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ABSTRACT
Stochasticity is becoming increasingly essential in traffic flow research,
given its notable influence in several applications, such as real-time traffic
management. To consider stochasticity in macroscopic traffic flow model-
ing, this paper introduces a stochastic Lighthill-Whitham-Richards (SLWR)
model, which not only captures equilibrium values in steady-state condi-
tions but also describes stochastic variabilities. The SLWR model follows a
conservation law, in which the free-flow speed is randomized to represent
heterogeneities of drivers. To more accurately reflect real-life traffic pat-
terns, a nonlinear speed-density relationship is considered. For addressing
this highly nonlinear problem, a dynamically bi-orthogonal (DyBO)method
is coupled with the Taylor series expansion technique. The results of sim-
ulation experiments show that the SLWR model can effectively describe
the evolution of stochastic dynamic traffic with temporal or geometric bot-
tlenecks. Moreover, the DyBO solutions exhibit reasonable accuracy while
significantly reducing computation costs compared with the Monte Carlo
method.
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1. Introduction

Stochasticity, commonly observed in daily traffic, has increasingly become a focus in various traffic
engineering applications, such as real-time trafficmanagement. In trafficmodeling, stochasticity intro-
duces uncertainties and complexities to a system. For instance, the space-mean speed may vary in
response to the mean density, even at the same location and traffic demand level from day to day.
Compared to deterministic traffic flow models, stochastic traffic flow models can capture and convey
more comprehensive information about traffic dynamics, which is necessary for advanced and precise
traffic control and operation. However, stochastic traffic flowmodelsmay also increase computational
burdens.

Macroscopic traffic flow models, which provide essential estimation of traffic states, need to be
simple, robust, and efficiently solved for practical application. The classic Lighthill-Whitham-Richards
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(LWR) model (Lighthill andWhitham 1955; Richards 1956) is widely used due to its simplicity and abil-
ity to explain common traffic phenomena, such as shockwave propagation (Daganzo 1995; Jin 2012;
2013;Wong andWong 2002; Zhang 2001). In physical terms, the LWRmodel captures kinematic shock
and rarefaction waves in traffic flow, while in mathematical terms, it follows scalar hyperbolic conser-
vation laws. However, the classic LWR model can only describe temporal means of traffic dynamics.
Specifically, Prigogine and Herman (1971) highlighted the temporal mean dynamic characteristics of
this model, and Jabari and Liu (2012) emphasized that traffic flow variables are defined as averages in
the LWRmodel.

Incorporating stochasticity into the LWRmodel significantly increases computational burdens. The
Monte Carlo (MC) method is widely used for solving stochastic problems. Although the MC model
is robust, with its convergence rate independent of stochastic dimensionality, its convergence rate
is limited (Cheng, Hou, and Zhang 2013a). To ensure applicability in engineering practice, efficient
numerical solution methods must be identified. Compared to the Monte Carlo (MC) method, the
dynamically bi-orthogonal (DyBO) method - one of the model reduction methods - exhibits high
efficiency and sufficient accuracy. Fan et al. (2022) applied the DyBO method in cases involving lin-
ear speed-density relationships. However, when considering a nonlinear speed-density relationship,
applying the DyBO method becomes challenging, as the expected value of stochastic exponential
terms cannot be computed exactly in closed form.

To address the aforementioned research gaps inmodeling and numericalmethods, this paper aims
to propose a Stochastic LWR (SLWR) model that incorporates a general nonlinear speed-density rela-
tionship and embeds a Taylor series expansion technique in theDyBOmethod for solving the resulting
highly nonlinear problem.

The remainder of the paper is organized as follows: Section 2 reviews previous research on stochas-
tic traffic flow modeling and numerical methods. Section 3 presents the general form of the SLWR
modelwith a nonlinear speed-density relationship. Section 4 introduces the solutionmethods, specifi-
cally the formulationof the SLWRmodelwith ageneral nonlinear speed-density relationship, involving
DyBO equations and the Taylor series expansion technique. Section 5 details the numerical simulation
experiments, in which the speed-density relationship is captured using Drake’s model, and the traffic
flow in temporal bottleneck and geometric bottleneck scenarios is simulated. Finally, Section 6 offers
concluding remarks, emphasizing the contributions and limitations of this work.

2. Literature reivew

2.1. Stochastic traffic flowmodeling

Traffic flow models are essential for describing and predicting traffic states and can be developed
at different levels, from microscopic to macroscopic, for various purposes. Microscopic traffic flow
models focus on individual vehicles and their interactions (Newell 1961), while macroscopic models
treat traffic as a continuum. The classic LWR model (Lighthill and Whitham 1955; Richards 1956) is
a first-order scalar hyperbolic equation, but it may not capture some typical traffic features, such as
non-equilibrium traffic states in congested regimes. These limitations can be addressed by higher-
order models, which consist of systems of hyperbolic equations. Lebacque, Mammar, and Haj-Salem
(2007) developed a Generic Second Order Modeling (GSOM) family of traffic flow models, combining
the LWRmodel with dynamics of driver-specific attributes. Additionally, Fan, Herty, and Seibold (2014)
proposed a Generalized Aw-Rascle-Zhangmodel, which better reproduces the behavior of real data in
fundamental diagrams in both free-flow and congested regimes. Although these deterministic mod-
els do not satisfy the need for considering stochasticity, they provide a solid foundation for developing
stochastic traffic flow models.

In microscopic approaches, stochastic phenomena are reflected through the effects of anticipa-
tion, correlated vehicle motion across lanes, driving adaptation delays, or variations in safe time-
gaps. Schreckenberg et al. (1995) investigated a probabilistic cellular automaton model, where
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stochasticity was introduced as a probability of whether a vehicle may decrease its speed. In macro-
scopic approaches, one direct method of considering stochasticity is to include noise terms in the
conservation laws (Gazis and Knapp 1971; Gazis and Liu 2003), fundamental diagrams (Ngoduy 2011;
Li et al. 2012), or the cell transmissionmodel (Boel andMihaylova 2006). However, this can lead to neg-
ative densities and inconsistencies between mean dynamics and deterministic dynamics (Jabari and
Liu 2012). To address these issues, Jabari and Liu (2012) devised a new stochastic traffic flow model,
where the source of randomness is the uncertainty inherent in driver gap choice, represented by ran-
dom vehicle time headways. Later, Jabari, Zheng, and Liu (2014) derived probabilistic macroscopic
traffic flow relations from Newell’s simplified car-following model, treating time headways and spac-
ings as random variables. This model’s probabilistic nature allows the effect of driver heterogeneity
on the macroscopic relationships of traffic flow to be investigated. Martínez and Jin (2020) intro-
ducedheterogeneous (i.e. vehicle-dependent) jamdensities to formulate a stochastic LWRmodel. This
model, solved in Lagrangian coordinates, allows the effect of driver heterogeneity on themacroscopic
relationships of traffic flow to be investigated both via simulations and analytically.

To better attribute physicalmeaning to the stochastic processes in traffic flowmodels, it is essential
to investigate the sources of uncertainties. In some studies (Boel and Mihaylova 2006; Li et al. 2012),
stochastic terms are treated as unknown factors without clear explanations. Previous research (Chen,
Jia, and Varaiya 2001; Sumalee et al. 2011) has suggested that uncertaintiesmay arise from exogenous
sources, such as traffic states, road geometry, andweather conditions, as well as endogenous sources,
like driving behaviors. Additionally, an empirical study by Cassidy andWindover (1995) demonstrated
that driving behaviors may be influenced by drivers’ memories or tendencies, which are consistent
and difficult to alter. However, most stochastic traffic flow models assume that random effects occur
at every time step, even when the step size is extremely small (Wang and Papageorgiou 2005; Li et al.
2012). Instead, Fan et al. (2022) developed a systematic model framework that allows stochasticity to
reflect the diverse choices of different drivers while maintaining stability for each driver. Nevertheless,
the authors utilized a linear speed-density relationship (Greenshields 1935). Although Greenshields’
traffic stream model simplifies the relationship among traffic flow quantities and enables an easy
exploration of the analytical properties of complex traffic models, field observations have indicated
that the relationship between speed and density is generally nonlinear (Elefteriadou 2014).

2.2. Numerical methods

Stochasticity increases the complexity of traffic flow models, making it generally impossible to derive
exact analytical solutions, particularly for highly nonlinear models. In such cases, numerical solutions
are needed, which can significantly increase computational burdens, especially for stochastic prob-
lems. Although the Monte Carlo (MC) method can provide robust solutions, its low convergence
rate is undesirable. To expedite convergence, several researchers have employed sampling methods.
Caflisch (1998) introduced a quasi-MC method that used deterministic sequences instead of random
or pseudo-random sequences. Giles (2008) proposed a multi-level MC method designed to reduce
the computational complexity of estimating expected values for stochastic differential equations. Fur-
thermore, Jahani et al. (2014) utilized an interval MC simulation in conjunction with an interval finite
element method to evaluate failure probability in a structural reliability problem.

In addition to sampling methods, non-statistical methods have been explored. Xiu et al. (2002)
introduced Wiener-Askey polynomial chaos to represent stochastic processes, thereby reducing
dimensionality and leading to exponential convergence of the error. Wan and Karniadakis (2006)
developed amulti-element generalized polynomial chaos approach to treat arbitrary probabilitymea-
sures for solving ordinary and partial differential equations with stochastic inputs. However, these
methods are prone to the curse of dimensionality, where the basis terms of generalized polyno-
mial chaos increase exponentially. Reduced-order models, such as proper orthogonal decomposition
(Sirovich 1987) or Karhunen-Lòeve (KL) expansion (Newman 1996a; 1996b), can simplify the high-
dimensional problem by using a low-dimensional structure to capture the original information. KL
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Figure 1. Conceptual diagram of the SLWRmodel.

expansion can provide the best basis for random fields as it optimizes the total mean squared error.
However, it requires the construction of covariance matrices and solution of large-scale eigenvalue
problems, which are computationally expensive tasks.

To address this limitation, researchers (Cheng, Hou, and Zhang 2013a; 2013b; Babaee et al. 2017;
Choi, Sapsis, and Em 2014) have introduced approaches involving redundant representations with
products of scalar, time-dependent, stochastic bases and deterministic, spatiotemporally depen-
dent basis, such as dynamically orthogonal field equations or the dynamically bi-orthogonal (DyBO)
method. The advantage of the DyBO method is that the process of learning the basis is offline,
which reduces the time required to construct and solve the covariance matrix (Cheng, Hou, and
Zhang 2013a; 2013b). However, this method remains to be applied in a macroscopic stochastic traf-
fic flow model with a nonlinear fundamental relationship. Although Fan et al. (2022) demonstrated
the efficacy of the DyBO method in cases involving linear speed-density relationships, its application
to more general and realistic nonlinear relationships remains challenging. Therefore, in this paper,
the SLWR model is extended to incorporate the general nonlinear speed-density relationship. The
DyBOmethod, coupled with a Taylor series expansion technique, is used to solve the resulting highly
nonlinear problem.

3. Model development

Figure 1 illustrates the concept of the SLWR model. This macroscopic model describes traffic flow as
continuous fluid on a homogeneous road section. All vehicles enter the road section at the beginning
and travel to the end, without any disturbance within the section. Each vehicle is characterized by
distinct driving behaviors, which induce stochasticity.

To quantify the stochasticity, it is assumed to originate from heterogeneous drivers, with a driver’s
personality being consistent within a road section and reflected in their free-flow speeds. Moreover, it
is assumed that these speeds, representing thedesired speed choices on an empty or perceived empty
road, can reflect such heterogeneities. These assumptions ensure that heterogeneous drivers exhibit
different driving behaviors, and the behavior of a single driver is consistent along the road section.
For example, aggressive drivers tend to drive faster than conservative drivers under the same traffic
conditions, and these driver types do not abruptly change their behaviors.

Let uf denote the free-flow speed, which is a random variable that follows an arbitrary distribution
and is defined on a probability space (�, F , P) to represent heterogeneous driving behaviors:

uf : � → R, (1)
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where� represents the sample space,F is a σ -algebra, P is a probability measure, andR is a real line.
Then, uf (ω) is the random free-flow speed that corresponds to the random event ω ∈ �.

At the beginning of the road section, the traffic flow is a stochastic process defined on the same
probability space:

{Qin(t,ω) : t ∈ [0, T],ω ∈ �}, (2)

where Qin(t,ω) denotes the traffic flow at the beginning of the road section, and t represents the
evolving time span from 0 to T . Therefore, every t ∈ [0, T] corresponds to some random variable
Qin(t, ·) : � → R, which indicates that the traffic flow at the beginning of the road section consists
of heterogeneous drivers.

The traffic density, speed, and flow can be determined using fundamental diagrams. In this study,
the general nonlinear relationship between speed and density is considered, which can be written in
the form of the following definitional expression.

u(x, t, uf (ω)) = F(k(x, t, uf (ω))), F : [0,+∞] → [0,+∞], F ∈ C∞ (3)

q(x, t, uf (ω)) = k(x, t, uf (ω))F(k(x, t, uf (ω))) (4)

where x represents the space domain, i.e. the length of the road section from point a to point b;
k(x, t, uf (ω)) is the traffic density; u(x, t, uf (ω)) is the traffic speed; q(x, t, uf (ω)) is the traffic flow; and
F(·) represents a differentiable and continuous function that describes the general nonlinear rela-
tionship between speed and density. Notably, the general nonlinear relationship between speed and
density can be reflected by any traffic streammodel, such as those of Greenberg, Underwood, Drakes,
Pipes, and Newell, and the proposed SLWR model is equally applicable to all these traffic stream
models.

By incorporating the stochastic free-flow speed into the conservation law, the generalized form of
the SLWRmodel can be expressed as

∂k(x, t, uf (ω))

∂t
+ ∂q(x, t, uf (ω))

∂x
= 0, x ∈ [a, b], t ∈ [0, T],ω ∈ �, (5)

k(x, 0, uf (ω)) = k0(x, uf (ω)), (6)

q(a, t, uf (ω)) = Qin(t,ω), (7)

where equation (5) represents the conservation law; and equations (6) and (7) represent the initial and
boundary conditions, respectively.

Therefore, the proposedmodel indicates that the stochasticity, represented by the free-flow speed,
is attributable to heterogeneous drivers. Furthermore, for a single sample, the free-flow speed remains
constant throughout the period, ensuring the consistency of driving behavior. However, a challenge
emerges when nonlinear functions are incorporated in the conservation law. Specifically, the use
of such functions can make it difficult to calculate the expectation values if the DyBO method is
attempted. In particular, this method expands the differential equation to polynomials, and with non-
linear functions, E[F(k)] �= F(k̄). To mitigate potential errors, the Taylor series expansion method is
used to approximate the nonlinear function, and the convergence associated with different orders of
expansion is evaluated.

4. Methodology

Because standard polynomial chaos expansion requires the construction of a covariance matrix at
each time step, it is challenging to calculate the eigenvalues and eigenfunctions. In contrast, the DyBO
method can construct spatial and stochastic bases that evolve orthogonally with time. In this section,
the DyBO formulation of the SLWRmodel is derived. Once the SLWRmodel is transformed into a series
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of deterministic partial differential equations (PDEs) and ordinary differential equations (ODEs), classic
finite differencemethods canbe applied. The fifth-orderweighted essentially non-oscillatory (WENO5)
scheme is used in this study.

4.1. DyBOmethod

Denoting L as a differential operator and k̃ as a m-term truncated solution, the SLWR model can be

represented as ∂ k̃
∂t = Lk̃ = − ∂ k̃F(k̃)

∂x . The solution k̃ can be described using the following equations:

k̃(x, t;ω) = k̄(x, t) + k(x, t)Y(ω, t)T , (8)

k(x, t) = (k1(x, t), k2(x, t), . . . , km(x, t)), m ∈ N
+, (9)

Y(ω, t) = (Y1(ω, t), Y2(ω, t), . . . , Ym(ω, t)), m ∈ N
+, (10)

where k̄ is the mean; k is the spatial basis defined as a vector of eigenfunctions of the associ-
ated covariance functionCovk(x, y) = E[(k(x, t;ω) − k̄(x, t))(k(y, t;ω) − k̄(y, t))]; andY is the stochastic
basis calculated as Yi(ω, t) = 1

λi(t)
∫(k(x, t;ω) − k̄(x, t))ki(x, t)dx, i = 1, 2, · · · ,m.

The spatial and stochastic bases are orthogonal, satisfying the following conditions.〈
kT , k

〉
(t) = (〈

ki, kj
〉) = (λi(t)δij)m×m, (11)

E[YTY](t) = (E[YiYj]) = I, (12)

where 〈·, ·〉 is the inner product operator, e.g. 〈ki, kj〉 = ∫ kikjdx; E[·] is the expectation; λi denotes the
eigenvalues of the covariance function Covk(x, y); δij is the Kronecker product; and I is the identity
matrix.

Then, the DyBO formulation can be expressed as follows.

∂ k̄

∂t
= E[Lk̃], (13)

∂k
∂t

= −kDT + E[L̃k̃Y], (14)

dY
dt

= −YCT +
〈
L̃k̃, k

〉
�−1

k , (15)

where C and D are m-by-mmatrices representing the projection coefficients of ∂k
∂t and

dY
dt onto k and

Y , respectively; L̃k̃ = Lk̃ − E[Lk̃]; and �k is the diagonal matrix of the tensor product of the spatial
basis, i.e. �k = diag(kT , k).

The solutions of C and D are presented in an entry-wise manner:

Cii = G∗ii, (16)

Cij = ||kj||2
||kj||2 − ||ki||2

(G∗ij + G∗ji), for i �= j, (17)

Dii = 0, (18)

Dij = 1

||kj2|| − ||ki||2
(||kj||2G∗ji + ||ki||2G∗ij), for i �= j, (19)

G∗ = �k
−1

〈
kT , E[L̃k̃Y]

〉
, (20)

where Cii and Cij are elements of matrix C; Dii and Dij are elements of matrix D; and G∗ij and G∗ji are
elements of matrix G∗.
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As equations (13)–(15) still involve random variables, stochastic representations are needed. Her-
mite polynomials can be used because the random free-flow speed is assumed to follow a normal
distribution. According to theAskey scheme (Xiu andEm2003), Hermite polynomials canbedefined as

Hn(x) = (−1)nexp
(
x2

2

)
dn

dxn
exp(−x2/2). (21)

Here,H = (H1,H2, · · · ,HNp),Np ∈ N
+ represents theNp-termHermite polynomials, which exclude the

zero-index H0 = 1. Then,

Y = HA, (22)

where A is an Np-by-mmatrix.
As the speed-density relationship is nonlinear, the Taylor series expansion is used in this study.

F(k̃) =
∞∑
n=0

1
n!
F(n)(k̄)(k̃ − k̄)n =

∞∑
n=0

1
n!
F(n)(k̄)kYT (23)

Then, the right-hand side of the SLWRmodel becomes

Lk̃ = ∂(k̄ + HAkT )
∂x

∞∑
n=0

1
n!
F(n)(k̄)kYT + (k̄ + HAkT )

∂
∑∞

n=0
1
n!F

(n)(k̄)kYT

∂x
(24)

which is a linear combination.
This equation canbeused to calculate the terms E[Lk̃], E[L̃k̃H]A= E[(Lk̃− E[Lk̃])H]A and E[HT L̃k̃].

Consequently, the DyBO formulation of the SLWR model can be re-written in terms of Hermite
polynomials and Taylor series expansion:

∂ k̄

∂t
= E[Lk̃] =

∞∑
n=0

1
n!
F(n)(k̄)

∂k
∂x

kT + ∂
∑∞

n=0
1
n!F

(n)(k̄)kkT

∂x
, (25)

∂k
∂t

= −kDT + E[L̃k̃H]A = kDT +
∞∑
n=0

1
n!
F(n)(k̄)

(
∂ k̄

∂x
k + ∂k

∂x
ATHTkATHTHA

)

+ ∂
∑∞

n=0
1
n!F

(n)(k̄)

∂x
(k̄k + HAkTkATHTHA), (26)

dA

dt
= −ACT +

〈
E[HT L̃k̃], k

〉
�−1

k

= −ACT +
〈( ∞∑

n=0

1
n!
F(n)(k)

(
∂k

∂x
AkT + HTHA

∂kT

∂x
kATHT

)

+∂
∑∞

n=0
1
n!F

(n)(k)

∂x
(kAkT + HTHAkTkATHT )

)
, k

〉
�−1

k , (27)

which yields the deterministic PDEs presented in equations (25) and (26) and ODE in equation (27).

4.2. WENO scheme

The WENO scheme, which use a nonlinear adaptive procedure to automatically select the locally
smoothest stencil, is a high-order accurate finite difference method for problems with discontinuities
in solutions (Xiong et al. 2011). Detailed derivation and applications can be found in the works of Shu
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(2006; 2020). To account for possible shocks in the SLWR model, the WENO5 scheme is used in this
study.

Given the space domain [a, b] in the SLWRmodel, a uniform grid is used,

a = x 1
2

< x 3
2

< · · · < xN− 1
2

< xN+ 1
2

= b, N ∈ N
+ (28)

and the cells, cell centers, and cell size are defined as

Ii =
[
xi− 1

2
, xi+ 1

2

]
, xi = 1

2

(
xi− 1

2
+ xi+ 1

2

)
, 	x = xi+ 1

2
− xi− 1

2
. i = 1, 2, · · · ,N (29)

Using mean values of the stochastic variable k, the DyBO formulation of the SLWR model can be
expressed in the following form.

∂ k̄

∂t
= −∂f (k̄)

∂x
, (30)

where f (k̄) represents the right-hand-side of Equation (25).
This problem can be solved by using the following finite difference WENOmethod.

∂ k̄i
∂t

≈ − 1
	x

(
f̂i+ 1

2
− f̂i− 1

2

)
, (31)

where k̄i is the approximation to the point value of k̄(xi, t), and f̂i+ 1
2
and f̂i− 1

2
represent numerical fluxes

at nodes xi+ 1
2
and xi− 1

2
, respectively.

The numerical flux is a convex combination of reconstructed values q̂(r)
i+ 1

2
on the stencils.

f̂i+ 1
2

=
2∑

r=0

θrq̂
(r)
i+ 1

2
, (32)

where θr are nonlinear weights.
The reconstructed values are obtained as

q̂(r)
i+ 1

2
=

2∑
j=0

crjfi−r+j, r = 0, 1, 2. (33)

The constants crj derived from the candidate stencils in Equation (34), are outlined in Table 1.

Sr(i) = {xi−r , . . . , xi−r+2}, r = 0, 1, 2. (34)

The nonlinear weights θr are defined as follows:

θr = θ̃r∑2
s=0 θ̃s

, r = 0, 1, 2 (35)

Table 1. Constants crj .

r j = 0 j = 1 j = 2

0 1/3 5/6 −1/6
1 −1/6 5/6 1/3
2 1/3 −7/6 11/6
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with

θ̃r = γr

(ε + βr)
2 , (36)

γ0 = 3
10

, γ1 = 3
5
, γ2 = 1

10
, (37)

β0 = 13
12

(fi − 2fi+1 + fi+2)
2 + 1

4
(3fi − 4fi+1 + fi+2)

2, (38)

β1 = 13
12

(fi−1 − 2fi + fj+1)
2 + 1

4
(fi−1 − fi+1)

2, (39)

β2 = 13
12

(fi−2 − 2fi−1 + fi)
2 + 1

4
(fi−2 − 4fi−1 + 3fi)2. (40)

where ε is set as 10−6 to prevent the denominator of θ̃r being zero; γr represents the linear weights;
and βr denotes the smoothness indicators.

Note that the abovementioned equations exhibit an upwind bias in the optimal linear stencil. If the
wind direction is reversed, the procedure results in a mirror image with respect to xi+1/2. To address
the potential changes in wind direction, a more robust approach is to use global flux splitting. To this
end, the Lax-Friedrichs splitting method is used herein.

f (k̄) = f+(k̄) + f−(k̄), (41)

f±(k̄) = 1
2
(f (k̄) ± αk̄), (42)

α = maxk̄|f ′(k̄)|, (43)

where f+(k̄) and f−(k̄) are the splitting fluxes for the upwind and downwind directions, respectively.

TheWENO approximation ofL(k) is represented asL(k̄) = − 1
	x

(
f̂i+ 1

2
− f̂i− 1

2

)
, and then, equation

(30) can be re-written as

∂ k̄

∂t
= L(k̄). (44)

The above equation can be solved by using the third-order total variation diminishing Runge-Kutta
method. Further, the temporal domain [0, T] is divided into several discrete time points 0 = t0 < t1 <

· · · < tNt = T , and denote the numerical approximation to k̄ at the nth time step tn as k̄n. First, k̄0 can
be obtained with the initial condition. Then, starting from the known value k̄n(n ∈ N) at the nth time
step tn, the value k̄n+1 at the next time step tn+1 can be computed by using the following equations.

k̄(1) = k̄n + 	tL(k̄n), (45)

k̄(2) = 3
4
k̄n + 1

4
(k̄(1) + 	tL(k̄(1))), (46)

k̄n+1 = 1
3
k̄n + 2

3
(k̄(2) + 	tL(k̄(2))), (47)

where 	t = tn+1 − tn is the time step size, and k̄(1) and k̄(2) are the intermediate stages.

5. Numerical examples

To demonstrate the physical properties of the SLWR model, two simulation experiments are con-
ducted: one involving a temporal bottleneck due to laneblockage and the other including ageometric
bottleneck due to road characteristics, using the DyBO method and MC method. The MC results are
used as a benchmark to validate the accuracy of the DyBO method. Various terms of spatial and
Hermite polynomial bases are evaluated in the sensitivity analysis.
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5.1. Nonlinear speed-density relationship

In this example, Drake’s model is used to describe the nonlinear fundamental relationship between
the traffic density and speed. Using the definitional relationship, the traffic flow can be obtained.

u(x, t, uf (ω)) = uf (ω)exp

(
−

(
k(x, t, uf (ω))

ko

)2

/2

)
(48)

q(x, t, uf (ω)) = k(x, t, uf (ω))u(x, t, uf (ω)), (49)

where ko is the optimal density, set as a constant value of 50 veh/km in this paper.
Using equations (47) and (48), stochastic patterns of the fundamental diagrams can be derived, as

shown in Figure 2, corresponding to the stochastic patterns of the fundamental relationship.
Further, the free-flow speed is interpreted as an inherent inclination of a driver to select a speed

under free-flow conditions, and when this speed is randomized, it can be concluded that that the
corresponding traffic flow and time headway also become random variables, as illustrated below.

E(q) = ūf kexp(−k2/2k2o), (50)

Var(q) = σ 2
uf k

2exp(−k2/k2o), (51)

E(τ ) = 1
ūf k

exp(k2/2k2o) + 1

ū3f k
σ 2
uf exp(k

2/2k2o), (52)

Var(τ ) = 1

ū4f k
2
σ 2
uf exp(k

2/k2o) − 1

ū6f k
2
σ 4
uf exp(k

2/k2o), (53)

where E(q) is the mean of traffic flow, Var(q) is the variance of traffic flow, E(τ ) is the mean of time
headway, Var(τ ) is the variance of time headway, ūf is the mean of free-flow speed, and σ 2

uf is the
variance of free-flow speed.

Incorporating equations (47) and (48), the governing equation of the SLWR model can be written
as

∂k(x, t, uf (ω))

∂t
= Lk

Figure 2. Stochastic fundamental diagram.
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=
(
k(x, t, uf (ω))2

k2o
− 1

)
uf (ω)exp

(
−k(x, t, uf (ω))2

2k2o

)
∂k(x, t, uf (ω))

∂x
. (54)

Using the m-term truncated solution k̃, the following expression can be obtained:

Lk̃ =
(

(k̄ + kYT )
2

k2o
− 1

)
uf (ω)exp

(
−(k̄ + kYT )

2

2k2o

)
∂(k̄ + kYT )

∂x
. (55)

Because this equation involves an exponential term, the standard derivation procedure of the DyBO
method cannot be directly applied. To address this problem, a Taylor series expansion is used:

f (k̃) = exp

(
− k̃2

2k2o

)
= f (k̃) + f ′(k̃)(k̃ − k̃) + 1

2
f ′′(k̃)(k̃ − k̃)2 + O(	x2), (56)

where

f ′(k̃) = − k̃

k2o
exp

(
− k̃2

2k2o

)
, (57)

f ′′(k̃) = − 1
k2o

exp

(
− k̃2

2k2o

)
+ k̃2

k4o
exp

(
− k̃2

2k2o

)
. (58)

Then, the exponential term can be approximated as follows.

exp

(
− k̃2

2k2o

)
= exp

(
− k̄2

2k2o

)
− k̄

k2o
exp

(
− k̄2

2k2o

)
HAkT

+ 1
2

(
− 1
k2o

exp

(
− k̄2

2k2o

)
+ k̄2

k4o
exp

(
− k̄2

2k2o

))
kATHTHAkT . (59)

As the free-flow speed is a random parameter, it must be represented using Hermite polynomials.
Here, Zuf = cHT denotes a standard normal (i.e. Zuf ∼ N(0, 1)),) where c = (1, 0, · · · , 0) represents the
expansion constants:

uf (ω) = uf + σuf cH
T , (60)

where uf is the mean, and σuf is the standard deviation of the random free-flow speed.
Through simple calculations, the following expression can be obtained:

Lk̃ =
(
k̄2 + 2k̄HAkT + kATHTHAkT

k2o
− 1

)
[uf + σuf cH

T ]

×
[
exp

(
− k̄2

2k2o

)
− k̄

k2o
exp

(
− k̄2

2k2o

)
HAkT + 1

2

(
− 1
k2o

exp

(
− k̄2

2k2o

)

+ k̄2

k4o
exp

(
− k̄2

2k2o

))
kATHTHAkT

](
∂ k̄

∂x
+ HA

∂kT

∂x

)
(61)

Subsequently, the following terms E[Lk̃], E[L̃k̃H]A = E[(Lk̃ − E[Lk̃])H]A, E[HT L̃k̃] can be easily calcu-
lated as the embedded Taylor series expansion transforms them into linear combinations. Thus, the
DyBO formulation of the SLWR model can be obtained using equations (25)–(27). Explicit terms are
presented in the Appendix B.
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5.2. Example 1

5.2.1. Settings
Consider a 2-km-long segmentof ageometrically homogeneoushighway road. There arenoentrances
or exits in the middle of this road. The random free-flow speed follows a normal distribution with a
mean of 70 km/h and standard deviation of 10 km/h, i.e. uf ∼ N(70, 100). Moreover, the optimal den-
sity is a constant, i.e. ko = 50 veh/km. Initially, the road is empty, and the left boundary involves a
trapezoidal traffic flow over time, as shown in Figure 3.

To examine the discontinuities of the solutions, a traffic incident is assumed to occur at the end
of the road section, blocking the whole traffic from t = 0.75 h to t = 0.77 h. During this period, no
vehicles can leave the road section, and thus, a queue emerges and propagates upstream. After this
period, the queue starts to dissipate.

5.2.2. Numerical results
A warm-up simulation with the MC method is conducted for a short period of 5 min to obtain initial
values of the spatial and stochastic bases. Subsequently, the DyBO formulation is implemented, which
allows the spatial and stochastic bases to evolve over timewhile remainingdynamically bi-orthogonal.
This approach eliminates the costs associatedwith the generation of covariancematrices and solution
of eigen-problems. Figure 4 shows the evolving patterns of the spatial and stochastic bases. Signifi-
cantly variability of the stochastic basis is observed at t = 0.77h, indicating abrupt change in the traffic
density due to the queue propagation arising from the blockage. This observation highlights that the
DyBO formulation of the spatial and stochastic bases can capture the variability of the randomness in
the SLWRmodel.

Given the highly nonlinear nature of the SLWR model, obtaining analytical solutions is typically
impractical. In contrast, the MC method is robust and can converge to the expected value with large
sample sizes due to the law of large numbers. By conducting simulations with different sample sizes,
12,800 MC samples are selected as a benchmark in this study. The relative root-mean-squared error

Figure 3. Upstream demand.
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Figure 4. Spatial basis at different times: (a) 0.083 h; (b) 0.3 h; (c) 0.77 h; (d) 1.2 h.

(RRMSE) is defined to compare the accuracy of the DyBO solutions with against the benchmark MC
results.

RRMSEρ =
√

1
N

∑
it (ρ

(k)
it − ρ∗

it)
2

1
N

∑
it ρ

∗
it

× 100%, RRMSEσ =
√

1
N

∑
it (σ

(k)
it − σ ∗

it )
2

1
N

∑
it σ

∗
it

× 100%, (62)

where ρ
(k)
it and σ

(k)
it are themean (MEAN) and standard deviation (SDEV) of the density of the kth case

for grid point (i, t), respectively; ρ∗
it and σ ∗

it are the converged MEAN and SDEV of the density from the
MC scheme, respectively; and N is the total number of grid points (space and time).

The accuracy of the DyBOmethod is affected by the truncated terms. Achieving a balance between
complexity and accuracy is essential. Through a comparison with the benchmark results obtained
using the MC method, different numbers of spatial basis (m = 3, 7, 11, 15, 19) and Hermite poly-
nomials (Np = 4, 8, 12) are used to calculate the MEAN and SDEV values, as shown in Table 2. The
RRMSEs of both MEAN and SDEV decrease with increases in the numbers of terms of the spatial basis
and Hermite polynomials. In addition, the computation time is substantially reduced compared with
the benchmark solution of the MC method, which requires more than 3,500 min. When Np = 12 and
m = 19, the RRMSEs of the MEAN and SDEV are below 2% and 5%, which may be considered accept-
able. For this example, it is observed that the DyBO solutions effectively converge to the benchmark
results with increasing numbers of terms of the spatial basis and Hermite polynomials.

Three representative time slots are selected to demonstrate the evolution patterns of the SLWR
models. Before the incident occurs, vehicles enter from the beginning of the road section and travel
to the end without any disturbance. Figure 5 illustrates the density patterns at t = 0.3 h. The density
MEANevolves smoothly along the road section,with a staircase-like fluctuationdownstream. This phe-
nomenon occurs because heterogeneous drivers drive at different speeds, with faster drivers covering
more distance within the same time slot. In addition, with increasing numbers of terms of the spatial
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Table 2. RRMSEs of statistical quantities computed by the DyBO and MCmethods.

No. of Hermite polynomials

Np = 4 Np = 8 Np = 12

No. of spatial basis terms,m MEAN SDEV Time (min) MEAN SDEV Time (min) MEAN SDEV Time (min)

3 21.1% 38.1% 2.26 16.6% 33.6% 2.32 13.9% 29.9% 2.41
7 6.6% 19.3% 2.40 5.2% 9.9% 2.50 4.3% 8.5% 2.59
11 5.0% 14.3% 2.58 2.9% 7.3% 2.69 2.6% 5.2% 2.74
15 3.5% 13.8% 2.70 2.3% 5.9% 2.88 1.7% 5.0% 2.95
19 2.6% 13.0% 2.82 1.7% 5.3% 3.12 1.6% 5.0% 3.17

Figure 5. Density patterns at t = 0.3 h.

basis andHermite polynomials, theMEAN and SDEV values approach the benchmark results of theMC
method.

When the incident occurs at the end of the road section, preventing vehicles from exiting while
upstream vehicles continuously arrive, a queue forms. Figure 6 shows the density patterns at t = 0.78
h. A backward shock wave can be observed in the MEAN of the density. Furthermore, the SDEV of the
density remains low and stable before the shock wave, surges and becomes unstable in the region
in which the MEAN dramatically increases, and then stabilizes to a low value as the MEAN gradually
peaks. This pattern indicates thatheterogeneousdriversmayarrive at the startingpoint of thequeueat
different times, leading to significant variations in the densities. The speed differences among vehicles
diminish when the traffic approaches a fully congested state. The SDEV is expected to increase with a
larger number of heterogeneous drivers. Although the incident introduces a discontinuity, the DyBO
solutions exhibit strong convergence to the benchmark result, and the accuracy can be increased by
adding more spatial terms and Hermite polynomials.

After the incident is resolved, vehicles can leave the road section, and thus, the queue begins to dis-
perse. Figure 7 shows the density patterns at t = 1.2 h. There is no traffic congestion at this point, and
the MEAN and SDEV remain stable along the road section, albeit slightly larger than those at t = 0.3
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Figure 6. Density patterns at t = 0.78 h.

Figure 7. Density patterns at t = 1.2 h.

h due to more vehicles entering from the beginning of the road section. These trends show that the
proposed model and solution method can accommodate different boundary conditions.

Because Taylor series expansion is applied to approximate the exponential terms in the DyBO for-
mulation, it is necessary to examine its effects on errors. Figure 8 shows the RRMSEs of MEAN and
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Figure 8. RRMSE with different orders of Taylor series expansion: (a) MEAN; (b) SDEV.

Table 3. Optimal densities of different road sections.

Road section Length (km) Optimal density (veh/km) Description

1 0–3 50 Adequately long to hold queuing vehicles
2 3–4 35 Decrease in capacity
3 4–5 50 Same setting as that of road section 1
4 5–6 30 Second bottleneck with further decrease in capacity to

demonstrate the second queue at the downstream end

SDEV fordifferentorders of Taylor series expansion. Three cases (m = 3, Np = 4; m = 11, Np = 8; m =
19, Np = 12) are considered, and the results show that the accuracy is enhanced with an increase in
the order of Taylor series expansion.

5.3. Example 2

5.3.1. Settings
As shown in Table 3, this example features a 6-km-long highway with varying road characteristics,
divided by two geometric bottlenecks. The optimal density represents these heterogeneous condi-
tions. Road sections with different optimal densities have various capacities, potentially resulting in
queuingat theupstreamendwhen the capacity of thedownstreamsection is exceeded.Other settings
are the sameas those in the first example, except for the extended2-h simulationperiod, implemented
to observe queue dissipation at the downstream end.

5.3.2. Numerical results
To demonstrate shock propagations between different road sections, DyBO solutions with 11 spatial
basis terms and 8 Hermite polynomial terms and MC solutions with 1,000 MC samples are obtained.
Road sections 2 and 4 have lower optimal densities and thus lower capacities. As the traffic demand



TRANSPORTMETRICA B: TRANSPORT DYNAMICS 17

Figure 9. Density patterns with geometric bottlenecks.

exceeds these capacities, queues form, as expected. In the absence of any blockage at the end of the
road section, the queues are expected to gradually dissipate and eventually clear if the traffic demand
remains below capacity. Typical time slots are selected to demonstrate density evolution along this
heterogeneous highway.

As shown in Figure 9, at t = 0.3 h, the traffic demand is lower than the capacities of all road sec-
tions, and thus, no queue is formed. However, the MEAN values for road sections 2 and 4 are slightly
higher than those for road sections 1 and 3, owing to their lower optimal densities. At t = 0.8 h, two
queues format the beginning of road sections 2 and 4. These queues propagate upstreambecause the
traffic demand exceeds the capacities of road sections 2 and 4. The MEAN value for the downstream
queues is slightly higher than that of the upstream queues owing to the lower optimal density of the
former. The two queues dissipate upon reaching their optimal densities (i.e. 35 and 30 veh/km, respec-
tively). When the traffic demand exceeds capacities of the bottlenecks, the queues continue to grow.
At t = 1.2 h, the MEAN value of road section 2 exceeds 35 veh/km (i.e. the optimal density), indicating
congestion. The downstream queue overflows into road section 2. When the traffic demand is lower
than the capacities of the bottlenecks, the queue begins to dissipate. At t = 2 h, the queue is cleared.
These density patterns demonstrate the effectiveness of the DyBOmethod in solving the SLWRmodel
with geometric bottlenecks.

6. Conclusions

This studywas aimed at extending the applicability of the SLWRmodel from linear speed-density rela-
tionships to nonlinear speed-density relationships, which can better reflect real-world traffic streams.
Compared with the linear speed-density relationship explored in a recent study(Fan et al. 2022), this
nonlinear extension increases the model complexity, rendering the previous DyBO formulation inap-
plicable. The challenge associated with considering the nonlinear speed-density relationship is that
expectations of the nonlinear terms cannot be directly calculated during theDyBO formulation. Taylor
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series expansion represents a promising strategy to approximate the nonlinear terms, and accept-
able accuracy can be achieved when sufficiently high orders are used. Simulation experiments were
conducted using Drake’s model, in which the free-flow speed was treated as a random variable.
The numerical results demonstrated stochastic variabilities along the road section over time. More-
over, typical phenomena, such as queuing and shock propagations, in the presence of temporal or
geometric bottlenecks could be simulated.

Compared with the MC method, the DyBO method requires considerably less computation time
while maintaining reasonable accuracy, and thus, it is more applicable in engineering practice. For
instance, in highway design, the proposed model can help identify critical locations resulting from
varying user distributions on different days. There might be situations where the average density at
specific locations is moderate, but with a large variance, leading to exceptional congestion on crucial
days that could be overlooked during the standard design process based on average user character-
istics. Furthermore, the likelihood of such critical situations can be quantified, allowing for a trade-off
between operational performance and construction cost. Another application can be related to road
network design. Traditional methods require updating the evaluationmodels each time network con-
ditions change. Incorporating stochastic factors in these caseswould lead to significant computational
costs. In such scenarios, the DyBO method can considerably reduce the computational burden. How-
ever, real-world scenarios may havemultiple sources of stochasticity. Future research can be aimed at
extending the proposed framework to consider different traffic stream models and multiple random
parameters.
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