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Influence of network structure on contaminant spreading efficiency

Abstract

Contaminants, such as pathogens or non-living substances, can spread through the
interaction of their carriers (e.g., air and surfaces), which constitute a network. The structure
of such networks plays an important role in the contaminant spread.

We measured the contaminant spreading efficiency in different networks using a newly
defined parameter. We analyzed basic networks to identify the effect of the network structure
on the contaminant spread. The spreading efficiency was highly related to some network
parameters, such as the source node’s average path length and degree, and considerably varied
with the transfer rate per inter-node interaction. We compared the contaminant spreading
efficiencies in some complex networks, namely scale-free, random, regular-lattice, and
bipartite networks, with centralized, linear, and fractal networks. The contaminant spreading
was particularly efficient in the fractal network when the transfer rate was ~0.5.

Two categories of experiments were performed to validate the effect of the network
structure on contaminant spreading in practical cases: (I) gas diffusion in multi-compartment
cabins (II) bacteria transfer in multi-finger networks. The gas diffusion could be well estimated
based on the diffusion between two compartments, and it was considerably affected by the
network structure. Meanwhile, the bacteria spread was generally less efficient than expected.

(200 words)
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1 Introduction

The study of different contaminants often involves their spread in networks of variable
scales, such as the diffusion of pathogen-laden aerosol particles in multiroom areas [1], the
transfer of chemical residues among environmental surfaces [2], and the spread of
contaminants in a water-distribution system [3]. An individual, inanimate surface, or room of
air can be considered a node that provides or receives contaminants. The interaction between
any two nodes that causes contaminant transfer/exchange is considered to form an edge, such
as aerosol particle deposition from air to ground, pathogen transfer when a hand touches a
fomite surface, and heat transfer between rooms [4-6]. The presence of one or multiple types
of nodes together with the edges makes up a spreading network.

Pathogens are a type of contaminant that can hide in inanimate carriers that are in the same
network with susceptible individuals, presenting a higher infection risk [7-9]. For instance,
handwashing can reduce infection risk [10, 11]. However, pathogens can also hide on
surroundings and be transferred to the washed hands or food as touching actions continue [12,
13]. Moreover, pathogen-laden aerosols can remain alive in heating, ventilation, and air
conditioning systems and be released into indoor air when the system restarts [1, 14]. Thus,
periodic handwashing or indoor cleaning only eliminates a part of pathogens within a network,
but the infection risk remains [15, 16].

Spreading networks have been modeled using various mathematical graphs, such as scale-
free, random, and bipartite networks [17, 18]. As inter-node interactions proceed in a network,
the number of contaminated carriers usually increases following a logistic or logarithmic

growth curve [19, 20]. However, the spreading efficiency varies among networks and strongly



depends on the network structure, even among networks with the same values of relevant
parameters (e.g., average path length and clustering coefficient) [21-23]. For instance,
contaminants show a higher spreading efficiency in scale-free networks than in regular lattices
[24]. Considering the limited effects of handwashing and indoor air purification, we aim to
reduce the contamination risk by optimizing the network structure. However, without a
systematic study, identifying the network structures with a high contamination risk is difficult.

Unlike the dissemination of information, which is duplicated as it spreads, contaminants
can be continuously released by a source but cannot be duplicated while spreading in a network
[25]. In this study, we use the evenness of the contaminant distribution at different moments in
a network to quantify the contaminant spreading efficiency. We present different basic
networks and propose a new parameter £ as a measure to compare their contaminant spreading
efficiencies under different spreading paths, transfer rates per inter-node interaction, and
rounds of interactions. We also compare the spreading efficiencies in some common complex
networks, including scale-free, random, regular-lattice, and bipartite networks. Furthermore,
the effect of the network structure on practical spreading cases is validated through two
categories of experiments. In experiment I, sulfur hexafluoride (SFs) was used as a tracer gas
to be diffused in multi-compartment cabins. In experiment 1, Staphylococcus aureus was used
as a model strain to be transferred in multi-finger networks. Overall, we illustrate the effect of
the network structure on contaminant spreading and present a new perspective on the
prevention of contaminant spreading.
2 Materials and method
2.1 A new parameter £
2.1.1 Definition of a network

To investigate contaminant spreading among multiple carriers, we modeled the spreading

process using a time-series network. The carriers were considered the network nodes, and a



connection of a pair of nodes between which contaminant transfer/exchange occurs was
considered an edge that preserves time-series information [26].

To generate a network with N nodes and M sequenced edges (M >N — 1), we first assigned
node 1 as the node of the contamination source and connected node 2 to node 1 to form edge
1. Then, we extended the network by connecting a new node to a random node in the existing
network framework each time to form a new edge. After all of the N nodes were connected, we
obtained a basic network with N — 1 edges (N — 1 is the least number of edges to form an N-
node network). For a complex network with extra edges (when M > N — 1), the extra M — N +
1 edges were added one-by-one by randomly connecting two nodes at a time. Thus, the
contaminant spread was completely defined by the network, in which the edges and their
sequence denoted the inter-node interactions and the interacting sequence, respectively.

The network structure likely varied, as each added node could connect different existing
nodes, and the formed edges had a sequence. In this study, a “network structure” refers to

I.  the source position (i.e., the node that is initially contaminated to serve as the

contaminant source);

II. the framework (i.e., the pairs of nodes interacting as edges); and

ITI. the edge sequence (i.e., the time series of inter-node interactions).

In network generation, the existing nodes have different probabilities of connecting with
the newly added node (or another existing node) to form a new edge, and the probability
distribution determines the network type. For instance, if the probability of an existing node
being connected is proportional to the degree of the existing node, the generated network is a
scale-free network.

2.1.2 Contaminant spread in a network
For a pair of interacting nodes, contaminants can be transferred from one node (the

contaminant donor) to another (the recipient) at a certain rate [27]. The transfer rate zpr can be



obtained using Equation la, in which Cp and Ckr are the contaminant contents on the donor and
recipient after an interaction, respectively, and C is the original contaminant content on the
donor before the interaction, such that C = Cp + Ck.

For any two nodes that have both been contaminated, we calculate the contaminant
exchange in the interaction by iterating the numbers of contaminant particles on the nodes
considering both transfer directions, as in Equation 1b. The variation of contaminant contents
on the two nodes thus depends on the net transfer amount. If the nodes are homogeneous (i.e.,
they have similar contaminant retention abilities), the transfer rates in the two directions are
equal; that is, zor = rp [28].

Furthermore, we calculate the contaminant spread in a network with N nodes. We define
an interaction round as all of the inter-node interactions performed following the edge sequence.
To calculate the contaminant spread in an interaction round, we iterate the contaminant contents
on all of the N nodes (C1, (2, ..., Cn) following the inter-node interaction sequence (Equation
Ic) and obtain the contaminant distribution on the nodes. Equation I¢ also includes a flow rate
(RFiow) and a decay rate (Rpecay) to simulate the continuous release of contaminant by the source

node and the contaminant decay in a network.
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where the combination of i and j represents all of the pairs of interacting nodes in an interaction
round, Rriow X C denotes the release of contaminant on the source node after each interaction
round, and Rpecay denotes the decay rate of the contaminant on each node per interaction round.

In an ideal situation, the contaminant concentration approaches a uniform value after



sufficient interaction between two homogeneous nodes [28]. Thus, if the two nodes have the
same size, the contaminant content on them will be identical, indicating a transfer rate of 7 =
0.5; otherwise, the transfer rate at uniform concentration should be calculated using Equation
2.

The size of a node (4) can be specified as the volume for room nodes or area for surface
nodes. To calculate the contaminant transfer rate between nodes of different sizes, we assume
that after an interaction between a contaminated node (donor) and a clean node (recipient), the
ratio of the resultant contaminant concentrations of the two nodes is independent of node size
[28]. Thus, we define the distribution ratio (fpr) as the ratio of the contaminant concentration
on the donor and recipient nodes after an interaction (Equation 2a). We can obtain the
distribution ratio fpr from the measured transfer rate between two same-size nodes (7)

(Equation 2b), and the transfer rate between any pair of nodes (zpr) can be accordingly derived

(Equation 2c).
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where Ap and Ar represent the donor and recipient node sizes, respectively.
2.1.3 The evenness of contaminant distribution in a network

The parameter E, a function of the entropy of contaminant distribution, is proposed to
quantify the evenness of the contaminant distribution in a network [29]. The contaminant
concentration on node i, a subregion in an N-node network, is P; = Ci/Ai, assuming uniform
contaminant distribution on the node. The probability that a randomly selected particle is from

a given unit size at node i can be calculated as p; = C;/(4; X ¥, C;). Thus, the information



required to find this particle is its Shannon entropy, defined as H; = YN, [A; X (—p; Inp))];
moreover, the information required to locate all of such particles (H) can be calculated using
Equation 3a [29], and H reaches its maximum (i.e., Hmax) When the contaminant particles in the
network are evenly distributed. The entropy difference (4H) between the current particle
distribution and an even distribution can be calculated using Equation 3b. To better visualize
the contaminant distribution evenness in a plot, we propose the parameter £ (Equation 3c), as

an exponential function of 4H. Details of the derivation are provided in Appendix A.3.
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In this study, we mainly focus on contaminant evenness in a network. We assume that the

contaminant content in a network is constant (Z?’zl C; = C) and that the initial content on the

node of the contaminant source is € = 1. The parameter £ can be also interpreted from another
perspective. As each contaminant particle on node i possesses a size (e.g., area/space) of 4i/C;
on average, E equals the weighted geometric mean of the size occupied by each contaminant
particle throughout the NV nodes (after non-dimensionalization). £ is varied between 0 and 1. A
larger E indicates a more even distribution of contaminants in a network, and E reaches its
maximum (= 1) under a perfectly even distribution. In Equation 3¢, a power of N is introduced,
which amplifies the difference in £ values between networks. However, it is still debatable
whether it is appropriate to use the current £ with a power of N, i.e., E = exp(N X 4H) as in

Equation 3c, instead of defining it as £ = exp(4H).
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2.2 Quantifying contaminant spreading efficiency in networks by their £ values

First, we compared the contaminant spreading efficiencies in different networks by
comparing their £ values under different conditions. Two groups of networks were considered:

I.  Basic networks: N<8.

II. Complex networks, at 7= 0.5.

To focus on the effect of network structure on contaminant spreading efficiency while
eliminating the effect of external factors, the networks were set with same-size homogeneous
nodes, unweighted and non-directional edges, and a constant contaminant transfer rate through
inter-node interactions.

Then, we performed two categories of laboratory experiments to validate the influence of
network structure on contaminant spreading in practical cases.

III. SFe was used as a tracer gas to measure the gas diffusion in multi-compartment

cabins.

IV. S. aureus was used as a model strain to investigate bacteria spread in multi-finger

networks.

In each experiment, the target contaminants (i.e., SFe or S. aureus) were spread among
their carriers (i.e., compartments or fingers with varying sizes) as the nodes interacted,
according to the structures of networks VII-X in Figure 1. The air temperature in the laboratory
was maintained at 24 + 1°C, with a relative humidity of 60%—70%. Permission was obtained
from the Human Research Ethics Committee of The University of Hong Kong (ethical approval
code: EA1603004).

2.2.1 Contaminant spread in basic networks

In this study, we used MATLAB programs to generate the networks with N homogeneous

nodes (N < 8) and N — 1 nondirectional edges, without tadpoles or double links in the structure.

Each node in a network was connected to at least one other node, forming an edge, and the
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edges were numbered from 1 to N — 1 to define the sequence of the inter-node interactions. For
each basic network in this study, £ was calculated under varying contaminant transfer rates (¢
=0.1,0.3,0.5,0.7, and 0.9), flow rates per interaction round (Rriow = 0 and 0.2), and interaction
rounds (7 = 1-10). The MATLAB programs and the data are in Appendix B.

There were 0, 1, 2, 5, 14, 42, 132, and 429 networks as N increased from 1 to 8. For each
network, two parameters for the source node were calculated: the average path length (L), that
is, the average path length to the other N — 1 nodes (there is only one path for each pair of
nodes in the basic networks), and the degree (D), that is, the number of edges attached to the

source node.

<Figure 1>

(Shown in a single-column fitting image)
2.2.2 Contaminant spread in complex networks

We analyzed the differences in contaminant spreading efficiencies between some complex
networks that frequently occur in real situations. We used MATLAB to randomly generate 20
networks for each of the scale-free (generated referring to the BA model [30]), random
(generated referring to the ER model [31]), regular-lattice (8 x 8 nodes), and bipartite (26 nodes
vs. 38 nodes) networks, with each network having 64 nodes and 112 edges. The networks are
defined in Appendix A.5, where the method to automatically generate the networks is
introduced. For comparison, we also analyzed three typical networks, namely fractal,
centralized, and linear networks, with each having 64 nodes and 63 edges. In summary, there
were 83 networks. The MATLAB codes and the adjacency matrixes of the generated networks
are attached in Appendix B. For each network, £ was calculated for a transfer rate of 7= 0.5

after different interaction rounds (7' = 1-12), and the spreading efficiencies of the networks
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were compared accordingly.
2.2.3 Gas diffusion in multi-compartment cabins

We used SFs as a tracer gas for diffusion in a multi-compartment cabin. We used acrylic
boards to assemble a transparent cabin with total inner dimensions of 1,200 (/) x 800 (w) x 300
(h) mm? (see Figure A8 in Appendix A.6). The cabin was divided by pluggable acrylic boards
into five compartments with different dimensions, that is, five nodes of different sizes: a large
compartment (400 x 800 x 300 mm?) as the SFs source and four small compartments (400 x
400 x 300 mm?). Each pluggable acrylic board had a door of 100 (w) x 200 (4) mm?. We used
thin threads and a magnet pair to control the opening and closing of each door. The doors
connecting the five compartments were taken as the time-series edges. The layouts of the five
compartments with four doors are shown in Figure 2; four networks were assembled following
the structures of networks VII-X in Figure 1. Five polyvinyl chloride tubes connected to air
channels 1-5 in a gas multipoint sampler (INNOVA 1409, LumaSense Technologies, Ballerup,
Denmark) were inserted into the five compartments to sample SFe. A photoacoustic gas monitor
(INNOVA 14121, LumaSense Technologies, Ballerup, Denmark) was connected to the sampler
to measure the SFe¢ concentration [32]. The monitor could only measure one channel from the
sampler at a time. Once SFs started diffusing in the cabin, the monitor continuously measured
the SFe concentrations channel-by-channel.

During the test of each network, we first injected approximately 200 ml of SF¢ into the
source compartment using a mass flow controller. We opened and closed the doors according
to the corresponding edge sequence in Figure 1 to diffuse SFe¢ between any pair of
compartments (i.e., to exchange air in the two rooms). Each door was opened at 90° for 68
min and then closed immediately before the next door was opened. After the four doors were
opened and closed once, a round of gas diffusion was complete, and the last measured SFs

concentrations in the five compartments were used to calculate £ using Equation 3c. For each
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network, we continuously performed eight diffusion rounds (7'= 8). Details of the SFs diffusion

tests are presented in Appendix A.6.

<Figure 2>

(Shown in a single-column fitting image)
2.2.4 Bacterial spread in multi-finger networks

The bacteria spread was investigated in four multi-finger networks designed following the
structures of networks VII-X in Figure 1. For the test of each network, we assigned a specific
finger pad for each node (Table 1). Thus, five fingers with different areas were used as five
nodes with different sizes. Before experiment, lysogeny broth (LB) and 1.5% LB agar were
prepared for the bacteria incubation and plate counting, respectively. Hands used for finger
touches were repeatedly washed following WHO guidelines for handwashing [33], sprayed
with 75% ethanol, and air-dried. The washed hands did not touch any surface before the
experiment.

We spread bacteria by performing finger—finger touches. We measured the touching area
of each finger pad according to the method introduced by Dzidek et al. [34]. The nominal
contact area in a touch was approximately 4.6 cm? for a thumb pad and 2.8 cm? for the index,
middle, and ring finger pads. To perform a finger—finger touch, a three-step touching pattern
was performed (indicated by arrows 1, 2, and 3 in Figure 3). The two fingers tightly touched
each other for 10 s and then separated; during the touch, the two finger pads rubbed each other
10 times in a twisting 90° back-and-forth movement.

During the test of each network, a 20 uL S. aureus (ATCC 25923) suspension was first
inoculated on the finger pad of the contaminant source with an area of approximately 1 cm? (S.

aureus would spread to the entire touched area of each finger pad in the subsequent touches),
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and air-dried to visible dryness, which required approximately 20 min. Then, fingers were
touched following the network structure defined in Figure 1. Different numbers of touch rounds
(T=1, 2, 4, and 8) were repeated for each network. The proportions of S. aureus on fingers
after the different numbers of touch rounds were evaluated, and the average proportions
obtained from three replicates were used to calculate £ following Equation 3c. For the S. aureus
quantification, each bacteria-contaminated finger pad was sampled through a sequential
sampling method [35, 36]. The specific process for quantifying the finger bacteria is introduced

in Appendix A.7.

<Figure 3>

(Shown in a single-column fitting image)

<Table 1>

The E value of contaminant distribution in a network can be used to reversely estimate
the contaminant transfer rate per inter-node interaction (z) and flow rate per interaction round
(RFiow).

For a network, we can obtain the contaminant distribution through experiments and then
calculate the corresponding “experimental £ value; the contaminant distribution can also be
predicted using Equation lc and different values of ¢ and Rrww, after which a series of
“predicted £~ values can be calculated, each corresponding to a pair of 7 and Rriow. Of all of
the combinations of 7 and Rriow, the pair whose corresponding predicted E generated the
smallest difference with the experimental E is the best estimate of 7 and Rriow.

In this study, we performed three categories of experiments: gas diffusion (Section 2.2.3),
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bacteria spread (Section 2.2.4), and a test of gas diffusion at a flow rate Rriow of 0.2-0.25
(Appendix A.8). For each category, we calculated the experimental £ values based on the
experimental results and then obtained our best estimates of 7 and Rriow. We also compared the
estimated 7 and Rriow With the 7 and Rriow from an independent measurement to validate the

effectiveness of this estimation method. The results are presented in Appendix A.8.
3 Results

3.1 Contaminant spread in basic networks

The contaminant spreading efficiencies among different basic networks were compared.
Figure 4 illustrates the £ values for different networks with varying numbers of nodes (N),
transfer rates per interaction (7), interaction rounds (7), flow rates per interaction round (Rriow),
and average path lengths of the source node (L). Similar to the nature of entropy, the value of
parameter £ in a network increases irreversibly as the inter-node interactions proceed. Here, a
higher number of interaction rounds (larger 7) resulted in a more even contaminant distribution.
However, the relationships between some parameters and £ varied with the transfer rate (Table
2).

As shown in Figure 4a, E was larger on average when N was smaller, indicating that
contaminant spreading efficiency was higher for the networks with fewer nodes, owing to their
shorter average path lengths. Contaminants in the networks of identical frameworks (same
colors in each plot in Figure 4) can have different spreading paths, resulting in different £
values. For example, networks I, II, and III (Figure 1, also marked in Figure 4a) had an identical
framework, and the source nodes in networks II and III were in the same position. However,
their spreading efficiencies varied considerably because of their different edge sequences (see
the second plot of the first row in Figure 4a).

A network exhibited various spreading efficiencies under different transfer rates. When

the transfer rate was small (e.g., 7 = 0.1), the networks with a centralized structure or shorter
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average path length of the source node (L) showed a higher spreading efficiency (Figure 4b).
When the transfer rate was large (e.g., 7 = 0.9), the networks with a linear structure or a larger
L showed a higher spreading efficiency. Generally, the spreading efficiency was on average the
highest at a transfer rate of approximately 0.5-0.7, (Figure 4b). However, very few practical
cases can be found with transfer rates significantly larger than 0.5. Networks with different
structural characteristics showed their maximum spreading efficiencies at varying transfer rates.
A series of networks occurred only at N=2* (x =1, 2, 3...), in which contaminants were evenly
distributed immediately after an interaction round (7' = 1) when the transfer rate r was 0.5. This
series of networks had a fractal structure (Figure A7 in Appendix A.5). Networks II and VI in
Figure 1 are typical fractal networks with N =4 and 8§, respectively.

In addition, the existence of contaminant flow decreased the contaminant spreading
efficiency, because the flow continuously disturbed the equilibrium of contaminant distribution.
As shown in the third and fourth columns of the plots with the same transfer rate in Figure 4b,
the contaminant spreading slowed upon introducing a flow rate (Rrow = 0.2). We also illustrate

the variation of E as a function of different parameters (Figures A3—A6 in Appendix A.4).

<Figure 4>

(shown in a 2-column fitting image)

<Table 2>

3.2 Contaminant spread in complex networks

We randomly generated 20 complex networks for each of the four representative

structures (scale-free, random, regular-lattice, and bipartite) (Figure 5), and their contaminant
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spreading efficiencies with respect to their £ values were compared after different interaction
rounds (7'=1, 4, 8, and 12) with a transfer rate of 7 = 0.5. Generally, the distributions of data
points in the plots are similar to the patterns in the plots of 7 = 0.5 in Figure 4b; however, the
E values in Figure 5 increase more slowly in the larger network (N = 64). At = 0.5, the fractal
network exhibited the largest £, whereas the E values for the centralized and linear networks
were extremely small. The random networks showed relatively high spreading efficiencies.
However, the efficiencies varied considerably within each type of network (random, bipartite,
and scale-free), because the degree varied substantially among the nodes. In particular, a
network with its contaminant source at a marginal node showed much lower spreading
efficiency than that with its contaminant source at a hub node. Additionally, the spreading
efficiencies of most of the regular-lattice networks were very low, unless the source node was
situated close to the center of the 8 x 8 grid. In summary, as the interaction round (7) increased,
the average spreading efficiencies of the different network types in Figure 5 were in the
following order at r = 0.5: fractal > random > bipartite = scale-free > regular-lattice >
centralized ~ linear, which is consistent with the results of several studies [24, 37-39]. This
ranking demonstrates the relative efficiency of complex real-world networks, such as small-
world networks and networks with multiple communities, as their characteristics are close to

those of scale-free networks [40-42].

<Figure 5>

(Shown in a 2-column fitting image)
3.3 Gas diffusion in multi-compartment cabins
We measured the SF¢ concentration as the gas diffused in four types of multi-compartment

cabins. The mass ratio in each compartment is illustrated with the columns in Figure 6a. In a

17



separate measurement, we diffused SFe¢ between two same-size compartments (400 x 400 x
300 mm?*), with one filled with approximately 200 ml of SFe. After 7 min, the SFs concentration
ratio of the two same-size compartments was 0.512:0.488, indicating a transfer rate 7 of 0.488.
Based on this value, we predicted the SFe transfer rates between different compartments (zpr)
using Equation 2¢ and consequently the SF¢ distributions in the four networks using Equation
Ic, and compared them with the corresponding experimental data, as shown in Figure 6a.

A high SFe diffusion efficiency could be obtained under our experimental conditions, as
the measured distribution ratio £pr of 0.512/0.488 was close to the ideal value of 1. Predictions
of SFe distribution based on this distribution ratio were close to the experimental results (see
Figure 6a). Both the experimental data and the predicted results show that the source
compartments whose size was twice that of the others maintained a higher SF¢ mass ratio.

Furthermore, we predicted the £ values at varying transfer rates (r = 0—1) and compared
them with the experimental £ (blue curves and cross-points in Figure 7). The £ values more
clearly reflected the difference between the predicted results and the experimental data, and
between different networks. As shown in Figure 7, the SFe diffusion efficiency in the
experiments could be well predicted based on a known transfer rate. The SF¢ diffusion
efficiency in network VII, which had a linear structure, was lower than those in the other three
networks, despite network VII having the same framework as network X (see Figure 1),
demonstrating the effect of network structure on contaminant spreading efficiency.

3.4 Bacterial spread in multi-finger networks

We spread S. aureus in four types of multi-finger networks through finger—finger touches.
The bacteria distribution in each network was evaluated after different touch rounds (7= 1, 2,
4, and 8), as shown in the columns in Figure 6b. In a separate measurement, we measured the
transfer rate in an inter-index finger touch as 7 = 0.403. Based on this value, we predicted the

S. aureus transfer rates between different fingers (zpr) using Equation 2c and consequently the
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S. aureus distributions in the four networks using Equation 1c, and compared them with the
corresponding experimental data in Figure 6b.

After eight touch rounds, the S. aureus distributions in all of the networks were similar, in
which the thumbs, with larger finger pad areas, held more bacteria (first two columns in each
plot in Figure 6b), and the other fingers had fewer. However, different multi-finger networks
exhibited different spreading process. In networks VII and X, bacteria continuously transferred
from the donor finger to the other four fingers, whereas in networks VIII and IX, the first-
touched finger (the second column in each plot in Figure 6b) in the first four rounds of touches
(T = 1-4) harbored more bacteria than the donor finger (the first column in each plot in Figure
6b).

Although in Figure 6b, the predicted results are close to the experimental data, a
comparison of the £ values from the predicted results and experimental data (red curves and
cross-points in Figure 7) shows that the spreading efficiency of S. aureus in multi-finger
networks was considerably lower than expected. We reversely estimated the bacteria transfer
rate using the experimental data (see Figure 8) and obtained the average transfer rate in the
experiments as 7 = 0.180, which was smaller than the 0.403 value obtained from a separate
measurement (a single touch between two index fingers). The smaller average transfer rate of
S. aureus spreading in the networks was likely due to the slowing down of bacteria spread
among fingers as the touching proceeded. Previous research has shown that bacteria cells
adhering more firmly to a recipient finger are usually harder to move to the next finger in

subsequent touching actions [27].

<Figure 6>

(Shown in a 1.5-column fitting image)
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<Figure 7>

(Shown in a 1.5-column fitting image)
3.5 Estimating the transfer rate according to the experimental E value

The estimated 7 and Rriw for different spreading processes are shown in Figure 8. During
SF¢ diffusion without a flow rate (experiments in Section 2.2.3), the estimation of the transfer
rate T was accurate, as the estimated 7 and measured 7 were 0.494 and 0.488, respectively.

In S. aureus spread (experiments in Section 2.2.4), the estimated 7 was 0.180, which was
lower than the value from a separate measurement (0.403). This difference was likely due to
the decrease in bacterial transfer rate during bacteria spread among fingers; this is because
during touching actions, bacterial cells were continuously transferred to the finger of larger
adhesion force, and it was thus harder for the bacteria to move to the next finger [27].

When we introduced a flow rate of Rriow = 0.2—0.25 into the SFs diffusion in network VII
(see Appendix A.8), the most likely 7 and Rriow in the gas diffusion experiment were estimated
as 0.547 and 0.260, respectively, which were close to the two values from a separate experiment

in which the 7 between two same-size compartments was measured as 0.488.

Figure 2 Standard deviation between experimental £ and predicted £ under different transfer
rates (7) per inter-node interaction and flow rates (Rriow) per interaction round.

Parula surface: experiment of gas diffusion in a multi-compartment cabin with gas flow; blue
curve: experiment of gas diffusion in multi-compartment cabins; red curve: experiment of
bacterial spread in multi-finger networks.

The orange, blue, and red asterisks in the horizontal plane represent the transfer rate and flow

rate corresponding to the smallest standard deviation on the parula surface, blue curve, and red
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curve, respectively.

(Shown in a single-column fitting image)
4 Discussion

In this study, we propose a new parameter E, which provides a straightforward way to
illustrate contaminant distribution evenness in a network and can be applied to quantify the
contaminant spreading efficiency. We observed the influences of different factors on the £
value for both basic and complex networks and found that the spreading efficiency was highly
related to the network structure. We performed two categories of laboratory experiments (SFe
diffusion in multi-compartment cabins and S. aureus spread in multi-finger networks) to
validate the effect of the network structure on practical spreading cases and demonstrated the
feasibility of using the per-interaction transfer rate value (obtained from a separate
measurement) to predict the contaminant spread in a network. Furthermore, we could use the
E calculated from the experimental results to reversely correct the contaminant transfer rate (7)
and flow rate (Rriow).

4.1 Major network-related factors influencing contaminant spreading efficiency

The variation of the £ value at N > 8 was similar to the results at N < 8 (Figure 4). When
the edge number in an N-nodes network was greater than N — 1, the closed-loop structures
existed in the network, resulting in a higher contaminant spreading efficiency for each
interaction round. Edges can also have different weights (e.g., interacting frequencies or
efficiencies), which represent the heterogeneous interactions between nodes [43]. Only
unweighted time-series networks were tested here.

We applied the new parameter £ to some well-known complex networks. Among the
networks, the fractal network showed an extremely high spreading efficiency at t= 0.5. Similar
structures occur in living objects, such as lungs [44, 45], neural systems [46], and trees [47].

The structures of these objects evolved to become fractal-like to improve the spreading
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efficiencies of oxygen, signals, and nutrition, respectively. This confirms our conclusion: the
fractal network had the highest £ value at an ideal transfer rate (z = 0.5). However, we only
considered the occurrence of a single node—node interaction per time (fractal dimension d = 2),
without considering the cases in which a source node simultaneously interacts with multiple
nodes (d = 3, 4, ...). If we expand the definition of “fractal structure,” more fractal networks
are possible, with the highest spreading efficiency occurring at a transfer rate t of 1/d. For
example, the centralized network with N nodes can be modified to an N-dimensional fractal
network by using the source node to simultaneously interact with the other N — 1 nodes, and
its highest spreading efficiency occurs at 7= 1/N.

According to the results in Figures 4 and 5, at any transfer rate, the E values for the
networks were either between those of the linear and the centralized networks under the same
number of nodes or, more commonly, higher than both values. Surprisingly, the efficiency of
the linear network under a high transfer rate was similar to that of the centralized network under
a low transfer rate. A connection existed between the two network types. The network structure
depends on how we define the nodes and contaminants. For example, a virus-laden bicycle
shared by several individuals can be considered as a hub, and the viruses as the target
contaminants spread indirectly between people through this hub bicycle, forming a centralized
network. We can also consider the “bicycle + viruses” as a target contaminant, and the virus-
laden bicycle is transferred directly from one individual to the next, forming a linear network.
The transfer rate depends on the definition of “contaminant” and the network structure.
However, the E value remains constant regardless of how we define the network.

4.2 Effect of network structure in real spreading cases

The effect of network structure on the S. aureus spreading efficiency in surface networks

was not as pronounced as that on the SFs spreading efficiency in space networks. In this study,

the spread of SFe¢ between nodes occurred purely by natural diffusion without an additional
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driving source, but SF¢ showed a high spreading efficiency. In the experiment, any leakage
between compartments or external disturbances could further accelerate the SF¢ spread. In
contrast, the S. aureus spreading efficiency was low. Considering that we performed repeated
rubbing in each finger—finger touch, we believe that the S. aureus spreading efficiency had
reached its maximum. Gas diffusion can therefore more easily reach an ideal even distribution
than microbial spread on surfaces.

As shown in the blue scatters in Figure 7, the SF¢ diffusion efficiency in the linear network
(network VII) was considerably lower than those in other networks, indicating a considerable
effect of the network structure. In contrast, the S. aureus transfer rate gradually decreased as
the touching proceeded. After the transfer of a contaminant particle from a donor surface to a
recipient surface, the particle may (I) receive greater adhesive force and (II) sit deeper at the
recipient than it did at the donor, which indicates a smaller transfer probability in the
subsequent surface contacts [27]. Such a decrease in microbial transfer rate occurred in both
this study and previous experiments [20, 36]. Owing to this phenomenon, the contaminant
spreading efficiency in surface networks was often lower than expected (see the red lines and
scatters in Figure 7). Therefore, the influence of network structure on the surface contaminant
spreading was not pronounced. The specific mechanism and its effect will be clarified in our
future study.

4.3 Role of hub nodes in a network

For either the scale-free or the regular-lattice networks, their £ values were quite different,
which was due to the difference in the source positions. In a scale-free network, the spread
begins to outbreak only after one or more hub nodes are contaminated. In contrast, random
networks have higher spreading efficiencies, because the degrees of the nodes are more evenly
distributed. The bipartite networks, generated as a type of conditional scale-free network,

showed a spreading efficiency similar to the scale-free networks. This indicates a likely high
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contaminant spreading efficiency in numerous scenarios when a hub node is contaminated,
such as in aircraft cabins [48] and hospitals [49], in which pathogens spread among human
hands and inanimate surfaces. In these scenarios, the hands and surfaces constitute bipartite
surfaces, as there are usually no interactions between strangers or between surfaces.

By comparing scale-free and regular-lattice networks, we observed that the existence of
contaminated super-hubs considerably increased contaminant spreading efficiency, consistent
with the conclusions of prior studies [24, 50]. In the experiments by Wang et al. [20] on bacteria
spread in an office through human touch, the spreading network approximated a conditional
bipartite scale-free network. In two sets of experiments involving networks with similar
densities, the bacterial spreading efficiency was considerably affected by the node degree of
the bacterial source. In addition, the existence of high-touch hands or inanimate surfaces as
super-hubs in a network considerably improved the spreading efficiency.

Another case without a hub node demonstrated relatively low efficiency of contaminant
spread. The apartments in a residential building typically constitute a three-dimensional
regular-lattice network in which pathogens (e.g., SARS-CoV-2) can spread through air,
surfaces, and sewage systems [1]. In their case study, Wang et al. [32] showed that the spread
of infections was mainly restricted to adjacent apartments with a higher air exchange rate (i.e.,
nodes connected by a higher-weight edge), partially because that the potential super-hubs, such
as the air or surfaces in elevators, lobbies, and other public areas, were not participated in
pathogen spread, which avoided a larger outbreak.

4.4 Potential applications of the newly proposed theory

The new parameter proposed in this study can be used to quantify contamination risk in
different networks, such as hazardous chemical diffusion in water [3], pollutant diffusion and
heat exchange in air [51-53], and pathogen spread through surfaces or air [54]. In subsequent

studies, we will combine node characteristics to quantify (a) the entropy (or a related parameter)
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of a single node, to measure its danger as a contaminant donor, and (b) the entropy of all of the
neighbors of a node, to measure the potential contamination risk of this node. Furthermore, the
new parameter can also function as a measurement index in other applications involving
spreading activities, such as the allocation of emergency resources (e.g., medical and
firefighting supplies and power restoration capacity) [55, 56], the optimization of a transport
logistics system (e.g., warehouse layout and package storage) [57], and animal migration and
human transportation [58].

Furthermore, we can use the known (or partially known) distribution of contaminant in a
network to reproduce the spreading process, as the new parameter provides a yardstick to
estimate the probability of a likely spreading path. The theory proposed in this study might be
useful for tracing a contamination source, such as in source tracking during a regional disease
outbreak (e.g., COVID-19). Moreover, the pathogen spreading efficiency and the index case
can be reversely derived based on patient distribution. However, we do not illustrate which
networks possess higher infection risks, because higher spreading efficiency is not equivalent
to a higher infection ratio [59]. A susceptible individual becomes infected only after receiving
pathogens in a dose exceeding the infective dose [60], which is usually caused by
repeated/extended interaction with the infection source. Such interactions can be considered
high-weight edges in a pathogen-spreading network [43].

5 Conclusion

We proposed a parameter E, a function of Shannon entropy, to measure the evenness of
contaminant distribution in a network. Based on the E value, we clearly illustrated the
difference in contaminant spreading efficiency between varying network structures.
Contaminants in fractal networks showed extremely high spreading efficiency at an ideal
condition; in a random or scale-free network, contaminant spreading efficiency was

considerably enhanced when a hub node was contaminated. In practical cases, experiment
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results of the SFe distribution in multi-compartment cabins was consistent to the prediction
based on its diffusion rate between a pair of compartments, and the gas diffusion was
demonstrated susceptible to the structure of the cabin network. In contrast, the efficiency of S.
aureus spread in all the enumerated multi-finger networks was substantially lower than

expected. Thus, the structure of surface networks showed less effect on the bacterial spread.
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Figure 1. Graphical representations of 10 networks: (a) networks -V, which have four
nodes; (b) network VI, which has eight nodes; (c) networks VII-X, which have five nodes. In
each network, both the nodes and the edges are numbered. In each network, node 1 (gray
shadow) is set as the contaminant source and contaminants spread from the source following
the edge sequence. The networks with fractal, centralized, and linear structures are denoted
with different colors.
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Figure 3 Layout of four multi-compartment cabins designed according to the structures of
networks VII-X in Figure 1. Each cabin has five compartments connected by four doors (gray
sectors), representing the five nodes and four time-series edges in the corresponding network.
In each network, the tracer gas is released in compartment 1 and diffused as the four doors are
opened and closed following the edge sequence.
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Figure 4 Defined touching patterns. Step 1: the two fingers approach each other. Step 2: the
two fingers maintain tight contact for approximately 10 s while performing a twisting 90° back-
and-forth movement 10 times. Step 3: the two fingers separate.
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Figure 5 Contaminant distribution evenness in different basic networks (N < 8) as a function
of the average path length of the source node (L). For each network, the evenness after different
numbers of interaction rounds (7= 1, 2, 4, and 8) is quantified by the newly defined parameter
E, which is calculated under (a) different numbers of nodes () with a constant transfer rate (¢
= 0.5) and flow rate (Rriow = 0); (b) different transfer rates (z) and flow rates (Rriow) wWith a
constant number of nodes (N = 8). Each circle in a plot represents a network and is
characterized by the degree of the source node (D, proportional to the symbol area) and the
network framework (distinguished by the symbol color). The circles denoted by Roman
numerals correspond to the networks in Figure 1.
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Figure 6 Contaminant distribution evenness in different complex networks (N = 64) as a
function of the average path length of the source node (L). For each network, the evenness after
different numbers of interaction rounds (7= 1, 4, 8, and 12) is quantified by the newly defined
parameter £, which is calculated with a transfer rate of = 0.5. Each circle in a plot represents
a network and is characterized by the degree of the source node (D, proportional to the symbol
area) and the network category (distinguished by the symbol color). A statistical result of the £
values at 7 = 6 is presented to illustrate the average and various values of contaminant
spreading efficiency for each network type.
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Figure 7 Experimental data (columns) and theoretical predicted results (square symbols) of
contaminant spreading in four networks (networks VII-X in Figure 1). In each network, the

contaminant proportion on each node (C;/ Z?’zl C;) varies with increasing interaction round (7).

(a) SFs diffusion in multi-compartment cabins; (b) S. aureus spread in multi-finger networks,
in which the error bars represent the standard deviations of three replicates in experiments.
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Figure 8 Comparison of the £ values based on the predicted results and experimental data from
Figure 6 (blue: SFs diffusion; red: S. aureus spread). For each network (VII-X in Figure 1) and
interaction round (7'= 1, 2, 4, or 8), a series of predicted £ values (curve) was derived with a
transfer rate of r = 0—1; the experimental £ value (cross point) was obtained according to the
experimental data in the corresponding plot in Figure 6. We measured the transfer rate from a
separate experiment (7 = 0.488 in SFs diffusion; 7= 0.403 in S. aureus spread) to determine the
horizontal positions of the cross-points.
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Table 1 Assignment of fingers to the nodes in each designed network. The structures of
networks VII-X are shown in Figure 1. In each network, node 1 is the bacteria source.

Networ Nod Nod 1;: Nod Nod I D
ks el e2 3 e4 es
Left Flgh Left §1gh Left )
VII thu ind . midd ’ 1
thu inde 5
mb ex le
mb X
Left n e bt ?Igh Righ
Vit thu thu ind midd t ring ! 4
mb
mb ex le
Left Righ Rig Righ Left
IX thu ¢ ht ¢ inde 1. 3
thu ind midd 2
mb X
mb ex le
Left Righ Rig Righ Left
X thu ¢ ht ¢ inde 1. 2
thu ind midd 5
mb X
mb ex le

2.2.5 Estimation of per-interaction transfer rate based on E values
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Table 2 Effects of different parameters on contaminant spreading efficiency represented by the
E value.

Effect on E value

Parameters ?
T—-0 71
Interaction round, T + +
Number of edges, M + +
(¢ average degree in a
network)
(< network density)
Degree of source node, D + —
(o< degree centrality of source
node)
Average path length of source — +
node, L
Average path length in a network - +
Network diameter - +

Number of nodes, N - -

Contaminant flow, Rriow - -

Contaminant decay, Rpecay NE NE
& + (—) represents a positive (negative) effect, indicating that the E value increased
(decreased) with an increase in the value of the parameter; and NE represents that the
parameter has no effect on the £ value.
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