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Abstract—This paper addresses the design of robust linear
quadratic regulators (LQRs) for systems affected polynomially
by uncertainty constrained in a semialgebraic set. The problem
consists of determining a feedback controller that ensures a
desired upper bound on the worst-case value of a quadratic cost.
Two linear matrix inequality (LMI) approaches are proposed, the
first one based on the construction of a Lyapunov function that
weakly depends on the uncertainty, and the second one based
on the construction of an index that quantifies the feasibility of
different controllers. The proposed approaches have two main
advantages with respect to the existing methods, namely, consid-
ering not only state-feedback design for polytopic systems but
also output-feedback design for systems depending polynomially
on the uncertainty, and providing conditions that are not only
sufficient but also necessary under some assumptions. These
advantages are illustrated through various examples, where it
is shown that the existing methods may be more conservative or
may be not applicable.

Index Terms—LQR; Uncertain system; Polynomial depen-
dence; Output feedback; Robustness; LMI.

I. INTRODUCTION

An important problem in control systems consists of design-
ing feedback controllers that ensure stability while minimizing
a quadratic cost, which usually represents a weighted sum
of the energies of the signals over an infinite horizon. For
linear time-invariant (LTI) systems and in the case of state-
feedback, such controllers are known as LQRs, and can be
found by solving the algebraic Riccati equation (ARE), which
is a quadratic matrix equation. See, e.g., [1]-[4].

There have been numerous studies about LQRs. In partic-
ular, the solution set of the ARE and the algebraic Riccati
inequality have been investigated in [5], the case of singular
control problems has been studied in [6], [7], the presence of
time-varying components has been addressed in [8], [9], the
case of nonlinear systems has been considered in [10], the use
of random input gains has been investigated in [11], and the
design of parametric LQRs for parametric systems has been
proposed in [12].

A key problem that has been solved only partially consists
of designing robust LQRs for uncertain systems, i.e., LQRs
that ensure a desired upper bound on the worst-case value of
the quadratic cost (where worst-case means supremum with
respect to the admissible uncertainties). This problem is impor-
tant because real systems are unavoidably affected by uncer-
tainties, for instance because some physical quantities cannot
be measured exactly or are allowed to change. Moreover, this
problem is challenging for several reasons. Firstly, solving the
ARE for an uncertain system would provide an LQR that
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depends on the uncertainties rather than an uncertainty-free
controller, moreover, the ARE cannot be easily solved for
uncertain systems. Secondly, exploiting the algebraic Riccati
inequality with uncertainty-free Lyapunov functions would
result in conservative solutions since such Lyapunov functions
may be unable to verify robust stability of uncertain systems.

One of the pioneering works that have addressed this
problem is [13], where an LMI method is proposed for optimal
‘Ho norm control of polytopic systems (i.e., systems whose
matrices are affine functions of an uncertain vector constrained
in a convex bounded polytope). Another solution has been
described in [14], where an LMI method is developed for
polytopic systems with application to pulse width modulation
(PWM) converters. Also, this problem has been addressed in
[15], where output feedback LQR is designed for polytopic
systems via a strategy based on the solution of nonlinear
matrix inequalities through evolutionary algorithms and LMIs.
While these methods have the nice feature to be mainly
formulated in terms of LMIs, whose feasibility can be tested
via convex optimization (see, e.g., [2]), they also have the
drawbacks of considering only polytopic systems and provid-
ing conditions that are sufficient but not necessary.

Other related works include [16], [17] which propose the
use of neural networks and reinforcement learning for adaptive
optimal control, [18] which addresses robustness against dis-
turbances based on tuned weighting matrices for the inverted
pendulum, [19] which investigates the parameter dependence
of a modified ARE for network synchronization, [20] which
proposes the use of the total variation distance for designing
a finite horizon LQR robust against disturbances, [21] which
considers systems with norm bounded uncertainty and time
delay and proposes a recursive solution for designing a finite
horizon LQR based on an augmented Riccati equation, [22]
which proposes the design of a finite horizon LQR for a
sampled uncertain system based on the solution of two convex
optimization problems, [23] which describes a procedure for
robustifying an LQR designed for a nominal plant based on
the use of suitable weighting matrices.

This paper addresses the design of robust LQRs for sys-
tems affected by structured uncertainties. The paper starts
by considering continuous-time (CT) LTI systems where the
system matrices are polynomial functions of an uncertain
vector constrained in a semialgebraic set. The robust LQR
problem consists of determining a feedback controller that
ensures a desired upper bound on the worst-case value of
a quadratic cost. Two approaches are proposed for dealing
with this problem. The first one, weakly-dependent Lyapunov
functions (WDLF) approach, is based on the construction of
an uncertainty-dependent LQR obtained through Lyapunov
functions that weakly depend on the uncertainties, followed



by the extraction of an uncertainty-free controller. The sec-
ond one, controller index (CI) approach, is based on the
construction of an index that quantifies the feasibility of
different controllers, followed by the extraction of a controller
defined by such an index. A sufficient condition is derived
for establishing whether the provided controller candidates
solve the problem. Moreover, the necessity of this condition
is investigated, providing assumptions for ensuring that the
proposed approaches are asymptotically nonconservative. The
extension of these approaches to the case of discrete-time
(DT) LTI systems is hence presented. Both approaches are
formulated through semidefinite programs (SDPs), which are
convex optimization problems where a linear cost function is
minimized subject to LMIs.

The proposed approaches have two main advantages with
respect to the existing methods previously mentioned for
addressing the robust LQR problem!. The first advantage is to
consider a wider class of uncertain systems, where the matrices
depend polynomially rather than affine on the uncertainty, the
set of admissible uncertainties is a semialgebraic set rather
than a convex bound polytope, and the output rather than
the state is available for feedback. The second advantage is
to provide conditions that are not only sufficient but also
necessary under some assumptions. These advantages are
illustrated through various examples in Section VII, where it
is shown that the existing methods may be more conservative
or may be not applicable.

The paper is organized as follows. Section II introduces
the preliminaries. Section III describes the WDLF approach.
Section IV describes the CI approach. Section V investigates
the sufficiency and necessity of these approaches. Section VI
addresses the extension to DT systems. Section VII presents
the examples. Lastly, Section VIII reports the conclusions and
future directions.

II. PRELIMINARIES

This section introduces the preliminaries. In particular,
Section II-A describes the problem formulation, and Section
II-B reports some details about the Gram matrix.

A. Problem Formulation

The notation is as follows:

o “resp., s.t.””: “respectively, subject to”;

o N and R: sets of nonnegative integers and real numbers;

o 0: null matrix of size specified by the context;

e I,,I: identity matrices of size n x n and size specified
by the context;

o A ® B: Kronecker’s product of A, B;

o AT transpose of A;

e he(A): A+ AT,

o tr(A),det(A): trace, determinant of A;

e A >0 (resp., A > 0): symmetric positive semidefinite
(resp., definite) A;

e ||z|lp: p-norm of x;

ITo the best knowledge of the author, [13]-[15] are the only existing
methods that allow to solve the problem addressed in this paper.

o [x]: smallest integer greater than or equal to z;
deg(A(x)): degree of A(x) in x;

e conv(Aj, As,...): convex hull of Ay, As, .. ;

e x;: t-th entry of a vector x (unless specified otherwise).

Consider the CT LTI uncertain system

#(t) = Alp)z(t) + Bp)u(t)

y(t) = Clp)z(t)

z(0) = xo )
p € P

where ¢ € R is the time, z(¢) € R" is the state, u(t) € R™ is
the input, y(¢) € R” is the output, zy € R™ is the initial con-
dition, p € RY is the uncertainty, A(p), B(p), C(p) are matrix
polynomials, and P is the set of admissible uncertainties given
by

P={peR?: filp) 20, i=1,...,ns} )
where f(p) = (f1(p), ..., [n,(p))T is a vector polynomial.

Depending on f(p), P can have various shapes of interest,
such as:

¢ hypersphere, e.g.,

P={peR": pll2<1}, flp)=1-lpl3 O
¢ hypercube, e.g.,
1—pt
P={peR: [plle<1}, flp)= : ;

o @)

o simplex, i.e.,

P={peR%: pi+...4+p,=1, p; >0}, (5

which can be considered with a new variable p € R,
q = q — 1, according to

R p1—p;
— p
b <1—m—m—m .
PG — Pg
(6)
The LQR problem consists of solving

Jop) = inf [ (& (@OQu(0) + " (O Ru0) de - 7)
u(t) Jo

where Q € R"*" and R € R"™*™ are symmetric positive

definite matrices. The control input that achieves Jy(p) in the

case of state-feedback (i.e., C'(p) = I,,) is given by the control

law

u(t) = Ko(p)x(t) ®
where Ko(p) € R™*™ is the controller
Ko(p) = —R™'B(p) Vo (p) ©
and V(p) € R™*™ is the solution of the ARE
0 = + he(Vo(p)A
Q +he(Vo(p)A(p)) (10)

~Vo(p)B(p)R™B(p)" Vo(p),
see, e.g., [2, Chapter 7], [4, Chapter 3].



Unfortunately, the controller obtained in this way, Ky(p),
is a function of the uncertainty. This means that, in order
to implement such a controller, the real time measurement
of the uncertainty is required. Clearly, this may be difficult
or even impossible in real applications. Moreover, such a
controller would require some computational capability in
order to implement the expression (9). Last but not least, it is
unclear if and how the ARE could be solved in order to obtain
Vo(p), since A(p), B(p) depend on the uncertainty.

For these reasons, this paper addresses the problem of
determining an uncertainty-free controller (if any) capable of
ensuring a desired upper bound on the worst-case value of a
quadratic cost, where worst-case means supremum with re-
spect to the admissible uncertainties. Moreover, this controller
is sought in the more general case of output-feedback rather
than state-feedback.

Specifically, consider the system (1) controlled in closed-
loop by

u(t) = Ky(t) (n

where K € R™*" has to be determined, and introduce the
worst-case cost

J*(K):sggJ(K,p) (12)
where
J(K,p) = /0 (2" (#)Qz(t) +u” (t)Ru(t)) dt 03

s.t.u(t) = Ky(t).

The problem addressed in this paper is formulated as
follows.

Problem 1: (Robust LQR problem for CT systems) Consider
the system (1) and worst-case cost (12). Given a scalar v > 0,
find K (if any) such that J*(K) < 7. O

B. Gram Matrix

Here we briefly review the Gram matrix method for estab-
lishing whether a matrix polynomial is a sum of squares of
matrix polynomials. The reader is referred to [24, Section 2],
[25, Section III] and references therein for more details.

Let E;(p) € R™*", i = 0,...,m, be symmetric matrix
polynomials in p € R? of degree not greater than 2d, d € N.
Let v € R™, and define

E(p) = Eo(p) + > _ viEi(p). (14)
i=1
Then, E(p) is a symmetric matrix polynomial in p and affine
in v, and can be expressed as

E(p) = (b(p) @ I)" (F(v) + L(a)) (b(p) © 1)

where b(p) € R is a vector polynomial whose entries form
a basis for the polynomials in p of degree not greater than d,
F(v) € R7*? is a symmetric affine matrix function, L(«a) €
R?*? is a linear matrix function that parameterizes the set

L= {f, =IT: b)) L) ®1,) = o} . (16)

5)

and o € R7 is a free vector. The quantities o and 7 are given

S (g + d)!
q\d!
a7
1 1 (g +2d)!
T = Ena(na +1) - §n(n + I)W

For the case n = 1, F/(v) is said a Gram matrix of F(p)
with respect to b(p), while the affine matrix function F'(v) +
L(«) parameterizes all such Gram matrices. For n > 1, these
expressions generalize the Gram matrix method to the case of
matrix polynomials.

The representation (15), also known as square matrix repre-
sentation of matrix polynomials, is useful to establish if E(p)
is a sum of squares of matrix polynomials. Specifically, F(p)
is said a sum of squares of matrix polynomials for some v if
there exist matrix polynomials F;(p) € R™™™ i =1,... k,
and v such that

k

E(p) =Y Ei(p)"Ei(p). (18)
i=1

It turns out that E(p) is a sum of squares of matrix

polynomials for some v if and only if there exist a and v
that satisfy the LMI

F(v) + L(e) > 0. (19)

In the sequel of this paper, the notation E(p) € ¥ will
be used to denote that F(p) is a sum of squares of matrix
polynomials. Moreover, the notation

E(p) € C(w(p),d),

where w(p) € R! is a vector polynomial and § € N, will
be used to denote the existence of v and symmetric matrix
polynomials Y;(p), ¢ = 1,...,1, of size equal to that of E(p),
such that

(20)

Yilp), Z(p) € £, Vi=1,...,1

deg(Z(p)) < 2 Efﬂ D
where l
Z(p) = E(p) — Z w;(p)Y;(p) (22)

III. WDLF APPROACH

The first approach proposed in this paper for solving
Problem 1, and denoted as WDLF approach, consists of
searching for an uncertainty-dependent controller that ensures
the desired upper bound on the worst-case cost, followed
by the extraction of an uncertainty-free controller from
it. This is motivated by the fact that the search for such
an uncertainty-dependent controller can be done through
convex optimization in the case of state-feedback. Clearly,
the obtained uncertainty-free controller might not ensure
the desired upper bound on the worst-case cost. Hence, the
idea is to search for an uncertainty-dependent controller that
weakly depends on the uncertainty vector. Therefore, let us



introduce the following assumption.

Assumption 1: The state and output of the system (1)
coincide, i.e., C(p) = I,,. O

The WDLF approach is described hereafter through the
following steps:

o definition of the Lyapunov-based matrix inequalities that
provide an uncertainty-dependent controller;

o introduction of an uncertainty-dependence quantifier of
such controller;

o definition of the SDP for determining a controller weakly
dependent on the uncertainty;

o extraction of an uncertainty-free controller.

Let T(p) € R™™, U(p) € R™*" and V(p) € R"™ " be

matrix functions to be determined, with T'(p), V (p) symmetric,
and define

$1(p) = ~he (V@) AT + BE)U(p)) - zoxf
0= (o) T ) @

From [2, Chapter 7], the existence of T(p),U(p), V(p) such
that S1(p), S2(p), Ss(p) are positive definite over P implies
that the uncertainty-dependent controller

K(p)=UpV(p)™

ensures the desired upper bound on the worst-case cost, i.e.,

J(K() <. ]

Observe that the dependence of K(p) on p is due to
the product of U(p) with V(p)~'. While considering this
product through convex optimization may be difficult or even
impossible, a tractable way for reducing the dependence on p
of K (p) could be to reduce the dependence on p of U(p) and
f/(p) In particular, the latter means searching for a Lyapunov
function that is weakly dependent on the uncertainty.

Hence, let T'(p) € R™™, U(p) € R™™ and
V(p) € R™*™ be matrix polynomials to be determined, with
T(p),V(p) symmetric, and define

Ai(p) =
As(p) =

where pg € P is arbitrarily chosen.
The idea is to reduce the magnitude of A;(p) and As(p)

over P in order to reduce the dependence of K (p) on p. To
this end, define

(24)

U(p) — Ulpo)

V(p) — Vipo) 2

S$ip) = o) vz — el Vi=1,2,3
U(p)—U(p)
V(p)—V(p)
_ (Im , Ai(p) (26)
Salp) = (A1<p>T, (I,
S5(p) CI, — As(p)
Se(p) = I+ Az(p)

where ¢, ¢ € R have to be determined. Define the quantities

dsi = max{deg(A(p), des(B@)}
ds; = 0, Vi=2,...,6
and the optimization problem
inf ¢
T(p),U(p),V(p)&:C
e>0
st.  max{deg(T'(p)), deg(U(p)),deg(V(p))} < d
Si(p)GC(f(p),d—l-dSi), Vi=1,...,6
(28)

where d € N is introduced to bound the degree of the
symmetric matrix polynomials T'(p),U(p), V(p). The opti-
mization problem (28) is equivalent to an SDP since the cost
function is linear in the decision variables and since the third
constraint can be expressed as LMIs in the decision variables
and auxiliary variables according to Section II-B.

Let U*(p), V*(p) be U(p),V(p) evaluated for the found
optimal values of the decision variables of (28). The controller
candidate for solving Problem 1 is defined as

K* =U*(po)V*(po) ™" (29)

The numerical complexity of the WDLF approach can be
measured in terms of the size of the SDP (28), i.e., the number
of LMI scalar variables and the number of matrix rows. See,
e.g., [2, Chapter 2] where the worst-case number of arithmetic
operations required by interior-point and ellipsoid methods for
solving an SDP is discussed. For conciseness, we report in
Table I this size obtained by using the formulas in (17), for
several values of n,d, ¢, in the case

{ P={peR?: [p|3 <1}

30
A(p) affine, B(p) constant, wu scalar. 30)

This case is also considered in Example 1 in Section VII-A.

Case g =1
n d=0 d=1 d=2
2 | [11,10] [44,39] [62,43]
3 | [20,14] [81,54] [118,60]
4 | [32,18] [130,69] [193,77]
5 | [47,22] [191,84] [287,94]
Case ¢ =2
n d=20 d=1 d=2
2 | [13,12] [ 68, 52] [134, 62]
3 | [26,17] | [133, 72] [274, 87]
4 | [44,22] | [221,92] | [466,112]
5 | [67,27] | [332,112] | [710,137]
TABLE I

S1ZE OF THE SDP FOR THE WDLF APPROACH. EACH CELL SHOWS THE
NUMBER OF LMI SCALAR VARIABLES AND THE NUMBER OF MATRIX
ROWS IN THE SDP.

IV. CI APPROACH

This section describes the second approach proposed in this
paper for solving Problem 1, denoted as CI approach, which
consists of investigating the behaviour of different controllers
by constructing a controller index over a search space of



interest, and by retrieving the controller candidate by such
an index. The CI approach is described hereafter through the
following steps:

o definition of the Lyapunov-based matrix inequalities that
certify the validity of a controller;

o introduction of a controller-dependent feasibility quanti-
fier;

« construction of a simple region of interest in the controller
space;

o definition of the SDP for determining a quantifier;

o extraction of a controller;

« construction of alternative regions of interest in the con-
troller space.

_Let us start by defining, for a symmetric matrix function
W(p) € R"*™ to be determined,

%ip) = —he (W(p) (A®) + Bp)KC(p)))

) _NQ - C(p)TKTRKC(p) (31)
Xa(p) W(p)

Xs(p) = 7—alW(p)zo.

From [2, Chapter 7], the existence of W(p) and K such
that X, (p), Xa(p), X3(p) are positive definite over 7 implies
that K solves Problem 1.

Unfortunately, X;(p) is nonlinear in W(p) and K, for
instance due to a term with their product. This means that the
set of pairs (W (p), K) that make X, (p) positive semidefinite
over P may be nonconvex.

In order to cope with this issue, the idea is to let K be
a variable analogous to p rather than a decision variable.
Specifically, define

k

vec(K)
(»)
p
where vec(K) € R™" is the vector obtained by stacking the
columns of K in a consecutive order starting from the first

one. Let W (w) € R™*™ be a symmetric matrix polynomial to
be determined, and define

(32)

w =

Xl(p)‘

Xi(p)‘

where the polynomial ¢(k) and the scalars ¢,¢ € R have
to be determined. These quantities are introduced in order to
quantify the feasibility of K for solving Problem 1. Indeed, the
existence of W(w), ¢(k), 1, € such that X;(w), Xa(w), X3(w)
are positive definite for all w, implies that the following
implication holds:

Xi(w) = — ((k) +¢) 1

W (p)—>W (w)
—el,

W(p)—=W(w)

(33)

Xi(w) Vi=2,3

ok)+yv >0 = J(K)<n~. (34)

In order to search for W (w), ¢(k), 1 with the properties just
mentioned, we build a region of interest in the controller space.
To this end, observe that a necessary condition for the worst-
case cost to be bounded is that the matrix A(p)+ B(p)KC(p)

is robustly Hurwitz over P. Hence, define the set of controllers
ensuring robust asymptotical stability over P as
Kras = {keR™: R(\) <0,
VA € spec(A(p) + B(p) KC(p)) Vp e P}.
(35)
Hence, let K,cs € R™" be any arbitrarily chosen outer
estimate of IC,.,s that can be expressed as a semialgebraic set,
i.e.,

’Coes ) ’Cras (36)

and

Koes ={k e R™ : s;(k)>0, Vi=1,...,ns} (37)

for some polynomials s;(k). The choice of the set KCpes will
be discussed in the sequel of this section, where it will be
also explained that this set is introduced in order to obtain
a tradeoff between simplicity of implementation and velocity
of convergence. Indeed, the sought controller can be searched
for in the set /C,.,s only without loss of generality. In addition,
since the CI approach requires that the set where the controller

is searched for is bounded, we introduce the hypercube
’Cbom - {k € R™" ||k||oo S p} (38)

where p is a chosen nonnegative scalar. The controller pro-
vided by the CI approach will be searched for in the set

K= ’Coes N ICboz- (39)
Next, define the vector polynomials

g(k) = (s1(k), - ssm (k)0 — Koo = K2,) T @0)

and
ey = 1) 1)
g(k)
Also, define
p= [ (60) + v @)
K
and the quantities
dx1 = deg,(A(p) + B(p)KC(p)) 43)
dx; = 0, Vi=2,3
where deg,,(-) denotes the degree in w.
Define the optimization problem
sup  p—cyp
W(w),¢(k),1,e
e>0
deg(W(w)) <d (44)
S.t. Xi(w) € C(hw),d+dx;), Vi=1,2,3
—¢(k) € C(g(k),d + dx1)
Y <1

where ¢ € R is a positive scalar whose role will be clarified
in the sequel of the paper, and d € N is introduced to bound
the degrees of the symmetric matrix polynomial W (w) and
polynomial ¢(k). The optimization problem (44) is equivalent
to an SDP since the cost function is linear in the decision



variables and since the second and third constraints can be
expressed as LMIs in the decision variables and auxiliary
variables according to Section II-B.

Analogously to the WDLF approach, the numerical com-
plexity of the CI approach can be measured in terms of the
size of the SDP (44). For conciseness, we report in Table II
this size obtained by using the formulas in (17), for several
values of n,d, g, in the case

{ P={peR?: |pll3 <1}

45
A(p) affine, B(p) constant, wu scalar, y = x. “43)

This case is also considered in Example 1 in Section VII-A.

Case ¢ =1
n d=0 d=1 d=2
2 | [27,23] [ 54, 41] [ 295, 78]
3 [ 74,39] [156, 71] [ 1329,164]
4 | [170,59] | [365,109] | [ 4346,295]
5 | [342,83] | [738,155] | [11563,480]
Case ¢ = 2
n d=20 d=1 d=2
2 | [31,25] [ 65, 46] [ 521, 97]
3 [ 89.,42] [192, 78] [ 2229,198]
4 | [206,63] | [447,118] | [ 6900,348]
5 | [412,88] | [893,166] | [17513,556]
TABLE 1T

SI1ZE OF THE SDP FOR THE CI APPROACH. EACH CELL SHOWS THE
NUMBER OF LMI SCALAR VARIABLES AND THE NUMBER OF MATRIX
ROWS IN THE SDP.

Once (44) is solved, a controller candidate is defined as a
zero of the polynomial ¢*(k), which is the polynomial ¢ (k)
evaluated for the found optimal values of the decision variables
of (44). Hence, define

Z={kek: ¢*(k)=0}. (46)

Any vector in the set Z defines a controller candidate for
solving Problem 1. In order to single out one vector only
from the set Z, we define the controller candidate for solving
Problem 1 provided by the CI approach as

K* = mat(k*,n) 47)

where mat(k,n) € R™*" is the matrix whose columns are
stacked in consecutive order in the vector k starting from the
first one, and k* is defined by

K k"< k, VkeZ (48)
where the symbol “<1” denotes the inequality operator defined
as

E* | = [K[i,

|k*|lo < |k|10'

VI <l

K<k <— { (49)

The set Z can be found through linear algebra operations.
Indeed, from Section II-B, the condition —¢(k) € C(g(k))
can be written as y;(k), z(k) € £,i=1,...,n, +mr, where
yi(k) are polynomials and

ns+mnr

(k)= —6(k) = 3 gilk)ya(k).

i=1

(50)

Let z*(k) be z(k) evaluated for the found optimal values
of the decision variables of (44). It follows that

(k) =0, Vke2Z. (51)
Define
Zo={keR™: z*(k) =0}. (52)
Since z*(k) € X, it follows from Section II-B that
2*(k) = b(k)T Z*b(k) (53)

where b(k) is a vector polynomial and Z* is a symmetric
positive semidefinite matrix. Hence,

Zy={k e R™ : b(k) € ker(Z*)}. (54)

As explained in [26, Chapter 1] and references therein, the
vectors k such that b(k) € ker(Z*) can be found through
pivoting operations and eigenvalue computations. Moreover,
in the common case where ker(Z*) has dimension equal to
one, this process boils down to just reading k£ among the entries
of a scaled eigenvector of Z*. Once Z is found, the set Z is
simply obtained by testing the conditions k& € K and ¢* (k) =
0 for each vector k € Zj.

We conclude this section by discussing the choice of the set
Koes, which affects the set C where the controller candidate
is searched for according to (39). As it will be explained in
Theorem 3, the CI approach is guaranteed to be nonconserva-
tive by using a sufficiently large value of d for any arbitrarily
chosen KC,.s that satisfies (36). Nevertheless, the choice of
Koes can be useful to speed up the convergence of the CI
approach by requiring a smaller value of d for providing a
controller candidate that solves Problem 1, which is desirable
in order to reduce the computational burden. This is due to
the fact that the set KC,.s reduces the search space for the
controller candidate, in particular from Cp,, to /C, and this
can be useful in order to reduce the degrees of W (w), (k)
used to satisfy the conditions in the SDP (44).

Let us start by observing that a necessary condition for
establishing that £ € K,,s can be obtained as follows. Let
po € P be arbitrarily chosen, and define

Ac(k) = A(po) + B(po)KC(po).

Clearly, k € K,qs only if Ay (k) is Hurwitz. The condition
that A.;(k) is Hurwitz can be expressed as a set of polynomial
inequalities in k£ by using the Hurwitz table. Specifically, let

(55)

01(k),...,0,4+1(k) be the entries in the first column of this
table, with 6;(k) = 1, and write
0i(k)
0i(k) = = 56
)= 303 (56)

where 0;(k),0;(k) are coprime polynomials with 6, (k) =
¢1(k) = 1. Since the positivity of 61(k),...,0;—1(k) implies
that 0;(k) is positive, it follows that A.;(k) is Hurwitz if and

only if 0;(k) > 0 for all i = 2,...,n+ 1. Hence, a choice for
Koes 18

Kl:{keRmr:éi(k)ZO, Vi:2,...,n—|—1} (57)

This choice has the advantage of exactly characterizing
the Hurwitz property of A (k), but also the disadvantage of



providing a set /C,.,s (and, hence, also a set K) with possibly
non-simple shape, which could make difficult to calculate the
integral in (42). Observe that /C; can be expressed as in (37)
with ng < n.

In order to cope with this issue, observe that a simpler
necessary condition for establishing that k& € K., can be
obtained as follows. Express the characteristic polynomial of
A (k) as

n—1
det( M, — Aa (k) = A"+ ai(k)N’ (58)
=0
where each a;(k) is a polynomial. It follows that A (k) is
Hurwitz only if a;(k) > 0 for all i = 0,...,n — 1. Hence,
another choice for ICp is

Ko={keR™: ai(k)>0, Vi=0,....,n—1}. (59)

This choice has the disadvantage of providing a possibly
larger set /Cocs than the previous choice (since the condition
that the coefficients of the characteristic polynomial of A (k)
are positive is only necessary for A to be Hurwitz), but also
the advantage of providing a set IC,,.s (and, hence, also a set K)
with possibly simpler shape than the previous choice. Indeed,
it turns out that

deg(a;(k)) < min{n — i,rank(B(py)), rank(C(po))}. (60)

For instance, this means that all the polynomials a;(k)
are affine functions whenever rank(B(py)) = 1 or
rank(C(pp)) = 1, which is the case of single-input or single-
output systems. In such a case, the set K,s (and, hence, also
a set K) is just a polytope, and the integral in (42) can be
calculated more easily. Similarly to the previous choice, the
set o can be expressed as in (37) with ngy < n.

Lastly, let us mention that a tighter set /C,.s can be obtained
by repeating the above choices for multiple values of po,
denoted by p(()l), ceey p(()l), ... € P, and taking the intersection
of the sets obtained. Specifically, such a set is

K:3 = ﬂ K:j(i)’p[):p(()i) ) j(Z) € {172}
i=1,...,1

(61)
which can be expressed as in (37) with n, < In.

V. SUFFICIENCY AND NECESSITY

This section investigates some key properties of the WDLF
approach and CI approach. Specifically, Section V-A explains
how a sufficient condition for solving Problem 1 can be
obtained with these approaches. Then, Section V-B analyzes
the necessity of this condition.

A. Sufficiency

The WDLF and CI approaches described in Sections III and
IV provide a controller candidate K* for solving Problem 1.
Once such a controller has been obtained, one can test whether
K* solves this problem by establishing if J*(K*) < 7.
This can be done through an SDP by using the methodology
described in the previous sections and specialized to the case
of known controller.

Specifically, let X;(p) be defined as in (31) for a fixed
controller K, and introduce

Di(p) =

D3(p) =

where the symmetric matrix polynomial W (p) and the scalars
7, € have to be determined. Define

Xitw)| -
(») W (p)—W(p)
n—= %TW(P)UCO — €

el, Vi=1,2
(62)

dp1 = deg(A(p) + B(p)KC(p)) 63)
dp; = 0, Vi=2,3
and the optimization problem
J(K) = inf
() W(p),n.e !

s.t. deg(W(p)) < d,
Di(p) € C(f(p), dy + dpi),
where d,, € N is introduced to bound the degree of W (p).

Analogously to (28) and (44), the optimization problem (64)
is equivalent to an SDP.

Vi=1,2,3

Definition 1: The set P is said strongly compact if it is
compact and the highest degree forms of the polynomials in
f(p) have not common root except the origin. O

Definition 1 provides a stronger definition of compactness
for P that will be exploited in the sequel of this paper. Observe
that typical sets such as hypersphere, hypercube and simplex
defined in (3)—(5) satisfy this definition.

The following theorem explains how one can establish if
the controller candidates provided by the WDLF approach
and the CI approach solve Problem 1.

Theorem 1: For all d,, one has

J(K) < J(K). (65)

Moreover, suppose that J*(K) < oo and that P is strongly
compact. Then, for all § > O there exists d,, such that

J(K) =6 < J(K). (66)

Proof. Let us start by proving (65). To this end, suppose
firstly that, for the chosen d,,, the constraints in (64) hold
for some W (p),n,e. Since £ > 0, from (20)—(21) it follows
that D;(p) > 0 for all p € P for all i = 1,2, 3, which implies
that J*(K) < 7 and, in turn, J*(K) < J(K). Also, suppose
secondly that, for the chosen d,, the constraints in (64) are
infeasible. This implies that .J(K) = co, and (65) still holds.

Next, let us prove (66). Let § > 0 be arbitrarily chosen. It
follows that there exists a symmetric matrix function T (p)
and a scalar € > 0 such that

Xi(p)

— &I >0,
> J*(K)+6

VpeP Vi=1,23.

Since P is compact, it follows that there exists a symmetric
matrix polynomial W (p) that approximates arbitrarily well



W (p) over P. This implies that there exist a symmetric matrix
polynomial W (p) and a scalar £ > 0 such that

Di(p) >0, VpeP Vi=1,23.

Moreover, since P is also strongly compact, from [Section
1] [27] there exist symmetric matrix polynomials Y; ;(p) € ¥
such that Z;(p) € X forall ¢ = 1,2,3 forall j = 1,...,q,
where

Zi(p) = Dy(p) — Z £i()Yi (D).

Define
d* = mind
deN
deg(W(p)) <d
.t 1
) deg(Zi(p)) < 2 k(d+ dmﬂ . Vi=1,2,3.

Then, the second constraint in (64) already holds by choosing
d, =d". O

Theorem 1 states that J (K) is an upper bound on
J*(K) for all d,, moreover, the conservatism of this upper
bound can be arbitrarily decreased by increasing d. Hence, a
sufficient condition for the solution of Problem 1 is as follows.

Corollary 1: There exists a controller K that solves Problem
1 if, for some d,, j(K*) < v where K* is the controller
candidate provided by the WDLF or CI approaches (in such
a case, K* solves Problem 1).

B. Necessity

Let us start by considering the WDLF approach in Section
III.

Theorem 2: Suppose that there exists a controller K = K
that solves Problem 1. Moreover, suppose that there exist
T(p) =Ty, U(p) = Uy and V (p) = V; of degree 0 such that
Uy = KoVp and S1(p), Sa(p), S3(p) are positive definite over
P, with P strongly compact. Then, there exists d such that
the controller candidate K* in (29) provided by the WDLF
approach solves Problem 1.

Proof. Choose T(p) = Ty, U(p) = Uy and V(p) = Vp. It

follows that there exist € > 0 and { = 0 such that
Si(p) >0, VpeP Vi=1,...,6.

Analogously to the proof of Theorem 1, there exist sym-
metric matrix polynomials Y; ;(p) € X such that Z;(p) € &
forallt=1,...,6 forall j =1,...,q, where

Zi(p) = Si(p) = Y_ £;(0)Yi ().
j=1
Define

d* = mind
deN

The chosen T'(p),U(p),V(p),e,( satisfy the constraints
in (28) for d = d*, moreover, they are global minimizers
of (28) since ( cannot be negative. This proves that
T*(p), U*(p), V*(p) (which are T'(p),U(p),V(p) evaluated
for the found optimal values of the decision variables of (28))
have degree 0. Therefore, the controller K* provided in (29)
coincides with the controller K (p) provided in (24), which
solves Problem 1. 0

Theorem 2 provides a condition that, if satisfied, ensures
that the controller candidate provided by the WDLF approach
solves Problem 1 for sufficiently large d. Such a condition
boils down to the existence of a sought controller K for which
J*(Kp) < ~ can be proved through a parameter-independent
Lyapunov function. For instance, this is the case of systems
weakly affected by the uncertainties.

Next, consider the CI approach in Section IV.

Theorem 3: Suppose that there exists K = K that solves
Problem 1, with || Ky||cc < p, and that P is strongly compact.
Also, let c satisfy

O0<e< L. 67)

d+1

Then, there exists d such that the controller candidate K* in
(47) provided by the CI approach solves Problem 1.
Proof. Define the optimization problem

sup ¢
W(p).¢,&
E>0
L) est
Xi(p)—¢I >0, VpeP

VpeP Vi=23

where W (p) € R"*™ is a symmetric matrix function, ¢, & € R
are scalars, and X;(p) is defined as in (33) for a frozen
controller K. It follows that this optimization problem is
feasible and the supremum is achieved for any controller
K. The global maximizers of W(p),g?) are functions of the
controller K. Denote any pair of such global maximizers as
W*(w), ¢*(k). Let ko be the vector corresponding to K.
Since K solves Problem 1, it follows that

¢* (ko) > 0.

Since P x K is compact, it follows that TW*(w) and ¢* (k)
can be approximated arbitrarily well by polynomials over P x
K, in particular, there exist a symmetric matrix polynomial
W (w), a polynomial ¢(k) and a scalar ¢ such that ¢(ko) > 0
and

e>0

o(k) < 68)
Xi(w)—o(k)I>0, VYpeP Vkek
Xi(w)—el >0, Vi=2,3 VpeP Vkek

where 1) is temporarily set to 1. Analogously to the proof
of Theorem 1, there exist symmetric matrix polynomials
Y;j(w) € X and polynomials y;(k) € X such that



Zi(w),z(k) € ¥ forall ¢ = 1,2,3 forall j = 1,...,ns +

mr+qforalll =1,...,ns + mr, where

ns+mr+q

Ziw) = K@) = Y hi(@)¥i,w)
B B Jn_s-i-mr

2k) = v—ok)— D ak)uk).

=1

This implies that X;(w) € C(h(w),d+dx;) forall i = 1,2,3
and ¢ — ¢(k) € C(g(k),d + dx1) by choosing d such that

deg(W(w)) < d

o(k) < ¢*(k), VEeK
Hence, define
= [ o(k)dk
K
and -
sup  p
W(w),é(k).e (69)
s.t.  (68).

It follows that the maximizer of ¢(k) in (69), denoted by
¢*(k), approximates arbitrarily well ¢*(k) over K by suffi-
ciently increasing the degree of ¢(k) through d.

Next, define the set

E={(mv):

It follows that the set =

in particular,
o i< [ #
RIS

Moreover, the set = is bounded in the negative v-direction
for finite values of p, i.e.,

¢ <1, (68) holds} .

is bounded in the positive p-direction,

Vi o >y, V(@) €E.
This implies that the maximizer of ¢(k) in
sup  fi— i

W(w),¢(k), e
s.t.  (68) holds,

(70)

denoted by ¢**(k), is arbitrarily close to ¢*(k) by letting ¢

be positive and sufficiently small as ensured by (67) when

incre_asing d. Moreover, the ma_ximizer of ¢ in (70), denoted

by ¢**, is the maximum of ¢**(k) over K. Hence, for d
sufficiently large,

5 (k) =

= JY(K)<n~.

{ ke (K) <~

Observe that the controllers k satisfying the left hand side

of the above condition are the controller_s in the set Z in (46)

by introducing the change of variables ¢(k) = ¢(k) + ¢ and

P =1p. 0

Theorem 3 states that the controller candidate provided
by the CI approach solves Problem 1 for sufficiently large
d provided that there exists a sought controller in the set
K. In particular, this is guaranteed whenever the condition
(67) is satisfied, which requires that the parameter ¢ becomes
arbitrarily small by increasing d.

VI. EXTENSION To DT SYSTEMS

This section addresses the extension of the proposed ap-
proaches to DT systems. Specifically, Section VI-A introduces
the problem formulation, while Sections VI-B and VI-C ex-
plain how the WDLF and CI approaches can be modified in
order to deal with the problem.

A. Problem Formulation

Consider the DT LTI uncertain system

z(t+1) = Ap)z(t) + B(p)u(t)
W6 = Clok) o
z(0) = w0
p € P

where ¢ € N is the time, and the other quantities are as in the
system (1). The LQR problem for (71) consists of solving

o0

= inf +u” (t)Ru(t))

(72)
u(t) :0

where ) € R"*™ and R € R"*" are symmetric positive def-

inite matrices. In the case of state-feedback (i.e., C(p) = I,,),

the control input that achieves Jy(p) is given by the control

law (8)—(9) where Vj(p) € R™*™ is the solution of the DARE

0 = Q+ AP " Vo(p)Alp) — Vo(p)
—(A(»)"Vo(p)B(p))(R + B(p)" Vo(p)B(p))~*
(B(p)"Vo(p)A(p)),

(73)
see, e.g., [3, Chapter 2], [4, Chapter 2].
The system (71) is controlled in closed-loop by (11) where
K € R™*" has to be determined in order to minimize the
worst-case cost

J*(K):SggJ(K,p) (74)
where

- T

g +uT (t)Ru(t)) 5,

s.tou(t) = Ky(t).

Problem 2: (Robust LQR problem for DT systems) Consider
the system (71) and worst-case cost (74). Given a scalar v > 0,
find K (if any) such that J*(K) < . O



B. WDLF Approach

In the case of DT systems, the WDLF approach still sup-
poses that Assumption 1 holds, and is modified by replacing
S1(p) in (23) with

- TN\T _ T
Si(p) =V(p) - ( gg%T ) Sa(p) ( gg))%T ) - ZCOCCOT
(76)
and dgq in (27) with
ds1 = 2 max{deg(A(p)), deg(B(p))}. (77)

C. CI Approach

In the case of DT systems, the CI approach is modified by
replacing X4 (p) in (31) with

Xi(p) = W(p) - Q — C(p)" K" REC(p)
—(A(p) + B(p) KC(p))" W (p) (Alp) + B(p)KC(p))(78)
and dx; in (43) with
dx1 = 2deg, (A(p) + B(p)KC(p)). (79)
Moreover, the set of controllers ensuring robust asymptoti-
cal stability in (35) is replaced by

’Cras = {k c R™” . |)\| < 1,

VA € spec(A(p) + B(p)KC(p)) Vp e P}.
(80)
Next, let us discuss the construction of an outer estimate
Koes of the set KCpqs. With Ay (k) as in (55), the condition
k € K,qs holds only if A (k) is Schur. The condition that
Aq (k) is Schur can be expressed as a set of polynomial
inequalities in k£ by using the Jury table. Specifically, let
01(k), ..., 02¢n+1)(k) be the entries in the first column of this
table, with 6, (k) = 1, and write

(81)

where 0;(k),0;(k) are polynomials with 6, (k) = 6,(k) =
1. Since the positivity of 01 (k), ..., 62 _1)41(k) implies that
02;+1 (k) is positive, it follows that A.;(k) is Schur if and only
if é2i+1(k) > 0 for all # = 1,...,n. Hence, a choice for the
set [Cpes 18

iclz{keRW; Gai1 (k) > 0, Vz’zl,...,n}. (82)

This choice has the advantage of exactly characterizing
the Schur property of A (k), but also the disadvantage of
providing a set [C,.s (and, hence, also a set ) with possibly
non-simple shape, which could make difficult to calculate the
integral in (42).

In order to cope with this issue, observe that a simpler
necessary condition for establishing that & € K,,s can be
obtained as follows. Express the characteristic polynomial of
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A (k) as in (58). It follows that A, (k) is Schur only if
a;(k) >0 forall i =1,...,2n, where

azit1 = ¢; + ai(k)
a2ivo = ¢; — a;(k)
n! (83)
il(n —1)!
Vi=0,....n—1.

C; =

Hence, another choice for the set K. is

Ko={keR™: a;(k)>0, Vi=1,...,2n}. (84)

This choice has the disadvantage of providing a possi-
bly larger set K,.s than the previous choice, but also the
advantage of providing a set IC,.s (and, hence, also a set
K) with possibly simpler shape than the previous choice.
For instance, all the polynomials a;(k) are affine functions
whenever rank(B(pg)) = 1 or rank(C(po)) = 1, which is

the case of single-input or single-output systems.

VII. EXAMPLES

This section presents four illustrative examples. The pro-
posed approaches are compared with the following existing
methods, which propose sufficient conditions for Problem 1:

e [13, Section 3], which considers state-feedback control
design for CT and DT systems, and provides a controller
for minimizing the worst-case cost through an SDP;

e [14, Section III], which considers state-feedback control
design for CT systems, and provides a controller for
minimizing the worst-case cost through an SDP;

o [15, Section II], which considers output-feedback control
design for CT systems, and provides a controller for
minimizing the worst-case cost through SDPs and evolu-
tionary algorithms. In particular, evolutionary algorithms
are used to search for two variables in order to solve a
constrained optimization problem that, for frozen values
of these two variables, boils down to an SDP. In this
paper, these two variables are searched for by using the
function fminsearch of Matlab, which solves the SDP
obtained for frozen values of these two variables at each
iteration.

The examples presented in this section aim to show a case
where:

o the WDLF and CI approaches and the existing methods
solve the problem;

o the CI approach solves the problem, while the WDLF
approach and the existing methods do not (Example 2);

o the WDLF and CI approaches solve the problem, while
the existing methods cannot be applied since the system
is not polytopic (Example 3);

o the CI approach solves the problem, while the WDLF
approach and the existing methods cannot be applied
since the state is not available for feedback and since
the dynamics are not CT (Example 4).



For conciseness, all examples consider Problem 1 with
1

c|s P={peRi: |pla<1}
1 (85)

1
Q=I.. R=gzln, 7=10.

Moreover, in all examples:

o the worst-case cost J*(K) is unbounded for the open
loop system, i.e., J*(0) = oo;

o the WDLF approach is used with py = (1,0,...,0)7;

o the CI approach is used with p =2, ¢ = 1073 and py =
(1,0,...,0)T.

For each found controller candidate K, provided either by
the proposed approaches or by the existing methods, its worst-
case cost J*(K) is calculated with the SDP (64) by using
d, = 2 (the upper bound J (K) provided by this SDP is tight
in all examples).

The SDPs are solved with the toolbox SeDuMi [28] for
Matlab on a standard computer with Windows 11, Intel Core
i7, 3.2 GHz, 16 GB RAM. The reported SDP time is the time
in seconds, rounded to the nearest not smaller integer, required
for solving each SDP and extracting the controller.

A. Example 1

Consider the model of a DC motor (see, e.g., [29, Chapter
2])

{M%m+%%@ Kyi(t)
Laia(t) + Raia(t) = —Kethm(t) +va(t)

where ,,,(t) is the angle, i,(t) is the current, v,(t) is the
voltage, and J,,,, b, Ky, Ly, Ry, K. are parameters. Define

z(t) (W (t), o (1), 10 (t)) T
v (t).
The model can be rewritten as

<
—~

~
~—

o, 1 , 0
o _bu K 0
=" T T e+ | Y |
K. R, —
0, ——, — L,
3 La ) La
Choose the plausible values
K.=3

bm =05, Ki=2, L,=0.5, R,=1,
{ Jm € [1,2]
where J,, is the uncertainty. By defining
4
p= ﬂ -3,
it follows that p € [—1,1] and the model is described by the
system (1) with

0, 1 , 0
Ap)=| 0, —0.125(p+3), 0.5(p+3)
0, —6 . =2
0
Bp)=1| 0 |, Cp) =1Is
2
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J(K*,p)

ok n w s o o N ® w

p

() (b)

Fig. 1. Example 1: (a) Cost J(K*,p) for K* found with the CI approach
in Part 1 (blue solid line). The cost is unbounded for the open loop system
for all values of p. (b) Set /C in Part 1 (dashed line) and Part 2 (grey area).

The goal is to solve Problem 1 with the choices in (85).

Let us start by using the WDLF approach. We solve the SDP
(28) for some values of d, and build each time the candidate
controller K* in (29). Table III shows K™, its worst-case cost,
and the SDP size.

d K* J*(K*) | SDP size & time

0 N/A N/A [20, 14], Ts

1| (-1.329,-0.877,-0.922) | 9.115 [81,54], 1s
TABLE III

EXAMPLE 1: RESULTS OBTAINED WITH THE WDLF APPROACH. FOR
d = 0, THE SDP IS INFEASIBLE.

Next, we use the CI approach:

o firstly (Part 1), with the simple choice K,.s = R™",
which provides K = Kpor. We solve the SDP (44) for
some values of d, and build each time the candidate
controller K* in (47). Table IV (Part 1) shows K*, its
worst-case cost, and the SDP size. Figure la shows the
cost J(K*,p) for d = 2;

o secondly (Part 2), with the choice K,.s = Ko, which
provides

K = {keR3: ki €[-2,0], k2 € [-2,2],

ks € [—2,5/4]}
Figure 1b shows K, and Table VI (Part 2) shows the new
results obtained. It can be observed that the CI approach

in Part 2 solves Problem 1 already for d = 0 (rather than
for d = 2 as in Part 1).

Part 1: Koes = R™"

d K* J*(K*) | SDP size & time
0 (0.003, —0.141, —0.167) o [74,39], Is
1 (—0.605, —0.667, —0.820) 11.726 [156,71], 1s
2 | (—1.994,-1.622,-2.000) | 9.396 | [1329,164],5s
Part 2: Koes = Ko
d K* J*(K*) | SDP size & time
0 | (—1.025,-0.410,-0.750) | 9.338 [74,39], 1s
TABLE IV

EXAMPLE 1: RESULTS OBTAINED WITH THE CI APPROACH.

For comparison, we test the existing methods:

e [13, Section 3] and [14, Section III], which provide the
controller K = (—1.414, —0.966, —1.100) by solving an



SDP with size [10,10], time 1s. The worst-case cost is
J*(K) =9.121;

e [15, Section II], which provides the controller K =
(—0.758,—0.475,—0.198) by solving 125 SDPs with
size [20, 25] each (the total time is 13s). The worst-case
cost is J*(K) = 9.921.

Concluding, the WDLF and CI approaches and the existing

methods solve Problem 1 in this example.

B. Example 2
Consider the CT system (1) with
- —1+16p , 1-—0.6p
Alp) = ( —2.540.6p, —0.5— 1.6p )
- 0.6p -

The goal is to solve Problem 1 with the choices in (85).

Let us start by using the WDLF approach. We solve the SDP
(28) for some values of d, and build each time the candidate
controller K* in (29). Table V shows K*, its worst-case cost,
and the SDP size.

d K* J*(K*) | SDP size & time

0 N/A N/A [1T,10]

1| (—14.191,—-9.975) 0o [44,39], 1s

2 | (—4.679,—0.039) 0o (62, 43], 1s

3 | (=11.700, —1.066) 0o [149, 65], 1s
TABLE V

EXAMPLE 2: RESULTS OBTAINED WITH THE WDLF APPROACH. FOR
d = 0, THE SDP IS INFEASIBLE.

Next, we use the CI approach:

o firstly (Part 1), with ICpcs = R™", which provides K =
Koz~ Table VI (Part 1) shows the results, and Figure 2a
shows the cost J(K*,p) for d = 2;

o secondly (Part 2), with KC,,.s = K2, which provides the set
KC shown in Figure 2b. Table VI (Part 2) shows the new
results obtained. It can be observed that the CI approach
in Part 2 solves Problem 1 already for d = O (rather than
for d = 2 as in Part 1).

Part 1: Kpes = R™"

d K* J*(K*) | SDP size & time
0 | (0.000,0.000) o [27,23], 1s

1| (0.000,0.000) o0 (277, 78], 2s

2 | (—-0.996,0.052) | 4.132 [295, 78], 2s

Part 2: Koes = Ko
d K* J*(K*) | SDP size & time
0 | (—0.639,0.273) | 5381 [35,29], 1s
TABLE VI

EXAMPLE 2: RESULTS OBTAINED WITH THE CI APPROACH.

For comparison, we test the existing methods:

e [13, Section 3] and [14, Section III], which do not
provide any controller (the SDPs are infeasible);

e [15, Section II], which provides the controller K =
(—0.314,0.017) by solving 400 SDPs with size [11, 18]
each (the total time is 33s). The worst-case cost is
J*(K) = 64.302.
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Fig. 2. Example 2: (a) Cost J(K*,p) for K* found with the CI approach
in Part 1 (blue solid line) and for the open loop system (black dashed line).
(b) Set KC in Part 1 (dashed line) and Part 2 (grey area).

Concluding, the CI approach solves Problem 1 in this
example, while the WDLF approach and the existing methods
do not (no controller provided or worst-case cost larger than

7)-
C. Example 3
Consider the CT system (1) with
-1 p2
Ap) = ’ 1
2 (plpz , p2—1 )
1
sw-(1 ) cw-n

The goal is to solve Problem 1 with the choices in (85).

Let us start by using the WDLF approach. We solve the SDP
(28) for some values of d, and build each time the candidate
controller K* in (29). Table VII shows K*, its worst-case cost,
and the SDP size.

d K* J*(K*) | SDP size & time
0 | (0.181,0.951) | 4.914 [13,12], 1s
TABLE VII

EXAMPLE 3: RESULTS OBTAINED WITH THE WDLF APPROACH.

Next, we use the CI approach:

o firstly (Part 1), with s = R™", which provides K =
Koz Table VIII (Part 1) shows the results, and Figure
3a shows the cost J(K*,p) for d = 1;

o secondly (Part 2), with IC,es = Ko, which provides the set
K shown in Figure 3b. Table VIII (Part 2) shows the new
results obtained. It can be observed that the CI approach
in Part 2 solves Problem 1 already for d = 0 (rather than
for d = 2 as in Part 1).

Concluding, the WDLF and CI approaches solve Problem

1 in this example. The existing methods cannot be applied
since A(p) is not affine and since P is not a convex bounded

polytope.

D. Example 4
Consider the DT system (71) with

A(p) = ( 0'50?52'3]9: —()%5 >
B(P):<_11:(1)>, Cp)=(1,0).



Part 1: KCpes = R™"

d K* J*(K™) | SDP size & time
0 | (=0.046,0.031) | 3L.779 31,25, Is
1| (~0.528,2.000) | 5.014 | [491,97],2s

Part 2: Koes = Ko

d K* J*(K*) | SDP size & time
0 | (—0.346,1.243) | 5.350 [39,31], 1s
TABLE VIII

EXAMPLE 3: RESULTS OBTAINED WITH THE CI APPROACH.

Fig. 3. Example 3: (a) Cost J(K*,p) for K* found with the CI approach
in Part 1 (filled colored surface) and for the open loop system (unfilled black
surface). (b) Set K in Part 1 (dashed line) and Part 2 (grey area).

The goal is to solve Problem 2 with the choices in (85).

Since the state is not available for feedback in this example,
the WDLF approach cannot be used. Hence, we use the CI
approach with the changes mentioned in Section VI-C:

o firstly (Part 1), with Cpes = R™", which provides K =
Koz Table IX (Part 1) shows the results, and Figure 4a
shows the cost J(K*,p) for d = 2;

o secondly (Part 2), with KC,,.s = K2, which provides the set
KC shown in Figure 4b. Table IX (Part 2) shows the new
results obtained. It can be observed that the CI approach
in Part 2 solves Problem 1 already for d = 1 (rather than
for d = 2 as in Part 1).

Concluding, the CI approach solves Problem 1 in this ex-
ample. The WDLF approach and the existing methods cannot
be applied since the state is not available for feedback and
since the dynamics are not CT.

Part 1: KCpes = R™"

d K* J*(K*) | SDP size & time
0 (0.000, 0.000) ) [27, 23], 1s

1| (—0.034,0.059) 0o [277,78], 25

2 | (-0.418,-0.077) | 4.517 [295, 78], 2s

Part 2: Koes = Ko

d K* J*(K*) | SDP size & time
0 (0.000, 0.000) ) [31, 26], Is

1| (—0.256,-0.312) 3.131 [323,92], 2s

TABLE IX

EXAMPLE 4: RESULTS OBTAINED WITH THE CI APPROACH.

VIII. CONCLUSIONS

This paper has proposed two approaches based on SDPs for
designing robust LQRs for CT and DT LTI uncertain systems.
The first approach, named WDLF, is based on the construction
of an uncertainty-dependent LQR obtained through Lyapunov
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Fig. 4. Example 4: (a) Cost J(K*,p) for K* found with the CI approach
in Part 1 (blue solid line) and for the open loop system (black dashed line).
(b) Set KC in Part 1 (dashed line) and Part 2 (grey area).

functions that weakly depend on the uncertainties. The second
approach, named CI, is based on the construction of an
index that quantifies the feasibility of different controllers.
The proposed approaches have two main advantages with
respect to the existing methods, namely, considering not only
state-feedback design for polytopic systems but also output-
feedback design for systems depending polynomially on the
uncertainty, and providing conditions that are not only suf-
ficient but also necessary under some assumptions. These
advantages have been illustrated through various examples,
where it has been shown that the existing methods may be
more conservative or may be not applicable.

Various directions can be explored in future work. One of
these is the extension to the case where the system matrices
are rational functions of uncertainties. Another direction can
be the extension to the case where the uncertainties are time-
varying. Last but not least, it would be interesting and useful
to explore the possibility of reducing the numerical complexity
in order for the proposed approaches to be applicable to large
scale systems or in real time applications.
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