
1

Robust LQRs synthesis for structured uncertain systems: the WDLF

and the CI approaches

Graziano Chesi

Abstract—This paper addresses the design of robust linear
quadratic regulators (LQRs) for systems affected polynomially
by uncertainty constrained in a semialgebraic set. The problem
consists of determining a feedback controller that ensures a
desired upper bound on the worst-case value of a quadratic cost.
Two linear matrix inequality (LMI) approaches are proposed, the
first one based on the construction of a Lyapunov function that
weakly depends on the uncertainty, and the second one based
on the construction of an index that quantifies the feasibility of
different controllers. The proposed approaches have two main
advantages with respect to the existing methods, namely, consid-
ering not only state-feedback design for polytopic systems but
also output-feedback design for systems depending polynomially
on the uncertainty, and providing conditions that are not only
sufficient but also necessary under some assumptions. These
advantages are illustrated through various examples, where it
is shown that the existing methods may be more conservative or
may be not applicable.

Index Terms—LQR; Uncertain system; Polynomial depen-
dence; Output feedback; Robustness; LMI.

I. INTRODUCTION

An important problem in control systems consists of design-

ing feedback controllers that ensure stability while minimizing

a quadratic cost, which usually represents a weighted sum

of the energies of the signals over an infinite horizon. For

linear time-invariant (LTI) systems and in the case of state-

feedback, such controllers are known as LQRs, and can be

found by solving the algebraic Riccati equation (ARE), which

is a quadratic matrix equation. See, e.g., [1]–[4].

There have been numerous studies about LQRs. In partic-

ular, the solution set of the ARE and the algebraic Riccati

inequality have been investigated in [5], the case of singular

control problems has been studied in [6], [7], the presence of

time-varying components has been addressed in [8], [9], the

case of nonlinear systems has been considered in [10], the use

of random input gains has been investigated in [11], and the

design of parametric LQRs for parametric systems has been

proposed in [12].

A key problem that has been solved only partially consists

of designing robust LQRs for uncertain systems, i.e., LQRs

that ensure a desired upper bound on the worst-case value of

the quadratic cost (where worst-case means supremum with

respect to the admissible uncertainties). This problem is impor-

tant because real systems are unavoidably affected by uncer-

tainties, for instance because some physical quantities cannot

be measured exactly or are allowed to change. Moreover, this

problem is challenging for several reasons. Firstly, solving the

ARE for an uncertain system would provide an LQR that
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depends on the uncertainties rather than an uncertainty-free

controller, moreover, the ARE cannot be easily solved for

uncertain systems. Secondly, exploiting the algebraic Riccati

inequality with uncertainty-free Lyapunov functions would

result in conservative solutions since such Lyapunov functions

may be unable to verify robust stability of uncertain systems.

One of the pioneering works that have addressed this

problem is [13], where an LMI method is proposed for optimal

H2 norm control of polytopic systems (i.e., systems whose

matrices are affine functions of an uncertain vector constrained

in a convex bounded polytope). Another solution has been

described in [14], where an LMI method is developed for

polytopic systems with application to pulse width modulation

(PWM) converters. Also, this problem has been addressed in

[15], where output feedback LQR is designed for polytopic

systems via a strategy based on the solution of nonlinear

matrix inequalities through evolutionary algorithms and LMIs.

While these methods have the nice feature to be mainly

formulated in terms of LMIs, whose feasibility can be tested

via convex optimization (see, e.g., [2]), they also have the

drawbacks of considering only polytopic systems and provid-

ing conditions that are sufficient but not necessary.

Other related works include [16], [17] which propose the

use of neural networks and reinforcement learning for adaptive

optimal control, [18] which addresses robustness against dis-

turbances based on tuned weighting matrices for the inverted

pendulum, [19] which investigates the parameter dependence

of a modified ARE for network synchronization, [20] which

proposes the use of the total variation distance for designing

a finite horizon LQR robust against disturbances, [21] which

considers systems with norm bounded uncertainty and time

delay and proposes a recursive solution for designing a finite

horizon LQR based on an augmented Riccati equation, [22]

which proposes the design of a finite horizon LQR for a

sampled uncertain system based on the solution of two convex

optimization problems, [23] which describes a procedure for

robustifying an LQR designed for a nominal plant based on

the use of suitable weighting matrices.

This paper addresses the design of robust LQRs for sys-

tems affected by structured uncertainties. The paper starts

by considering continuous-time (CT) LTI systems where the

system matrices are polynomial functions of an uncertain

vector constrained in a semialgebraic set. The robust LQR

problem consists of determining a feedback controller that

ensures a desired upper bound on the worst-case value of

a quadratic cost. Two approaches are proposed for dealing

with this problem. The first one, weakly-dependent Lyapunov

functions (WDLF) approach, is based on the construction of

an uncertainty-dependent LQR obtained through Lyapunov

functions that weakly depend on the uncertainties, followed
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by the extraction of an uncertainty-free controller. The sec-

ond one, controller index (CI) approach, is based on the

construction of an index that quantifies the feasibility of

different controllers, followed by the extraction of a controller

defined by such an index. A sufficient condition is derived

for establishing whether the provided controller candidates

solve the problem. Moreover, the necessity of this condition

is investigated, providing assumptions for ensuring that the

proposed approaches are asymptotically nonconservative. The

extension of these approaches to the case of discrete-time

(DT) LTI systems is hence presented. Both approaches are

formulated through semidefinite programs (SDPs), which are

convex optimization problems where a linear cost function is

minimized subject to LMIs.

The proposed approaches have two main advantages with

respect to the existing methods previously mentioned for

addressing the robust LQR problem1. The first advantage is to

consider a wider class of uncertain systems, where the matrices

depend polynomially rather than affine on the uncertainty, the

set of admissible uncertainties is a semialgebraic set rather

than a convex bound polytope, and the output rather than

the state is available for feedback. The second advantage is

to provide conditions that are not only sufficient but also

necessary under some assumptions. These advantages are

illustrated through various examples in Section VII, where it

is shown that the existing methods may be more conservative

or may be not applicable.

The paper is organized as follows. Section II introduces

the preliminaries. Section III describes the WDLF approach.

Section IV describes the CI approach. Section V investigates

the sufficiency and necessity of these approaches. Section VI

addresses the extension to DT systems. Section VII presents

the examples. Lastly, Section VIII reports the conclusions and

future directions.

II. PRELIMINARIES

This section introduces the preliminaries. In particular,

Section II-A describes the problem formulation, and Section

II-B reports some details about the Gram matrix.

A. Problem Formulation

The notation is as follows:

• “resp., s.t.”: “respectively, subject to”;

• N and R: sets of nonnegative integers and real numbers;

• 0: null matrix of size specified by the context;

• In, I: identity matrices of size n × n and size specified

by the context;

• A⊗B: Kronecker’s product of A,B;

• AT : transpose of A;

• he(A): A+AT ;

• tr(A), det(A): trace, determinant of A;

• A ≥ 0 (resp., A > 0): symmetric positive semidefinite

(resp., definite) A;

• ‖x‖p: p-norm of x;

1To the best knowledge of the author, [13]–[15] are the only existing
methods that allow to solve the problem addressed in this paper.

• ⌈x⌉: smallest integer greater than or equal to x;

• deg(A(x)): degree of A(x) in x;

• conv(A1, A2, . . .): convex hull of A1, A2, . . .;
• xi: i-th entry of a vector x (unless specified otherwise).

Consider the CT LTI uncertain system


















ẋ(t) = A(p)x(t) +B(p)u(t)

y(t) = C(p)x(t)

x(0) = x0

p ∈ P

(1)

where t ∈ R is the time, x(t) ∈ R
n is the state, u(t) ∈ R

m is

the input, y(t) ∈ R
r is the output, x0 ∈ R

n is the initial con-

dition, p ∈ R
q is the uncertainty, A(p), B(p), C(p) are matrix

polynomials, and P is the set of admissible uncertainties given

by

P = {p ∈ R
q : fi(p) ≥ 0, i = 1, . . . , nf} (2)

where f(p) = (f1(p), . . . , fnf
(p))T is a vector polynomial.

Depending on f(p), P can have various shapes of interest,

such as:

• hypersphere, e.g.,

P = {p ∈ R
q : ‖p‖2 ≤ 1} , f(p) = 1− ‖p‖22; (3)

• hypercube, e.g.,

P = {p ∈ R
q : ‖p‖∞ ≤ 1} , f(p) =







1− p21
...

1− p2q






;

(4)

• simplex, i.e.,

P = {p ∈ R
q : p1 + . . .+ pq = 1, pi ≥ 0} , (5)

which can be considered with a new variable p̃ ∈ R
q̃,

q̃ = q − 1, according to

p =

(

p̃
1− p̃1 − . . .− p̃q̃

)

, f(p̃) =







p̃1 − p̃21
...

p̃q̃ − p̃2q̃






.

(6)

The LQR problem consists of solving

J0(p) = inf
u(t)

∫ ∞

0

(

xT (t)Qx(t) + uT (t)Ru(t)
)

dt (7)

where Q ∈ R
n×n and R ∈ R

m×m are symmetric positive

definite matrices. The control input that achieves J0(p) in the

case of state-feedback (i.e., C(p) = In) is given by the control

law

u(t) = K0(p)x(t) (8)

where K0(p) ∈ R
m×n is the controller

K0(p) = −R−1B(p)TV0(p) (9)

and V0(p) ∈ R
n×n is the solution of the ARE

0 = Q+ he(V0(p)A(p))

−V0(p)B(p)R−1B(p)TV0(p),
(10)

see, e.g., [2, Chapter 7], [4, Chapter 3].
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Unfortunately, the controller obtained in this way, K0(p),
is a function of the uncertainty. This means that, in order

to implement such a controller, the real time measurement

of the uncertainty is required. Clearly, this may be difficult

or even impossible in real applications. Moreover, such a

controller would require some computational capability in

order to implement the expression (9). Last but not least, it is

unclear if and how the ARE could be solved in order to obtain

V0(p), since A(p), B(p) depend on the uncertainty.

For these reasons, this paper addresses the problem of

determining an uncertainty-free controller (if any) capable of

ensuring a desired upper bound on the worst-case value of a

quadratic cost, where worst-case means supremum with re-

spect to the admissible uncertainties. Moreover, this controller

is sought in the more general case of output-feedback rather

than state-feedback.

Specifically, consider the system (1) controlled in closed-

loop by

u(t) = Ky(t) (11)

where K ∈ R
m×r has to be determined, and introduce the

worst-case cost

J∗(K) = sup
p∈P

J(K, p) (12)

where

J(K, p) =

∫ ∞

0

(

xT (t)Qx(t) + uT (t)Ru(t)
)

dt

s.t. u(t) = Ky(t).

(13)

The problem addressed in this paper is formulated as

follows.

Problem 1: (Robust LQR problem for CT systems) Consider

the system (1) and worst-case cost (12). Given a scalar γ > 0,

find K (if any) such that J∗(K) < γ. �

B. Gram Matrix

Here we briefly review the Gram matrix method for estab-

lishing whether a matrix polynomial is a sum of squares of

matrix polynomials. The reader is referred to [24, Section 2],

[25, Section III] and references therein for more details.

Let Ei(p) ∈ R
n×n, i = 0, . . . ,m, be symmetric matrix

polynomials in p ∈ R
q of degree not greater than 2d, d ∈ N.

Let v ∈ R
m, and define

E(p) = E0(p) +

m
∑

i=1

viEi(p). (14)

Then, E(p) is a symmetric matrix polynomial in p and affine

in v, and can be expressed as

E(p) = (b(p)⊗ In)
T
(F (v) + L(α)) (b(p)⊗ In) (15)

where b(p) ∈ R
σ is a vector polynomial whose entries form

a basis for the polynomials in p of degree not greater than d,

F (v) ∈ R
σ×σ is a symmetric affine matrix function, L(α) ∈

R
σ×σ is a linear matrix function that parameterizes the set

L =
{

L̃ = L̃T : (b(p)⊗ In)
T
L̃ (b(p)⊗ In) = 0

}

, (16)

and α ∈ R
τ is a free vector. The quantities σ and τ are given

by














σ =
(q + d)!

q!d!

τ =
1

2
nσ(nσ + 1)−

1

2
n(n+ 1)

(q + 2d)!

q!(2d)!
.

(17)

For the case n = 1, F (v) is said a Gram matrix of E(p)
with respect to b(p), while the affine matrix function F (v) +
L(α) parameterizes all such Gram matrices. For n > 1, these

expressions generalize the Gram matrix method to the case of

matrix polynomials.

The representation (15), also known as square matrix repre-

sentation of matrix polynomials, is useful to establish if E(p)
is a sum of squares of matrix polynomials. Specifically, E(p)
is said a sum of squares of matrix polynomials for some v if

there exist matrix polynomials Ẽi(p) ∈ R
n×n, i = 1, . . . , k,

and v such that

E(p) =

k
∑

i=1

Ẽi(p)
T Ẽi(p). (18)

It turns out that E(p) is a sum of squares of matrix

polynomials for some v if and only if there exist α and v
that satisfy the LMI

F (v) + L(α) ≥ 0. (19)

In the sequel of this paper, the notation E(p) ∈ Σ will

be used to denote that E(p) is a sum of squares of matrix

polynomials. Moreover, the notation

E(p) ∈ C(w(p), δ), (20)

where w(p) ∈ R
l is a vector polynomial and δ ∈ N, will

be used to denote the existence of v and symmetric matrix

polynomials Yi(p), i = 1, . . . , l, of size equal to that of E(p),
such that







Yi(p), Z(p) ∈ Σ, ∀i = 1, . . . , l

deg(Z(p)) ≤ 2

⌈

1

2
δ

⌉

(21)

where

Z(p) = E(p)−
l
∑

i=1

wi(p)Yi(p). (22)

III. WDLF APPROACH

The first approach proposed in this paper for solving

Problem 1, and denoted as WDLF approach, consists of

searching for an uncertainty-dependent controller that ensures

the desired upper bound on the worst-case cost, followed

by the extraction of an uncertainty-free controller from

it. This is motivated by the fact that the search for such

an uncertainty-dependent controller can be done through

convex optimization in the case of state-feedback. Clearly,

the obtained uncertainty-free controller might not ensure

the desired upper bound on the worst-case cost. Hence, the

idea is to search for an uncertainty-dependent controller that

weakly depends on the uncertainty vector. Therefore, let us
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introduce the following assumption.

Assumption 1: The state and output of the system (1)

coincide, i.e., C(p) = In. �

The WDLF approach is described hereafter through the

following steps:

• definition of the Lyapunov-based matrix inequalities that

provide an uncertainty-dependent controller;

• introduction of an uncertainty-dependence quantifier of

such controller;

• definition of the SDP for determining a controller weakly

dependent on the uncertainty;

• extraction of an uncertainty-free controller.

Let T̃ (p) ∈ R
m×m, Ũ(p) ∈ R

m×n and Ṽ (p) ∈ R
n×n be

matrix functions to be determined, with T̃ (p), Ṽ (p) symmetric,

and define


























S̃1(p) = −he
(

Ṽ (p)A(p)T +B(p)Ũ(p)
)

− x0x
T
0

S̃2(p) =

(

Ṽ (p) , Ũ(p)T

Ũ(p) , T̃ (p)

)

S̃3(p) = γ − tr
(

QṼ (p)
)

− tr
(

RT̃ (p)
)

.

(23)

From [2, Chapter 7], the existence of T̃ (p), Ũ(p), Ṽ (p) such

that S̃1(p), S̃2(p), S̃3(p) are positive definite over P implies

that the uncertainty-dependent controller

K̃(p) = Ũ(p)Ṽ (p)−1 (24)

ensures the desired upper bound on the worst-case cost, i.e.,

J∗(K̃(p)) < γ.

Observe that the dependence of K̃(p) on p is due to

the product of Ũ(p) with Ṽ (p)−1. While considering this

product through convex optimization may be difficult or even

impossible, a tractable way for reducing the dependence on p
of K̃(p) could be to reduce the dependence on p of Ũ(p) and

Ṽ (p). In particular, the latter means searching for a Lyapunov

function that is weakly dependent on the uncertainty.

Hence, let T (p) ∈ R
m×m, U(p) ∈ R

m×n and

V (p) ∈ R
n×n be matrix polynomials to be determined, with

T (p), V (p) symmetric, and define

{

∆1(p) = U(p)− U(p0)

∆2(p) = V (p)− V (p0)
(25)

where p0 ∈ P is arbitrarily chosen.

The idea is to reduce the magnitude of ∆1(p) and ∆2(p)
over P in order to reduce the dependence of K̃(p) on p. To

this end, define










































Si(p) = S̃i(p)
∣

∣

∣ T̃ (p)→T (p)

Ũ(p)→U(p)

Ṽ (p)→V (p)

− εI, ∀i = 1, 2, 3

S4(p) =

(

ζIm , ∆1(p)
∆1(p)

T , ζIn

)

S5(p) = ζIn −∆2(p)

S6(p) = ζIn +∆2(p)

(26)

where ε, ζ ∈ R have to be determined. Define the quantities
{

dS1 = max{deg(A(p)), deg(B(p))}

dSi = 0, ∀i = 2, . . . , 6
(27)

and the optimization problem

inf
T (p),U(p),V (p),ε,ζ

ζ

s.t.











ε > 0

max{deg(T (p)), deg(U(p)), deg(V (p))} ≤ d

Si(p) ∈ C(f(p), d+ dSi), ∀i = 1, . . . , 6
(28)

where d ∈ N is introduced to bound the degree of the

symmetric matrix polynomials T (p), U(p), V (p). The opti-

mization problem (28) is equivalent to an SDP since the cost

function is linear in the decision variables and since the third

constraint can be expressed as LMIs in the decision variables

and auxiliary variables according to Section II-B.

Let U∗(p), V ∗(p) be U(p), V (p) evaluated for the found

optimal values of the decision variables of (28). The controller

candidate for solving Problem 1 is defined as

K∗ = U∗(p0)V
∗(p0)

−1. (29)

The numerical complexity of the WDLF approach can be

measured in terms of the size of the SDP (28), i.e., the number

of LMI scalar variables and the number of matrix rows. See,

e.g., [2, Chapter 2] where the worst-case number of arithmetic

operations required by interior-point and ellipsoid methods for

solving an SDP is discussed. For conciseness, we report in

Table I this size obtained by using the formulas in (17), for

several values of n, d, q, in the case
{

P = {p ∈ R
q : ‖p‖22 ≤ 1}

A(p) affine, B(p) constant, u scalar.
(30)

This case is also considered in Example 1 in Section VII-A.

Case q = 1
n d = 0 d = 1 d = 2
2 [11,10] [44,39] [62,43]
3 [20,14] [81,54] [118,60]
4 [32,18] [130,69] [193,77]
5 [47,22] [191,84] [287,94]

Case q = 2
n d = 0 d = 1 d = 2
2 [13,12] [ 68, 52] [134, 62]
3 [26,17] [133, 72] [274, 87]
4 [44,22] [221, 92] [466,112]
5 [67,27] [332,112] [710,137]

TABLE I
SIZE OF THE SDP FOR THE WDLF APPROACH. EACH CELL SHOWS THE

NUMBER OF LMI SCALAR VARIABLES AND THE NUMBER OF MATRIX

ROWS IN THE SDP.

IV. CI APPROACH

This section describes the second approach proposed in this

paper for solving Problem 1, denoted as CI approach, which

consists of investigating the behaviour of different controllers

by constructing a controller index over a search space of
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interest, and by retrieving the controller candidate by such

an index. The CI approach is described hereafter through the

following steps:

• definition of the Lyapunov-based matrix inequalities that

certify the validity of a controller;

• introduction of a controller-dependent feasibility quanti-

fier;

• construction of a simple region of interest in the controller

space;

• definition of the SDP for determining a quantifier;

• extraction of a controller;

• construction of alternative regions of interest in the con-

troller space.

Let us start by defining, for a symmetric matrix function

W̃ (p) ∈ R
n×n to be determined,























X̃1(p) = −he
(

W̃ (p) (A(p) +B(p)KC(p))
)

−Q− C(p)TKTRKC(p)

X̃2(p) = W̃ (p)

X̃3(p) = γ − xT0 W̃ (p)x0.

(31)

From [2, Chapter 7], the existence of W̃ (p) and K such

that X̃1(p), X̃2(p), X̃3(p) are positive definite over P implies

that K solves Problem 1.

Unfortunately, X̃1(p) is nonlinear in W̃ (p) and K , for

instance due to a term with their product. This means that the

set of pairs (W̃ (p),K) that make X̃1(p) positive semidefinite

over P may be nonconvex.

In order to cope with this issue, the idea is to let K be

a variable analogous to p rather than a decision variable.

Specifically, define







k = vec(K)

ω =

(

k
p

)

(32)

where vec(K) ∈ R
mr is the vector obtained by stacking the

columns of K in a consecutive order starting from the first

one. Let W (ω) ∈ R
n×n be a symmetric matrix polynomial to

be determined, and define










X1(ω) = X̃1(p)
∣

∣

∣

W̃ (p)→W (ω)
− (φ(k) + ψ)In

Xi(ω) = X̃i(p)
∣

∣

∣

W̃ (p)→W (ω)
− εI, ∀i = 2, 3

(33)

where the polynomial φ(k) and the scalars ψ, ε ∈ R have

to be determined. These quantities are introduced in order to

quantify the feasibility of K for solving Problem 1. Indeed, the

existence of W (ω), φ(k), ψ, ε such that X1(ω), X2(ω), X3(ω)
are positive definite for all ω, implies that the following

implication holds:

φ(k) + ψ ≥ 0 ⇒ J∗(K) < γ. (34)

In order to search for W (ω), φ(k), ψ with the properties just

mentioned, we build a region of interest in the controller space.

To this end, observe that a necessary condition for the worst-

case cost to be bounded is that the matrix A(p)+B(p)KC(p)

is robustly Hurwitz over P . Hence, define the set of controllers

ensuring robust asymptotical stability over P as

Kras = {k ∈ R
mr : ℜ(λ) < 0,

∀λ ∈ spec(A(p) +B(p)KC(p)) ∀p ∈ P}.
(35)

Hence, let Koes ⊆ R
mr be any arbitrarily chosen outer

estimate of Kras that can be expressed as a semialgebraic set,

i.e.,

Koes ⊇ Kras (36)

and

Koes = {k ∈ R
mr : si(k) ≥ 0, ∀i = 1, . . . , ns} (37)

for some polynomials si(k). The choice of the set Koes will

be discussed in the sequel of this section, where it will be

also explained that this set is introduced in order to obtain

a tradeoff between simplicity of implementation and velocity

of convergence. Indeed, the sought controller can be searched

for in the set Kras only without loss of generality. In addition,

since the CI approach requires that the set where the controller

is searched for is bounded, we introduce the hypercube

Kbox = {k ∈ R
mr : ‖k‖∞ ≤ ρ} (38)

where ρ is a chosen nonnegative scalar. The controller pro-

vided by the CI approach will be searched for in the set

K = Koes ∩ Kbox. (39)

Next, define the vector polynomials

g(k) =
(

s1(k), . . . , sns
(k), ρ2 − k21 , . . . , ρ

2 − k2mr
)T

(40)

and

h(ω) =

(

f(p)

g(k)

)

. (41)

Also, define

µ =

∫

K

(φ(k) + ψ)dk (42)

and the quantities
{

dX1 = degω(A(p) + B(p)KC(p))

dXi = 0, ∀i = 2, 3
(43)

where degω(·) denotes the degree in ω.

Define the optimization problem

sup
W (ω),φ(k),ψ,ε

µ− cψ

s.t.































ε > 0

deg(W (ω)) ≤ d

Xi(ω) ∈ C(h(ω), d+ dXi), ∀i = 1, 2, 3

−φ(k) ∈ C(g(k), d+ dX1)

ψ ≤ 1

(44)

where c ∈ R is a positive scalar whose role will be clarified

in the sequel of the paper, and d ∈ N is introduced to bound

the degrees of the symmetric matrix polynomial W (ω) and

polynomial φ(k). The optimization problem (44) is equivalent

to an SDP since the cost function is linear in the decision
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variables and since the second and third constraints can be

expressed as LMIs in the decision variables and auxiliary

variables according to Section II-B.

Analogously to the WDLF approach, the numerical com-

plexity of the CI approach can be measured in terms of the

size of the SDP (44). For conciseness, we report in Table II

this size obtained by using the formulas in (17), for several

values of n, d, q, in the case
{

P = {p ∈ R
q : ‖p‖22 ≤ 1}

A(p) affine, B(p) constant, u scalar, y = x.
(45)

This case is also considered in Example 1 in Section VII-A.

Case q = 1
n d = 0 d = 1 d = 2
2 [ 27,23] [ 54, 41] [ 295, 78]
3 [ 74,39] [156, 71] [ 1329,164]
4 [170,59] [365,109] [ 4346,295]
5 [342,83] [738,155] [11563,480]

Case q = 2
n d = 0 d = 1 d = 2
2 [ 31,25] [ 65, 46] [ 521, 97]
3 [ 89,42] [192, 78] [ 2229,198]
4 [206,63] [447,118] [ 6900,348]
5 [412,88] [893,166] [17513,556]

TABLE II
SIZE OF THE SDP FOR THE CI APPROACH. EACH CELL SHOWS THE

NUMBER OF LMI SCALAR VARIABLES AND THE NUMBER OF MATRIX

ROWS IN THE SDP.

Once (44) is solved, a controller candidate is defined as a

zero of the polynomial φ∗(k), which is the polynomial φ(k)
evaluated for the found optimal values of the decision variables

of (44). Hence, define

Z = {k ∈ K : φ∗(k) = 0} . (46)

Any vector in the set Z defines a controller candidate for

solving Problem 1. In order to single out one vector only

from the set Z , we define the controller candidate for solving

Problem 1 provided by the CI approach as

K∗ = mat(k∗, n) (47)

where mat(k, n) ∈ R
m×n is the matrix whose columns are

stacked in consecutive order in the vector k starting from the

first one, and k∗ is defined by

k∗ : k∗ ⊳ k, ∀k ∈ Z (48)

where the symbol “⊳” denotes the inequality operator defined

as

k∗ ⊳ k ⇐⇒

{

|k∗|l = |k|l, ∀l < l0

|k∗|l0 < |k|l0 .
(49)

The set Z can be found through linear algebra operations.

Indeed, from Section II-B, the condition −φ(k) ∈ C(g(k))
can be written as yi(k), z(k) ∈ Σ, i = 1, . . . , ns+mr, where

yi(k) are polynomials and

z(k) = −φ(k)−

ns+mr
∑

i=1

gi(k)yi(k). (50)

Let z∗(k) be z(k) evaluated for the found optimal values

of the decision variables of (44). It follows that

z∗(k) = 0, ∀k ∈ Z. (51)

Define

Z0 = {k ∈ R
mr : z∗(k) = 0} . (52)

Since z∗(k) ∈ Σ, it follows from Section II-B that

z∗(k) = b(k)TZ∗b(k) (53)

where b(k) is a vector polynomial and Z∗ is a symmetric

positive semidefinite matrix. Hence,

Z0 = {k ∈ R
mr : b(k) ∈ ker(Z∗)} . (54)

As explained in [26, Chapter 1] and references therein, the

vectors k such that b(k) ∈ ker(Z∗) can be found through

pivoting operations and eigenvalue computations. Moreover,

in the common case where ker(Z∗) has dimension equal to

one, this process boils down to just reading k among the entries

of a scaled eigenvector of Z∗. Once Z0 is found, the set Z is

simply obtained by testing the conditions k ∈ K and φ∗(k) =
0 for each vector k ∈ Z0.

We conclude this section by discussing the choice of the set

Koes, which affects the set K where the controller candidate

is searched for according to (39). As it will be explained in

Theorem 3, the CI approach is guaranteed to be nonconserva-

tive by using a sufficiently large value of d for any arbitrarily

chosen Koes that satisfies (36). Nevertheless, the choice of

Koes can be useful to speed up the convergence of the CI

approach by requiring a smaller value of d for providing a

controller candidate that solves Problem 1, which is desirable

in order to reduce the computational burden. This is due to

the fact that the set Koes reduces the search space for the

controller candidate, in particular from Kbox to K, and this

can be useful in order to reduce the degrees of W (ω), φ(k)
used to satisfy the conditions in the SDP (44).

Let us start by observing that a necessary condition for

establishing that k ∈ Kras can be obtained as follows. Let

p0 ∈ P be arbitrarily chosen, and define

Acl(k) = A(p0) +B(p0)KC(p0). (55)

Clearly, k ∈ Kras only if Acl(k) is Hurwitz. The condition

that Acl(k) is Hurwitz can be expressed as a set of polynomial

inequalities in k by using the Hurwitz table. Specifically, let

θ1(k), . . . , θn+1(k) be the entries in the first column of this

table, with θ1(k) = 1, and write

θi(k) =
θ̃i(k)

θ̄i(k)
(56)

where θ̃i(k), θ̄i(k) are coprime polynomials with θ̃1(k) =
θ̄1(k) = 1. Since the positivity of θ1(k), . . . , θi−1(k) implies

that θ̄i(k) is positive, it follows that Acl(k) is Hurwitz if and

only if θ̃i(k) > 0 for all i = 2, . . . , n+1. Hence, a choice for

Koes is

K1 =
{

k ∈ R
mr : θ̃i(k) ≥ 0, ∀i = 2, . . . , n+ 1

}

(57)

This choice has the advantage of exactly characterizing

the Hurwitz property of Acl(k), but also the disadvantage of
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providing a set Kras (and, hence, also a set K) with possibly

non-simple shape, which could make difficult to calculate the

integral in (42). Observe that K1 can be expressed as in (37)

with ns ≤ n.

In order to cope with this issue, observe that a simpler

necessary condition for establishing that k ∈ Kras can be

obtained as follows. Express the characteristic polynomial of

Acl(k) as

det(λIn −Acl(k)) = λn +

n−1
∑

i=0

ai(k)λ
i (58)

where each ai(k) is a polynomial. It follows that Acl(k) is

Hurwitz only if ai(k) > 0 for all i = 0, . . . , n − 1. Hence,

another choice for Koes is

K2 = {k ∈ R
mr : ai(k) ≥ 0, ∀i = 0, . . . , n− 1} . (59)

This choice has the disadvantage of providing a possibly

larger set Koes than the previous choice (since the condition

that the coefficients of the characteristic polynomial of Acl(k)
are positive is only necessary for Acl to be Hurwitz), but also

the advantage of providing a set Koes (and, hence, also a set K)

with possibly simpler shape than the previous choice. Indeed,

it turns out that

deg(ai(k)) ≤ min{n− i, rank(B(p0)), rank(C(p0))}. (60)

For instance, this means that all the polynomials ai(k)
are affine functions whenever rank(B(p0)) = 1 or

rank(C(p0)) = 1, which is the case of single-input or single-

output systems. In such a case, the set Koes (and, hence, also

a set K) is just a polytope, and the integral in (42) can be

calculated more easily. Similarly to the previous choice, the

set K2 can be expressed as in (37) with ns ≤ n.

Lastly, let us mention that a tighter set Koes can be obtained

by repeating the above choices for multiple values of p0,

denoted by p
(1)
0 , . . . , p

(l)
0 , . . . ∈ P , and taking the intersection

of the sets obtained. Specifically, such a set is

K3 =
⋂

i=1,...,l

Kj(i)
∣

∣

p0=p
(i)
0

, j(i) ∈ {1, 2} (61)

which can be expressed as in (37) with ns ≤ ln.

V. SUFFICIENCY AND NECESSITY

This section investigates some key properties of the WDLF

approach and CI approach. Specifically, Section V-A explains

how a sufficient condition for solving Problem 1 can be

obtained with these approaches. Then, Section V-B analyzes

the necessity of this condition.

A. Sufficiency

The WDLF and CI approaches described in Sections III and

IV provide a controller candidate K∗ for solving Problem 1.

Once such a controller has been obtained, one can test whether

K∗ solves this problem by establishing if J∗(K∗) < γ.

This can be done through an SDP by using the methodology

described in the previous sections and specialized to the case

of known controller.

Specifically, let X̃i(p) be defined as in (31) for a fixed

controller K , and introduce






Di(p) = X̃i(p)
∣

∣

∣

W̃ (p)→W (p)
− εI, ∀i = 1, 2

D3(p) = η − xT0W (p)x0 − ε
(62)

where the symmetric matrix polynomial W (p) and the scalars

η, ε have to be determined. Define
{

dD1 = deg(A(p) +B(p)KC(p))

dDi = 0, ∀i = 2, 3
(63)

and the optimization problem

Ĵ(K) = inf
W (p),η,ε

η

s.t.











ε > 0

deg(W (p)) ≤ dη

Di(p) ∈ C(f(p), dη + dDi), ∀i = 1, 2, 3

(64)

where dη ∈ N is introduced to bound the degree of W (p).
Analogously to (28) and (44), the optimization problem (64)

is equivalent to an SDP.

Definition 1: The set P is said strongly compact if it is

compact and the highest degree forms of the polynomials in

f(p) have not common root except the origin. �

Definition 1 provides a stronger definition of compactness

for P that will be exploited in the sequel of this paper. Observe

that typical sets such as hypersphere, hypercube and simplex

defined in (3)–(5) satisfy this definition.

The following theorem explains how one can establish if

the controller candidates provided by the WDLF approach

and the CI approach solve Problem 1.

Theorem 1: For all dη one has

J∗(K) ≤ Ĵ(K). (65)

Moreover, suppose that J∗(K) < ∞ and that P is strongly

compact. Then, for all δ > 0 there exists dη such that

Ĵ(K)− δ ≤ J∗(K). (66)

Proof. Let us start by proving (65). To this end, suppose

firstly that, for the chosen dη, the constraints in (64) hold

for some W (p), η, ε. Since ε > 0, from (20)–(21) it follows

that Di(p) > 0 for all p ∈ P for all i = 1, 2, 3, which implies

that J∗(K) < η and, in turn, J∗(K) ≤ Ĵ(K). Also, suppose

secondly that, for the chosen dη, the constraints in (64) are

infeasible. This implies that Ĵ(K) = ∞, and (65) still holds.

Next, let us prove (66). Let δ > 0 be arbitrarily chosen. It

follows that there exists a symmetric matrix function W̃ (p)
and a scalar ε̃ > 0 such that

X̃i(p)
∣

∣

∣

γ→J∗(K)+δ
− ε̃I ≥ 0, ∀p ∈ P ∀i = 1, 2, 3.

Since P is compact, it follows that there exists a symmetric

matrix polynomial W (p) that approximates arbitrarily well
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W̃ (p) over P . This implies that there exist a symmetric matrix

polynomial W (p) and a scalar ε > 0 such that

Di(p) ≥ 0, ∀p ∈ P ∀i = 1, 2, 3.

Moreover, since P is also strongly compact, from [Section

1] [27] there exist symmetric matrix polynomials Yi,j(p) ∈ Σ
such that Zi(p) ∈ Σ for all i = 1, 2, 3 for all j = 1, . . . , q,

where

Zi(p) = Di(p)−

nf
∑

j=1

fj(p)Yi,j(p).

Define

d∗ = min
d∈N

d

s.t.







deg(W (p)) ≤ d

deg(Zi(p)) ≤ 2

⌈

1

2
(d+ dDi)

⌉

, ∀i = 1, 2, 3.

Then, the second constraint in (64) already holds by choosing

dη = d∗. �

Theorem 1 states that Ĵ(K) is an upper bound on

J∗(K) for all dη, moreover, the conservatism of this upper

bound can be arbitrarily decreased by increasing d. Hence, a

sufficient condition for the solution of Problem 1 is as follows.

Corollary 1: There exists a controllerK that solves Problem

1 if, for some dη , Ĵ(K∗) < γ where K∗ is the controller

candidate provided by the WDLF or CI approaches (in such

a case, K∗ solves Problem 1).

B. Necessity

Let us start by considering the WDLF approach in Section

III.

Theorem 2: Suppose that there exists a controller K = K0

that solves Problem 1. Moreover, suppose that there exist

T (p) = T0, U(p) = U0 and V (p) = V0 of degree 0 such that

U0 = K0V0 and S̃1(p), S̃2(p), S̃3(p) are positive definite over

P , with P strongly compact. Then, there exists d such that

the controller candidate K∗ in (29) provided by the WDLF

approach solves Problem 1.

Proof. Choose T (p) = T0, U(p) = U0 and V (p) = V0. It

follows that there exist ε > 0 and ζ = 0 such that

Si(p) > 0, ∀p ∈ P ∀i = 1, . . . , 6.

Analogously to the proof of Theorem 1, there exist sym-

metric matrix polynomials Yi,j(p) ∈ Σ such that Zi(p) ∈ Σ
for all i = 1, . . . , 6 for all j = 1, . . . , q, where

Zi(p) = Si(p)−

q
∑

j=1

fj(p)Yi,j(p).

Define

d∗ = min
d̃∈N

d̃

s.t. deg(Zi(p)) ≤ 2

⌈

1

2
(d̃+ dSi)

⌉

, ∀i = 1, . . . , 6.

The chosen T (p), U(p), V (p), ε, ζ satisfy the constraints

in (28) for d = d∗, moreover, they are global minimizers

of (28) since ζ cannot be negative. This proves that

T ∗(p), U∗(p), V ∗(p) (which are T (p), U(p), V (p) evaluated

for the found optimal values of the decision variables of (28))

have degree 0. Therefore, the controller K∗ provided in (29)

coincides with the controller K(p) provided in (24), which

solves Problem 1. �

Theorem 2 provides a condition that, if satisfied, ensures

that the controller candidate provided by the WDLF approach

solves Problem 1 for sufficiently large d. Such a condition

boils down to the existence of a sought controllerK0 for which

J∗(K0) < γ can be proved through a parameter-independent

Lyapunov function. For instance, this is the case of systems

weakly affected by the uncertainties.

Next, consider the CI approach in Section IV.

Theorem 3: Suppose that there exists K = K0 that solves

Problem 1, with ‖K0‖∞ ≤ ρ, and that P is strongly compact.

Also, let c satisfy

0 < c <
1

d+ 1
. (67)

Then, there exists d such that the controller candidate K∗ in

(47) provided by the CI approach solves Problem 1.

Proof. Define the optimization problem

sup
W̃ (p),φ̃,ε̃

φ̃

s.t.























ε̃ > 0

φ̃ ≤ 1

X̃1(p)− φ̃I ≥ 0, ∀p ∈ P

X̃i(p)− ε̃I ≥ 0, ∀p ∈ P ∀i = 2, 3

where W̃ (p) ∈ R
n×n is a symmetric matrix function, φ̃, ε̃ ∈ R

are scalars, and X̃i(p) is defined as in (33) for a frozen

controller K . It follows that this optimization problem is

feasible and the supremum is achieved for any controller

K . The global maximizers of W̃ (p), φ̃ are functions of the

controller K . Denote any pair of such global maximizers as

W̃ ∗(ω), φ̃∗(k). Let k0 be the vector corresponding to K0.

Since K0 solves Problem 1, it follows that

φ̃∗(k0) > 0.

Since P ×K is compact, it follows that W̃ ∗(ω) and φ̃∗(k)
can be approximated arbitrarily well by polynomials over P×
K, in particular, there exist a symmetric matrix polynomial

W (ω), a polynomial φ̄(k) and a scalar ε such that φ̄(k0) > 0
and


















ε > 0

φ̄(k) ≤ ψ̄

X1(ω)− φ̄(k)I ≥ 0, ∀p ∈ P ∀k ∈ K

Xi(ω)− εI ≥ 0, ∀i = 2, 3 ∀p ∈ P ∀k ∈ K

(68)

where ψ̄ is temporarily set to 1. Analogously to the proof

of Theorem 1, there exist symmetric matrix polynomials

Yi,j(ω) ∈ Σ and polynomials yl(k) ∈ Σ such that
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Zi(ω), z(k) ∈ Σ for all i = 1, 2, 3 for all j = 1, . . . , ns +
mr + q for all l = 1, . . . , ns +mr, where



























Zi(ω) = Xi(ω)−

ns+mr+q
∑

j=1

hj(ω)Yi,j(ω)

z(k) = ψ̄ − φ̄(k)−

ns+mr
∑

l=1

gl(k)yl(k).

This implies that Xi(ω) ∈ C(h(ω), d+ dXi) for all i = 1, 2, 3
and ψ̄ − φ̄(k) ∈ C(g(k), d+ dX1) by choosing d such that



























deg(W (ω)) ≤ d

deg(Zi(ω)) ≤ 2

⌈

1

2
(d+ dXi)

⌉

, ∀i = 1, 2, 3

deg(z(k)) ≤ 2

⌈

1

2
(d+ dX1)

⌉

.

Observe that

φ̄(k) ≤ φ̃∗(k), ∀k ∈ K.

Hence, define

µ̄ =

∫

K

φ̄(k)dk

and
sup

W (ω),φ̄(k),ε

µ̄

s.t. (68).

(69)

It follows that the maximizer of φ̄(k) in (69), denoted by

φ̄∗(k), approximates arbitrarily well φ̃∗(k) over K by suffi-

ciently increasing the degree of φ̄(k) through d.

Next, define the set

Ξ =
{

(µ̄, ψ̄) : ψ̄ ≤ 1, (68) holds
}

.

It follows that the set Ξ is bounded in the positive µ-direction,

in particular,

sup
(µ̄,ψ̄)∈Ξ

µ̄ ≤

∫

K

φ̃∗(k)dk.

Moreover, the set Ξ is bounded in the negative ψ-direction

for finite values of µ, i.e.,

∀µ̄ ∃ψ̄− : ψ ≥ ψ−, ∀(µ̄, ψ̄) ∈ Ξ.

This implies that the maximizer of φ̄(k) in

sup
W (ω),φ̄(k),ψ̄,ε

µ̄− cψ̄

s.t. (68) holds,
(70)

denoted by φ̄∗∗(k), is arbitrarily close to φ̃∗(k) by letting c
be positive and sufficiently small as ensured by (67) when

increasing d. Moreover, the maximizer of ψ̄ in (70), denoted

by ψ̄∗∗, is the maximum of φ̄∗∗(k) over K. Hence, for d
sufficiently large,

{

φ̄∗∗(k) = ψ̄∗∗

k ∈ K
⇒ J∗(K) < γ.

Observe that the controllers k satisfying the left hand side

of the above condition are the controllers in the set Z in (46)

by introducing the change of variables φ̄(k) = φ(k) + ψ and

ψ̄ = ψ. �

Theorem 3 states that the controller candidate provided

by the CI approach solves Problem 1 for sufficiently large

d provided that there exists a sought controller in the set

K. In particular, this is guaranteed whenever the condition

(67) is satisfied, which requires that the parameter c becomes

arbitrarily small by increasing d.

VI. EXTENSION TO DT SYSTEMS

This section addresses the extension of the proposed ap-

proaches to DT systems. Specifically, Section VI-A introduces

the problem formulation, while Sections VI-B and VI-C ex-

plain how the WDLF and CI approaches can be modified in

order to deal with the problem.

A. Problem Formulation

Consider the DT LTI uncertain system



















x(t+ 1) = A(p)x(t) +B(p)u(t)

y(t) = C(p)x(t)

x(0) = x0

p ∈ P

(71)

where t ∈ N is the time, and the other quantities are as in the

system (1). The LQR problem for (71) consists of solving

J0(p) = inf
u(t)

∞
∑

t=0

(

xT (t)Qx(t) + uT (t)Ru(t)
)

(72)

where Q ∈ R
n×n and R ∈ R

m×m are symmetric positive def-

inite matrices. In the case of state-feedback (i.e., C(p) = In),

the control input that achieves J0(p) is given by the control

law (8)–(9) where V0(p) ∈ R
n×n is the solution of the DARE

0 = Q+A(p)TV0(p)A(p)− V0(p)

−(A(p)TV0(p)B(p))(R +B(p)TV0(p)B(p))−1

·(B(p)TV0(p)A(p)),
(73)

see, e.g., [3, Chapter 2], [4, Chapter 2].

The system (71) is controlled in closed-loop by (11) where

K ∈ R
m×r has to be determined in order to minimize the

worst-case cost

J∗(K) = sup
p∈P

J(K, p) (74)

where

J(K, p) =

∞
∑

t=0

(

xT (t)Qx(t) + uT (t)Ru(t)
)

s.t. u(t) = Ky(t).

(75)

Problem 2: (Robust LQR problem for DT systems) Consider

the system (71) and worst-case cost (74). Given a scalar γ > 0,

find K (if any) such that J∗(K) < γ. �
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B. WDLF Approach

In the case of DT systems, the WDLF approach still sup-

poses that Assumption 1 holds, and is modified by replacing

S̃1(p) in (23) with

S̃1(p) = V (p)−

(

A(p)T

B(p)T

)T

S̃2(p)

(

A(p)T

B(p)T

)

− x0x
T
0

(76)

and dS1 in (27) with

dS1 = 2max{deg(A(p)), deg(B(p))}. (77)

C. CI Approach

In the case of DT systems, the CI approach is modified by

replacing X̃1(p) in (31) with

X̃1(p) =W (p)−Q− C(p)TKTRKC(p)

− (A(p) +B(p)KC(p))T W (p) (A(p) +B(p)KC(p))
(78)

and dX1 in (43) with

dX1 = 2degω(A(p) +B(p)KC(p)). (79)

Moreover, the set of controllers ensuring robust asymptoti-

cal stability in (35) is replaced by

Kras = {k ∈ R
mr : |λ| < 1,

∀λ ∈ spec(A(p) +B(p)KC(p)) ∀p ∈ P}.
(80)

Next, let us discuss the construction of an outer estimate

Koes of the set Kras. With Acl(k) as in (55), the condition

k ∈ Kras holds only if Acl(k) is Schur. The condition that

Acl(k) is Schur can be expressed as a set of polynomial

inequalities in k by using the Jury table. Specifically, let

θ1(k), . . . , θ2(n+1)(k) be the entries in the first column of this

table, with θ1(k) = 1, and write

θi(k) =
θ̃i(k)

θ̄i(k)
(81)

where θ̃i(k), θ̄i(k) are polynomials with θ̃1(k) = θ̄1(k) =
1. Since the positivity of θ1(k), . . . , θ2(i−1)+1(k) implies that

θ̄2i+1(k) is positive, it follows that Acl(k) is Schur if and only

if θ̃2i+1(k) > 0 for all i = 1, . . . , n. Hence, a choice for the

set Koes is

K1 =
{

k ∈ R
mr : θ̃2i+1(k) ≥ 0, ∀i = 1, . . . , n

}

. (82)

This choice has the advantage of exactly characterizing

the Schur property of Acl(k), but also the disadvantage of

providing a set Koes (and, hence, also a set K) with possibly

non-simple shape, which could make difficult to calculate the

integral in (42).

In order to cope with this issue, observe that a simpler

necessary condition for establishing that k ∈ Kras can be

obtained as follows. Express the characteristic polynomial of

Acl(k) as in (58). It follows that Acl(k) is Schur only if

ãj(k) > 0 for all i = 1, . . . , 2n, where



























ã2i+1 = ci + ai(k)

ã2i+2 = ci − ai(k)

ci =
n!

i!(n− i)!

∀i = 0, . . . , n− 1.

(83)

Hence, another choice for the set Koes is

K2 = {k ∈ R
mr : ãi(k) ≥ 0, ∀i = 1, . . . , 2n} . (84)

This choice has the disadvantage of providing a possi-

bly larger set Koes than the previous choice, but also the

advantage of providing a set Koes (and, hence, also a set

K) with possibly simpler shape than the previous choice.

For instance, all the polynomials ãi(k) are affine functions

whenever rank(B(p0)) = 1 or rank(C(p0)) = 1, which is

the case of single-input or single-output systems.

VII. EXAMPLES

This section presents four illustrative examples. The pro-

posed approaches are compared with the following existing

methods, which propose sufficient conditions for Problem 1:

• [13, Section 3], which considers state-feedback control

design for CT and DT systems, and provides a controller

for minimizing the worst-case cost through an SDP;

• [14, Section III], which considers state-feedback control

design for CT systems, and provides a controller for

minimizing the worst-case cost through an SDP;

• [15, Section II], which considers output-feedback control

design for CT systems, and provides a controller for

minimizing the worst-case cost through SDPs and evolu-

tionary algorithms. In particular, evolutionary algorithms

are used to search for two variables in order to solve a

constrained optimization problem that, for frozen values

of these two variables, boils down to an SDP. In this

paper, these two variables are searched for by using the

function fminsearch of Matlab, which solves the SDP

obtained for frozen values of these two variables at each

iteration.

The examples presented in this section aim to show a case

where:

• the WDLF and CI approaches and the existing methods

solve the problem;

• the CI approach solves the problem, while the WDLF

approach and the existing methods do not (Example 2);

• the WDLF and CI approaches solve the problem, while

the existing methods cannot be applied since the system

is not polytopic (Example 3);

• the CI approach solves the problem, while the WDLF

approach and the existing methods cannot be applied

since the state is not available for feedback and since

the dynamics are not CT (Example 4).
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For conciseness, all examples consider Problem 1 with


























x0 =







1
...

1






, P = {p ∈ R

q : ‖p‖2 ≤ 1}

Q = In, R =
1

2
Im, γ = 10.

(85)

Moreover, in all examples:

• the worst-case cost J∗(K) is unbounded for the open

loop system, i.e., J∗(0) = ∞;

• the WDLF approach is used with p0 = (1, 0, . . . , 0)T ;

• the CI approach is used with ρ = 2, c = 10−3 and p0 =
(1, 0, . . . , 0)T .

For each found controller candidate K , provided either by

the proposed approaches or by the existing methods, its worst-

case cost J∗(K) is calculated with the SDP (64) by using

dη = 2 (the upper bound Ĵ(K) provided by this SDP is tight

in all examples).

The SDPs are solved with the toolbox SeDuMi [28] for

Matlab on a standard computer with Windows 11, Intel Core

i7, 3.2 GHz, 16 GB RAM. The reported SDP time is the time

in seconds, rounded to the nearest not smaller integer, required

for solving each SDP and extracting the controller.

A. Example 1

Consider the model of a DC motor (see, e.g., [29, Chapter

2])
{

Jmψ̈m(t) + bmψ̇m(t) = Ktia(t)

Lai̇a(t) +Raia(t) = −Keψ̇m(t) + va(t)

where ψm(t) is the angle, ia(t) is the current, va(t) is the

voltage, and Jm, bm,Kt, La, Ra,Ke are parameters. Define
{

x(t) = (ψm(t), ψ̇m(t), ia(t))
T

u(t) = va(t).

The model can be rewritten as

ẋ(t) =











0 , 1 , 0

0 , −
bm
Jm

,
Kt

Jm

0 , −
Ke

La
, −

Ra
La











x(t) +







0
0
1

La






u(t).

Choose the plausible values
{

bm = 0.5, Kt = 2, La = 0.5, Ra = 1, Ke = 3

Jm ∈ [1, 2]

where Jm is the uncertainty. By defining

p =
4

Jm
− 3,

it follows that p ∈ [−1, 1] and the model is described by the

system (1) with






























A(p) =





0 , 1 , 0
0 , −0.125(p+ 3) , 0.5(p+ 3)
0 , −6 , −2





B(p) =





0
0
2



 , C(p) = I3.
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Fig. 1. Example 1: (a) Cost J(K∗, p) for K∗ found with the CI approach
in Part 1 (blue solid line). The cost is unbounded for the open loop system
for all values of p. (b) Set K in Part 1 (dashed line) and Part 2 (grey area).

The goal is to solve Problem 1 with the choices in (85).

Let us start by using the WDLF approach. We solve the SDP

(28) for some values of d, and build each time the candidate

controller K∗ in (29). Table III shows K∗, its worst-case cost,

and the SDP size.

d K∗ J∗(K∗) SDP size & time

0 N/A N/A [20, 14], 1s
1 (−1.329,−0.877,−0.922) 9.115 [81,54],1s

TABLE III
EXAMPLE 1: RESULTS OBTAINED WITH THE WDLF APPROACH. FOR

d = 0, THE SDP IS INFEASIBLE.

Next, we use the CI approach:

• firstly (Part 1), with the simple choice Koes = R
mr,

which provides K = Kbox. We solve the SDP (44) for

some values of d, and build each time the candidate

controller K∗ in (47). Table IV (Part 1) shows K∗, its

worst-case cost, and the SDP size. Figure 1a shows the

cost J(K∗, p) for d = 2;

• secondly (Part 2), with the choice Koes = K2, which

provides

K = {k ∈ R
3 : k1 ∈ [−2, 0], k2 ∈ [−2, 2],

k3 ∈ [−2, 5/4]}.

Figure 1b shows K, and Table VI (Part 2) shows the new

results obtained. It can be observed that the CI approach

in Part 2 solves Problem 1 already for d = 0 (rather than

for d = 2 as in Part 1).

Part 1: Koes = R
mr

d K∗ J∗(K∗) SDP size & time

0 (0.003,−0.141,−0.167) ∞ [74, 39], 1s
1 (−0.605,−0.667,−0.820) 11.726 [156, 71], 1s
2 (−1.994,−1.622,−2.000) 9.396 [1329,164],5s

Part 2: Koes = K2

d K∗ J∗(K∗) SDP size & time

0 (−1.025,−0.410,−0.750) 9.338 [74,39],1s

TABLE IV
EXAMPLE 1: RESULTS OBTAINED WITH THE CI APPROACH.

For comparison, we test the existing methods:

• [13, Section 3] and [14, Section III], which provide the

controller K = (−1.414,−0.966,−1.100) by solving an
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SDP with size [10, 10], time 1s. The worst-case cost is

J∗(K) = 9.121;

• [15, Section II], which provides the controller K =
(−0.758,−0.475,−0.198) by solving 125 SDPs with

size [20, 25] each (the total time is 13s). The worst-case

cost is J∗(K) = 9.921.

Concluding, the WDLF and CI approaches and the existing

methods solve Problem 1 in this example.

B. Example 2

Consider the CT system (1) with














A(p) =

(

−1 + 1.6p , 1− 0.6p
−2.5 + 0.6p , −0.5− 1.6p

)

B(p) =

(

0.6p
0.6p+ 0.5

)

, C(p) = I2.

The goal is to solve Problem 1 with the choices in (85).

Let us start by using the WDLF approach. We solve the SDP

(28) for some values of d, and build each time the candidate

controller K∗ in (29). Table V shows K∗, its worst-case cost,

and the SDP size.

d K∗ J∗(K∗) SDP size & time

0 N/A N/A [11, 10]
1 (−14.191,−9.975) ∞ [44, 39], 1s
2 (−4.679,−0.039) ∞ [62, 43], 1s
3 (−11.700,−1.066) ∞ [149, 65], 1s

TABLE V
EXAMPLE 2: RESULTS OBTAINED WITH THE WDLF APPROACH. FOR

d = 0, THE SDP IS INFEASIBLE.

Next, we use the CI approach:

• firstly (Part 1), with Koes = R
mr, which provides K =

Kbox. Table VI (Part 1) shows the results, and Figure 2a

shows the cost J(K∗, p) for d = 2;

• secondly (Part 2), with Koes = K2, which provides the set

K shown in Figure 2b. Table VI (Part 2) shows the new

results obtained. It can be observed that the CI approach

in Part 2 solves Problem 1 already for d = 0 (rather than

for d = 2 as in Part 1).

Part 1: Koes = Rmr

d K∗ J∗(K∗) SDP size & time

0 (0.000, 0.000) ∞ [27, 23], 1s
1 (0.000, 0.000) ∞ [277, 78], 2s
2 (−0.996,0.052) 4.132 [295,78],2s

Part 2: Koes = K2

d K∗ J∗(K∗) SDP size & time

0 (−0.639,0.273) 5.381 [35,29],1s

TABLE VI
EXAMPLE 2: RESULTS OBTAINED WITH THE CI APPROACH.

For comparison, we test the existing methods:

• [13, Section 3] and [14, Section III], which do not

provide any controller (the SDPs are infeasible);

• [15, Section II], which provides the controller K =
(−0.314, 0.017) by solving 400 SDPs with size [11, 18]
each (the total time is 33s). The worst-case cost is

J∗(K) = 64.302.
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Fig. 2. Example 2: (a) Cost J(K∗, p) for K∗ found with the CI approach
in Part 1 (blue solid line) and for the open loop system (black dashed line).
(b) Set K in Part 1 (dashed line) and Part 2 (grey area).

Concluding, the CI approach solves Problem 1 in this

example, while the WDLF approach and the existing methods

do not (no controller provided or worst-case cost larger than

γ).

C. Example 3

Consider the CT system (1) with














A(p) =

(

−1 , p21
p1p2 , p2 − 1

)

B(p) =

(

1
−1

)

, C(p) = I2.

The goal is to solve Problem 1 with the choices in (85).

Let us start by using the WDLF approach. We solve the SDP

(28) for some values of d, and build each time the candidate

controllerK∗ in (29). Table VII shows K∗, its worst-case cost,

and the SDP size.

d K∗ J∗(K∗) SDP size & time

0 (0.181,0.951) 4.914 [13,12],1s

TABLE VII
EXAMPLE 3: RESULTS OBTAINED WITH THE WDLF APPROACH.

Next, we use the CI approach:

• firstly (Part 1), with Koes = R
mr, which provides K =

Kbox. Table VIII (Part 1) shows the results, and Figure

3a shows the cost J(K∗, p) for d = 1;

• secondly (Part 2), with Koes = K2, which provides the set

K shown in Figure 3b. Table VIII (Part 2) shows the new

results obtained. It can be observed that the CI approach

in Part 2 solves Problem 1 already for d = 0 (rather than

for d = 2 as in Part 1).

Concluding, the WDLF and CI approaches solve Problem

1 in this example. The existing methods cannot be applied

since A(p) is not affine and since P is not a convex bounded

polytope.

D. Example 4

Consider the DT system (71) with














A(p) =

(

0.5− 0.3p , −0.5
0.5p , 0.3

)

B(p) =

(

1 , 0
−1 , 1

)

, C(p) =
(

1 , 0
)

.
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Part 1: Koes = R
mr

d K∗ J∗(K∗) SDP size & time

0 (−0.046, 0.031) 31.779 [31, 25], 1s
1 (−0.528,2.000) 5.014 [491,97],2s

Part 2: Koes = K2

d K∗ J∗(K∗) SDP size & time

0 (−0.346,1.243) 5.350 [39,31],1s

TABLE VIII
EXAMPLE 3: RESULTS OBTAINED WITH THE CI APPROACH.
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Fig. 3. Example 3: (a) Cost J(K∗, p) for K∗ found with the CI approach
in Part 1 (filled colored surface) and for the open loop system (unfilled black
surface). (b) Set K in Part 1 (dashed line) and Part 2 (grey area).

The goal is to solve Problem 2 with the choices in (85).

Since the state is not available for feedback in this example,

the WDLF approach cannot be used. Hence, we use the CI

approach with the changes mentioned in Section VI-C:

• firstly (Part 1), with Koes = R
mr, which provides K =

Kbox. Table IX (Part 1) shows the results, and Figure 4a

shows the cost J(K∗, p) for d = 2;

• secondly (Part 2), with Koes = K2, which provides the set

K shown in Figure 4b. Table IX (Part 2) shows the new

results obtained. It can be observed that the CI approach

in Part 2 solves Problem 1 already for d = 1 (rather than

for d = 2 as in Part 1).

Concluding, the CI approach solves Problem 1 in this ex-

ample. The WDLF approach and the existing methods cannot

be applied since the state is not available for feedback and

since the dynamics are not CT.

Part 1: Koes = Rmr

d K∗ J∗(K∗) SDP size & time

0 (0.000, 0.000) ∞ [27, 23], 1s
1 (−0.034, 0.059) ∞ [277, 78], 2s
2 (−0.418,−0.077) 4.517 [295,78],2s

Part 2: Koes = K2

d K∗ J∗(K∗) SDP size & time

0 (0.000, 0.000) ∞ [31, 26], 1s
1 (−0.256,−0.312) 3.131 [323,92],2s

TABLE IX
EXAMPLE 4: RESULTS OBTAINED WITH THE CI APPROACH.

VIII. CONCLUSIONS

This paper has proposed two approaches based on SDPs for

designing robust LQRs for CT and DT LTI uncertain systems.

The first approach, named WDLF, is based on the construction

of an uncertainty-dependent LQR obtained through Lyapunov
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Fig. 4. Example 4: (a) Cost J(K∗, p) for K∗ found with the CI approach
in Part 1 (blue solid line) and for the open loop system (black dashed line).
(b) Set K in Part 1 (dashed line) and Part 2 (grey area).

functions that weakly depend on the uncertainties. The second

approach, named CI, is based on the construction of an

index that quantifies the feasibility of different controllers.

The proposed approaches have two main advantages with

respect to the existing methods, namely, considering not only

state-feedback design for polytopic systems but also output-

feedback design for systems depending polynomially on the

uncertainty, and providing conditions that are not only suf-

ficient but also necessary under some assumptions. These

advantages have been illustrated through various examples,

where it has been shown that the existing methods may be

more conservative or may be not applicable.

Various directions can be explored in future work. One of

these is the extension to the case where the system matrices

are rational functions of uncertainties. Another direction can

be the extension to the case where the uncertainties are time-

varying. Last but not least, it would be interesting and useful

to explore the possibility of reducing the numerical complexity

in order for the proposed approaches to be applicable to large

scale systems or in real time applications.
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