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Abstract

Sensing and edge artificial intelligence (Al) are two key features of the sixth-generation (6G) mobile
networks. Their natural integration, termed Integrated sensing and edge AI (ISEA), is envisioned to
automate wide-ranging Internet-of-Tings (10T) applications. To achieve a high sensing accuracy, features
of multiple sensor views are uploaded to an edge server for aggregation and inference using a large-scale
Al model. The view aggregation is realized efficiently using over-the-air computing (AirComp), which
also aggregates channels to suppress channel noise. As ISEA is at its nascent stage, there still lacks
an analytical framework for quantifying the fundamental performance gains from view-and-channel
aggregation, which motivates this work. Our framework is based on a well-established distribution
model of multi-view sensing data where the classic Gaussian-mixture model is modified by adding
sub-spaces matrices to represent individual sensor observation perspectives. Based on the model and
linear classification, we study the End-to-End sensing (inference) uncertainty, a popular measure of
inference accuracy, of the said ISEA system by a novel, tractable approach involving designing a
scaling-tight uncertainty surrogate function, global discriminant gain, distribution of receive Signal-to-
Noise Ratio (SNR), and channel induced discriminant loss. As a result, we prove that the E2E sensing
uncertainty diminishes at an exponential rate as the number of views/sensors grows, where the rate is
proportional to global discriminant gain. Given AirComp and channel distortion, we further show that
the exponential scaling remains but the rate is reduced by a linear factor representing the channel induced
discriminant loss. Furthermore, in the case of many spatial degrees of freedom, we benchmark AirComp
against equally fast, traditional analog orthogonal access. The comparative performance analysis reveals
a sensing-accuracy crossing point between the schemes corresponding to equal receive array size
and sensor number. This leads to the proposal of a scheme for adaptive access-mode switching to
enhance ISEA performance. Last, the insights from our framework are validated by experiments using

a convolutional neural network model and real-world dataset.
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I. INTRODUCTION

In June 2023, the International Telecommunication Union (ITU-R) finalized six major usage
scenarios for 6G. While others represent a scaled-up version of 5G, two are new — Integrated
Al and Communications (IAAC) and Integrated Sensing and Communication (ISAC). IAAC
reflects the 6G vision of edge intelligence, referring to ubiquitous distributed Al model training
and inference at the network edge to support Internet-of-Tings (I10T) applications [1]], [2]. On the
other hand, ISAC will leverage edge devices as distributed sensors and network-scale cooperation
to enable 6G networks to have multi-view observations of the physical world in real-time [3],
[4]. The natural fusion of the two distinctive 6G functions, termed Integrated Sensing and Edge
Al (ISEA), shall provide a powerful platform for automating a broad range of IoT applications
including auto-pilot, robotic control, digital twins, augmented reality, and localization and track-
ing [1]], [4]. Unleashing the full potential of ISEA calls for a new goal-oriented design approach
that integrates sensing, Al, and communication to optimize the end-to-end (E2E) performance [5],
[6]. In this work, we contribute to the theoretic characterization of the E2E performance of ISEA,
thereby laying a foundation for goal-oriented designs.

A common backbone architecture for ISEA, called multi-view convolutional neural network
(MVCNN), wirelessly connects distributed sensors to an edge server [7]. Each sensor uses
a lightweight neural network model for feature extraction from local sensing data and then
uploads the local features for aggregation and inference at the server using a pre-trained deep
neural network model supporting multi-modal computer vision [6], [8], [9]. Local and server
models are jointly trained as a single global model to maximize the E2E sensing (or inference)
accuracy. This pertains to the common approach in edge Al, called split inference [[10]. By
treating local and server models as components splitting the global model, relevant techniques
can enable the adaptation of the splitting point to balance the device computation load and
performance requirements in terms of, e.g., E2E latency and communication resources [11[]—
[13]. The mentioned feature aggregation, commonly referred to as multi-view pooling, is a key
operation of MVCNN that exploits multiple sensor observations to improve sensing accuracy. The

server operation fuses received local features into an aggregated feature map that is input into the
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global model (e.g., classifier) to generate a label identifying a target object/event. Element-wise
averaging and maximization over local feature vectors are two popular aggregation functions
termed average-pooling and max-pooling, respectively (see, e.g., [6]). Via view aggregation,
multi-view sensing can attain an accuracy significantly higher than that of the single-view case
especially when there are many sensors [7], [14]. However, the implementation of ISEA is
confronted by a communication bottleneck resulting from the transmission of high-dimensional
features by potentially a large cluster of sensors.

Massive access techniques for 5G are insufficient for tackling the communication bottleneck
of edge AI, which includes ISEA as a special case. Such techniques, for example, grant-
free massive access, assume low-rate sporadic transmission by many low-complexity sensors
monitoring environmental variables such as humidity and temperature [[15], [16]. In contrast, 6G
sensors are usually multi-modal devices (e.g., cameras and LIDAR) deployed in data-intensive
computer vision applications such as surveillance, autonomous driving, and drone swarms [17].
The challenges are escalated by the tactile applications targeted by 6G, such as augmented
reality and remote robotics, which demand air latency below 1 milli-second [18]]. The search
for solutions motivates researchers to depart from the traditional communication-computing
separation approach and advocate a paradigm shift towards the mentioned goal-oriented designs
that target a specific task, such as distributed learning or sensing, and aim at maximizing the
corresponding E2E system performance [1], [2]. One natural design approach for new paradigm
is to customize existing techniques from multi-view sensing and edge Al, for example, sensor
scheduling [19], feature compression [10], and hierarchical pooling [20], using an E2E metric
(e.g., E2E sensing accuracy or latency) and targeting a specific air-interface technology (e.g.,
MIMO, OFDMA, and adaptive power control). An alternative, more revolutionary approach
is to design new physical-layer technologies fully integrating computing and communication.
In this vein, a representative class of techniques as considered in this work, called over-the-
air computation (AirComp), integrates multi-access and nomographic functional computation
(e.g., averaging and geometric mean) to solve the scalability problem in traditional multi-access
that divides radio resources [21]]. AirComp’s basic principle is to exploit the wave superposition
property to achieve over-the-air aggregation of uncoded analog signals simultaneously transmitted
by multiple devices. The scalability as a result of simultaneous access makes AirComp a popular
air-interface technology for supporting fast and efficient distributed computing in 6G operations

such as distributed learning [22], inference [23], and sensing [6], [24]. In addition, the use of

April 30, 2024 DRAFT



uncoded analog transmission in AirComp is another factor contributing to the technology’s ultra-
low-latency while the resultant unreliability can be coped with by the robustness of data-analytics
techniques or an Al algorithm [6], [25], [26]. In particular, AirComp has been extensively studied
for implementing over-the-air aggregation of local model updates in federated learning (FL)
systems, leading to the emergence of an area called over-the-air FL [27]. Diversified design issues
have been investigated including gradient sparsification [22], beamforming [28]], precoding [29],
power control [30], broadband transmission [31].

Most recently, researchers also explored the applications of AirComp to realize over-the-
air view aggregation in ISEA systems [6], [24]], [32], [33]. In [6]], max-pooling, which is not
directly AirComputable, is realized using AirComp via p-norm approximation of maximization.
The parameter of the approximation function is optimized to balance the noise effect and
approximation error. The optimization still uses the generic metric of AirComp error (i.e., the
error in computed function values with respect to the noiseless case) instead of the E2E sensing
accuracy though the two metrics are related by a derived inequality. Similarly, the AirComp
error is adopted in [32] as the performance metric to optimize a receive beamformer in a system
supporting integrated MIMO radar sensing and AirComp. On the other hand, a different metric,
discrimination gain, has been proposed to approximately measure the sensing accuracy with
tractability. In [33]], the effects of sensing, computation, and communication on the discrimination
gain are quantified and controlled by designing a task-oriented resource management approach
so as to optimize the E2E performance. The average discrimination gain for an individual feature
dimension is further considered in [24] to facilitate importance-aware beamforming that adapts
effective channel gains of different sensors according to their importance levels accounting for
both average discriminant gains and channel states. Wireless for ISEA is still a nascent area
where prior work largely focuses on algorithmic designs. There still lacks a systematic framework
for analyzing E2E performance. Specifically, in the aspect of multi-view sensing, the sensing
accuracy sees continuous improvements with the growth of the number of sensors providing
view diversity. There exist few results on quantifying the scaling law. On the other hand, in the
aspect of air interface, the AirComp error diminishes with the increase of the number of links
due to aggregation and exploitation of (channel) spatial diversity [34]]. The consideration of E2E
performance for ISEA naturally couples the two aspects and gives rise to the following open
research questions we attempt to answer sequentially in this work.

1) (View Aggregation) Consider ISEA without channel distortion. How does the accuracy
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of multi-view sensing improve as the number of sensors grows?
2) (View-and-Channel Aggregation) Consider ISEA with wireless channels and using Air-
Comp. How does the E2E sensing accuracy improve as the number of sensors grows?
3) (Optimality of AirComp) AirComp supports simultaneous access when spatial degrees
of freedom (DoFs) are insufficient for orthogonal access. When many spatial DoFs are

available, is AirComp still optimal for fast ISEA?

By making an attempt to answer these questions, we derive a theoretic framework for quanti-
fying the E2E performance of an ISEA system implemented on the MVCNN architecture with
an AirComp-based air interface. Key models and assumptions are summarized as follows. First,
a well-established mathematical model for multi-view sensing is adopted [35], [36]. In this real-
data validated model, features extracted from sensor observations (e.g., images) are described
as low-rank projections of a high-dimensional ground-truth feature map, where a projection
matrix, called observation matrix, reflects the spatial relationship between the associated sensor
and the target object. Second, the feature map is assumed to distribute following the classic
Gaussian mixture model (GMM) widely used in statistical learning [37] and deep learning (see,
e.g., [38]). The model comprises multiple Gaussian clusters, each of which is tagged with an
object-class label. Third, channel coefficients of the multiuser single-input-multi-output (SIMO)
uplink channel are assumed to be independent and identically distributed (i.i.d.) Rayleigh fading,
representing spatial diversity from rich scattering and spatially separated sensors. Last, the E2E
sensing accuracy is measured by the popular metric of sensing uncertainty that is computed as
the entropy of posteriors of object classes conditioned on observations [39], [40].

Then the key contributions and findings of this work are summarized as follows.

« View Aggregation Gain: To answer Research Question 1 for the noise-free case, the E2E
sensing uncertainty is derived as a function of multiple factors including the number of
sensors, number of (object) classes, and average differentiability of class pairs measured
using the well known Mahalanobis distance. The average class differentiability is with
respect to (w.r.t.) the feature sub-space defined using the global observation matrix that
cascades the observation matrices of all sensors. The derivation exploits the tractability of
GMM to derive asymptotically tight bounds on sensing uncertainty. The derived function
reveals that view-aggregation gains in two aspects. On one hand, the monotonic reduction of

sensing uncertainty w.r.t. the sensor population reflects its resultant suppression of sensing
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noise. On the other hand, the function is also a monotone decreasing w.r.t. the average
class differentiability that is in turn enhanced as a growing number of suitably scheduled
sensors boosts the rank of the global observation matrix. When the number of views is
large, the uncertainty function is shown to exhibit a simplified form linearly proportional
to the number of classes but diminish at an exponential rate linearly proportional to the
number of views/sensors.

« View-and-Channel Aggregation Gain: To address Research Question 2, we consider ISEA
with channel distortion induced by AirComp for implementing multi-view aggregation.
Building on the preceding analysis and applying random-matrix theory, the sensing uncer-
tainty is shown to scale similarly as its noiseless counterpart except for an additional linear
scaling factor for the exponential decay rate. The factor represents the negative channel
effect on average class differentiability and is proved to be a monotone decreasing function
of the effective receive SNR after AirComp. The analysis reveals that as the number of
sensors increases, aggregation suppresses noise sufficiently fast such that the exponential
decay of sensing uncertainty in the noiseless case is retained albeit at a slower exponential
rate.

« AirComp versus Orthogonal Access: To answer Research Question 3, AirComp is bench-
marked against analog orthogonal access, both of which support low-latency uncoded analog
transmission [25], [26]. AirComp’s main advantage lies in supporting spatial simultaneous
access even when spatial DoFs are insufficient for orthogonal access. However, as the
receive array size increases, we show the existence of a crossing point (with array size and
number of sensors approximately equal) above which analog orthogonal access outperforms
AirComp in terms of sensing uncertainty. This motivates an adaptive scheme that switches
between AirComp and analog orthogonal access depending on the available spatial DoFs.

o Experiments: The preceding analytical results are validated in ISEA experiments using
both synthetic (i.e., GMM) and real datasets (i.e., ModelNet [7]).

The remainder of this paper is organized as follows. The multi-view sensing and communica-

tion models are elaborated in Section [lIl The analysis results for noiseless and AirComp-based
view aggregation cases are presented in Section [III| and Section [[V] respectively. In Section [V|

we benchmark AirComp against analog orthogonal access, followed by performing experiments

in Section
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Fig. 1. A system integrating multi-view sensing and edge Al

II. SYSTEM, MODELS, AND METRICS

Consider an ISEA system where a server realizes remote object detection by leveraging Al-
based multi-view sensing over K distributed sensors, as illustrated in Fig. [T} Relevant operations,

models, and metrics are described in the following sub-sections.

A. Multi-View Sensing Model

1) Local Data Distribution: Each sensor, say sensor k, feeds its captured raw data (e.g.
images) into a pre-trained model to generate a feature map, denoted by f;, € R, that comprises
M real features. The distribution of f; is given as follows. First, let g € R be the ground-

truth feature map corresponding to the current object and be assumed to have a uniform prior

distribution over L classes [24], [39]:

1

Pr(g=p,) = T Ve, (D

where p, denotes the centroid of the /-th class in the feature space. Then, due to the limited
physical view of the sensors, f; represents a low-dimensional projection of g [35], [36]. Adopting

a well-established multi-view sensing model in the literature (see, e.g. [35]), we can relate the

feature map f;, to g as

fi = Prg + wy, )
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where Py, is the low-rank observation matrix of sensor k£ and wy, represents the inherent sensing
noise following an independent and identically distributed (i.i.d.) Gaussian distribution A/(0, C).
The observation matrices { Py} and the covariance matrix C can be learned by using subspace-
representation networks [35], [36] and are considered to be available to both devices and the

server. It follows from (2) that local feature maps follow the distribution of a Gaussian mixture

model (GMM) [37]):
1 &
fk ~ Z ;:1 N(Pkub C)v (3)

where NV (P, C) represents a Gaussian distribution with mean P,u, and covariance C.

2) Global Classification: Next, {fj} are uploaded to the server for classification as follows.
They are first fused into a single feature map, denoted by f, which is known as view aggregation
(or pooling). The popular average aggregation is adopted as f = % Zle f. [7]. Then, f is fed
into a classifier for inference. We consider two types of classifiers.

o Linear Classification: A linear classifier is considered in analysis for tractability [37].
Consider a case of two classes (L = 2), the linear classifier distinguishes the pair of classes
by using a classification boundary between their clusters, which is defined as a hyperplane
in the feature space

H(a,B)={f:a'f+5=0} (4)

The optimal label of an input feature map f is assigned as one class if f is determined to
be above the hyperplane (i.e., a'f + £ > 0); otherwise, f is labeled as the other class.
In a general case with L > 2, there are L(L — 1)/2 classification boundaries, and the
optimal result can be obtained via sequential conduction of the one-versus-one classification.
Given equal priors of classes, {f;} follow the distribution in (3). The optimal L-class linear
classifier is the maximum likelihood (ML) design [37]:

* = arg max log Pr (f|p,) - (5)

o CNN Classification: MVCNN model is adopted in experiments. The model consists of two
parts, F; and J5, that are employed at sensors and the server, respectively. The sub-model
J 1s identical for sensors and used to extract local features from sensing data. After view
aggregation, the obtained aggregated feature vector f is fed into F, that outputs scores for

individual classes. The class with the highest score is selected as the prediction result.
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B. Multi-Access Models

For the ISEA system in Fig. 1, we mainly consider analog multi-access techniques for enabling
efficient simultaneous access (i.e., view-and-channel aggregation). We also explore ISEA with
noiseless feature aggregation in Section III, aligning with scenarios involving reliable digital
transmission. In the class of analog transmission, we primarily adopt AirComp for feature
aggregation. To investigate its optimality, we further consider analog orthogonal access, namely
orthogonal access with fast analog transmission [26], as a benchmark scheme. It achieves the
same multi-access latency as AirComp but requires receive spatial DoF to be equal to or
exceed the number of sensors. The assumptions and operations of the schemes are described
as follows. The server and sensors are equipped with N-element array and a single antenna,
respectively. Assuming a frequency non-selective channel, time is slotted and each slot is used
for transmitting one symbol. Block fading is considered such that the channel remains unchanged
over a coherence duration comprising 7' time slots. Symbol-level synchronization is assumed
over all sensors.

1) Analog Transmission: In an arbitrary time slot, say slot ¢, sensors simultaneously transmit
their linear analog modulated data symbol, {zj.}, leading to the server receiving a symbol

vector:

ye=Y_ pehuwiy + 2, 6)
k

where p;, represents transmit power, h, € C¥*! denotes the channel vector of sensor k, and
z; ~ CN(0,0%Iy) models additive channel noise. Assuming Rayleigh fading, h;, is composed
of i.i.d. CN(0,1) entries and is independent between sensors. Let 1/ 2E [% ST x%t] be the
variance of transmitted symbols over a channel coherence block. Each sensor is constrained by
a power budget of P, i.e., piv? < P. Then, the transmit SNR is defined as v = O_—PQ.

Let x; = [Tk, -, 2k m| denote the symbol vector transmitted from sensor k& over M time
slots with M < T'. The data vector in (6)) received over M time slots can be aggregated into a

matrix symbol, Y = [y1, - ,yum]:
Y =Y pehuxi + Z, )
k

where Z = [z1,- -, Zy).
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2) Receiver for AirComp: The symbol vector x;, in is computed as x; = (f, — £7%)"
with f"® = E[f}] to have zero mean. The parameter f;"® is also available for both the server to
receive the features. Following the AirComp literature, zero-forcing (ZF) transmit power control
is adopted to overcome channel distortion, p, = (b”h;)~! with b € CV being a receive combiner
(see, e.g., [21]]). The output is given as s = Yb =Y, fi — £+ Z"b. From s, a noisy version
of f, denoted by f, can be obtained by the following post-processing:

1

N 1 =1
_ avg H
f__s+_F' Ek f,°=f+—-7Z"b. (8)

3) Receiver for Orthogonal Multi-Access: The simultaneous data streams in (/) are orthog-
onalized via receive beamforming. It is optimal to maximize transmit power at each sensor
as pr = \/773. Then the received symbol matrix can be rewritten as Y = ) ‘/Tﬁhkxk + 7.
Let e, = [0,--+,1,---,0]" denote the standard basis vector with the k-th element being 1.
The data stream of sensor k, denoted by s, can be extracted from Y using a ZF beamformer

b, = H(HHH)_lek with H = [hl, s ,hK] [41]:

VP _
sk =Y"b, = — (£, — £'%) + Z"b.. ©)
1%
By slight abuse of notation, let f also denote the noisy version of the desired aggregated feature

vector in the current case. Then it can be obtained by the following post-processing:
~ 1 v - v
f=— —=s +favg>:f+—zH by
Kg (\/P F KVP ; ‘ 19

C. E2E Performance Metric

Typically, the sensing (inference) accuracy is defined as the probability of correct classification.
For the purpose of tractable analysis, we also consider the following two relevant metrics for
evaluating the E2E sensing performance.

1) Sensing Uncertainty: As a popular measure related to sensing (inference) accuracy, the
metric is defined as the entropy of posteriors of classification classes given the aggregated
feature [40]]. Mathematically, given the aggregated feature map f, its sensing uncertainty, denoted

by H, is given as
L

s [_zpr (1) 02 P (1)

/=1

: (11)
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2) Discrimination Gain: The sensing accuracy is largely determined by the discernibility
between a pair of classes that can be measured by discrimination gains computed as their
symmetric Kullback-Leibler (KL) divergence [39]]. Considering sensor k, the local discrimination

gain between classes ¢ and ¢, denoted as G (¢, ('), can be computed as

+ KLV (Pipyr, C) [V (Prpsy, C))

= (e — o) PRCPy (1 — o) - (12)

The global discriminant gain is derived in the next section.

III. MULTI-VIEW AGGREGATION GAIN WITHOUT CHANNEL DISTORTION

In this section, we consider the scenario with the absence of channel noise and focus on
analyzing the E2E performance of an ISEA system in terms of sensing uncertainty. The tractable
analysis consists of three steps presented in separate sub-sections, namely characterizing the
distribution of aggregated features, designing a suitable surrogate function for sensing uncertainty,

and deriving the scaling laws of sensing uncertainty.

A. Aggregated Feature Distribution

The computation of sensing uncertainty in (T1)) relies on an explicit distribution of the aggre-

gated feature map, f, at the input to the classifier. Based on the GMM model of local features,

the desired result is derived as shown below.

Lemma 1 (Distribution of Aggregated Feature Map). Based on the distribution of local feature
maps in (3) and in the absence of channel noise, the aggregated feature f follows a Gaussian-

mixture distribution given as
1 < 1
f~— Pu,, —C
T ;N( Ho; K ) )

where P = % > P denotes the average of local observation matrices, termed global observa-

tion matrix.

Proof. (See Appendix |A). O
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Comparing Lemma [I] and (G)), it is observed that the multi-view aggregation retains the
distribution of features except for 1) replacing the cluster centroid of individual classes with
their projections onto the global observation matrix and 2) narrowing the cluster size by reducing
covariance by the factor 1/K. These two factors contribute to the multi-view aggregation gain
in sensing performance, which is quantified in the sequel.

Using Lemma [1| and (§), the optimal linear classifier with f as input can be written as
¢ =argmin (f - Pp,) C' (£ - Ppy). (13)

The uniqueness of the inferred label ¢* is guaranteed by the independence among views and f

being a continuous random variable.

B. Surrogate Function for Sensing Uncertainty

For the purpose of tractability, we propose a simpler but scaling-tight surrogate function for
sensing uncertainty. To this end, let Gy, denote the global discrimination gain of f. Using the

local discriminant gain in (12)), the expression of G, can be obtained as shown below.

Lemma 2 (Global Discrimination Gain). Using f for classification, the global discrimination

gain between class ¢ and ¢ is given as Gy ¢ = KDy where

Dyp = (py — pp) PCT'P (1, — py).-

In Lemma 2] Dy, is equal to the Mahalanobis distance between classes ¢ and ¢', which reflects
their differentiability [42]. Then, leveraging the distribution of f in Lemma [1| and optimization

theory, the resulting sensing uncertainty is obtained as follows.

Proposition 1 (Sensing Uncertainty). In the case of linear classification, the E2E sensing un-

certainty, H, in (11)) can be bounded as

. ]

1 Dy

ZZlog 1+Zexp(— ;,e K)] < HKL
(=1 e

1 & [ D

— N og |1 B U e c,

1

where ¢ > 0 is arbitrary, the constant C, = log f‘fc and D, is given in Lemma
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Proof. (See Appendix [B). O

The relatively complex expression of H in (IT)) does not allow tractable analysis of its scaling
laws. Nevertheless, its bounds in Proposition |1| suggests that /7 can be approximated by the

following surrogate function:

L
1
H, = Z Zlog 1+ Zexp (—I{D&g/K) , (14)
—1 e,

1

1
where s can be 3 and Yy

corresponding to the lower and upper bounds in Proposition
respectively. The function is found to follow a similar scaling law as H, which is essential for
subsequent asymptotic analysis. The scaling-tight property of H; is validated using the following

numerical example.

Example 1 (Numerical Validation). Let the feature dimension and the number of classes be
equal: M = L = 5. The covariance of the local feature distribution is set as C = 0.1I,;. The
curves of exact sensing uncertainty and surrogate function in (14)) are plotted in Fig. 2] for a
variable number of views/sensors. By comparing the curves, one can observe that the sensing
uncertainty is not necessarily a monotonically decreasing function w.r.t. K (e.g., from K = 2
to K = 3) when K and the local observation DoFs, referring to rank(Py), are small. The
monotonicity of multi-view aggregation w.r.t. /{ emerges when local sensors acquire sufficiently
many observation DoFs (i.e., 2), as shown in Fig. Based on observations from Fig. 2] we can
conclude that the surrogate function accurately captures the scaling law of sensing uncertainty

including reflecting the said glitches of monotonicity.

C. Aggregation Gain

1) Simplifying Uncertainty Surrogate: To facilitate the analysis of multi-view aggregation
gain, we simplify the expression of uncertainty surrogate function in (14) by Taylor expansion.
First, define the average class separation distance as

L

— 1
D= =122 Dew (15)

(=1 '+l

where Dy 1s given in Lemma

April 30, 2024 DRAFT



T ! ! 12 T T T T T T T T T
1819 H R ——H
+Hsyﬁl ——H Ky 1
16 —o- Hg Ky —o Hg, Ko
2 141 )
= K=
> 12+ >"5
g £
D ost 2
o6 =
0.4
02
0 . L L L DAAAANL RX ARBRER N
0 5 10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 20 45 50
Number of Sensors, K Number of Sensors, K
(a) Observation DoF = 1 (b) Observation DoF = 2

1

Fig. 2. Numerical validation on the surrogate sensing uncertainty, kK1 = T

1 _
o5M1r F2 =

Proposition 2 (Surrogate Function Expansion). In the absence of channel noise, the surrogate

function of sensing uncertainty in (I4) can be written as
H;=log [1+ (L —1)exp (—kDK)] + G,

where C, = O (ﬁ >0 iz (Dep — D)Z).
Proof. (See Appendix [C). N

In Proposition 2] the residual term C, is negligible when between-class differentiability is
similar, i.e.,

DE,Z’ ~ Dl,l’; vg? 6/7l7l/' (16)

To simplify notation, we assume that this is the case and hence C, ~ 0 in the subsequent

analysis. As a result, the sensing uncertainty surrogate reduces to
Hg ~log [1+ (L —1)exp (—xDK)] . (17)

It is worth mentioning that our following analysis also holds for the case of Cj, # 0 which,
however, complicates notation and makes analysis tedious.

Based on (17), Hs is observed to be a monotonically decreasing function of the product of
the views’ number and the average differentiability, say K - D. The product reflects two aspects

of multi-view aggregation gain. On one hand, as K grows, the aggregation over more views
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suppresses the variances of sensing data clusters and thereby decreases the sensing uncertainty.
On the other hand, a growing number of suitably scheduled sensors also enhances the average
class differentiability represented by D as elaborated shortly.

2) Characterizing Average Class Separation Distance: By substituting Lemma [2| into ((15)),
D can be written as

D = TH(PC'PD), (18)

where D = ﬁ S Dz (e — ) (11 — py) " reflects the average of pairwise class
separation matrices, {(pt, — ft;) (fty — pt) ' }. Therefore, D measures the components of D
projected onto the subspace spanned by P. The global (multi-view) observation matrix P has
a larger rank than each of its local components {P}}. However, including more views/sensors
does not necessarily increase the value D. It may even decrease by the addition of a sensor
contributing little useful information in its observation sub-space, as observed in Example 1.
This suggests the need of designing a sensor scheduler using the criterion of maximizing D
when the views are limited.

3) Main Result: With sufficient independent views in aggregation, the average of random
observation matrices P converges to its expectation, and thus the trace value Tr(PC~'PD)

in reduces into a constant given as:
¢ £ Tr(E[P,]C'E[P4]D). (19)
Then the sensing uncertainty Hs in converges to
Hs =log[l+ (L —1)exp(—krEK)). (20)
Then the main result of this section is obtained as follows.

Main Result 1 (View Aggregation Gain). For a large number of views, the sensing uncertainty

with noiseless multi-view aggregation is exponentially decreasing w.r.t. K:

Hy~ (L —1)exp(—réK), K>1, (2D

where  can be 5 and ;- according to the definition in (T4) and ¢ follows (T9).
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IV. MULTI-VIEW AGGREGATION GAIN WITH CHANNEL DISTORTION

In this section, we build on the results in the preceding section to quantify the view-and-
channel aggregation gain for the E2E sensing performance of an ISEA system with AirComp
over fading channels. In particular, the results on the distribution of aggregated features and
surrogate functions for sensing uncertainty are extended to account for channel distortion. We
further obtain useful results on receive SNR distribution and channel-induced sensing-accuracy

loss.

A. Aggregated Feature Distribution

First, as the transmitted feature maps are real, the real part of the aggregated feature map f

is extracted as f'® = §R{f' }. The distribution of f' is derived as shown below.

Lemma 3. Given AirComp in (8), the aggregated feature map follows the Gaussian-mixture

distribution:
N Qe _ 1
f'* ~ — Pu,, —C+ —I1
LEX:;N( IJ[E,K +’Yair M)7
where 7., 2 #ISHQ denotes the effective receive SNR.
Proof. (See Appendix D). N

It follows from Lemma [3] and (§)) that the optimal ML classifier in the current case is given

as
1

L 1 -t
* = arg mﬁin (fe—Ppu,)" (?C + IM) (f* —Pu,). (22)

Yair

B. Surrogate Function for Sensing Uncertainty

Given the similar forms of aggregated feature distributions in Lemmas [I] and [3| the needed
surrogate function can be derived similarly as its noiseless counterpart in Section First, based
on Lemma [2{ and [3| the global discrimination gain of fre is given as GU’ =K DM’ (7air) Where
the average class separation distance with channel distortion is given as

K
Yair

De(vair) = (g — o) " P(C+ —Tp)'P (pay — pay) . (23)

One can observe that the effect of channel distortion on the discrimination gain is regulated

by a single parameter — the effective receive SNR ~,;,. Using the above result and following
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the procedure as deriving Proposition |1} the sensing uncertainty with channel distortion can be

bounded as follows.

Corollary 1 (Sensing Uncertainty with Channel Distortion). Consider the ISEA system with

linear classification and AirComp. The resulting sensing uncertainty can be bounded as

SIES
] =

[ D "\ Jair ]
log |1+ Zexp <—%K> < H(7air) <

=1 .
; - 3 -

1 Dé V4 ('yair)

~ S 0g |1 NGy | e

L;Og +%6Xp< M +2 +

where ¢ > 0, C, is the constant same as in Proposition 1, and DM’ (7air) is given in (23).

It follows that the noisy counterpart of the uncertainty surrogate function in (I7) can be

obtained as
H(vair) =log |14 (L — 1) exp <—/~il~?(fyai,)K>] , (24)

2

where D(Yair) = 2755 Yty 2ope Do (vair) = Tr(P(C + £1,)7'PD).

C. Distribution of Effective Receive SNR

The dependence of sensing uncertainty on the effective receive SNR, ~.;,, as reflected in (24)

suggests the need of analyzing its distribution, which is carried out as follows.

Lemma 4. The sensing uncertainty function Hg(7,,) in (24) is monotonically decreasing w.r.t.

Vair-
Proof. (See Appendix [E). O
Under the power constraint thflb < P, the effective receive SNR maximized by optimal
k
beamforming is given as [21]]
2K?
Vair = —2V -m}jn VHhkthV, 25)
v

where v denotes the optimal receive beamformer computed as the first eigenvector of the channel
matrix H = [hy, hy, - -+, hg]. As revealed in (23)), 7, is limited by the weakest link due to signal
magnitude alignment of AirComp. The alignment term, min, vZh;hv, will reduce to zero as

. . A .
K — oo. However, its value scaled up proportional to K, say (i = K - min;, vfh;hfv, can
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Fig. 3. Numerical validation of Lemma [5]

converge to an exponential random variable with a fixed parameter. This gives the distribution

of 7., as follows.

Lemma 5 (Asymptotic Distribution of Effective Receive SNR). For a large number of sensors
(K — o0) and a proportional array size N = wK with w € (0, 00), the effective receive SNR

resulting from AirComp v, = 2K 17—2 - Cair With (5, being an exponential random variable:

1
air ~ Exp | ——— | .
o~ B9 (7 )
Proof. (See Appendix [F). 0

The asymptotic distribution of (,;, is numerically validated in Fig. |3| The distribution can
be further extended to the case with a fixed array size, in which the continuously increasing
number of sensors will lead to w = 0 and (,;, ~ Exp (1). Using Lemma |5} the scaling property
of exponential distributions yields the asymptotic distribution of the receive SNR:

P Exp <”—2) K — 00, N = wkK. (26)
K 2v(1 + Vw)?

Remark 1 (Channel Noise Suppression). It follows from (26)) that the power of channel noise

in AirComp, given by % = ﬁ - =, is inversely proportional to K as the term /K is
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independent of K.

D. Aggregation Gain

Given the preceding analysis, we are ready to quantify the view-and-channel aggregation gain
under the joint effects of view aggregation that suppresses sensing noise and channel aggregation
that suppresses channel noise. The core of the analysis is to derive a key variable — channel-
induced loss on sensing performance as follows.

1) Channel Induced Performance: As shown in (24)), multi-view aggregation with channel
distortion can achieve sensing uncertainty with the same form as its noiseless counterpart, except

for reducing the average class differentiability from D to f?(%ir) defined in (24)). It follows that

. . . A : .
their ratio can represent the channel-induced performance loss: Ao = D—%ﬁ. By using the

Woodbury matrix identity [43], D(fya;r) in (24) can be expressed as

D(”Yair)
D-11 D —1/~—1 K —1~—1p
=Tr (PC'PD) — Tr(PC™(C™' + —I,)'C'PD),
’Vair
— D1/ -1 K —1—1P
=D —Tr(PC7}(C +7_1M) C~'PD). (27)
As a result, B ) . X -
Tr(PCY(C'+ £1,)"'C'PD
=1 — JECT(C 45, 1) ) (28)
Tr (PC-'PD)
Hy(7vair) = log [1 4 (L — 1) exp (—kDK Ajoss) ] - (29)

2) Main Result: Based on (26)), Ajss is independent of K as K — oo. Therefore, combin-
ing (24) and (28) yields the main result.

Main Result 2 (View-and-Channel Aggregation Gain). Consider an ISEA system employing
AirComp-based multi-view aggregation, the sensing uncertainty is exponentially decreasing w.r.t.

K:

H(yair) & (L — 1) exp (—rEAssK), K > 1, (30)

where ~ and £ are given in (21).

The above result shows that due to channel aggregation in AirComp, channel distortion does

not change the exponential decay of sensing uncertainty but does reduce the exponential rate by
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a factor of Ajees.
Last, we investigate the effects of several system parameters on the key variable A.s. Define

r = 297 %(1 + /w)*Acmin for ease of notation, where v, v/

, w and Ac min denote transmit
SNR, the variance of transmit symbols, sensor-antenna number ratio, and the largest eigenvalue
of the feature covariance matrix C, respectively. Then, using the distribution of ~,;, in (26), the

expectation of A 1S obtained as

r

®)

>1— M) (31)
r

where the inequality follows from the trace inequalities [43]], the E; (x) in step (a) denotes the
exponential integral defined as E; (z) = [ %tdt, and the inequality E; (z) < e *In(1 + 1/x)
is used in step (b). The effects of the system parameters on A, are then inferred from (31)).
Specifically, transmit SNR v can linearly enlarge r and thereby increases Ajss With the scaling
of 1+

. In view aggregation, letting the number of antennas up faster than K can give a large

value of w = N/K. If w>> 1, (1 + /W) & w, Ajess increases w.rt. w at the rate of 2,

V. AIRCOMP OR ANALOG ORTHOGONAL ACCESS?

With limited receive antennas (/N < K'), AirComp enables simultaneous access while (spatial
division) orthogonal access is infeasible. On the other hand, with a large receive array, both
schemes are feasible. In this section, we benchmark AirComp against analog orthogonal access.

The study leads to the development of a new scheme supporting dynamic access-mode switching.

A. Performance of Analog Orthogonal Access

The effective feature map received by using analog orthogonal access can be extracted from the

real part of f in (T0): f* = R {f} =f+ AL {Z"%", by }. It shows that the analog orthogonal

access introduces Gaussian channel noise into the ground-truth features with the covariance of

A 2 ) ) ) ...
LT, and Ya0n = '/221% being the effective receive SNR. The result is similar to the case

Yaoa
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of AirComp except for the changed effective SNR. This allows the sensing uncertainty in (24)

to be modified for analog orthogonal access as
Hy(aon) = log |1+ (L = 1) exp (=#D(30en) K)) | (32)
~ _ -1 _
where D(7Va0n) = Tr <P (C + %%IM> PD).

B. Crossing Point and Access Mode Switching

Comparing the uncertainty functions in (32) and (24) and using their monotonicity (see
Lemma @), we can infer that AirComp outperforms analog orthogonal access if Yair > Vaoas
and vice versa. This motivates us to propose the scheme of adaptive access-mode switching,

referring to as adaptive access, as

AirCom s air 2 aoas
Multi-access mode = P i k (33)

Anal. orthog. access, Vair < Vaoa-

Given adaptive access, the dependence of optimal access mode on system parameters N and K
is understood in the sequel. To this end, a useful result on the distribution of the square norm
I

of the ZF beamformers in analog orthogonal access, ||bgl||?, is derived as follows.

Lemma 6. Given b, = H(H”H) 'e; in analog orthogonal access, ||by||? follows an i.i.d.
distribution of [[by||* ~ 2 Inv—x3y_x,,)> Where Inv—x3 v, denotes the inverse chi-

square distribution with 2(N — K + 1) degrees of freedom.

Proof. (See Appendix [G). O

Using Lemma [6] and the law of large numbers, the effective receive SNR for analog orthogonal
access can be approximated as

Yaoa _ 7 ~ 7(N B K)
K ALl 2

. K> 1. (34)

It follows from (26) and (34) that if N = K, %% =~ 0 and % > 0, leading to the event,
Yair = Yaoas OCcurring with probability 1. On the other hand, if N > K, the probability of this
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Fig. 4. Numerical validation on the crossing point between AirComp and analog orthogonal access. The parameters are set as
M =L =10, C = 0.11, rank(P) = 1, v = 10 dB. The expectation is taken over channel distribution.

event is asymptotically close to 0 since using (26) and (34)
Vair Ky(w B ]-)
p air = Yaoa) = P >
£l > ) = Pr (22 2 20
K -1
2 Vo +1

Combining the above results gives the following conclusion.

)—>O, as K — oo. 35

Main Result 3 (Mode Switching Point). There exists a crossing point of the sensing uncertainty
between AirComp and analog orthogonal access. Given N = wK and K >> 1, AirComp
outperforms analog orthogonal access for the case of w < 1 (i.e., N < K); otherwise, the

reverse holds. In other words, the crossing point is around N = K. This conclusion is numerically

validated in Fig.

VI. EXPERIMENTAL RESULTS

A. Experimental Settings

Consider the ISEA system as shown in Fig. |[I} Assuming frequency non-selective Rayleigh

fading, the multi-access channel is composed of i.i.d. Gaussian N (0, 1) elements. The coherence
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duration of the channel spreads over 256 symbol slots, supporting analog transmission of feature
vector with the maximum length of 256. For the MVCNN architecture, we consider both the
cases of linear classification on synthetic data and CNN-based classification on real-world data
as follows.

e Linear classification on synthetic data: Local feature maps are drawn from the GMM in (3)
and fed into the classifier given in (22) after over-the-air averaging via AirComp. The
feature maps’ dimensionality is M = 100, the number of classes is L = 20, and the
covariance matrix C = 0.1I,,. The observation matrices {P,} are randomly generated as
the principal eigenspaces of random matrices with i.i.d. Gaussian entries. For instance, let
G be a randomly generated M x M Gaussian matrix. Then, P, = UGUE with Ug being
the rank(Pj)-dimensional principal eigenspace of G.

e MVCNN-based classification on real-world data: We consider the well-known ModelNet
dataset which comprises multi-view images of objects (e.g., sofas and tables) and the popular
VGGI11 model for implementing the MVCNN architecture. The VGG11 is split before the
linear classifier with the classifier employed at the server and the other components deployed
at each sensor for feature extraction [6]. The resultant MVCNN architecture is trained for
average pooling. Therein, we select a data subsect of ModelNet corresponding to L = 10
popular object classes for our experiments. The data entries for each target are captured by
K = 12 sensors (i.e., cameras) with the angle between adjacent sensors being 30°. Each
feature map output from an on-device model is described as a 512 x 7 x 7 tensor, where
the 512 x 7 slices of these feature tensors are transmitted and aggregated sequentially at the
server for global classification.

Last, to evaluate the performance of AirComp, we adopt two benchmarking schemes, namely

analog orthogonal access in and the adaptive (dual-mode) access in (33)), to support local

feature uploading.

B. ISEA with Linear Classification

The curves of E2E sensing accuracy and uncertainty versus number of sensors, K, are plotted
in Fig. |5 Different levels of local observation DoFs are considered: rank(Py) = {0.5M,0.7M }
for all k. First, it can be observed from Fig. [5| that the E2E sensing uncertainty diminishes at an
exponential rate as K grows. This is consistent with the main analytical results in (30). On the

other hand, the E2E sensing accuracy converges to the saturation level (i.e., maximum accuracy)
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Fig. 5. (Linear classification) Comparison between E2E sensing uncertainty and accuracy for a variable number of sensors and
different local observation DoFs.

also exponentially fast. The consistency of uncertainty and accuracy validates their duality. One
can also observe the existence of a critical range (i.e., K < 10) where the sensing performance
is sensitive to changes on sensor number. Last, increasing local observation DoFs is found to
yield significant gains on sensing performance.

In Fig. [6] the performance of ISEA using AirComp is compared with that of counterparts
employing benchmarking access schemes. Specifically, Fig. [6(a) depicts the curves of E2E
sensing accuracy versus receive array size, /V; the cumulative distribution function (CDF) curves
of effective receive SNR are plotted in Fig. The number of sensors is fixed as K = 10.
The most important observation can be made from Fig. [6(a)| that there exists a crossing point
between AirComp and analog orthogonal access at around N = K. This validates the Main
Result [3] Next, the adaptive access scheme designed in Section [V]is observed to be effective as
it outperforms the other two underpinning schemes. The above observations are consistent with
those from Fig. 1.e., the crossing point of SNR CDF curves and superiority of adaptive

access in terms of effective receive SNR.
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Fig. 6. (Linear classification) Performance comparison between AirComp, analog orthogonal access, and adaptive access in
terms of (a) E2E sensing accuracy and (b) effective receive SNR with N = 12.

C. MVCNN-based Classification

Experimental results for the case of MVCNN based classification are presented to validate the
insights from our analysis based on linear classification. Specifically, the MVCNN counterparts of
the E2E sensing accuracy curves in Fig. [5and those in Fig. are obtained as plotted in Fig.
and Fig. respectively. The main observations from the MVCNN curves are lowly identical
to those from their linear-classification counterparts. Specifically, the exponential convergence of
E2E sensing accuracy is reflected in Fig. the crossing point between AirComp and analog
orthogonal access is found in Fig. to be also around N = K.

Last, the curves of E2E sensing accuracy versus transmit SNR are plotted in Fig. [§] for
different values of (NN, K). The main observation is that the close-to-maximum accuracy is
achievable even at very low transmit SNR (e.g., —5 dB). As mentioned early, the reason is view-
and-channel aggregation gain in two aspects. First, the aggregation gain enhances the receive
SNR by a factor approximately equal to K. In other words, KX = 10 can achieve the effective
receive SNR of 10 dB even given transmit SNR as low as 0 dB. The other aspect is that view
aggregation improves the model’s classification margin (see, e.g., [6]) to absorb channel distortion

without compromising sensing accuracy. The above observation advocates the use of AirComp

April 30, 2024 DRAFT



26

0.86 T T T T T 0.85

o
®
b

o
@
(S}
o
@
T

o
®
T

0.784

e
3
a

e
3
o

——AirComp
——Anal. Orthog. Access
—=—Adaptive Access

E2E Sensing Accuracy
E2E Sensing Accuracy

0.74 &

0.72 . . . . . 0.7 n
2 4 6 8 10 12 1 2 3 4 5 6 7 8

Number of Sensors, K Number of Antennas, N

(a) (b)

Fig. 7. (MVCNN classification) The dependence of E2E sensing accuracy on (a) the numbers of sensors and (b) receive antennas
under transmit SNR v = —10 dB.

and uncoded analog transmission at large to support fast ISEA.

VII. CONCLUSION

We have presented a theoretical framework for characterizing the performance gains from
view-and-channel aggregation in an ISEA system. Our results reveal that the sensing/inference
uncertainty decreases exponentially with the increasing number of views/sensors, with the rate
being directly proportional to the global discriminant gain. Furthermore, it is demonstrated that
the channel distortion resulting from aggregation via AirComp or analog orthogonal access does
not alter this scaling law, except for a reduction in the exponential rate. Utilizing the end-to-
end performance analysis, we have also developed a scheme for aggregation mode adaption that
dynamically switches between AirComp and orthogonal analog access to achieve optimal system
performance.

Expanding upon the insights from this study, we anticipate that distributed sensing, leveraging
its multi-view aggregation gain, will emerge as a mainstream direction in the area of ISEA.
Advancing this direction calls for novel quantitative analysis and protocol designs that strike a

balance between access control, latency, and computation accuracy so as to improve the end-to-
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end performance. This study serves as an initial step in establishing a theoretical framework for
the advancement of ISEA. Extending this framework to incorporate other wireless techniques
(such as broadband transmission and random access) and other sensing scenarios (including

sensing via point clouds and multi-modal fusion) warrant further investigation.

APPENDIX
A. Proof of Lemma

Using (2)), the aggregated feature map can be rewritten as

_ 1 _ 1
f:?;(Pkg‘i‘Wk):Pg"’?;wka

where P = - 3~ Py. According to (T)), the first term Pg has a distribution of Pr(Pg = Pp,) =
%, V. At the same time, the summation of the i.i.d. Gaussian sensing noise, % > & Wi, follows
a Gaussian distribution, say % Yo Wi ~ N(0, %C) Hence, the overall distribution of f is a
Gaussian mixture with the same priors and the /-th Gaussian component has the mean Py, and

covariance C/K, which completes the proof.
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B. Proof of Proposition

Based on the definition given in (TT)), the sensing uncertainty using the aggregated feature f

is given as
L
H—E [_ 3 / Pr (p1,[F) log Pr (su,|F) p(E)F
/=1

Given the output uniqueness of the linear classifier in (3)), there is a one-to-one mapping between
p, and Py, leading to Pr (p,|f) = Pr (Pp,|f). Then, using the Bayes’ theorem, the probability
Pr (Pp,|f) can be expressed as Pr (Pp,|f) = p (f|Pp,) p(Pp,)/p(f), which is used to rewrite
H as

p(f)

L — —

(a) 1 / I Z[/p (f|PM€/) —

=— flPp,) lo — df
; (f[Py) log p (f[Pp,)

L e _ f|Pu,) p(P
== >~ [ 0 (EPa,) o 05" pPw) pPr) o
1

h

S, o2 (x+Py )T CTH(x+Pey )

») L
, , ,
:_: :/ log —KyTCo-1x dX’
/=1

e 2

h

where the PDF p (f'|13p,€) is used in step (a), the integration variable is changed as x = f — p,
with the resulting p (x) = N (0, ), ¢, = p, — py in step (b). Then, the lower and upper
bounds of H are given respectively as follows.

1) Lower bound: First, using the definition of Gy, in Lemma [2 the sensing uncertainty
is given as H = %Zﬁ:l S p(x)log [1 + 20 B_Kxchlp‘i’ll’e_%GM’] dx. Then, based on the

convexity of log-sum-exp functions, using Jensen’s inequality gives a lower bound of H as
L
Z 08

where the integral in the exponential term is computed as zero and the final lower bound is

1_|_§ :6 [ p(x KxTC 1P¢>2ydx€ 2G24/]’
>

obtained.
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2) Upper bound: To derive the upper bound of the sensing uncertainty, we first define rewrite

H derived before as

TK(x+P¢[’el)TC_1(x+f’¢e,2/)
z I
ZZlog l—l—Zexp( Gu)
e

M M
+ —loge — ?log(l +2/a),
a

where a is a positive constant and the inequality is obtained by using the log-concavity and

Jensen’s inequality. Then, let a = cM with ¢ > 0, there is Zloge — & log(1 + 2/a) <
l 1

log m = log 1‘1—1 where the second step is based on the well-known Bernoulli’s inequality.

cM 2

This gives the upper bound of H.

C. Proof of Proposition [2]

Let {D,s} be aggregated into a L(L — 1)-dimensional vector u and define the function
Ue(K,u) = %Zle log [1 + D s exp (—kDep K )] for simplicity. Using the first-order ap-
proximation, U, (K, u) can be rewritten as U,(K,u) = U.(K,c) + (u — ¢) "V U (K, 1)|uzc +
O ((u— ¢)"HuU.(K, u)|u—c(u — c)), where ¢ denotes an arbitrary constant vector, VU, (K, u)
and H,U, (K, u) denote the derivative and Hessian of U, (K, u) w.r.t. u, respectively. Then, the

gradient values of U, (K, u) are expressed as

OU(K,u) kK exp (—kDyp K)

8D[’g/ L1 -+ El;ﬁé exXp (—/iDgJK) '

Hence, let the constant vector ¢ be ¢ = D1 with D denoting the average version of {D,x} as

M| - KK exp( K:DK)
oD, Dy p=D — 1+El#£exp( nDK)’

ual term can be further written as O ((u — ¢) " HuUx (K, ) u=c(t — €)) = O(zz=5 220 Cper (Do —
D)?). Tt then follows that U, (K, u) can be first-order approximated as

stated before. There is then based on which the resid-

Ue(K,u) =U,(K,D1) + (u— D1) "'V U (K, ) |up1
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Based on the definition, U, (K, D1) can be expressed as U, (K, D1) = 1 Zle log [1 + D 020 €XP (—/{DK)]
that gives the final result.

D. Proof of Lemma [3|

Using and (8)), the efficient aggregated feature map can be rewritten as

where the noise term z = - >, wy, + =R{Z"b} is a summation of real independent Gaussian
vectors and thus has a Gaussian distribution. Since both w; and Z' are zero-mean, there is
E [Zz] = 0. Furthermore, w;, and Z' are mutually independent, leading the covariance matrix of

z computed as

Elzz'] =

E WkW

:—C —b2
C+ bl

+ —E [(R{Z"b}R{b"Z"}]

Still, there is p(Pg = Pu,) = 1, ¥/, meaning that f** follows a GMM with the uniform priors

2 2
o[
2K?2 I

and the /-th Gaussian component having the mean Pu, and covariance %C +

E. Proof of Lemma

Straightforwardly, H(7,i,) is monotonically decreasing w.r.t. D(%;r). Hence, we prove the
Lemma 4| by showing that the derivative of [?(fyai,) W.I.t. 7V, 1S always positive given any b. To

this end, the chain rule of matrix derivative is used as

OD(yar) _ 1 (9D(var) (OA '
a/Yair 0A 8'7/air ’

where the matrix A = ( ,YK 1 M) for ease of notation. Therein, using the trace property,
8[) air) oD air 0A 3 ]

% is computed as aX = PDP. The other derivative term, 50 1 computed by using
the matrix inverse’ derivative as 24 — —AZAT A — K A2, As a result, we have the derivative

873 ir 873 ir

% = £ Tr (PDPA?) = L Tr (APDPA), where the argument of the trace function is a

air

semi—posmve Hermitian matrlx, leading to % >0

. This completes the proof.
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F. Proof of Lemma [

To obtain the distribution of (,;,, we first rewrite the expression of the data vector s in to
rewrite ||b*||. Specifically, since b* = ||b*||v with v being the first eigenvector of the channel

matrix H, there is
s =Y7p*

= Z"b* + Xdiag(p}, -+ . pic)a1 vV M |[b*]],

where X = [x ... xf] q; and \; denotes the first eigenvector and the first eigenvalue of

H”H. Therefore, to realize AirComp, the transmit power control of sensor k£ can be rewritten as

pp = W, where g1 denotes the k-th element of q;. To minimize ||b*|| under the power
k1

. . 2 2
constraint p; < L, Vk, there is ||b*|| = max; Lo
k,

1 _ v 1 3
T P v L Comparing the above

result, the scaled effective channel gain can be re-expressed as (,;, = K \; miny q,%}l. Hence, (,i
can be characterized by investigating the asymptotic values of A\; and min q,%’l. Specifically,

using the asymptotic spectrum of random matrices [44], given N = wkK, there is
1 2
§A1—>(1—|—\/5) , K — oo.

At the same time, since H is composed of i.i.d. Gaussian elements, the eigenvector q; is
isotropically distributed on a K -dimensional complex hypersphere and independent of the eigen-
value \;. Furthermore, it has the same distribution as a normalized complex Gaussian vector

h = [hy,- -+, hg] with by, ~ CN(0,1), say q; £ b Therefore, we have

[[h]]
. d K . 2
K -min qi, = min Ay,
C 1R
where ﬁ =1 as K — oo, which means that K - miny qg,l asymptotically equals to miny h3.

Clearly, 2h? is a chi-square random variable with the degrees of freedom 2 and is also expo-
nentially distributed with the parameter of I, say h? ~ Exp(%). Using the order statistics of
exponential distributions, we have min;, 2h; ~ Exp(%). Concluding the above results gives the
asymptotic distribution of (yir — $K(1 4 v/w)2¢" with (' ~ Exp (% ). Finally, using the scaling

property of exponential distributions obtains the distribution of (.

G. Proof of Lemma [f]

To obtain the distribution of the norm of the k-th ZF receiver, let Uy, be the (K —1)-dimensional

principal eigenspace of the matrix [hy, -+, hy_1,hgy1, -+, hg] and |[bg||* can be rewritten as
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I S 1 .
= SOy where Uj;- denotes the orthogonal compliment of Uy

and (U)# U} = Iy k4. Since hy, is composed of i.i.d. CN(0, 1) elements, it is isotropically

distributed on the N-dimensional complex unit hypersphere, i.e., p(h;) = p(Qhy) for any Q
satisfying Q7 Q = QQ* = Iy. Hence, let Q = [Uy, Ui and

N
b, U} (UE) " £ b QTUHUN Qhy = > 17 .

k=K

Since Ay, ~ CN(0, 1), the summation 2 31 h;. , follows a chi-square distribution with 2(NV —

K + 1) degrees of freedom, which completes the proof.
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