P4) are not box constraints (see, e.g., [32]). The complete algorithm

is presented in Algorithm 1.

B. Optimal Task-Batch Association

The first sub-problem results from fixing the starting time of batches, {tn}, in Problem (P4).

Then it reduces to a linear program. The dual problem of (P4) with respect to task-batch

association, {πk,n}, is given as

min
{βk,n},{γk,n},ρ

G (βk,n, γk,n, ρ) , (17)

where G (βk,n, γk,n, ρ) is the dual function that solves

max
{πk,n}

L (πk,n, βk,n, γk,n, ρ) , (18)

s.t.
N∑

n=1

πk,n ≤ 1, ∀k ∈ K,

0 ≤ πk,n ≤ 1, ∀k ∈ K,∀n ∈ {1, · · · , N}.

In (18), L (πk,n, βk,n, γk,n, ρ) denotes the partial Lagrangian function of Problem (P4):

L (πk,n, αk,n, βk,n, γk,n, ρ) =
K∑
k=1

N∑
n=1

πk,n

−
K∑
k=1

N∑
n=1

βk,n

[
tn +

(
a+ bθ(r)n

)(K∑
k=1

πk,n

)
+ bψ(r)

n − T
(d)
k − (1− πk,n) Ξ

]

−
N−1∑
n=1

γn

[
tn +

(
a+ bθ(r)n

)(K∑
k=1

πk,n

)
+ bψ(r)

n − tn+1

]
− ρ

 K∑
k=1

N∑
n=1

πk,n
ℓk

rk

(
tn − T (a)

k

) −B


(19)

where βk,n, γk,n, and ρ are non-negative Lagrange multipliers associated with the deadline, batch

causality, and bandwidth allocation constraints, respectively. Besides, we let γ0 = γN = 0 for

July 28, 2023 DRAFT

14

consistency. We can observe that (19) is linear with respect to πk,n. Therefore, to maximize the

Lagrange function with fixed multipliers, the optimal πk,n is either zero or one. Specifically, for

all n, if πk,n are less than or equal to zero, task k is not scheduled, i.e., πk,n = 0; otherwise,

this task is associated with the batch that has the largest coefficient:

π∗
k,n =


1, if n = arg max

n∈{1,··· ,N}
µk,n,

0, otherwise,
(20)

where µk,n = 1 −
(
a+ bθ

(r)
n

)∑K
k=1 βk,n −

(
a+ bθ

(r)
n

)
γn − Ξβk,n − ρ ℓk

rk

(
tn−T

(a)
k

) . If there are

multiple batches satisfying argmaxn∈{1,··· ,N} µk,n, we can choose any of them due to the non-

strict convexity of Problem (P3). Then substituting (20) into (18), we can obtain G (βk,n, γk,n, ρ).

Remark 1. (Favourable Task Conditions) According to (20), one can infer that for a task, as the

channel condition becomes worse, its likelihood of being scheduled reduces as uploading the

task requires more radio resources or else incurs higher latency. Moreover, early task-arrival time

increases the probability that a task is successfully executed due to the following two reasons:

1) the larger batching gain, and 2) the longer communication time that increases the probability

of successful feature uploading. Last, by combining (14) and (20), we can observe that a task

prefers a larger batch as its inference delay per task is smaller due to the batching gain.

Given G (βk,n, γk,n, ρ), we attempt to solve the dual problem (17) to get the the optimal dual

variables {βk,n}, {γk,n}, ρ. Note that G (βk,n, γk,n, ρ) is not differentiable in general due to the

discontinuous selection operations in obtaining the optimal π∗
k,n. To this end, the value of dual

variables is updated by the sub-gradient method [33]. Thus, through iteratively optimizing primal

variables and dual variables, the optimal tasks and batches association πk,n with fixed tn can be

obtained directly without rounding according to the following remark.

Remark 2. (Optimality of Task-Batch Association) We can observe that for task k, there exists

at most a single element among {πk,n} that is equal to one while others are set as zero according

to (20). This indicates that although the feasible range of πk,n is relaxed to be continuous, the

optimal solution to Problem (P4) with respect to πk,n always satisfies the binary constraint

πk,n ∈ {0, 1} for all (n, k). Hence, the relaxation of πk,n does not compromise the optimality of

the original Problem (P3).

July 28, 2023 DRAFT

15

C. Optimal Batch Starting Time

The other sub-problem results from fixing the task-batch association, {πk,n}, in Problem (P4).

As a result, the sub-problem is written as

(P5)

max
{tn}

K∑
k=1

N∑
n=1

πk,n,

s.t. πk,nT
(a)
k < tn, ∀k ∈ K,∀n ∈ {1, · · · , N},

tn + dn (πn) ≤ T
(d)
k + (1− πk,n) Ξ, ∀k ∈ K,∀n ∈ {1, · · · , N},

tn + dn (πn) ≤ tn+1, ∀n ∈ {1, · · · , N − 1},
K∑
k=1

N∑
n=1

πk,n
ℓk

rk

(
tn − T (a)

k

) ≤ B.

Theorem 2. The optimal starting time of the n-th batch, which solves Problem (P5), is given as

t∗n =

min
{
χ(d)
n , tn+1

}
− dn (πn) , if πn > 0,

t∗n+1, otherwise,
(n = N, · · · , 1) , (21)

where χ(d)
n = mink∈Kn T

(d)
k denotes the minimum deadline among all the tasks processed in the

n-th batch, i.e., Kn = {k|πk,n = 1} (∀n ∈ {1, · · · , N}), and t∗N+1 = Ξ.

The proof is provided in Appendix B. ■

From Theorem 2, we can observe that with fixed πk,n, tn is only determined by the deadlines

of tasks in the n-th batch and tn+1. The starting time of a batch, tn, is set as the latest starting

time that can ensure the latency and batch causality constraint such that the scheduled tasks

occupy the least radio resources.

D. Complexity Analysis

The complexity of Algorithm 1 is largely attributed to solving the two subproblems solved in

the preceding subsections. The complexity in optimizing the task-batch association is O (K2/
√
ϵ)

based on (20), where ϵ represents the predefined accuracy of the dual method [34]. The com-

plexity of calculating the optimal batch starting instants is O (K) according to (21). The overall

complexity is given by O (L (K2/
√
ϵ+K)), where L denotes the average number of iterations

in Algorithm 1.

July 28, 2023 DRAFT

16

Algorithm 1: JBAS Algorithm

1 Initialize tn =
maxk∈K T

(d)
k −mink∈K T

(a)
k

N−1 × (n− 1) +mink∈K T
(a)
k (∀n ∈ {1, · · · , N}), tN+1 = Ξ, π(r)

k,n = 0
(∀k ∈ K,∀n ∈ {1, · · · , N}) and required precision.

2 repeat
3 Initialize {βk,n}, {γn}, ρ.
4 repeat
5 Obtain the association between tasks and batches {πk,n} according to (20).
6 Update dual vairables {βk,n}, {γn}, ρ using the sub-gradient method.
7 until the objective of problem (9) converges;
8 for n = N, · · · , 1 do
9 Obtain the startup time of batches {tn} according to Theorem 2.

10 end
11 Update θ(r)n and ψ(r)

n according to (14) and (15), respectively.
12 until the objective of Problem (P3) converges;
13 Output the optimal {πk,n} and {tn}.

Fig. 2. Illustration of spectrum-holes.

Last, the complexity of Algorithm 1 is much lower than the conventional interior point method

for directly solving Problem (P4) whose complexity is O
(
L (K2 +K)

3.5
)

[34].

V. EXPLOITING SPECTRUM HOLES

In Section II, individual devices are assigned dedicated frequency bands for identical upload-

ing durations to allow tractable design. Nevertheless, due to heterogeneous task arrivals and

communication latency, there exist spectrum holes that can be exploited to further increase the

throughput. As defined, a spectrum hole refers to an unused frequency-time resource block. In

this section, an algorithm for spectrum hole allocation algorithm is designed by formulating and

solving a corresponding throughput maximization problem.

July 28, 2023 DRAFT

17

A. Spectrum-Hole Allocation Problem

As shown in Fig. 2, upon arriving time instant tn for all n, the tasks inferred in the n-th

batch finish their transmission, and thus spectrum holes (i.e., the bandwidth left by scheduled

tasks) can be allocated to the unscheduled tasks to improve the throughput or the scheduled

tasks to reduce the latency. It should be noted that fixing {tn} as computed using Algorithm 1,

makes it difficult to insert additional tasks for inference due to the tight deadlines according to

(21). This means that even those unscheduled tasks can be uploaded to the server exploiting

spectrum holes, they cannot be executed in the original batches without interrupting originally

tasks. The challenge faced in the current problem lies in adjusting {tn} to accommodate new

tasks without causing the failure of any existing task to meet its deadline. Denote F as the set of

unscheduled tasks based on Algorithm 1. For each tn, let Sn denote the set of tasks associated

with the n-th batch. Hence, at each arrival time, say tn, the total bandwidth of spectrum holes,

denoted by B̄n =
∑n

i=1

∑
k∈Si

Bk, can be allocated to unscheduled tasks in F so as to improve

the throughput. Moreover, we have to adjust starting time of the (n+ 1)-th batch such that

new scheduled tasks can be inserted into current batch without causing any original scheduled

tasks to miss its deadline. Mathematically, at each checkpoint tn with n ∈ {1, · · · , N − 1},

we let ℓ̃k represent the data size to be transmitted for task k in the duration from tn to tn+1.

Specifically, for tasks in Sn+1, ℓ̃k is given by Bkrk

(
t̄n+1 −max

{
T

(a)
k , t̄n

})
, and for tasks in

F , ℓ̃k is equivalent to ℓk. Optimization variables t̄n+1 and K̄n+1 represent the adjusted startup

instant of the (n+ 1)-th batch and new-scheduled tasks in the (n + 1)-th batch, respectively.

Besides, we let t̄1 = t1. Then, we solve the following optimization problem:

(P6)

max
t̄n+1,K̄n+1

|K̄n+1|,

s.t. max

{
max

k∈K̄n+1∪Sn+1

T
(a)
k , t̄n + d(|Sn|)

}
< t̄n+1,

t̄n+1 + d
(
|K̄n+1 ∪ Sn+1|

)
≤ min

{
min

k∈K̄n+1∪Sn+1

T
(d)
k , tn+2

}
,

∑
k∈K̄n+1∪Sn+1

ℓ̃k

rk

(
t̄n+1 −max

{
T

(a)
k , t̄n

}) ≤ n+1∑
i=1

∑
k∈Si

Bk,

K̄n+1 ⊆ F .

In (P6), the first and second constraints specify the causality of the new-scheduled tasks K̄n+1 and

previously determined to be scheduled tasks Sn+1 for the (n+ 1)-th batch. The third constraint

July 28, 2023 DRAFT

18

implies that the allocated bandwidth to tasks in K̄n+1 and Sn+1 should not exceed the sum of spare

bandwidth and previously determined bandwidth for tasks in Sn+1, which ensures that bandwidth

reallocation does not influence the bandwidth allocated to other tasks being transmitted. To this

end, the spectrum-hole allocation problem is formulated as a sequence of subproblems, each

corresponding to a one-batch optimization problem of tasks scheduling and bandwidth allocation

for the (n+ 1)-th batch (∀n ∈ {1, · · · , N − 1}) at checkpoint tn. By solving Problem (P6), we

attempt to increase the number of scheduled tasks and decrease the total delay simultaneously.

B. Solution Approach

Problem (P6) is difficult to solve due to the combinatorial nature of this problem. In the

following, we show that the optimal solution of (P6) can be obtained by solving a series of

feasibility problems each corresponding to a fixed number of new-scheduled tasks |K̄n+1| =

Π ∈ {0, 1, · · · , |F|}:

(P7)

find t̄n+1, K̄n+1,

s.t. max

{
max

k∈K̄n+1∪Sn+1

T
(a)
k , t̄n + d(|Sn|)

}
< t̄n+1,

t̄n+1 + d (Π + |Sn+1|) ≤ min

{
min

k∈K̄n+1∪Sn+1

T
(d)
k , tn+2

}
,

∑
k∈K̄n+1∪Sn+1

ℓ̃k

rk

(
t̄n+1 −max

{
T

(a)
k , t̄n

}) ≤ n+1∑
i=1

∑
k∈Si

Bk,

K̄n+1 ⊆ F , |K̄n+1| = Π.

Proposition 1. Denote the optimal solution of Problem (P6) by K̄∗
n+1, t̄∗n+1 and let |K̄∗

n+1| = Π∗.

Problem (P7) is feasible if and only if Π < Π∗.

The proof is provided in Appendix C. □

Proposition 1 implies that we can adopt the bisection method to solve Problem (P6) as

described below. Denote the upper bound and lower bound of Π by Πup and Πlow, respectively.

Let Π = ⌊(Πup +Πlow) /2⌋, where ⌊·⌋ denotes the round down operation, and solve Problem

(P7). If (P7) is feasible, which means that the optimal Π∗ is no smaller than Π, we set Πlow = Π.

Otherwise, the optimal Π∗ is no larger than Π, thus setting Πup = Π. Repeating these procedures

until Πup − Πlow ≤ 1. Then if Problem (P7) is feasible when Π = Πup, the optimal Π∗ = Πup;

otherwise, we have Π∗ = Πlow.

July 28, 2023 DRAFT

19

However, it remains to solve Problem (P7) with given Π. Note that with given mink∈K̄n+1
T

(d)
k ,

the optimal (n+ 1)-th batch starting time t̄∗n+1 should be given as min
{
mink∈K̄n+1∪Sn+1

T
(d)
k , tn+2

}
−d (Π + |Sn+1|) since the required bandwidth for tasks decreases with t̄n+1. To this end, a

tentative policy is proposed to solve Problem (P7). The principles behind this policy is that

mink∈K̄n+1
T

(d)
k only takes values from a finite discrete set

{
T

(d)
k

∣∣∣k ∈ F} such that we can

judge the feasibility of each value of mink∈K̄n+1
T

(d)
k sequentially. Specifically, with given Π,

define a set G containing all the values of unscheduled tasks’ deadlines, i.e., G =
{
T

(d)
k

∣∣∣k ∈ F}.

At each time, we check whether the unscheduled task with the earliest deadline can be added

in K̄n+1. Set T (d) as the latest completion instant for the (n+ 1)-th batch, that is T (d) =

min
{
min {i|i ∈ G} ,mink∈Sn+1 T

(d)
k , tn+2

}
. Thus, the optimal batch starting instant is given as

t̄∗n+1 = T (d) − d (Π + |Sn+1|). Let S̃ =
{
k
∣∣∣T (a)

k < t̄∗n+1, T
(d)
k ≥ T (d), k ∈ F

}
denote the set of

tasks that not only satisfy the uploading causality constraint but also their deadlines is no earlier

than T (d). This indicates that the tasks in S̃ can meet their deadlines requirements even with

an earlier deadline. Next, we judge whether there exist Π new-scheduled tasks in S̃ satisfying

bandwidth constraint. Sort the tasks belonging in S̃ in ascending order according to the value

of minimum bandwidth required, i.e., ℓ̃k

rk

(
t̄n+1−max

{
T

(a)
k ,t̄n

}) and assemble the first Π tasks in

set K̄n+1. If the total bandwidth of tasks in K̄n+1 ∪ Sn+1 is no larger than
∑n+1

i=1

∑
k∈Si

Bk

and max
{
maxk∈K̄n+1∪Sn+1

T
(a)
k , t̄n + d(|Sn|)

}
is smaller than t̄n+1, i.e., bandwidth and task-

causality constraints in Problem (P7) are satisfied, Problem (P7) under current T (d) is feasible,

thus making Problem (P7) with current Π feasible. Hence, we set Πlow = Π. Otherwise, it

is infeasible with current T (d) indicating that task k = argmin {i ∈ G} cannot be sched-

uled in current batch. In this case, we should delete the minimum value in G. Then update

T (d) = min
{
min {i|i ∈ G} ,mink∈Sn+1 T

(d)
k , tn+2

}
and repeat the above steps until the number

of elements in S̃ is less than Π. This implies that problem with |K̄n+1| = Π is infeasible and we

set Πup = Π. At each checkpoint tn for n = 1, · · · , N − 1, we solve Problem (P7) and update

F as F \ K̄n+1, Sn+1 as Sn+1 ∪ K̄n+1 until F is empty.

The detailed steps for spectrum-hole allocation scheme is summarized in Algorithm 2 whose

computational complexity lies in solving Problem (P7) with given Π. Specifically, with given

Π, the complexity for (P7) is O (K2). Since we have to solve (P7) with each Π and n, the

total computational complexity for the proposed spectrum-hole allocation algorithm is estimated

as O ((N − 1)K2 log2(K)). It should be noted that Algorithm 2 can obtain a globally optimal

July 28, 2023 DRAFT

20

Algorithm 2: Spectrum-Hole Allocation Algorithm
1 Initialize {T (a)

k }, {T
(d)
k }, {Ak}, {Bk}, F , t̄1 = t1, and {Sn}.

2 for n = 1, · · · , N − 1 do
3 Set Πup = |F|, and Πlow = 0.
4 repeat
5 Set Π = ⌊(Πup +Πlow) /2⌋.
6 Set G =

{
T

(d)
k

∣∣∣k ∈ F}.
7 repeat
8 Set T (d) = min{min {i|i ∈ G} ,mink∈Sn+1

T
(d)
k , tn+2}.

9 Set t̄n+1 = T (d) − d (Π + |Sn+1|).
10 Set S̃ =

{
k
∣∣∣T (a)

k < t̄n+1, T
(d)
k ≥ T (d), k ∈ F

}
11 Sort the elements in S̃ in an ascending order according to ℓ̃k

rk

(
t̄n+1−max{T (a)

k ,t̄n}
) .

12 Assemble the first Π elements of S̃ in set K̄n+1.
13 if the bandwidth and task-causality constraints are satisfied then
14 Πlow ← Π.
15 Break.
16 else
17 G ← G \min{i|i ∈ G}
18 end
19 until |S̃| < Π;
20 if |S̃| < Π then
21 Πup ← Π.
22 end
23 until Πup −Πlow ≤ 1;
24 if Πup is feasible then
25 Π∗ = Πup
26 else
27 Π∗ = Πlow
28 end
29 Update F ← F \ K̄n+1, Sn+1 ← Sn+1 ∪ K̄n+1.
30 end

solution for Problem (P6) with low complexity.

VI. EXTENSIONS AND DISCUSSION

A. Online Task Admission

During the process of task uploading and inference, new tasks may arrive and submit service

requests [35]. In this scenario, the proposed Algorithm 2 can be modified to support online

admission of new tasks to leverage spectrum holes. Specifically, the proposed Algorithm 1 is

executed as batching initialization for existing tasks. Then new tasks arriving during the inference

process are first stored locally at devices. Similar to Algorithm 2, at each checkpoint tn, we update

the set of active tasks, F , to include selected new tasks that are deemed feasible for successful

July 28, 2023 DRAFT

21

execution using spare resources. To this end, Algorithm 2 can be executed again to update the

resource allocation to accommodate the new tasks.

B. Frequency-Selective Channels

The current assumption of frequency non-selective can be relaxed as follows. A frequency

selective channel can be partitioned using orthogonal frequency division multiplexing (OFDM)

into sub-channels with heterogeneous gains. Following [36], [37], new indicator variables can

be introduced to denote the association between sub-channels and tasks. Then the throughput

maximization problem can be formulated as a MINLP problem containing two kinds of binary

optimization variables for sub-channel allocation and task-batch association, respectively. Despite

being more complex, the problem can be solved efficiently using conventional MINLP methods

such as convex relaxation and branch-and-bound, or latest approach using machine learning (see

e.g., [38]).

VII. SIMULATION RESULTS

A. Simulation Settings

The default settings are as follows. There are K = 100 devices, with task arrivals uniformly

and independently generated in the time interval of [0, 1] s. The size of feature vectors is set as

10 KBytes. The delay requirements of tasks follow the uniform distribution in [0.05, 2] s. The

inference latency profile with respect to the batch size as reported in [39] is adopted, which is

generated from a ResNet-50 model implemented on JETSON TX1 and the ImageNet dataset. The

channel gains between devices and server follow independent Rayleigh fading with the average

power loss being 10−3. The transmit signal-to-noise ratio (SNR) of devices is set as 20 dB. The

constant δ in ℓ0-norm approximation (13) is 10−15. The following schemes are considered in

performance comparison:

• Proposed Algorithm: See Algorithm 1.

• Equal Bandwidth Allocation Scheme: The total bandwidth is evenly allocated to devices

while task scheduling follows Algorithm 1.

• Spectrum-Hole Allocation Scheme: Algorithm 1 enhanced with spectrum-hole allocation

using Algorithm 2.

• Greedy Batching Scheme: Upon finishing executing the previous batching, the server greed-

ily assembles all tasks that arrived during the previous batch into a new batch and makes

July 28, 2023 DRAFT

22

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Proposed Algorithm

Spectrum-Hole Allocation

Equal Bandwidth Allocation

Greedy Batching

Single Batch

Fig. 3. Task completion rate versus number of tasks.

inferences on them [40]. When the inference is finished, those tasks that do not satisfy

deadline requirements are discarded.

• Single Batch Scheme: The optimal single batch scheme in [18] is modified for asynchronous

task arrivals. In particular, the optimal batch starting instant is determined using an algorithm

similar to Algorithm 2.

The performance metric of task completion rate is defined as the ratio between completed tasks

and all tasks. Note that the metric measures system throughput.

B. Effect of Task Number

Fig. 3 compares task completion rates between different schemes for a varying number of

tasks. The proposed JBAS scheme and its enhanced version with spectrum-hole exploitation

achieve the highest rates. This shows the advantages of jointly optimizing batching, scheduling,

and bandwidth allocation so as to accommodate the heterogeneity of task arrivals and deadlines.

In contrast, the three benchmarking schemes are less effective in accounting for the different

delay requirements of tasks and balancing the tradeoff between batch size and batch startup

instants. As a result, they suffer loss on system throughput that is larger as the number of

tasks grows. On the other hand, we can observe that the Spectrum-Hole Allocation Scheme

July 28, 2023 DRAFT

23

200 400 600 800 1000 1200 1400 1600 1800 2000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed Algorithm

Spectrum-Hole Allocation

Equal Bandwidth Allocation

Greedy Batching

Single Batch

Fig. 4. Task completion rate versus the minimum delay requirement.

can enhance the throughput of the Proposed Scheme by an average of 2.8%. Furthermore, as

observed from Fig. 3, the task completion rates decrease as the number of tasks grows. This

indicates that the limited communication and computation source leads to an increasing slower

in the number of completed tasks as the total number grows.

C. Effect of Delay Requirement

To investigate the effect of delay requirements on system throughput, we vary the minimum

delay requirement from 50 to 1450 ms while the maximum delay requirement is fixed at 2000

ms. The curves of task completion rate versus the minimum delay requirements are depicted

in Fig. 4. One can observe that the task completion rates of all schemes gradually increase as

the minimum delay requirement relaxes. The reason is that less bandwidth is required for each

task for uploading and the server has more computation time. From Fig. 4, we can observe that

the throughput improvement of the Spectrum-Hole Allocation Scheme on top of the Proposed

Scheme reduces from 1.7% to zero as the minimum delay increases from 200 to 2000 ms.

This can be explained by that as the minimum delay increases, the radio resource constraints

are relaxed and the communication bottleneck is dominated by the computation counterpart. In

contrast, the throughput improvement of Spectrum-Hole Allocation Scheme is more significant

July 28, 2023 DRAFT

24

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed Algorithm

Spectrum-Hole Allocation

Equal Bandwidth Allocation

Greedy Batching

Single Batch

Fig. 5. Task completion rate versus transmit SNR.

in spectrum constrained scenarios, (i.e., a large number of tasks and tight delay requirements) as

shown in Fig. 3 and Fig. 4. Furthermore, as the minimum delay increases, the throughput of the

One Batch Scheme improves rapidly as the loss on synchronizing tasks’ starting time reduces.

D. Effect of Transmit SNR

In Fig. 5, the curves of task completion rate performance versus transmit SNR are plotted. As

the transmit SNR increases, the task completion rate first improves rapidly and then saturates. The

early rapid improvement reflects the overcoming of the communication bottleneck. As the SNR

is further increased, the bandwidth constraint becomes inactive, leading to throughput saturation.

In this operation regime, the computation bottleneck dominates and limits system throughput.

One can observe that with sufficiently large SNR (e.g., 50 dB), the Proposed, Spectrum-Hole

Allocation, and Equal Bandwidth Allocation Schemes can complete almost all tasks, while the

Greedy Batching Scheme only reaches 92% task completion rate, which verifies the need of

batching optimization. On the other hand, the Single Batch Scheme performs worst at a large

SNR, i.e., less than 48% task completion rate, indicating the importance of multiple batches for

asynchronous tasks arrivals.

July 28, 2023 DRAFT

25

0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Proposed Algorithm

Spectrum-Hole Allocation

Equal Bandwidth Allocation

Fig. 6. Task completion rate versus number of batches with K = 60.

E. Effect of Batch Number

Fig. 6 shows the curves of task completion rate versus number of batches from solving Problem

(P3). As can be observed, as the number of batches grows, the system throughput increases and

then saturates as the effective number of batches, namely the non-empty ones, converges to a

fixed value. Besides, the proposed Scheme and Spectrum-Hole Allocation Scheme achieve the

throughput improvement of 39.34% and 47.50%, respectively, compared with Equal Bandwidth

Allocation Scheme when K = 60.

F. Effect of Bandwidth

In Fig. 7, the curves of task completion rate versus total bandwidths are plotted. As can be seen,

as the bandwidth increases, the throughput of all schemes increases due to the communication

resources getting more abundant. The Proposed Scheme achieves 29.80%, 66.48%, and 35.89%

throughput gains compared with Equal Bandwidth Allocation Scheme, Greedy Batching Scheme,

and One Batch Scheme, respectively. Moreover, the Spectrum-Hole Allocation Scheme can

further improve the throughput by 4.61%.

July 28, 2023 DRAFT

26

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed Algorithm

Spectrum-Hole Allocation

Equal Bandwidth Allocation

Greedy Batching

Single Batch

Fig. 7. Task completion rate versus total bandwidth.

VIII. CONCLUSION

In this paper, we have presented a JBAS framework for high-throughput multiuser edge AI in

the practical scenarios with heterogeneous task arrivals and deadlines. The number of batches,

batch startup instants, task-batch association, as well as bandwidth allocation have been jointly

optimized to maximize the system throughput. Moreover, spectrum holes have been exploited

to further increase the throughput. We find that judiciously assembling tasks into multiple

batches is important to ensure high throughput in practice. However, the communication model

considered in this paper is simple for the sake of tractability. For future works, it is promising

to integrate batching with advanced transmission techniques such as non-orthogonal multiple

access (NOMA) and multiple-input multiple-output (MIMO). In another interesting direction,

multiple-cell edge AI with batching couples communications in different cells and computation

at different servers and hence is more challenging to design.

APPENDIX

A. Proof of Theorem 1

Denote the optimal solution of Problem (P2) by
(
{t∗n} ,

{
π∗
k,n

}
, N∗). We first prove that for

the optimal solution of Problem (P2), the optimal value of (P3) is no less than that of (P2).

July 28, 2023 DRAFT

27

Consider the following two cases:

Case 1: N∗ = K. If the optimal N∗ = K,
(
{t∗n} ,

{
π∗
k,n

})
is feasible to Problem (P3) since

that (P3) is the case when N = K.

Case 2: N∗ < K. In this case, introducing new variables t∗n = Ξ (∀n ∈ {N∗ + 1, · · · , K})

and π∗
k,n = 0 (∀k ∈ K, ∀n ∈ {N∗ + 1, · · · , K}). Then combing the optimal solution of (P2) and

the new introduced variables, the constructed variables
(
{t∗n}∀n∈K ,

{
π∗
k,n

}
∀k∈K,∀k∈K

)
satisfy all

the constraints in Problem (P3). Moreover, the optimal value of (P2) is equal to the value of

(P3). Therefore, the optimal value of (P3) is no less than that of (P2).

Next, since the optimal solution of (P3) always satisfies the constraints of (P2). Hence, the

feasibility of (P3) is included in that of (P2). In other words, the optimal solution of (P3) is

feasible to (P2). Thus, the optimal value of (P2) is no less than that of (P3).

Combining that the optimal value of (P2) is no less than and also no larger than that of (P3),

we can conclude that Problem (P3) is equivalent to Problem (P2).

B. Proof of Theorem 2

Startup time tn is lower bounded by the task-arrival time instants of its associated tasks and

upper bounded by deadlines and start time of the next batch tn+1. Since the allocated bandwidth

Bk decreases with tn, we should set tn as large as possible in order to satisfy the bandwidth

constraint. Through solving tn sequentially from n = N to n = 1, we can obtain the optimal

solution of tn. Specifically, for the N -th batch, we consider the following two cases: 1) If the

N -th batch is non-empty, i.e.,
∑K

k=1 πk,N > 0, the time instant that the N -th batch finishes its

inference tN + dN (πN) is upper bounded by the deadlines of its associated tasks. Hence, we

should let tN = mink∈KN
T

(d)
k − dN (πN). 2) If the N -th batch is empty, i.e.,

∑K
k=1 πk,N = 0,

we should set tN as large as possible such that it will not affect the value of tN−1. Without loss

of generality, we set tN = Ξ. Subsequently, consider the (N − 1)-th batch. Similarly, two cases

are considered. If it is non-empty, time instant tN−1 + dN−1 (πN−1) is restricted not only by the

deadlines of its associated tasks but also by the startup time of the N -th batch. Therefore, tN−1

is set to min
{
mink∈KN−1

T
(d)
k , tN

}
− dN−1 (πN−1). If the (N − 1)-th batch is empty, in order to

mitigate the influence on the startup time of the (N − 2)-th batch, we set tN−1 = tN . Following

this procedure until the startup time of the first batch t1 is obtained, completing the proof.

July 28, 2023 DRAFT

28

C. Proof of Proposition 1

First, when Π < Π∗, we have d(Π+|Sn+1|) ≤ d(Π∗+|Sn+1) since the inference delay function

is non-decreasing. Therefore, let t̄n+1 = t̄∗n+1 and K̄n+1 be an arbitrary subset of K̄∗
n+1 with the

size of Π. We can deduce t̄n+1 and K̄n+1 satisfy all the constraints of (P7). Thus, Problem (P7)

is feasible.

Subsequently, when Π > Π∗, Problem (P7) is always feasible, otherwise, the optimal |K̄∗
n+1|

of (P6) is larger than Π∗, which contradicts that |K̄∗
n+1| = Π∗. That completes the proof.

REFERENCES

[1] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and

Applications,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 5–36, Jan. 2022.

[2] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an Intelligent Edge: Wireless Communication Meets

Machine Learning,” IEEE Commun. Magazine, vol. 58, no. 1, pp. 19–25, Jan. 2020.

[3] J. Backus, “Can programming be liberated from the von neumann style? a functional style and its algebra of programs,”

Communications of the ACM, vol. 21, no. 8, pp. 613–641, 1978.

[4] X. Zou, S. Xu, X. Chen, L. Yan, and Y. Han, “Breaking the von Neumann bottleneck: architecture-level processing-in-

memory technology,” Sci. China Inf. Sci., vol. 64, no. 6, p. 160404, Apr. 2021.

[5] J. Shao and J. Zhang, “Communication-Computation Trade-off in Resource-Constrained Edge Inference,” IEEE Commun.

Mag., vol. 58, no. 12, pp. 20–26, Dec. 2020.

[6] X. Tang, X. Chen, L. Zeng, S. Yu, and L. Chen, “Joint Multiuser DNN Partitioning and Computational Resource Allocation

for Collaborative Edge Intelligence,” IEEE Internet Things J., vol. 8, no. 12, pp. 9511–9522, June 2021.

[7] W. Shi, Y. Hou, S. Zhou, Z. Niu, Y. Zhang, and L. Geng, “Improving device-edge cooperative inference of deep learning

via 2-step pruning,” in Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Paris, France, Apr 29–May

2, 2019.

[8] M. Jankowski, D. Gündüz, and K. Mikolajczyk, “Joint device-edge inference over wireless links with pruning,” in Proc.

IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Atlanta, GA, USA, May 26–29, 2020.

[9] Q. Lan, Q. Zeng, P. Popovski, D. Gündüz, and K. Huang, “Progressive Feature Transmission for Split Classification at

the Wireless Edge,” IEEE Trans. Wirel. Commun., vol. 22, no. 6, pp. 3837–3852, June 2023.

[10] J. Shao, Y. Mao, and J. Zhang, “Task-Oriented Communication for Multidevice Cooperative Edge Inference,” IEEE Trans.

Wirel. Commun., vol. 22, no. 1, pp. 73–87, Jan. 2023.

[11] ——, “Learning Task-Oriented Communication for Edge Inference: An Information Bottleneck Approach,” IEEE J. Selected

Areas Commun., vol. 40, no. 1, pp. 197–211, June 2022.

[12] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge

Computing,” IEEE Trans. Wirel. Commun., vol. 19, no. 1, pp. 447–457, Jan. 2020.

[13] W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Multiuser Co-Inference With Batch Processing Capable Edge Server,”

IEEE Trans. Wirel. Commun., vol. 22, no. 1, pp. 286–300, Jan. 2023.

[14] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “CoEdge: Cooperative DNN Inference With Adaptive Workload

Partitioning Over Heterogeneous Edge Devices,” IEEE/ACM Trans. Netw., vol. 29, no. 2, pp. 595–608, Apr. 2021.

July 28, 2023 DRAFT

29

[15] B. Lu, J. Yang, J. Xu, and S. Ren, “Improving QoE of Deep Neural Network Inference on Edge Devices: A Bandit

Approach,” IEEE Internet Things J., vol. 9, no. 21, pp. 21 409–21 420, Nov. 2022.

[16] D. Zhang, N. Vance, Y. Zhang, M. T. Rashid, and D. Wang, “EdgeBatch: Towards AI-Empowered Optimal Task Batching

in Intelligent Edge Systems,” in Proc. IEEE Real-Time Systems Symposium (RTSS), Hong Kong, China, Dec. 2019, pp.

366–379.

[17] Y. Xu, J. Sun, S. Zhou, and Z. Niu, “SMDP-Based Dynamic Batching for Efficient Inference on GPU-Based Platforms,”

Jan. 2023. [Online]. Available: https://arxiv.org/abs/2301.12865

[18] Z. Liu, Q. Lan, and K. Huang, “Resource Allocation for Multiuser Edge Inference With Batching and Early Exiting,”

IEEE J. Selected Areas Commun., vol. 41, no. 4, pp. 1186–1200, Apr. 2023.

[19] F. Qi, L. Zhuo, and C. Xin, “Deep Reinforcement Learning Based Task Scheduling in Edge Computing Networks,” in

Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), Chongqing, China, Nov. 2020, pp. 835–840.

[20] C. You, Y. Zeng, R. Zhang, and K. Huang, “Asynchronous Mobile-Edge Computation Offloading: Energy-Efficient Resource

Management,” IEEE Trans. Wirel. Commun., vol. 17, no. 11, pp. 7590–7605, Nov. 2018.

[21] S. Eom, H. Lee, J. Park, and I. Lee, “Asynchronous Protocol Designs for Energy Efficient Mobile Edge Computing

Systems,” IEEE Trans. Veh. Techn., vol. 70, no. 1, pp. 1013–1018, Jan. 2021.

[22] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Architecture and Computation Offloading,” IEEE Commun.

Surv. & Tutor., vol. 19, no. 3, pp. 1628–1656, Thirdquarter 2017.

[23] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic Computation Offloading for Mobile-Edge Computing With Energy

Harvesting Devices,” IEEE J. Selected Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[24] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan, and Y. Zhang, “Energy-Efficient Offloading

for Mobile Edge Computing in 5G Heterogeneous Networks,” IEEE Access, vol. 4, pp. 5896–5907, Aug. 2016.

[25] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang, “Large-scale image classification: Fast feature

extraction and SVM training,” in CVPR 2011, Colorado Springs, CO, USA, June 2011, pp. 1689–1696.

[26] J. Li, W. Liang, Y. Li, Z. Xu, X. Jia, and S. Guo, “Throughput Maximization of Delay-Aware DNN Inference in Edge

Computing by Exploring DNN Model Partitioning and Inference Parallelism,” IEEE Trans. Mobile Comput., vol. 22, no. 5,

pp. 3017–3030, May 2023.

[27] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Weinberger, “Multi-scale dense networks for resource efficient

image classification,” in Proc. Int. Conf. Learn. Represent. (ICLR), Vancouver, BC, Canada, Apr 30–May 3, 2018.

[28] B. Korte and R. Schrader, “On the existence of fast approximation schemes,” in Nonlinear Programming. Academic

Press, 1981, vol. 4, pp. 415–437.

[29] I. A. Elgendy, W.-Z. Zhang, Y. Zeng, H. He, Y.-C. Tian, and Y. Yang, “Efficient and Secure Multi-User Multi-Task

Computation Offloading for Mobile-Edge Computing in Mobile IoT Networks,” IEEE Trans. Netw. Serv. Manag., vol. 17,

no. 4, pp. 2410–2422, Dec. 2020.

[30] B. Dai and W. Yu, “Energy Efficiency of Downlink Transmission Strategies for Cloud Radio Access Networks,” IEEE J.

Selected Areas Commun., vol. 34, no. 4, pp. 1037–1050, Apr. 2016.

[31] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A Survey of Sparse Representation: Algorithms and Applications,” IEEE

Access, vol. 3, pp. 490–530, May 2015.

[32] L. Grippo and M. Sciandrone, “On the convergence of the block nonlinear Gauss–Seidel method under convex constraints,”

Operations research letters, vol. 26, no. 3, pp. 127–136, Apr. 2000.

[33] D. P. Bertsekas, Convex optimization Theory. Athena Scientific Belmont, 2009.

[34] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

July 28, 2023 DRAFT

https://arxiv.org/abs/2301.12865

30

[35] Z. Chen, S. Zhang, Z. Ma, S. Zhang, Z. Qian, M. Xiao, J. Wu, and S. Lu, “An Online Approach for DNN Model Caching

and Processor Allocation in Edge Computing,” in Proc. IEEE/ACM Intern. Symp. Quality Serv. (IWQoS), Oslo, Norway,

June 2022, pp. 1–10.

[36] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-Efficient Resource Allocation for Mobile-Edge Computation

Offloading,” IEEE Trans. Wirel. Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[37] C. Xiong, G. Y. Li, S. Zhang, Y. Chen, and S. Xu, “Energy- and Spectral-Efficiency Tradeoff in Downlink OFDMA

Networks,” IEEE Trans. Wirel. Commun., vol. 10, no. 11, pp. 3874–3886, Nov. 2011.

[38] S. Bi, L. Huang, H. Wang, and Y.-J. A. Zhang, “Lyapunov-Guided Deep Reinforcement Learning for Stable Online

Computation Offloading in Mobile-Edge Computing Networks,” IEEE Trans. Wirel. Commun., vol. 20, no. 11, pp. 7519–

7537, Nov. 2021.

[39] NVIDIA, “NVIDIA Jetson TX2 Delivers Twice the Intelligence to the Edge,” [Online] https://devblogs.nvidia.com/

jetson-tx2-delivers-twiceintelligence-edge/, 2019.

[40] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “BATCH: Machine Learning Inference Serving on Serverless Platforms with

Adaptive Batching,” in Proc. Intern. Conf. High Perform. Comput., Netw., Storage Anal., Atlanta, GA, USA, Nov. 2020,

pp. 1–15.

July 28, 2023 DRAFT

https://devblogs. nvidia. com/jetson-tx2-delivers-twiceintelligence-edge/
https://devblogs. nvidia. com/jetson-tx2-delivers-twiceintelligence-edge/

	Introduction
	System Model
	Task and Batching Models
	Uplink Communication Model
	Inference Model

	Problem Formulation
	Optimal JBAS Algorithm
	A Tractable Solution Approach
	An Equivalent Problem
	Integer Relaxation and Alternating Optimization

	Optimal Task-Batch Association
	Optimal Batch Starting Time
	Complexity Analysis

	Exploiting Spectrum Holes
	Spectrum-Hole Allocation Problem
	Solution Approach

	Extensions and Discussion
	Online Task Admission
	Frequency-Selective Channels

	Simulation Results
	Simulation Settings
	Effect of Task Number
	Effect of Delay Requirement
	Effect of Transmit SNR
	Effect of Batch Number
	Effect of Bandwidth

	Conclusion
	Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 1

	References

