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Abstract

Edge artificial intelligence (Al) in the sixth-generation networks will provide inference services at
the network edge to enrich the capabilities of mobile devices and lengthen their battery lives. As
a well-known technique in computing, batching can boost the computation throughput at an edge
server by assembling multiple tasks into a batch that is fed into a pre-trained prediction model. This
reduces the memory-access frequency and hence accelerates the execution of each task. In a multiuser
edge-Al system, the end-to-end latency depends not only on computation but also on communication,
i.e., multiuser task uploading over a multi-access channel. In this paper, we study joint batching and
(task) scheduling to maximise the throughput (i.e., the number of completed tasks) under the practical
assumptions of heterogeneous task arrivals and deadlines. The design aims to optimise the number of
batches, their starting time instants, and the task-batch association that determines batch sizes. The
joint optimisation problem is complex due to multiple coupled variables as mentioned and numerous
constraints including heterogeneous tasks arrivals and deadlines, the causality requirements on multi-task
execution, and limited radio resources. Underpinning the problem is a basic tradeoff between the size
of batch and waiting time for tasks in the batch to be uploaded and executed. Our approach of solving
the formulated mixed-integer problem is to transform it into a convex problem via integer relaxation
method and /p-norm approximation. This results in an efficient alternating optimization algorithm for

finding a close-to-optimal solution. Specifically, it iterates between solving two sub-problems, optimal

Y. Cang is with Department of Electrical and Electronic Engineering at The University of Hong Kong, Hong Kong,
and also with National Mobile Communications Research Laboratory, Southeast University, Nanjing 211111, China (email:
yhcang @hku.hk).

M. Chen is with National Mobile Communications Research Laboratory, Southeast University, Nanjing 211111, China, and
also with Purple Mountain Laboratories, Nanjing 211100, China (email: chenming @seu.edu.cn).

K. Huang is with Department of Electrical and Electronic Engineering at The University of Hong Kong, Hong Kong (email:
huangkb@eee.hku.hk). Corresponding author: K. Huang.

July 28, 2023 DRAFT



task-batch association and optimal batch starting time. The former is a linear program whose solution
can be found using a derived scheme of greedy task selection while that of the latter is derived in
closed form. In addition, we also design the optimal algorithm from leveraging spectrum holes, which
are caused by fixed bandwidth allocation to devices and their asynchronized multi-batch task execution,
to admit unscheduled tasks so as to further enhance throughput. Simulation results demonstrate that the
proposed framework of joint batching and resource allocation can substantially enhance the throughput
of multiuser edge-Al as opposed to a number of simpler benchmarking schemes, e.g., equal-bandwidth

allocation, greedy batching and single-batch execution.

Index Terms

Edge Al, edge inference, batching, scheduling, radio resource allocation.

I. INTRODUCTION

Edge Artificial Intelligence (Al), a key feature of the sixth-generation (6G) mobile networks,
will feature ubiquitous deployment of Al algorithms at the network edge to provide inference
services to users [1], [2]. Then Internet-of-Things (IoT) devices can rely on the services to
acquire intelligent capabilities ranging from visual perception to natural language processing.
Realizing efficient edge Al in practice has to overcome both the communication and computing
bottlenecks. The former results from many devices uploading high-dimensional data features to
an edge server over a resource constrained multi-access channel. The second refers to the well
known von Neumann bottleneck where frequent data shuttling between memory and processors
(e.g., loading of AI model parameters) can incur as much as 90% of total computation latency
and energy [3], [4]. The consideration of end-to-end system performance makes it important
to simultaneously overcome the two bottlenecks, which motivates this work. To this end, we
design a framework of integrating batching (i.e., task execution in batches to alleviate the von
Neumann bottleneck) and device scheduling to enhance the throughput of an edge Al system
under the practical assumptions of heterogeneous task arrivals and deadlines.

The area of edge Al also called edge inference, involves cross-disciplinary research integrating
wireless communication and Al to improve the end-to-end system performance [1], [S]. Many
relevant algorithms are designed based on a popular architecture called split inference that
partitions a global deep neural network into an on-device and a server sub-models, which are
connected by a wireless channel [5], [6]. Given the architecture, a rich set of techniques have

been designed to improve the communication efficiency including pruning the features extracted
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using the on-device sub-model [7], [8], jointly training the sub-model and channel encoder [5],
progressive transmission [9], and distributed data compression using the information-bottleneck
approach [10], [11]. Controlling the model splitting point for split inference introduces another
dimension for improving the communication efficiency. In [6], the point is jointly optimized
with computation-resource allocation for a multi-core CPU to minimize the end-to-end latency of
multiuser tasks. From the perspective of implementation, edge Al algorithms can be deployed on
the mobile edge computing (MEC) platform, a focus of 5G development, to exploit its strengths
in enabling latency-critical applications such as virtual reality (see, e.g., [12]). Furthermore,
various practical issues for edge Al deployment have been addressed by researchers such as
joint management of communication and computation resources (see, e.g., [13]), heterogeneous
devices [14], and random task arrivals (see, e.g., [15]).

In the context of multiuser edge Al, batching is mentioned earlier to be an effective technique
for breaking the von Neumann bottleneck so that an edge server can serve more users. Specif-
ically, the advantage of batching lies in reusing the part of Al model loaded into a graphics
processing unit (GPU) for multiple tasks to avoid frequent memory access [16]. As a result, the
computation latency per task is reduced and hence the throughput increases [17]. As mentioned,
batching should be jointly designed with radio resource allocation to achieve optimal end-
to-end performance for multiuser edge AI. Such designs are crucial for 6G Al empowered
tactile applications such as augmented reality (AR) and autonomous driving. In particular, AR
requires latency lower than 20 ms in order to guarantee an immersive virtual experience for
users. However, at its nascent stage, the mentioned area currently has few results [13], [18]. In
[18], utilizing the tree-search method, the optimization problem of joint bandwidth allocation and
task scheduling to maximize throughput is solved by proposing an efficient tree-search algorithm
with intelligent tree pruning. On the other hand, the minimisation of user energy consumption
is studied in [13] under inference latency constraints. To solve the problem, different algorithms
are presented for joint task scheduling and transmission-time control, which allow both online
and offline implementation. For simplicity, backlogged tasks and single-batch optimization are
assumed in prior work. On one hand, as queuing time is not accounted for, the existing designs
cannot provide a guarantee on end-to-end latency between a task arrival and its completion
where tasks may find difficulty in supporting real-time applications which require immediate
execution of randomly arriving multiuser tasks. On the other hand, techniques from single-batch

optimization are inefficient when dealing with the cases with a large number of concurrent tasks
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with asynchronous arrivals or with a low arrival rate. In both cases, they can potentially result
in long waiting time for those tasks that arrive earlier than others. Optimally forming multiple
batches can perform better in such cases but its joint design with radio resource allocation
remains as an open problem.

It is worth mentioning that the issue of asynchronous task arrivals has been addressed in several
studies in the MEC area [19]-[21]. Without targeting a specific task or application, these studies
are all based on a generic processor model where computing speeds are measured in, for example,
the number of clock cycles required for processing a bit [22]. Furthermore, the processor speed is
assumed to be controllable by adjusting its clock frequency that changes its energy consumption
following a measurement based model [23]. Based on such models, computation-and-radio
resources can be jointly managed to maximize the system energy efficiency or throughput under
tasks’ deadline requirements [24]. Due to model abstraction, computing issues as elaborated by
the von Neumann and batching have not been studied in the MEC literature. Thereby, the existing
solutions are inadequate for solving the current problem of joint batching and scheduling (JBAS)
for multiuser edge Al

In this work, we make an attempt to solve this problem targeting a high-throughput multiuser
edge Al systems under the practical assumptions of asynchronous task arrivals and heterogeneous
task deadlines. The problem is challenging for two reasons. First, there are numerous batching
related parameters to optimize, namely the number of batches, starting time of individual batches,
and the task-batch association. Second, meeting the task deadlines requires the control of end-to-
end latency of each task that sums its communication and computation latency. This introduces
coupling between batching and scheduling as well as radio resource allocation to scheduled de-
vices. By developing efficient approaches to solve the complex problem, we develop a framework
for optimal JBAS.

The main contributions of this work are summarized as follows.

« Optimal Joint Batching and Scheduling: The framework of JBAS is designed by solving
the JBAS optimization problem. First, we simplify the problem by converting it into an
equivalent problem where one variable, the number of batches, is removed. Our technique
is to set the number of batches equal to its maximum by allowing empty batches. Second,
the equivalent problem, which is a mixed-integer non-linear program, is made tractable
by approximation through the methods of integer relaxation and ¢y-norm approximation.

The resultant convex problem can be efficiently solved using a proposed algorithm that
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alternatively solves the following two sub-problems.

— Optimization of task-batch association: The sub-problem is a linear program and its
solution can be found using a derived scheme of greedy task selection. The scheme
assigns each task to the most suitable batch as measured by a derived metric that
accounts for different factors such as batching gain and the task’s arrival time and
uploading latency.

— Optimization of batch starting time: Given the optimal task-batch association, the
optimal starting time of each batch is derived in closed form. It is found to be the
latest time a batch can start under the deadline and batch causality constraints so that

the tasks in the batch use the least radio resources.

« Exploitation of Spectrum Holes: The combined effects of synchronized computation
duration of tasks in a same batch, their asynchronous arrivals, and heterogeneous uploading
durations create spectrum holes that refer to unused frequency-time resource blocks. We
design a spectrum-hole allocation algorithm to optimally exploit spectrum holes to enhance
the throughput by admitting originally unscheduled tasks. The corresponding optimization
problem is transformed into a sequence of single-batch sub-problems, each attempting to
jointly add new tasks to a specific batch and distribute spectrum holes among them. The
optimal solution for each sub-problem can be found by a linear search that sequentially
tests the sub-problem’s feasibility given the number of new scheduled tasks.

Simulations verify that the proposed JBAS algorithm yields significant performance gains as
opposed to existing schemes, especially in the scenarios with tight resource constraints. More-
over, the proposed spectrum-hole allocation scheme is shown to yield significant throughput
enhancement.

The rest of the paper is organized as follows. The system model is described in Section II. The
problem of optimal JBAS is formulated in Section III and solved in Section IV. We present the
design of the spectrum-hole allocation algorithm in Section V. In Section VI, the extensions to
online design with new arriving tasks and frequency-selective channels are discussed. Simulation

results are presented in Section VII followed by concluding remarks in Section VIII.

II. SYSTEM MODEL

Consider a single-cell system including /K devices and an edge server that doubles as an

access point, as shown in Fig. 1. Each device has a single task that offloads a single data sample
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Fig. 1. Edge inference system with asynchronous task arrivals.
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(e.g., an image or a video clip) to the server for inference. These tasks are assumed to share
a common pre-trained prediction model, such as a large-scale classifier capable of discerning
hundreds of object classes [25]. To reduce communication overhead and protect privacy, each
scheduled device uploads a feature vector extracted from raw data using a local model. Prior
to data uploading, each device communicates to the server over a control channel the profile of
its coming task containing the extracted feature size, arrival instant, and deadline requirement.

Relevant models and metrics are described in the following sub-sections.

A. Task and Batching Models

Tasks arrive at devices at random time instants with different sizes and distinctive end-to-end
delay requirements. An arbitrary device, say device k, has to finish a task within the duration of
[Tk(:a), Tk(d)} , where T,ga) and T,Ed) respectively represent the task-arrival time instant and deadline.
The duration consists of three parts: 1) feature uploading phase, 2) task inference phase, and
3) result downloading phase [26]. Due to the relatively small size of inference result (e.g., an
object label) and high transmit power of the server, the duration of the result downloading phase
is assumed negligible. To enhance the throughput, the server assembles received tasks into a
number of batches, denoted as /N, which are fed sequentially to the prediction model. Let ¢,
with n € {1,2,--- | N} denote the time instant when the processing of the n-th batch begins. It

follows that ¢; <ty < --- < ty. To facilitate batching, let 7, ,, represent the association between
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task £ and the n-th batch. If the task £ is included in the n-th batch, 7, = 1; otherwise,

Trn = 0. Since each task should be executed at most once,

N
> ma<l, VkeK, (1)
n=1

where K denotes the set of devices. The server decision on not sewing a device, say device k,
corresponds to ij:l min = 0. Then batching reduces to determining the association indicators
{7k }. Upon forming batches, the server sequentially inputs batches of feature vectors into the

inference model and downloads results as soon as a batch is executed.

B. Uplink Communication Model

For simplicity, we consider a frequency non-selective channel that emerges as propagation
distances keep reducing and the extension to frequency-selective channels is provided in Section
VI.B. Its bandwidth B is divided into K sub-channels that are assigned to the scheduled
devices. The bandwidth allocated to device k is denoted as Bj. Assume that the channels keep
unchanged during the transmission period. The server is assumed to acquire accurate channel
state information (CSI) useful for resource allocation and device scheduling. The spectrum

efficiency of the channel between device k and the server (in bits/second/Hz) is
prlu
re=1logy | 1+— ), VEkeK, 2)
o

where pj, represents the transmit power, h;, the channel power gain, and o2 the additive white

Gaussian noise power. We can write the duration of feature uploading for task/device k as

N
0= (Z mm%) ~-T, Vkek, 3)
n=1

where T,ga) is the task-arrival instant as defined previously. Let ¢, represent the number of bits

in extracted features for task k. Then ¢, = 77 Bjri. From (3),

. Vkek. “4)

C. Inference Model

Consider inference with batching [17]. For the n-th batch, all the uploaded feature vectors

satisfying 7, = 1 are assembled and input as a batch into the server inference model. The trained
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model comprises multiple sequential layers. When processing a batch, the server sequentially
loads each layer from the memory and then executes the batch until the batch traverses all layers.
As found in the literature, the inference delay increases approximately linearly as the batch size
becomes large [17], [27]. Given the association between tasks and batches, {7, }, the inference

delay of the n-th batch can be modelled as [13], [17], [18]
d, (m,) = am, +b, VYne{l,--- N}, 3)

where the batch size 7, = Zszl Tkn 1S a positive integer. Note that d,,(7,,) is a monotonically
increasing function. In the model in (5), @ and b depend on the specific inference model [13],

[18]. Specifically, a represents the inference delay per task and b the delay of memory access.

III. PROBLEM FORMULATION

In this section, the design of JBAS is formulated as an optimization problem with the criterion
of maximum system throughput, i.e., the number of completed tasks. According to the inference
delay model in (5), increasing the batch size can reduce the inference delay per task. However,
due to heterogeneous task arrival instants and deadlines, waiting for more tasks to arrive to form
a batch hinders the completion of those with early deadlines. On the other hand, to start a batch
earlier requires more radio resources so as to finish uploading the associated tasks in time. As
a result, there exist two tradeoffs: one between the batch size and batch starting instant and the
other between communication and computation resources. Furthermore, the association between
tasks and batches also needs to be optimized.

Several practical constraints are considered. The first is the task-causality constraint, namely

that the processing of a batch cannot begin until the arrivals of all associated tasks:
T < t,, Vkel,Vne{l,--- N} (6)
The second constraint enforces the deadline requirements of scheduled tasks:
T [tn +dp ()] < T, VEeK,¥ne{l,--- N}, 7

Note that when a task, say task £, is not associated with the n-th batch, i.e., 7, = 0, constraints

(6) and (7) are always satisfied. The third constraint reflects sequential batch processing, namely
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that the (n + 1)-th batch is not processed until the n-th batch finishes its inference:
tn +dp (mn) < tpy1, Vne{l,---,N—1} (8)

Last, the bandwidth constraint is given as

K N gk
> Moy s < B ©)

k=1 n=1

Under the above constraints, we aim at optimizing the bandwidth allocation, the number of
batches, their starting instants, as well as the task-batch association. Note that a task that is not
assigned to any batch is not scheduled for execution. Then the JBAS optimization problem is

formulated as

{tn}%gji}w Z_: Z Tk,ns

s.t. 7rk7nT,§a) <tn,, YkeK,Vne{l,--- N},
T [tn + dn (1)) < T, Vke K, ¥ne{l,--- N},
tn+ dp (1) < tnp1, Yne{l,--- ,N—1},

K N gk
Z Z Wk,nrkT]? < B7

k=1 n=1

(P1)

N
Y ma <1, VkeK,
n=1

men €4{0,1}, Veke K,Vne{l,---,N},

NeZ" N<K.
Problem (P1) is non-convex and NP-hard to solve due to the binary task-batch association
indicators as well as the coupling between optimization variables [18], [28]. Furthermore, the

variable number of batches, N, can change the cardinalities of batch starting instants, {t,}, as

well as the association indicators, {7y, }, further complicating this problem.

IV. OPTIMAL JBAS ALGORITHM

In this section, we design an efficient algorithm for JBAS by approximately solving Problem
(P1). The proposed solution approach is to transform the problem to an equivalent, simpler one

with the number of bathes fixed. Then applying the method of integer relaxation allows the
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equivalent problem to be solved using an alternating optimization algorithm. Its complexity is

analyzed.

A. A Tractable Solution Approach

1) An Equivalent Problem: First, Problem (P1) can be transformed into the following equiv-

alent problem:

(ta) N Z Z T

k=1 n=1

st L™ <tn, Vkek,¥ne{l,--- N},
ty+dy () < TV + (1 =102, VkeK,Vne{l,--- N},

ty +dy (1) < tpy1, Vne{l,--- N-—1},

(P2) L O
Z ZW’“” (a) < B,
k=1 n=1 Tk (tn - Tk )
N
d ma <1, VkeK,
n=1

men €4{0,1}, Vke K,Vne{l,--- N},

NeZ" N <K.
where the constant = £ maxecx T,gd) +dy (K). Problem (P2) is different from the conventional
mixed integer nonlinear programming (MINLP) problem since the number of variables varies
with the number of batches, V. Without loss of generality, we propose to mend the difference

by fixing N as N = K by allowing the existence of empty batches. This results in the following
MINLP problem:

K N
{tnr}il{%r};fn} Z Z Tk,n,

k=1 n=1

st T <tn, Vkek,¥ne{l,--- N},
(P3) tn + dy, (m,) < T,Sd) +(1—mpn) 2, VkeK,Vne{l,--- N},

o+ dy (1) < tpyr, Yne{l,--- N—1},

K
;Z’/Tkn <t _T(a)> §B7
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N
 ma<1l, VEeK,
n=1

men €4{0,1}, Vhe K,Vne{l,--- ,N}

where the corresponding inference delay evolves as:

am, +b, if m, >0,
dy, (1) = (10)
0, if m, =0,

for all n. The following theorem gives the equivalence between Problems (P2) and (P3).

Theorem 1. Problems (P3) and (P2) are equivalent in the sense that their optimal objectives

are identical.

The proof is provided in Appendix A. U
Theorem 1 allows us to solve Problem (P2) by solving Problem (P3) that leverages MINLP.
2) Integer Relaxation and Alternating Optimization: To solve (P3), the method of integer

relaxation is adopted to obtain an approximate solution (see e.g., [29]). Specifically, the binary

variables { ,} are relaxed as continuous ones belonging to [0, 1]. It should be emphasized that
the relaxation does not compromise the optimaliy as discussed in Remark 2. Due to the existence
of empty batches, the inference delay function d,, (7,) has a step at m, = 0, making Problem

(P3) nonconvex. To address the issue, it can be rewritten in a form comprising ¢y-norm as
dy, (7,) = amy, + bl )y = am, + 0 ||| (11)

where || - [|o is {o-norm and 1y, is the indicator function that is 1 if > 0 and 0 otherwise.
The non-smooth {y-norm can be well approximated by a series of convex weighted ¢;-norms,
which is a commonly used technique in compressive sensing (see e.g., [30], [31]). Using this
technique, the /y-norm term in (11) can be approximated by an asymptotically equivalent term

as

In (1 +61 Zle Wk,n)

. - 5—0 In (1 + 5*1)

(12)

Since the logarithmic function is concave and upper bounded by the first-order term of Taylor’s

expansion, we have
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K K
> || <O wpm + 0, (13)
k=1 0 k=1
with
—1
o (140 i )
o) = , (14)
In(1+4671)
and
K (1) ik
n 1+5 Zk:lﬂ.k,n + 1_'_5 Ek:lﬂ-k,n 1
P = : (15)

In(14671)
where 7T,(:31 represents the value of 7, at the previous iteration and ¢ is a sufficiently small
constant. The equality in (13) holds if and only if 7, = ﬂ,(ci for all (n, k). Through the
above iterative updates of 6 and ¢\, the difference between |75 |l, and its first-order term of
Taylor’s expansion diminishes until the equality in (13) holds. Then substituting (13) into (11),

the inference delay function can be approximated as
dy, (1) ~ (a + b0 anﬁbw vn, (16)

which is continuous and linear. Using (16), Problem (P3) can be approximated as

K N
max g g Thon,
tn b {Tkn ’
{tnd{min) £ £

s.t. e < t,, VkeK,Vne{l,--- N},

K
ta+ (a+009) Y + 000 < T + (1= m,,) EVE € K,Vn € {1,-++ N},
k=1

(P4) + (a+b0) Zm + 0" <tpiy, Vne{l,---,N—1},

k=1

N
> ma<1l, VkeK,

0<m, <1, VkeK, Vne{l, - N}
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This problem is convex and can be readily solved utilizing the approach of alternating optimiza-
tion. We propose to alternate solving two reduced-dimension sub-problems as described in the
following sub-sections. As a result, the complexity is dramatically reduced as opposed to directly
solving Problem (P4) and furthermore useful insight can be obtained. It is worth mentioning
that alternating optimization provides no guarantee on reaching the global optimal point since
the constraints in Problem (P4) are not box constraints (see, e.g., [32]). The complete algorithm

is presented in Algorithm 1.

B. Optimal Task-Batch Association

The first sub-problem results from fixing the starting time of batches, {¢,}, in Problem (P4).
Then it reduces to a linear program. The dual problem of (P4) with respect to task-batch
association, {7}, is given as

min G (Brn, Viens P) 17
{ﬁk,n}{vk,n}vp (/Bk7 fYk’ p> ( )

where G (Bk.n, Vkn, p) is the dual function that solves

max L (g, By Ve £) » (18)

{Wk n}

N
> ma<l, VkeK,
0<mn<1l VkeK Vne{l, --- N}

In (18), £ (g n, Bkns Yen, p) denotes the partial Lagrangian function of Problem (P4):

K N
L (ﬂ-k,na Ak n, /Bk,TH Yie,ns ,0) = Z Z Tkn

k=1 n=1
K
—ZZ@M tn + (a+ b6 <Zm>+bw (1—@,”)5]

k=1 n=1

N-1 K N /

_ r (r _ _ -k
3o o) () 0087 o] <0 (S
n=1 k=1 n=1 Tk Zfn Tk

(19)

where 5, Vi.n, and p are non-negative Lagrange multipliers associated with the deadline, batch

causality, and bandwidth allocation constraints, respectively. Besides, we let 79 = vy = 0 for
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consistency. We can observe that (19) is linear with respect to 7 ,,. Therefore, to maximize the
Lagrange function with fixed multipliers, the optimal 7, is either zero or one. Specifically, for
all n, if 7, are less than or equal to zero, task % is not scheduled, i.e., 7, = 0; otherwise,

this task is associated with the batch that has the largest coefficient:

1, ifn=arg max [y,

0, otherwise,

where pi, = 1 — (a + b@,@) Zle B — (a + b@fﬁ) Yn — EBkn — pW. If there are
Te\tn—1p
multiple batches satisfying arg max,cf,... N} fk,n» W€ can choose any of them due to the non-

strict convexity of Problem (P3). Then substituting (20) into (18), we can obtain G (5 ., Vi, P)-

Remark 1. (Favourable Task Conditions) According to (20), one can infer that for a task, as the
channel condition becomes worse, its likelihood of being scheduled reduces as uploading the
task requires more radio resources or else incurs higher latency. Moreover, early task-arrival time
increases the probability that a task is successfully executed due to the following two reasons:
1) the larger batching gain, and 2) the longer communication time that increases the probability
of successful feature uploading. Last, by combining (14) and (20), we can observe that a task

prefers a larger batch as its inference delay per task is smaller due to the batching gain.

Given G (Bk.n, Yin, p), We attempt to solve the dual problem (17) to get the the optimal dual
variables {Sxn}, {7Vkn}, p. Note that G (Bk.n, Yk, p) is not differentiable in general due to the
discontinuous selection operations in obtaining the optimal 7 .. To this end, the value of dual
variables is updated by the sub-gradient method [33]. Thus, through iteratively optimizing primal
variables and dual variables, the optimal tasks and batches association 7y, with fixed ¢,, can be

obtained directly without rounding according to the following remark.

Remark 2. (Optimality of Task-Batch Association) We can observe that for task k, there exists
at most a single element among {7, ,, } that is equal to one while others are set as zero according
to (20). This indicates that although the feasible range of 7y, is relaxed to be continuous, the
optimal solution to Problem (P4) with respect to m;, always satisfies the binary constraint
Tkn € {0,1} for all (n, k). Hence, the relaxation of 7, does not compromise the optimality of

the original Problem (P3).
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C. Optimal Batch Starting Time

The other sub-problem results from fixing the task-batch association, {7, ,, }, in Problem (P4).

As a result, the sub-problem is written as

K N
max E g T s
{tn}

k=1 n=1

st. T\ <t,, VkeK,¥ne{l, - N},
(P5) tn+dy (1) < TV + (1 —m0) 2, VhkeK,Vne{l,--- N},

tn +dy (1) < tpy1, VYne{l,--- N—1},
o
y—r——— < B.
PP (o) ©

Theorem 2. The optimal starting time of the n-th batch, which solves Problem (P5), is given as

min {ng,d)7tn+1} - d’fl (ﬂ-n)’ l..fﬂ-n > Oa
tr = (n=N,---,1), (21)

n
trits otherwise,

where Xv(@d) = Mingeg, T,gd)

n-th batch, i.e., K, = {k|m, =1} (Vn € {1,--- ,N}), and t},, = E.

denotes the minimum deadline among all the tasks processed in the

The proof is provided in Appendix B. [

From Theorem 2, we can observe that with fixed 7, ,,, ¢, is only determined by the deadlines
of tasks in the n-th batch and ¢,,.;. The starting time of a batch, ¢,,, is set as the latest starting
time that can ensure the latency and batch causality constraint such that the scheduled tasks

occupy the least radio resources.

D. Complexity Analysis

The complexity of Algorithm 1 is largely attributed to solving the two subproblems solved in
the preceding subsections. The complexity in optimizing the task-batch association is O (K?//e)
based on (20), where ¢ represents the predefined accuracy of the dual method [34]. The com-
plexity of calculating the optimal batch starting instants is O (K) according to (21). The overall
complexity is given by O (L (K?/\/e + K)), where L denotes the average number of iterations
in Algorithm 1.

July 28, 2023 DRAFT



Algorithm 1: JBAS Algorithm

maxgex Tlg(” —mingex Té‘”

1 Initialize ¢,, = N1 x (n—1) + mingex T}ga) (Vne{l,---,N}), typ1 = E, 7r](;’T)L -0
(Vk € K,¥n € {1,--- ,N}) and required precision.
2 repeat
3 Initialize {Bx n}. {Vn}. o
4 repeat
5 Obtain the association between tasks and batches {7y, } according to (20).
6 Update dual vairables {8k}, {7n}. p using the sub-gradient method.
7 until the objective of problem (9) converges;
8 forn=N,---,1do
9 ‘ Obtain the startup time of batches {¢,} according to Theorem 2.
10 end
1 Update 6% and 1" according to (14) and (15), respectively.
12 until the objective of Problem (P3) converges;
13 Output the optimal {7, } and {t,}.

Frequency A
Device 1 ‘
Device 2 | ‘
Device 3 |
Device 4 |
Device 5 |
g ?
Device K ? i
: - >
Time
tn tn+1 tn+2
|:| Spectrum in use |:| Spectrum hole
(Communication) (Computation)
[ ] Task-batch association r -------- o T i Whether to be

---------- scheduled?

Fig. 2. Illustration of spectrum-holes.

Last, the complexity of Algorithm 1 is much lower than the conventional interior point method
for directly solving Problem (P4) whose complexity is O (L (K2 + K )3'5) [34].

V. EXPLOITING SPECTRUM HOLES

In Section II, individual devices are assigned dedicated frequency bands for identical upload-
ing durations to allow tractable design. Nevertheless, due to heterogeneous task arrivals and
communication latency, there exist spectrum holes that can be exploited to further increase the
throughput. As defined, a spectrum hole refers to an unused frequency-time resource block. In
this section, an algorithm for spectrum hole allocation algorithm is designed by formulating and

solving a corresponding throughput maximization problem.
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A. Spectrum-Hole Allocation Problem

As shown in Fig. 2, upon arriving time instant ¢,, for all n, the tasks inferred in the n-th
batch finish their transmission, and thus spectrum holes (i.e., the bandwidth left by scheduled
tasks) can be allocated to the unscheduled tasks to improve the throughput or the scheduled
tasks to reduce the latency. It should be noted that fixing {¢,,} as computed using Algorithm 1,
makes it difficult to insert additional tasks for inference due to the tight deadlines according to
(21). This means that even those unscheduled tasks can be uploaded to the server exploiting
spectrum holes, they cannot be executed in the original batches without interrupting originally
tasks. The challenge faced in the current problem lies in adjusting {¢,} to accommodate new
tasks without causing the failure of any existing task to meet its deadline. Denote F as the set of
unscheduled tasks based on Algorithm 1. For each ¢, let S,, denote the set of tasks associated
with the n-th batch. Hence, at each arrival time, say t,, the total bandwidth of spectrum holes,
denoted by B, = Yo D ke s, Br» can be allocated to unscheduled tasks in F so as to improve
the throughput. Moreover, we have to adjust starting time of the (n + 1)-th batch such that
new scheduled tasks can be inserted into current batch without causing any original scheduled
tasks to miss its deadline. Mathematically, at each checkpoint ¢, with n € {1,--- /N — 1},
we let Ek represent the data size to be transmitted for task & in the duration from ¢, to ;.
Specifically, for tasks in S,41, 0y is given by By <fn+1 — max {T k(a), fn}), and for tasks in
F, Ek is equivalent to /. Optimization variables ¢, and l€n+1 represent the adjusted startup
instant of the (n + 1)-th batch and new-scheduled tasks in the (n + 1)-th batch, respectively.
Besides, we let t; = t,. Then, we solve the following optimization problem:

_ mnax |I€n+1 B
tnt+1,Knt1

s.t. max{ ‘max T\, + d(|8n|)} < tpt1,

kG’Cn+1U$n+1

ke n4+1USn+1

(P6) tpr +d (|’€n+1 U Sn+1‘) < min { _min Tk(d)> tn+2} )

~ n+1
Uy

N

kel 1USn i1 Tk tp41 — Max i=1 keS;

ICn—H g F.

In (P6), the first and second constraints specify the causality of the new-scheduled tasks K, ; and

previously determined to be scheduled tasks S,,+1 for the (n + 1)-th batch. The third constraint
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implies that the allocated bandwidth to tasks in /C,,; and S, ; should not exceed the sum of spare
bandwidth and previously determined bandwidth for tasks in S, 1, which ensures that bandwidth
reallocation does not influence the bandwidth allocated to other tasks being transmitted. To this
end, the spectrum-hole allocation problem is formulated as a sequence of subproblems, each
corresponding to a one-batch optimization problem of tasks scheduling and bandwidth allocation
for the (n + 1)-th batch (Vn € {1,--- ;N — 1}) at checkpoint ¢,. By solving Problem (P6), we

attempt to increase the number of scheduled tasks and decrease the total delay simultaneously.

B. Solution Approach

Problem (P6) is difficult to solve due to the combinatorial nature of this problem. In the
following, we show that the optimal solution of (P6) can be obtained by solving a series of
feasibility problems each corresponding to a fixed number of new-scheduled tasks |/, 1| =

HE{O?L"' 7‘f’}

find tn+17 ’Cn-l—la

5.t. max{ ‘max T %, +d(|Sn|)} < Tnit,

kEICn+1USn+1

P7) tpi1 +d(IT 4 |Sppa]) < min{ _min Téd), tn+2} :

kEKn+1USh+1
7 +1
Uy, X
< g E By,
c i (F1 — max { T\ 7, ;
ke n+1USn+1 k n+1 k »'n 1=1 keS;

}€n+1 - .F, "Cn+1| = IL

Proposition 1. Denote the optimal solution of Problem (P6) by K., t;.., and let |K} | = II*.
Problem (P7) is feasible if and only if 11 < II*.

The proof is provided in Appendix C. U

Proposition 1 implies that we can adopt the bisection method to solve Problem (P6) as
described below. Denote the upper bound and lower bound of 1I by I, and I, respectively.
Let IT = |(Ily, + ILow) /2|, where || denotes the round down operation, and solve Problem
(P7). If (P7) is feasible, which means that the optimal II* is no smaller than II, we set 11y, = II.
Otherwise, the optimal 11" is no larger than 11, thus setting 11, = II. Repeating these procedures
until 1T, — I, < 1. Then if Problem (P7) is feasible when II = II,, the optimal 1I* = II;

otherwise, we have II* = II,.
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However, it remains to solve Problem (P7) with given II. Note that with given mingcg, . T,id),

the optimal (n + 1)-th batch starting time ¢, , ; should be given as min {minkE Kos1USn i1 T,Ed), tn+2}
—d (IT+ |S,+1]) since the required bandwidth for tasks decreases with #,,;. To this end, a
tentative policy is proposed to solve Problem (P7). The principles behind this policy is that
mingeg, ., Tk(d) only takes values from a finite discrete set {Tkgd)‘k e F } such that we can

judge the feasibility of each value of mingcg, , T}

sequentially. Specifically, with given II,
define a set G containing all the values of unscheduled tasks’ deadlines, i.e., G = {T k(d) )k e F }
At each time, we check whether the unscheduled task with the earliest deadline can be added
in C,y1. Set 79 as the latest completion instant for the (n + 1)-th batch, that is 79 =
min {min {i]i € G} ,minges,,, T,id), tn+2}. Thus, the optimal batch starting instant is given as
o, =TD —d(+|S,11]). Let S = {l{;)T,ﬁa) < t_,’;H,T,Ed) >TW ke f} denote the set of
tasks that not only satisfy the uploading causality constraint but also their deadlines is no earlier
than 7@, This indicates that the tasks in S can meet their deadlines requirements even with

an earlier deadline. Next, we judge whether there exist II new-scheduled tasks in S satisfying

bandwidth constraint. Sort the tasks belonging in S in ascending order according to the value

Ly
Tk (fn+1 —max{T,ia) tn })

set KC,41. If the total bandwidth of tasks in K, U S,y is no larger than 37/ > kes, B

7

of minimum bandwidth required, i.e., and assemble the first II tasks in

and max {maxke,@" AUSnia T,ga),fn + d(|8n|)} is smaller than ?,1, i.e., bandwidth and task-
causality constraints in Problem (P7) are satisfied, Problem (P7) under current 7% is feasible,
thus making Problem (P7) with current II feasible. Hence, we set Il,,, = II. Otherwise, it
is infeasible with current 7@ indicating that task & = argmin{i € G} cannot be sched-
uled in current batch. In this case, we should delete the minimum value in G. Then update
T@ = min {min {i] € G} ,minges,,, T,gd), tn+2} and repeat the above steps until the number
of elements in S is less than II. This implies that problem with |KC,,,1| = II is infeasible and we
set II,, = II. At each checkpoint ¢, for n =1,--- /N — 1, we solve Problem (P7) and update
F as F\ Kni1, Sny1 as Spy1 UK, q1 until F is empty.

The detailed steps for spectrum-hole allocation scheme is summarized in Algorithm 2 whose
computational complexity lies in solving Problem (P7) with given II. Specifically, with given
I1, the complexity for (P7) is O (K?). Since we have to solve (P7) with each IT and n, the
total computational complexity for the proposed spectrum-hole allocation algorithm is estimated

as O ((N — 1)K?log,(K)). It should be noted that Algorithm 2 can obtain a globally optimal
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Algorithm 2: Spectrum-Hole Allocation Algorithm

1 Tnitialize {7}, {T\V}, {4}, {By}. F. f1 = 1, and {S,,}.
2 forn=1,---,N—1do

3 Set ITyp, = |F|, and IIjoy = 0.
4 repeat
5 Set IT = | (TLyp + iow) /2].
6 set g = {1{" | e F}.
repeat
8 Set 79 = min{min {i|i € G}, minges,,, T,Ed), tnya}
9 Set tpy1 =TW — d (1 + |Spy1])-
10 Set S = {k’T,Ea) < ﬂl,+1,T,§d) >7W ke ]:}
11 Sort the elements in S in an ascending order according to - b OFENE
Th (tn+1—max{Tk ,t,,,})
12 Assemble the first IT elements of S in set l€n+1.
13 if the bandwidth and task-causality constraints are satisfied then
14 ILow < II.
15 Break.
16 else
17 | G+« G\ min{i|i € G}
18 end
19 until |S| < IT;
2 if |S| < TI then
21 | Ty < 1L
22 end
23 until IT,, — 11, < 1;
24 if IL,, is feasible then
25 ‘ IT* =11,
26 else
27 | IT* =Ty
28 end
29 Update F« F \ I€n+1, Sn+1 — Sn+1 @] Ian+1.
30 end

solution for Problem (P6) with low complexity.

VI. EXTENSIONS AND DISCUSSION
A. Online Task Admission

During the process of task uploading and inference, new tasks may arrive and submit service
requests [35]. In this scenario, the proposed Algorithm 2 can be modified to support online
admission of new tasks to leverage spectrum holes. Specifically, the proposed Algorithm 1 is
executed as batching initialization for existing tasks. Then new tasks arriving during the inference
process are first stored locally at devices. Similar to Algorithm 2, at each checkpoint ¢,,, we update

the set of active tasks, F, to include selected new tasks that are deemed feasible for successful
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execution using spare resources. To this end, Algorithm 2 can be executed again to update the

resource allocation to accommodate the new tasks.

B. Frequency-Selective Channels

The current assumption of frequency non-selective can be relaxed as follows. A frequency
selective channel can be partitioned using orthogonal frequency division multiplexing (OFDM)
into sub-channels with heterogeneous gains. Following [36], [37], new indicator variables can
be introduced to denote the association between sub-channels and tasks. Then the throughput
maximization problem can be formulated as a MINLP problem containing two kinds of binary
optimization variables for sub-channel allocation and task-batch association, respectively. Despite
being more complex, the problem can be solved efficiently using conventional MINLP methods

such as convex relaxation and branch-and-bound, or latest approach using machine learning (see

e.g., [38]).

VII. SIMULATION RESULTS
A. Simulation Settings

The default settings are as follows. There are K = 100 devices, with task arrivals uniformly
and independently generated in the time interval of [0, 1] s. The size of feature vectors is set as
10 KBytes. The delay requirements of tasks follow the uniform distribution in [0.05,2] s. The
inference latency profile with respect to the batch size as reported in [39] is adopted, which is
generated from a ResNet-50 model implemented on JETSON TX1 and the ImageNet dataset. The
channel gains between devices and server follow independent Rayleigh fading with the average
power loss being 1073, The transmit signal-to-noise ratio (SNR) of devices is set as 20 dB. The
constant § in {y-norm approximation (13) is 107'°. The following schemes are considered in
performance comparison:
e Proposed Algorithm: See Algorithm 1.
o Equal Bandwidth Allocation Scheme: The total bandwidth is evenly allocated to devices
while task scheduling follows Algorithm 1.

o Spectrum-Hole Allocation Scheme: Algorithm 1 enhanced with spectrum-hole allocation
using Algorithm 2.

o Greedy Batching Scheme: Upon finishing executing the previous batching, the server greed-

ily assembles all tasks that arrived during the previous batch into a new batch and makes
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Fig. 3. Task completion rate versus number of tasks.

inferences on them [40]. When the inference is finished, those tasks that do not satisfy
deadline requirements are discarded.

o Single Batch Scheme: The optimal single batch scheme in [18] is modified for asynchronous
task arrivals. In particular, the optimal batch starting instant is determined using an algorithm
similar to Algorithm 2.

The performance metric of task completion rate is defined as the ratio between completed tasks

and all tasks. Note that the metric measures system throughput.

B. Effect of Task Number

Fig. 3 compares task completion rates between different schemes for a varying number of
tasks. The proposed JBAS scheme and its enhanced version with spectrum-hole exploitation
achieve the highest rates. This shows the advantages of jointly optimizing batching, scheduling,
and bandwidth allocation so as to accommodate the heterogeneity of task arrivals and deadlines.
In contrast, the three benchmarking schemes are less effective in accounting for the different
delay requirements of tasks and balancing the tradeoff between batch size and batch startup
instants. As a result, they suffer loss on system throughput that is larger as the number of

tasks grows. On the other hand, we can observe that the Spectrum-Hole Allocation Scheme
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Fig. 4. Task completion rate versus the minimum delay requirement.

can enhance the throughput of the Proposed Scheme by an average of 2.8%. Furthermore, as
observed from Fig. 3, the task completion rates decrease as the number of tasks grows. This
indicates that the limited communication and computation source leads to an increasing slower

in the number of completed tasks as the total number grows.

C. Effect of Delay Requirement

To investigate the effect of delay requirements on system throughput, we vary the minimum
delay requirement from 50 to 1450 ms while the maximum delay requirement is fixed at 2000
ms. The curves of task completion rate versus the minimum delay requirements are depicted
in Fig. 4. One can observe that the task completion rates of all schemes gradually increase as
the minimum delay requirement relaxes. The reason is that less bandwidth is required for each
task for uploading and the server has more computation time. From Fig. 4, we can observe that
the throughput improvement of the Spectrum-Hole Allocation Scheme on top of the Proposed
Scheme reduces from 1.7% to zero as the minimum delay increases from 200 to 2000 ms.
This can be explained by that as the minimum delay increases, the radio resource constraints
are relaxed and the communication bottleneck is dominated by the computation counterpart. In

contrast, the throughput improvement of Spectrum-Hole Allocation Scheme is more significant
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Fig. 5. Task completion rate versus transmit SNR.

in spectrum constrained scenarios, (i.e., a large number of tasks and tight delay requirements) as
shown in Fig. 3 and Fig. 4. Furthermore, as the minimum delay increases, the throughput of the

One Batch Scheme improves rapidly as the loss on synchronizing tasks’ starting time reduces.

D. Effect of Transmit SNR

In Fig. 5, the curves of task completion rate performance versus transmit SNR are plotted. As
the transmit SNR increases, the task completion rate first improves rapidly and then saturates. The
early rapid improvement reflects the overcoming of the communication bottleneck. As the SNR
is further increased, the bandwidth constraint becomes inactive, leading to throughput saturation.
In this operation regime, the computation bottleneck dominates and limits system throughput.
One can observe that with sufficiently large SNR (e.g., 50 dB), the Proposed, Spectrum-Hole
Allocation, and Equal Bandwidth Allocation Schemes can complete almost all tasks, while the
Greedy Batching Scheme only reaches 92% task completion rate, which verifies the need of
batching optimization. On the other hand, the Single Batch Scheme performs worst at a large
SNR, i.e., less than 48% task completion rate, indicating the importance of multiple batches for

asynchronous tasks arrivals.
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E. Effect of Batch Number

Fig. 6 shows the curves of task completion rate versus number of batches from solving Problem
(P3). As can be observed, as the number of batches grows, the system throughput increases and
then saturates as the effective number of batches, namely the non-empty ones, converges to a
fixed value. Besides, the proposed Scheme and Spectrum-Hole Allocation Scheme achieve the
throughput improvement of 39.34% and 47.50%, respectively, compared with Equal Bandwidth
Allocation Scheme when K = 60.

F. Effect of Bandwidth

In Fig. 7, the curves of task completion rate versus total bandwidths are plotted. As can be seen,
as the bandwidth increases, the throughput of all schemes increases due to the communication
resources getting more abundant. The Proposed Scheme achieves 29.80%, 66.48%, and 35.89%
throughput gains compared with Equal Bandwidth Allocation Scheme, Greedy Batching Scheme,
and One Batch Scheme, respectively. Moreover, the Spectrum-Hole Allocation Scheme can

further improve the throughput by 4.61%.
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VIII. CONCLUSION

In this paper, we have presented a JBAS framework for high-throughput multiuser edge Al in
the practical scenarios with heterogeneous task arrivals and deadlines. The number of batches,
batch startup instants, task-batch association, as well as bandwidth allocation have been jointly
optimized to maximize the system throughput. Moreover, spectrum holes have been exploited
to further increase the throughput. We find that judiciously assembling tasks into multiple
batches is important to ensure high throughput in practice. However, the communication model
considered in this paper is simple for the sake of tractability. For future works, it is promising
to integrate batching with advanced transmission techniques such as non-orthogonal multiple
access (NOMA) and multiple-input multiple-output (MIMO). In another interesting direction,
multiple-cell edge Al with batching couples communications in different cells and computation

at different servers and hence is more challenging to design.

APPENDIX
A. Proof of Theorem 1

Denote the optimal solution of Problem (P2) by ({t;}, {7}, },N*). We first prove that for

the optimal solution of Problem (P2), the optimal value of (P3) is no less than that of (P2).
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Consider the following two cases:

Case 1: N* = K. If the optimal N* = K, ({t1},{m},,}) is feasible to Problem (P3) since
that (P3) is the case when N = K.

Case 2: N* < K. In this case, introducing new variables t, = = (Vn € {N*+1,--- ,K})
and 7, =0 (Vk € K,Vn € {N* +1,--- , K}). Then combing the optimal solution of (P2) and
VkelC,VkelC) satisfy all

the constraints in Problem (P3). Moreover, the optimal value of (P2) is equal to the value of

(P3). Therefore, the optimal value of (P3) is no less than that of (P2).

the new introduced variables, the constructed variables ({t:;}\me o {w,’;n}

Next, since the optimal solution of (P3) always satisfies the constraints of (P2). Hence, the
feasibility of (P3) is included in that of (P2). In other words, the optimal solution of (P3) is
feasible to (P2). Thus, the optimal value of (P2) is no less than that of (P3).

Combining that the optimal value of (P2) is no less than and also no larger than that of (P3),

we can conclude that Problem (P3) is equivalent to Problem (P2).

B. Proof of Theorem 2

Startup time ¢, is lower bounded by the task-arrival time instants of its associated tasks and
upper bounded by deadlines and start time of the next batch ¢, ;. Since the allocated bandwidth
By, decreases with t,,, we should set ¢,, as large as possible in order to satisfy the bandwidth
constraint. Through solving ¢,, sequentially from n = N to n = 1, we can obtain the optimal
solution of ¢,,. Specifically, for the N-th batch, we consider the following two cases: 1) If the
N-th batch is non-empty, i.e., Zle me,n > 0, the time instant that the N-th batch finishes its
inference ¢y + dy (my) is upper bounded by the deadlines of its associated tasks. Hence, we
should let ¢y = mingex, T\ — dy (my). 2) If the N-th batch is empty, i.e., S5 mn = 0,
we should set ¢ as large as possible such that it will not affect the value of ¢5_;. Without loss
of generality, we set ¢y = =. Subsequently, consider the (N — 1)-th batch. Similarly, two cases
are considered. If it is non-empty, time instant ty_; + dy_1 (my_1) is restricted not only by the
deadlines of its associated tasks but also by the startup time of the N-th batch. Therefore, ty_1
is set to min {minkeKN71 Tkgd), tN} —dn_1 (my_1). If the (N — 1)-th batch is empty, in order to
mitigate the influence on the startup time of the (/N — 2)-th batch, we set ty_; = tx. Following

this procedure until the startup time of the first batch ¢; is obtained, completing the proof.
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C. Proof of Proposition 1

First, when II < IT*, we have d(I1+|S,,41|) < d(II*+|S,+1) since the inference delay function

is non-decreasing. Therefore, let ,,; = %, and K,1 be an arbitrary subset of K, with the

size of II. We can deduce f,,,, and K, satisfy all the constraints of (P7). Thus, Problem (P7)

is feasible.

Subsequently, when I > IT*, Problem (P7) is always feasible, otherwise, the optimal | 1l

of (P6) is larger than IT*, which contradicts that |K_ | = II*. That completes the proof.
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