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Influence of network structure on contaminant spreading efficiency 

 

Abstract 

Contaminants, such as pathogens or non-living substances, can spread through the 

interaction of their carriers (e.g., air and surfaces), which constitute a network. The structure 

of such networks plays an important role in the contaminant spread. 

We measured the contaminant spreading efficiency in different networks using a newly 

defined parameter. We analyzed basic networks to identify the effect of the network structure 

on the contaminant spread. The spreading efficiency was highly related to some network 

parameters, such as the source node’s average path length and degree, and considerably varied 

with the transfer rate per inter-node interaction. We compared the contaminant spreading 

efficiencies in some complex networks, namely scale-free, random, regular-lattice, and 

bipartite networks, with centralized, linear, and fractal networks. The contaminant spreading 

was particularly efficient in the fractal network when the transfer rate was ~0.5. 

Two categories of experiments were performed to validate the effect of the network 

structure on contaminant spreading in practical cases: (I) gas diffusion in multi-compartment 

cabins (II) bacteria transfer in multi-finger networks. The gas diffusion could be well estimated 

based on the diffusion between two compartments, and it was considerably affected by the 

network structure. Meanwhile, the bacteria spread was generally less efficient than expected. 

(200 words)  
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1 Introduction 

The study of different contaminants often involves their spread in networks of variable 

scales, such as the diffusion of pathogen-laden aerosol particles in multiroom areas [1], the 

transfer of chemical residues among environmental surfaces [2], and the spread of 

contaminants in a water-distribution system [3]. An individual, inanimate surface, or room of 

air can be considered a node that provides or receives contaminants. The interaction between 

any two nodes that causes contaminant transfer/exchange is considered to form an edge, such 

as aerosol particle deposition from air to ground, pathogen transfer when a hand touches a 

fomite surface, and heat transfer between rooms [4-6]. The presence of one or multiple types 

of nodes together with the edges makes up a spreading network. 

Pathogens are a type of contaminant that can hide in inanimate carriers that are in the same 

network with susceptible individuals, presenting a higher infection risk [7-9]. For instance, 

handwashing can reduce infection risk [10, 11]. However, pathogens can also hide on 

surroundings and be transferred to the washed hands or food as touching actions continue [12, 

13]. Moreover, pathogen-laden aerosols can remain alive in heating, ventilation, and air 

conditioning systems and be released into indoor air when the system restarts [1, 14]. Thus, 

periodic handwashing or indoor cleaning only eliminates a part of pathogens within a network, 

but the infection risk remains [15, 16]. 

Spreading networks have been modeled using various mathematical graphs, such as scale-

free, random, and bipartite networks [17, 18]. As inter-node interactions proceed in a network, 

the number of contaminated carriers usually increases following a logistic or logarithmic 

growth curve [19, 20]. However, the spreading efficiency varies among networks and strongly 
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depends on the network structure, even among networks with the same values of relevant 

parameters (e.g., average path length and clustering coefficient) [21-23]. For instance, 

contaminants show a higher spreading efficiency in scale-free networks than in regular lattices 

[24]. Considering the limited effects of handwashing and indoor air purification, we aim to 

reduce the contamination risk by optimizing the network structure. However, without a 

systematic study, identifying the network structures with a high contamination risk is difficult. 

Unlike the dissemination of information, which is duplicated as it spreads, contaminants 

can be continuously released by a source but cannot be duplicated while spreading in a network 

[25]. In this study, we use the evenness of the contaminant distribution at different moments in 

a network to quantify the contaminant spreading efficiency. We present different basic 

networks and propose a new parameter E as a measure to compare their contaminant spreading 

efficiencies under different spreading paths, transfer rates per inter-node interaction, and 

rounds of interactions. We also compare the spreading efficiencies in some common complex 

networks, including scale-free, random, regular-lattice, and bipartite networks. Furthermore, 

the effect of the network structure on practical spreading cases is validated through two 

categories of experiments. In experiment I, sulfur hexafluoride (SF6) was used as a tracer gas 

to be diffused in multi-compartment cabins. In experiment II, Staphylococcus aureus was used 

as a model strain to be transferred in multi-finger networks. Overall, we illustrate the effect of 

the network structure on contaminant spreading and present a new perspective on the 

prevention of contaminant spreading. 

2 Materials and method 

2.1 A new parameter E 

2.1.1 Definition of a network 

To investigate contaminant spreading among multiple carriers, we modeled the spreading 

process using a time-series network. The carriers were considered the network nodes, and a 
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connection of a pair of nodes between which contaminant transfer/exchange occurs was 

considered an edge that preserves time-series information [26].  

To generate a network with N nodes and M sequenced edges (M ≥ N – 1), we first assigned 

node 1 as the node of the contamination source and connected node 2 to node 1 to form edge 

1. Then, we extended the network by connecting a new node to a random node in the existing 

network framework each time to form a new edge. After all of the N nodes were connected, we 

obtained a basic network with N – 1 edges (N – 1 is the least number of edges to form an N-

node network). For a complex network with extra edges (when M > N – 1), the extra M – N + 

1 edges were added one-by-one by randomly connecting two nodes at a time. Thus, the 

contaminant spread was completely defined by the network, in which the edges and their 

sequence denoted the inter-node interactions and the interacting sequence, respectively. 

The network structure likely varied, as each added node could connect different existing 

nodes, and the formed edges had a sequence. In this study, a “network structure” refers to 

I.  the source position (i.e., the node that is initially contaminated to serve as the 

contaminant source);  

II.  the framework (i.e., the pairs of nodes interacting as edges); and 

III.  the edge sequence (i.e., the time series of inter-node interactions). 

In network generation, the existing nodes have different probabilities of connecting with 

the newly added node (or another existing node) to form a new edge, and the probability 

distribution determines the network type. For instance, if the probability of an existing node 

being connected is proportional to the degree of the existing node, the generated network is a 

scale-free network. 

2.1.2 Contaminant spread in a network 

For a pair of interacting nodes, contaminants can be transferred from one node (the 

contaminant donor) to another (the recipient) at a certain rate [27]. The transfer rate τDR can be 
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obtained using Equation 1a, in which CD and CR are the contaminant contents on the donor and 

recipient after an interaction, respectively, and C is the original contaminant content on the 

donor before the interaction, such that C = CD + CR. 

For any two nodes that have both been contaminated, we calculate the contaminant 

exchange in the interaction by iterating the numbers of contaminant particles on the nodes 

considering both transfer directions, as in Equation 1b. The variation of contaminant contents 

on the two nodes thus depends on the net transfer amount. If the nodes are homogeneous (i.e., 

they have similar contaminant retention abilities), the transfer rates in the two directions are 

equal; that is, τDR = τRD [28].  

Furthermore, we calculate the contaminant spread in a network with N nodes. We define 

an interaction round as all of the inter-node interactions performed following the edge sequence. 

To calculate the contaminant spread in an interaction round, we iterate the contaminant contents 

on all of the N nodes (C1, C2, …, CN) following the inter-node interaction sequence (Equation 

1c) and obtain the contaminant distribution on the nodes. Equation 1c also includes a flow rate 

(RFlow) and a decay rate (RDecay) to simulate the continuous release of contaminant by the source 

node and the contaminant decay in a network. 

 𝜏𝜏𝐷𝐷𝑅𝑅 =
𝐶𝐶𝑅𝑅
𝐶𝐶

=
𝐶𝐶𝑅𝑅

𝐶𝐶𝐷𝐷 + 𝐶𝐶𝑅𝑅
 ( 1a) 

⇒ [𝐶𝐶𝐷𝐷 𝐶𝐶𝑅𝑅] = [𝐶𝐶𝐷𝐷 𝐶𝐶𝑅𝑅] × �
1 − 𝜏𝜏𝐷𝐷𝐷𝐷 𝜏𝜏𝐷𝐷𝐷𝐷
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 ( 1c) 

where the combination of i and j represents all of the pairs of interacting nodes in an interaction 

round, RFlow × C denotes the release of contaminant on the source node after each interaction 

round, and RDecay denotes the decay rate of the contaminant on each node per interaction round. 

In an ideal situation, the contaminant concentration approaches a uniform value after 
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sufficient interaction between two homogeneous nodes [28]. Thus, if the two nodes have the 

same size, the contaminant content on them will be identical, indicating a transfer rate of τ = 

0.5; otherwise, the transfer rate at uniform concentration should be calculated using Equation 

2. 

The size of a node (A) can be specified as the volume for room nodes or area for surface 

nodes. To calculate the contaminant transfer rate between nodes of different sizes, we assume 

that after an interaction between a contaminated node (donor) and a clean node (recipient), the 

ratio of the resultant contaminant concentrations of the two nodes is independent of node size 

[28]. Thus, we define the distribution ratio (βDR) as the ratio of the contaminant concentration 

on the donor and recipient nodes after an interaction (Equation 2a). We can obtain the 

distribution ratio βDR from the measured transfer rate between two same-size nodes (τ) 

(Equation 2b), and the transfer rate between any pair of nodes (τDR) can be accordingly derived 

(Equation 2c). 

 𝛽𝛽𝐷𝐷𝐷𝐷 =
𝐶𝐶𝐷𝐷 𝐴𝐴𝐷𝐷⁄
𝐶𝐶𝑅𝑅 𝐴𝐴𝑅𝑅⁄ =

𝐴𝐴𝑅𝑅(1 − 𝜏𝜏𝐷𝐷𝑅𝑅)
𝐴𝐴𝐷𝐷𝜏𝜏𝐷𝐷𝑅𝑅

 ( 2a) 

 𝛽𝛽𝐷𝐷𝐷𝐷 =
1 − 𝜏𝜏
𝜏𝜏

 , when AD = AR ( 2b) 

⇒ 𝜏𝜏𝐷𝐷𝑅𝑅 = �
𝐴𝐴𝐷𝐷
𝐴𝐴𝑅𝑅

𝛽𝛽𝐷𝐷𝐷𝐷 + 1�
−1

= �
𝐴𝐴𝐷𝐷(1 − 𝜏𝜏)

𝐴𝐴𝑅𝑅𝜏𝜏
+ 1�

−1

 ( 2c) 

where AD and AR represent the donor and recipient node sizes, respectively. 

2.1.3 The evenness of contaminant distribution in a network 

The parameter E, a function of the entropy of contaminant distribution, is proposed to 

quantify the evenness of the contaminant distribution in a network [29]. The contaminant 

concentration on node i, a subregion in an N-node network, is Pi = Ci/Ai, assuming uniform 

contaminant distribution on the node. The probability that a randomly selected particle is from 

a given unit size at node i can be calculated as 𝑝𝑝𝑖𝑖 = 𝐶𝐶𝑖𝑖/(𝐴𝐴𝑖𝑖 × ∑ 𝐶𝐶𝑖𝑖𝑁𝑁
𝑖𝑖=1 ). Thus, the information 
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required to find this particle is its Shannon entropy, defined as Hi = ∑ [𝐴𝐴𝑖𝑖 × (−𝑝𝑝𝑖𝑖 𝐥𝐥𝐥𝐥 𝑝𝑝𝑖𝑖)]𝑁𝑁
𝑖𝑖=1 ; 

moreover, the information required to locate all of such particles (H) can be calculated using 

Equation 3a [29], and H reaches its maximum (i.e., Hmax) when the contaminant particles in the 

network are evenly distributed. The entropy difference (ΔH) between the current particle 

distribution and an even distribution can be calculated using Equation 3b. To better visualize 

the contaminant distribution evenness in a plot, we propose the parameter E (Equation 3c), as 

an exponential function of ΔH. Details of the derivation are provided in Appendix A.3. 
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⎪
⎨

⎪
⎧𝐻𝐻 = 𝐶𝐶 × �[𝐴𝐴𝑖𝑖 × (−𝑝𝑝𝑖𝑖 𝐥𝐥𝐥𝐥 𝑝𝑝𝑖𝑖)]

𝑁𝑁

𝑖𝑖=1

     where,𝑝𝑝𝑖𝑖 =
𝐶𝐶𝑖𝑖

𝐴𝐴𝑖𝑖 ∑ 𝐶𝐶𝑗𝑗𝑁𝑁
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𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶 × �[𝐴𝐴𝑖𝑖 × (−𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐥𝐥𝐥𝐥 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)]
𝑁𝑁

𝑖𝑖=1

     where,𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
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 ( 3a) 
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𝐴𝐴𝑖𝑖/∑ 𝐴𝐴𝑗𝑗𝑁𝑁

𝑗𝑗=1

𝐶𝐶𝑖𝑖/∑ 𝐶𝐶𝑗𝑗𝑁𝑁
𝑗𝑗=1

��
𝑁𝑁
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 ( 3b) 

 𝐸𝐸 = 𝐞𝐞𝐞𝐞𝐞𝐞(𝑁𝑁 × ∆𝐻𝐻) = ���
𝐴𝐴𝑖𝑖/∑ 𝐴𝐴𝑗𝑗𝑁𝑁

𝑗𝑗=1

𝐶𝐶𝑖𝑖/∑ 𝐶𝐶𝑗𝑗𝑁𝑁
𝑗𝑗=1

�
𝑁𝑁×𝐶𝐶𝑖𝑖

�
𝑁𝑁

𝑖𝑖=1

 ( 3c) 

In this study, we mainly focus on contaminant evenness in a network. We assume that the 

contaminant content in a network is constant (∑ 𝐶𝐶𝑗𝑗𝑁𝑁
𝑗𝑗=1 = 𝐶𝐶) and that the initial content on the 

node of the contaminant source is 𝐶𝐶 = 1. The parameter E can be also interpreted from another 

perspective. As each contaminant particle on node i possesses a size (e.g., area/space) of Ai/Ci 

on average, E equals the weighted geometric mean of the size occupied by each contaminant 

particle throughout the N nodes (after non-dimensionalization). E is varied between 0 and 1. A 

larger E indicates a more even distribution of contaminants in a network, and E reaches its 

maximum (= 1) under a perfectly even distribution. In Equation 3c, a power of N is introduced, 

which amplifies the difference in E values between networks. However, it is still debatable 

whether it is appropriate to use the current E with a power of N, i.e., E = exp(N × ΔH) as in 

Equation 3c, instead of defining it as E = exp(ΔH). 
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2.2 Quantifying contaminant spreading efficiency in networks by their E values 

First, we compared the contaminant spreading efficiencies in different networks by 

comparing their E values under different conditions. Two groups of networks were considered: 

I.  Basic networks: N ≤ 8. 

II.  Complex networks, at τ = 0.5. 

To focus on the effect of network structure on contaminant spreading efficiency while 

eliminating the effect of external factors, the networks were set with same-size homogeneous 

nodes, unweighted and non-directional edges, and a constant contaminant transfer rate through 

inter-node interactions. 

Then, we performed two categories of laboratory experiments to validate the influence of 

network structure on contaminant spreading in practical cases. 

III.  SF6 was used as a tracer gas to measure the gas diffusion in multi-compartment 

cabins. 

IV.  S. aureus was used as a model strain to investigate bacteria spread in multi-finger 

networks. 

In each experiment, the target contaminants (i.e., SF6 or S. aureus) were spread among 

their carriers (i.e., compartments or fingers with varying sizes) as the nodes interacted, 

according to the structures of networks VII–X in Figure 1. The air temperature in the laboratory 

was maintained at 24 ± 1°C, with a relative humidity of 60%−70%. Permission was obtained 

from the Human Research Ethics Committee of The University of Hong Kong (ethical approval 

code: EA1603004). 

2.2.1 Contaminant spread in basic networks 

In this study, we used MATLAB programs to generate the networks with N homogeneous 

nodes (N ≤ 8) and N − 1 nondirectional edges, without tadpoles or double links in the structure. 

Each node in a network was connected to at least one other node, forming an edge, and the 
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edges were numbered from 1 to N − 1 to define the sequence of the inter-node interactions. For 

each basic network in this study, E was calculated under varying contaminant transfer rates (τ 

= 0.1, 0.3, 0.5, 0.7, and 0.9), flow rates per interaction round (RFlow = 0 and 0.2), and interaction 

rounds (T = 1–10). The MATLAB programs and the data are in Appendix B. 

There were 0, 1, 2, 5, 14, 42, 132, and 429 networks as N increased from 1 to 8. For each 

network, two parameters for the source node were calculated: the average path length (L), that 

is, the average path length to the other N − 1 nodes (there is only one path for each pair of 

nodes in the basic networks), and the degree (D), that is, the number of edges attached to the 

source node. 

 

<Figure 1> 

 

(Shown in a single-column fitting image) 

2.2.2 Contaminant spread in complex networks 

We analyzed the differences in contaminant spreading efficiencies between some complex 

networks that frequently occur in real situations. We used MATLAB to randomly generate 20 

networks for each of the scale-free (generated referring to the BA model [30]), random 

(generated referring to the ER model [31]), regular-lattice (8 × 8 nodes), and bipartite (26 nodes 

vs. 38 nodes) networks, with each network having 64 nodes and 112 edges. The networks are 

defined in Appendix A.5, where the method to automatically generate the networks is 

introduced. For comparison, we also analyzed three typical networks, namely fractal, 

centralized, and linear networks, with each having 64 nodes and 63 edges. In summary, there 

were 83 networks. The MATLAB codes and the adjacency matrixes of the generated networks 

are attached in Appendix B. For each network, E was calculated for a transfer rate of τ = 0.5 

after different interaction rounds (T = 1–12), and the spreading efficiencies of the networks 



 

 12 

were compared accordingly. 

2.2.3 Gas diffusion in multi-compartment cabins 

We used SF6 as a tracer gas for diffusion in a multi-compartment cabin. We used acrylic 

boards to assemble a transparent cabin with total inner dimensions of 1,200 (l) × 800 (w) × 300 

(h) mm3 (see Figure A8 in Appendix A.6). The cabin was divided by pluggable acrylic boards 

into five compartments with different dimensions, that is, five nodes of different sizes: a large 

compartment (400 × 800 × 300 mm3) as the SF6 source and four small compartments (400 × 

400 × 300 mm3). Each pluggable acrylic board had a door of 100 (w) × 200 (h) mm2. We used 

thin threads and a magnet pair to control the opening and closing of each door. The doors 

connecting the five compartments were taken as the time-series edges. The layouts of the five 

compartments with four doors are shown in Figure 2; four networks were assembled following 

the structures of networks VII–X in Figure 1. Five polyvinyl chloride tubes connected to air 

channels 1–5 in a gas multipoint sampler (INNOVA 1409, LumaSense Technologies, Ballerup, 

Denmark) were inserted into the five compartments to sample SF6. A photoacoustic gas monitor 

(INNOVA 1412i, LumaSense Technologies, Ballerup, Denmark) was connected to the sampler 

to measure the SF6 concentration [32]. The monitor could only measure one channel from the 

sampler at a time. Once SF6 started diffusing in the cabin, the monitor continuously measured 

the SF6 concentrations channel-by-channel. 

During the test of each network, we first injected approximately 200 ml of SF6 into the 

source compartment using a mass flow controller. We opened and closed the doors according 

to the corresponding edge sequence in Figure 1 to diffuse SF6 between any pair of 

compartments (i.e., to exchange air in the two rooms). Each door was opened at 90° for 6–8 

min and then closed immediately before the next door was opened. After the four doors were 

opened and closed once, a round of gas diffusion was complete, and the last measured SF6 

concentrations in the five compartments were used to calculate E using Equation 3c. For each 
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network, we continuously performed eight diffusion rounds (T = 8). Details of the SF6 diffusion 

tests are presented in Appendix A.6. 

 

<Figure 2> 

 

(Shown in a single-column fitting image) 

2.2.4 Bacterial spread in multi-finger networks 

The bacteria spread was investigated in four multi-finger networks designed following the 

structures of networks VII–X in Figure 1. For the test of each network, we assigned a specific 

finger pad for each node (Table 1). Thus, five fingers with different areas were used as five 

nodes with different sizes. Before experiment, lysogeny broth (LB) and 1.5% LB agar were 

prepared for the bacteria incubation and plate counting, respectively. Hands used for finger 

touches were repeatedly washed following WHO guidelines for handwashing [33], sprayed 

with 75% ethanol, and air-dried. The washed hands did not touch any surface before the 

experiment.  

We spread bacteria by performing finger–finger touches. We measured the touching area 

of each finger pad according to the method introduced by Dzidek et al. [34]. The nominal 

contact area in a touch was approximately 4.6 cm2 for a thumb pad and 2.8 cm2 for the index, 

middle, and ring finger pads. To perform a finger–finger touch, a three-step touching pattern 

was performed (indicated by arrows 1, 2, and 3 in Figure 3). The two fingers tightly touched 

each other for 10 s and then separated; during the touch, the two finger pads rubbed each other 

10 times in a twisting 90° back-and-forth movement.  

During the test of each network, a 20 µL S. aureus (ATCC 25923) suspension was first 

inoculated on the finger pad of the contaminant source with an area of approximately 1 cm2 (S. 

aureus would spread to the entire touched area of each finger pad in the subsequent touches), 
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and air-dried to visible dryness, which required approximately 20 min. Then, fingers were 

touched following the network structure defined in Figure 1. Different numbers of touch rounds 

(T = 1, 2, 4, and 8) were repeated for each network. The proportions of S. aureus on fingers 

after the different numbers of touch rounds were evaluated, and the average proportions 

obtained from three replicates were used to calculate E following Equation 3c. For the S. aureus 

quantification, each bacteria-contaminated finger pad was sampled through a sequential 

sampling method [35, 36]. The specific process for quantifying the finger bacteria is introduced 

in Appendix A.7. 

 

<Figure 3> 

 

(Shown in a single-column fitting image) 

 

<Table 1> 

 

The E value of contaminant distribution in a network can be used to reversely estimate 

the contaminant transfer rate per inter-node interaction (τ) and flow rate per interaction round 

(RFlow). 

For a network, we can obtain the contaminant distribution through experiments and then 

calculate the corresponding “experimental E” value; the contaminant distribution can also be 

predicted using Equation 1c and different values of τ and RFlow, after which a series of 

“predicted E” values can be calculated, each corresponding to a pair of τ and RFlow. Of all of 

the combinations of τ and RFlow, the pair whose corresponding predicted E generated the 

smallest difference with the experimental E is the best estimate of τ and RFlow. 

In this study, we performed three categories of experiments: gas diffusion (Section 2.2.3), 
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bacteria spread (Section 2.2.4), and a test of gas diffusion at a flow rate RFlow of 0.2–0.25 

(Appendix A.8). For each category, we calculated the experimental E values based on the 

experimental results and then obtained our best estimates of τ and RFlow. We also compared the 

estimated τ and RFlow with the τ and RFlow from an independent measurement to validate the 

effectiveness of this estimation method. The results are presented in Appendix A.8. 

3 Results 

3.1 Contaminant spread in basic networks 

The contaminant spreading efficiencies among different basic networks were compared. 

Figure 4 illustrates the E values for different networks with varying numbers of nodes (N), 

transfer rates per interaction (τ), interaction rounds (T), flow rates per interaction round (RFlow), 

and average path lengths of the source node (L). Similar to the nature of entropy, the value of 

parameter E in a network increases irreversibly as the inter-node interactions proceed. Here, a 

higher number of interaction rounds (larger T) resulted in a more even contaminant distribution. 

However, the relationships between some parameters and E varied with the transfer rate (Table 

2). 

As shown in Figure 4a, E was larger on average when N was smaller, indicating that 

contaminant spreading efficiency was higher for the networks with fewer nodes, owing to their 

shorter average path lengths. Contaminants in the networks of identical frameworks (same 

colors in each plot in Figure 4) can have different spreading paths, resulting in different E 

values. For example, networks I, II, and III (Figure 1, also marked in Figure 4a) had an identical 

framework, and the source nodes in networks II and III were in the same position. However, 

their spreading efficiencies varied considerably because of their different edge sequences (see 

the second plot of the first row in Figure 4a). 

A network exhibited various spreading efficiencies under different transfer rates. When 

the transfer rate was small (e.g., τ = 0.1), the networks with a centralized structure or shorter 
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average path length of the source node (L) showed a higher spreading efficiency (Figure 4b). 

When the transfer rate was large (e.g., τ = 0.9), the networks with a linear structure or a larger 

L showed a higher spreading efficiency. Generally, the spreading efficiency was on average the 

highest at a transfer rate of approximately 0.5–0.7, (Figure 4b). However, very few practical 

cases can be found with transfer rates significantly larger than 0.5. Networks with different 

structural characteristics showed their maximum spreading efficiencies at varying transfer rates. 

A series of networks occurred only at N = 2x (x = 1, 2, 3...), in which contaminants were evenly 

distributed immediately after an interaction round (T = 1) when the transfer rate τ was 0.5. This 

series of networks had a fractal structure (Figure A7 in Appendix A.5). Networks II and VI in 

Figure 1 are typical fractal networks with N = 4 and 8, respectively. 

In addition, the existence of contaminant flow decreased the contaminant spreading 

efficiency, because the flow continuously disturbed the equilibrium of contaminant distribution. 

As shown in the third and fourth columns of the plots with the same transfer rate in Figure 4b, 

the contaminant spreading slowed upon introducing a flow rate (RFlow = 0.2). We also illustrate 

the variation of E as a function of different parameters (Figures A3–A6 in Appendix A.4). 

 

<Figure 4> 

 

(shown in a 2-column fitting image) 

 

<Table 2> 

 

3.2 Contaminant spread in complex networks 

We randomly generated 20 complex networks for each of the four representative 

structures (scale-free, random, regular-lattice, and bipartite) (Figure 5), and their contaminant 
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spreading efficiencies with respect to their E values were compared after different interaction 

rounds (T = 1, 4, 8, and 12) with a transfer rate of τ = 0.5. Generally, the distributions of data 

points in the plots are similar to the patterns in the plots of τ = 0.5 in Figure 4b; however, the 

E values in Figure 5 increase more slowly in the larger network (N = 64). At τ = 0.5, the fractal 

network exhibited the largest E, whereas the E values for the centralized and linear networks 

were extremely small. The random networks showed relatively high spreading efficiencies. 

However, the efficiencies varied considerably within each type of network (random, bipartite, 

and scale-free), because the degree varied substantially among the nodes. In particular, a 

network with its contaminant source at a marginal node showed much lower spreading 

efficiency than that with its contaminant source at a hub node. Additionally, the spreading 

efficiencies of most of the regular-lattice networks were very low, unless the source node was 

situated close to the center of the 8 × 8 grid. In summary, as the interaction round (T) increased, 

the average spreading efficiencies of the different network types in Figure 5 were in the 

following order at τ ≈ 0.5: fractal > random > bipartite ≈ scale-free > regular-lattice > 

centralized ≈ linear, which is consistent with the results of several studies [24, 37-39]. This 

ranking demonstrates the relative efficiency of complex real-world networks, such as small-

world networks and networks with multiple communities, as their characteristics are close to 

those of scale-free networks [40-42]. 

 

<Figure 5> 

 

(Shown in a 2-column fitting image) 

3.3 Gas diffusion in multi-compartment cabins 

We measured the SF6 concentration as the gas diffused in four types of multi-compartment 

cabins. The mass ratio in each compartment is illustrated with the columns in Figure 6a. In a 
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separate measurement, we diffused SF6 between two same-size compartments (400 × 400 × 

300 mm3), with one filled with approximately 200 ml of SF6. After 7 min, the SF6 concentration 

ratio of the two same-size compartments was 0.512:0.488, indicating a transfer rate τ of 0.488. 

Based on this value, we predicted the SF6 transfer rates between different compartments (τDR) 

using Equation 2c and consequently the SF6 distributions in the four networks using Equation 

1c, and compared them with the corresponding experimental data, as shown in Figure 6a. 

A high SF6 diffusion efficiency could be obtained under our experimental conditions, as 

the measured distribution ratio βDR of 0.512/0.488 was close to the ideal value of 1. Predictions 

of SF6 distribution based on this distribution ratio were close to the experimental results (see 

Figure 6a). Both the experimental data and the predicted results show that the source 

compartments whose size was twice that of the others maintained a higher SF6 mass ratio. 

Furthermore, we predicted the E values at varying transfer rates (τ = 0–1) and compared 

them with the experimental E (blue curves and cross-points in Figure 7). The E values more 

clearly reflected the difference between the predicted results and the experimental data, and 

between different networks. As shown in Figure 7, the SF6 diffusion efficiency in the 

experiments could be well predicted based on a known transfer rate. The SF6 diffusion 

efficiency in network VII, which had a linear structure, was lower than those in the other three 

networks, despite network VII having the same framework as network X (see Figure 1), 

demonstrating the effect of network structure on contaminant spreading efficiency. 

3.4 Bacterial spread in multi-finger networks 

We spread S. aureus in four types of multi-finger networks through finger–finger touches. 

The bacteria distribution in each network was evaluated after different touch rounds (T = 1, 2, 

4, and 8), as shown in the columns in Figure 6b. In a separate measurement, we measured the 

transfer rate in an inter-index finger touch as τ = 0.403. Based on this value, we predicted the 

S. aureus transfer rates between different fingers (τDR) using Equation 2c and consequently the 
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S. aureus distributions in the four networks using Equation 1c, and compared them with the 

corresponding experimental data in Figure 6b. 

After eight touch rounds, the S. aureus distributions in all of the networks were similar, in 

which the thumbs, with larger finger pad areas, held more bacteria (first two columns in each 

plot in Figure 6b), and the other fingers had fewer. However, different multi-finger networks 

exhibited different spreading process. In networks VII and X, bacteria continuously transferred 

from the donor finger to the other four fingers, whereas in networks VIII and IX, the first-

touched finger (the second column in each plot in Figure 6b) in the first four rounds of touches 

(T = 1–4) harbored more bacteria than the donor finger (the first column in each plot in Figure 

6b). 

Although in Figure 6b, the predicted results are close to the experimental data, a 

comparison of the E values from the predicted results and experimental data (red curves and 

cross-points in Figure 7) shows that the spreading efficiency of S. aureus in multi-finger 

networks was considerably lower than expected. We reversely estimated the bacteria transfer 

rate using the experimental data (see Figure 8) and obtained the average transfer rate in the 

experiments as τ = 0.180, which was smaller than the 0.403 value obtained from a separate 

measurement (a single touch between two index fingers). The smaller average transfer rate of 

S. aureus spreading in the networks was likely due to the slowing down of bacteria spread 

among fingers as the touching proceeded. Previous research has shown that bacteria cells 

adhering more firmly to a recipient finger are usually harder to move to the next finger in 

subsequent touching actions [27]. 

 

<Figure 6> 

 

(Shown in a 1.5-column fitting image) 
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<Figure 7> 

 

(Shown in a 1.5-column fitting image) 

3.5 Estimating the transfer rate according to the experimental E value 

The estimated τ and RFlow for different spreading processes are shown in Figure 8. During 

SF6 diffusion without a flow rate (experiments in Section 2.2.3), the estimation of the transfer 

rate τ was accurate, as the estimated τ and measured τ were 0.494 and 0.488, respectively. 

In S. aureus spread (experiments in Section 2.2.4), the estimated τ was 0.180, which was 

lower than the value from a separate measurement (0.403). This difference was likely due to 

the decrease in bacterial transfer rate during bacteria spread among fingers; this is because 

during touching actions, bacterial cells were continuously transferred to the finger of larger 

adhesion force, and it was thus harder for the bacteria to move to the next finger [27]. 

When we introduced a flow rate of RFlow = 0.2–0.25 into the SF6 diffusion in network VII 

(see Appendix A.8), the most likely τ and RFlow in the gas diffusion experiment were estimated 

as 0.547 and 0.260, respectively, which were close to the two values from a separate experiment 

in which the τ between two same-size compartments was measured as 0.488. 

 

Figure 2 Standard deviation between experimental E and predicted E under different transfer 

rates (τ) per inter-node interaction and flow rates (RFlow) per interaction round. 

Parula surface: experiment of gas diffusion in a multi-compartment cabin with gas flow; blue 

curve: experiment of gas diffusion in multi-compartment cabins; red curve: experiment of 

bacterial spread in multi-finger networks. 

The orange, blue, and red asterisks in the horizontal plane represent the transfer rate and flow 

rate corresponding to the smallest standard deviation on the parula surface, blue curve, and red 
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curve, respectively. 

(Shown in a single-column fitting image) 

4 Discussion 

In this study, we propose a new parameter E, which provides a straightforward way to 

illustrate contaminant distribution evenness in a network and can be applied to quantify the 

contaminant spreading efficiency. We observed the influences of different factors on the E 

value for both basic and complex networks and found that the spreading efficiency was highly 

related to the network structure. We performed two categories of laboratory experiments (SF6 

diffusion in multi-compartment cabins and S. aureus spread in multi-finger networks) to 

validate the effect of the network structure on practical spreading cases and demonstrated the 

feasibility of using the per-interaction transfer rate value (obtained from a separate 

measurement) to predict the contaminant spread in a network. Furthermore, we could use the 

E calculated from the experimental results to reversely correct the contaminant transfer rate (τ) 

and flow rate (RFlow). 

4.1 Major network-related factors influencing contaminant spreading efficiency 

The variation of the E value at N > 8 was similar to the results at N ≤ 8 (Figure 4). When 

the edge number in an N-nodes network was greater than N – 1, the closed-loop structures 

existed in the network, resulting in a higher contaminant spreading efficiency for each 

interaction round. Edges can also have different weights (e.g., interacting frequencies or 

efficiencies), which represent the heterogeneous interactions between nodes [43]. Only 

unweighted time-series networks were tested here. 

We applied the new parameter E to some well-known complex networks. Among the 

networks, the fractal network showed an extremely high spreading efficiency at τ ≈ 0.5. Similar 

structures occur in living objects, such as lungs [44, 45], neural systems [46], and trees [47]. 

The structures of these objects evolved to become fractal-like to improve the spreading 
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efficiencies of oxygen, signals, and nutrition, respectively. This confirms our conclusion: the 

fractal network had the highest E value at an ideal transfer rate (τ ≈ 0.5). However, we only 

considered the occurrence of a single node–node interaction per time (fractal dimension d = 2), 

without considering the cases in which a source node simultaneously interacts with multiple 

nodes (d = 3, 4, ...). If we expand the definition of “fractal structure,” more fractal networks 

are possible, with the highest spreading efficiency occurring at a transfer rate τ of 1/d. For 

example, the centralized network with N nodes can be modified to an N-dimensional fractal 

network by using the source node to simultaneously interact with the other N − 1 nodes, and 

its highest spreading efficiency occurs at τ = 1/N. 

According to the results in Figures 4 and 5, at any transfer rate, the E values for the 

networks were either between those of the linear and the centralized networks under the same 

number of nodes or, more commonly, higher than both values. Surprisingly, the efficiency of 

the linear network under a high transfer rate was similar to that of the centralized network under 

a low transfer rate. A connection existed between the two network types. The network structure 

depends on how we define the nodes and contaminants. For example, a virus-laden bicycle 

shared by several individuals can be considered as a hub, and the viruses as the target 

contaminants spread indirectly between people through this hub bicycle, forming a centralized 

network. We can also consider the “bicycle + viruses” as a target contaminant, and the virus-

laden bicycle is transferred directly from one individual to the next, forming a linear network. 

The transfer rate depends on the definition of “contaminant” and the network structure. 

However, the E value remains constant regardless of how we define the network. 

4.2 Effect of network structure in real spreading cases 

The effect of network structure on the S. aureus spreading efficiency in surface networks 

was not as pronounced as that on the SF6 spreading efficiency in space networks. In this study, 

the spread of SF6 between nodes occurred purely by natural diffusion without an additional 
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driving source, but SF6 showed a high spreading efficiency. In the experiment, any leakage 

between compartments or external disturbances could further accelerate the SF6 spread. In 

contrast, the S. aureus spreading efficiency was low. Considering that we performed repeated 

rubbing in each finger–finger touch, we believe that the S. aureus spreading efficiency had 

reached its maximum. Gas diffusion can therefore more easily reach an ideal even distribution 

than microbial spread on surfaces. 

As shown in the blue scatters in Figure 7, the SF6 diffusion efficiency in the linear network 

(network VII) was considerably lower than those in other networks, indicating a considerable 

effect of the network structure. In contrast, the S. aureus transfer rate gradually decreased as 

the touching proceeded. After the transfer of a contaminant particle from a donor surface to a 

recipient surface, the particle may (I) receive greater adhesive force and (II) sit deeper at the 

recipient than it did at the donor, which indicates a smaller transfer probability in the 

subsequent surface contacts [27]. Such a decrease in microbial transfer rate occurred in both 

this study and previous experiments [20, 36]. Owing to this phenomenon, the contaminant 

spreading efficiency in surface networks was often lower than expected (see the red lines and 

scatters in Figure 7). Therefore, the influence of network structure on the surface contaminant 

spreading was not pronounced. The specific mechanism and its effect will be clarified in our 

future study. 

4.3 Role of hub nodes in a network 

For either the scale-free or the regular-lattice networks, their E values were quite different, 

which was due to the difference in the source positions. In a scale-free network, the spread 

begins to outbreak only after one or more hub nodes are contaminated. In contrast, random 

networks have higher spreading efficiencies, because the degrees of the nodes are more evenly 

distributed. The bipartite networks, generated as a type of conditional scale-free network, 

showed a spreading efficiency similar to the scale-free networks. This indicates a likely high 
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contaminant spreading efficiency in numerous scenarios when a hub node is contaminated, 

such as in aircraft cabins [48] and hospitals [49], in which pathogens spread among human 

hands and inanimate surfaces. In these scenarios, the hands and surfaces constitute bipartite 

surfaces, as there are usually no interactions between strangers or between surfaces. 

By comparing scale-free and regular-lattice networks, we observed that the existence of 

contaminated super-hubs considerably increased contaminant spreading efficiency, consistent 

with the conclusions of prior studies [24, 50]. In the experiments by Wang et al. [20] on bacteria 

spread in an office through human touch, the spreading network approximated a conditional 

bipartite scale-free network. In two sets of experiments involving networks with similar 

densities, the bacterial spreading efficiency was considerably affected by the node degree of 

the bacterial source. In addition, the existence of high-touch hands or inanimate surfaces as 

super-hubs in a network considerably improved the spreading efficiency. 

Another case without a hub node demonstrated relatively low efficiency of contaminant 

spread. The apartments in a residential building typically constitute a three-dimensional 

regular-lattice network in which pathogens (e.g., SARS-CoV-2) can spread through air, 

surfaces, and sewage systems [1]. In their case study, Wang et al. [32] showed that the spread 

of infections was mainly restricted to adjacent apartments with a higher air exchange rate (i.e., 

nodes connected by a higher-weight edge), partially because that the potential super-hubs, such 

as the air or surfaces in elevators, lobbies, and other public areas, were not participated in 

pathogen spread, which avoided a larger outbreak. 

4.4 Potential applications of the newly proposed theory 

The new parameter proposed in this study can be used to quantify contamination risk in 

different networks, such as hazardous chemical diffusion in water [3], pollutant diffusion and 

heat exchange in air [51-53], and pathogen spread through surfaces or air [54]. In subsequent 

studies, we will combine node characteristics to quantify (a) the entropy (or a related parameter) 



 

 25 

of a single node, to measure its danger as a contaminant donor, and (b) the entropy of all of the 

neighbors of a node, to measure the potential contamination risk of this node. Furthermore, the 

new parameter can also function as a measurement index in other applications involving 

spreading activities, such as the allocation of emergency resources (e.g., medical and 

firefighting supplies and power restoration capacity) [55, 56], the optimization of a transport 

logistics system (e.g., warehouse layout and package storage) [57], and animal migration and 

human transportation [58]. 

Furthermore, we can use the known (or partially known) distribution of contaminant in a 

network to reproduce the spreading process, as the new parameter provides a yardstick to 

estimate the probability of a likely spreading path. The theory proposed in this study might be 

useful for tracing a contamination source, such as in source tracking during a regional disease 

outbreak (e.g., COVID-19). Moreover, the pathogen spreading efficiency and the index case 

can be reversely derived based on patient distribution. However, we do not illustrate which 

networks possess higher infection risks, because higher spreading efficiency is not equivalent 

to a higher infection ratio [59]. A susceptible individual becomes infected only after receiving 

pathogens in a dose exceeding the infective dose [60], which is usually caused by 

repeated/extended interaction with the infection source. Such interactions can be considered 

high-weight edges in a pathogen-spreading network [43]. 

5 Conclusion 

We proposed a parameter E, a function of Shannon entropy, to measure the evenness of 

contaminant distribution in a network. Based on the E value, we clearly illustrated the 

difference in contaminant spreading efficiency between varying network structures. 

Contaminants in fractal networks showed extremely high spreading efficiency at an ideal 

condition; in a random or scale-free network, contaminant spreading efficiency was 

considerably enhanced when a hub node was contaminated. In practical cases, experiment 
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results of the SF6 distribution in multi-compartment cabins was consistent to the prediction 

based on its diffusion rate between a pair of compartments, and the gas diffusion was 

demonstrated susceptible to the structure of the cabin network. In contrast, the efficiency of S. 

aureus spread in all the enumerated multi-finger networks was substantially lower than 

expected. Thus, the structure of surface networks showed less effect on the bacterial spread. 

Database 

Appendix B. DOI: 10.17632/shpzy4c53x.1 

Acknowledgements 

This work was supported by the General Research Fund project from Hong Kong 

Research Grants Council [grant numbers 17203420]. 

References 

[1] L. Morawska, J.W. Tang, W. Bahnfleth, P.M. Bluyssen, A. Boerstra, G. Buonanno, J. Cao, 

S. Dancer, A. Floto, F. Franchimon, C. Haworth, J. Hogeling, C. Isaxon, J.L. Jimenez, J. 

Kurnitski, Y. Li, M. Loomans, G. Marks, L.C. Marr, L. Mazzarella, A.K. Melikov, S. 

Miller, D.K. Milton, W. Nazaroff, P.V. Nielsen, C. Noakes, J. Peccia, X. Querol, C. Sekhar, 

O. Seppanen, S.I. Tanabe, R. Tellier, K.W. Tham, P. Wargocki, A. Wierzbicka, M. Yao, 

How can airborne transmission of COVID-19 indoors be minimised?, Environment 

International, 142 (2020) 105832. DOI:10.1016/j.envint.2020.105832. 

[2] E.A. Cohen Hubal, M.G. Nishioka, W.A. Ivancic, M. Morara, P.P. Egeghy, Comparing 

surface residue transfer efficiencies to hands using polar and nonpolar fluorescent tracers, 

Environmental Science & Technology, 42 (2007) 934-939. DOI:10.1021/es071668h. 

[3] S. Masud Rana, D.L. Boccelli, Contaminant spread forecasting and confirmatory sampling 

location identification in a water-distribution system, Journal of Water Resources 

Planning and Management, 142 (2016) 04016059. DOI:10.1061/(ASCE)WR.1943-

5452.0000704. 



 

 27 

[4] M. Salathé, M. Kazandjieva, J.W. Lee, P. Levis, M.W. Feldman, J.H. Jones, A high-

resolution human contact network for infectious disease transmission, Proceedings of the 

National Academy of Sciences, 107 (2010) 22020-22025. DOI:10.1073/pnas.1009094108. 

[5] N. Johansson, S. Svensson, P. van Hees, An evaluation of two methods to predict 

temperatures in multi-room compartment fires, Fire Safety Journal, 77 (2015) 46-58. 

DOI:10.1016/j.firesaf.2015.07.006. 

[6] P.Y. Chia, K.K. Coleman, Y.K. Tan, S.W.X. Ong, M. Gum, S.K. Lau, X.F. Lim, A.S. Lim, 

S. Sutjipto, P.H. Lee, T.T. Son, B.E. Young, D.K. Milton, G.C. Gray, S. Schuster, T. 

Barkham, P.P. De, S. Vasoo, M. Chan, B.S.P. Ang, B.H. Tan, Y.S. Leo, O.T. Ng, M.S.Y. 

Wong, K. Marimuthu, T. Singapore Novel Coronavirus Outbreak Research, Detection of 

air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients, 

Nature Communications, 11 (2020) 2800. DOI:10.1038/s41467-020-16670-2. 

[7] S.Y. Bin, J.Y. Heo, M.S. Song, J. Lee, E.H. Kim, S.J. Park, H.I. Kwon, S.M. Kim, Y.I. Kim, 

Y.J. Si, I.W. Lee, Y.H. Baek, W.S. Choi, J. Min, H.W. Jeong, Y.K. Choi, Environmental 

contamination and viral shedding in MERS patients during MERS-CoV outbreak in South 

Korea, Clinical Infectious Diseases, 62 (2016) 755-760. DOI:10.1093/cid/civ1020. 

[8] H. Kanamori, W.A. Rutala, D.J. Weber, The role of patient care items as a fomite in 

healthcare-associated outbreaks and infection prevention, Clinical Infectious Diseases, 65 

(2017) 1412-1419. DOI:10.1093/cid/cix462. 

[9] S. Asadi, N. Gaaloul Ben Hnia, R.S. Barre, A.S. Wexler, W.D. Ristenpart, N.M. Bouvier, 

Influenza A virus is transmissible via aerosolized fomites, Nature Communications, 11 

(2020) 4062. DOI:10.1038/s41467-020-17888-w. 

[10] A.M. Wilson, K.A. Reynolds, R.A. Canales, Estimating the effect of hand hygiene 

compliance and surface cleaning timing on infection risk reductions with a mathematical 

modeling approach, American Journal of Infection Control, 47 (2019) 1453-1459. 



 

 28 

DOI:10.1016/j.ajic.2019.05.023. 

[11] A.M. Wilson, M.-F. King, M. López-García, M.H. Weir, J.D. Sexton, R.A. Canales, G.E. 

Kostov, T.R. Julian, C.J. Noakes, K.A. Reynolds, Evaluating a transfer gradient 

assumption in a fomite-mediated microbial transmission model using an experimental and 

Bayesian approach, Journal of the Royal Society Interface, 17 (2020) 20200121. 

DOI:10.1098/rsif.2020.0121. 

[12] S.F. Bloomfield, A.E. Aiello, B. Cookson, C. O'Boyle, E.L. Larson, The effectiveness of 

hand hygiene procedures in reducing the risks of infections in home and community 

settings including handwashing and alcohol-based hand sanitizers, American Journal of 

Infection Control, 35 (2007) S27-S64. DOI:10.1016/j.ajic.2007.07.001. 

[13] N. Fierer, M. Hamady, C.L. Lauber, R. Knight, The influence of sex, handedness, and 

washing on the diversity of hand surface bacteria, Proceedings of the National Academy 

of Sciences of the United States of America, 105 (2008) 17994-17999. 

DOI:10.1073/pnas.0807920105. 

[14] M. Guo, P. Xu, T. Xiao, R. He, M. Dai, S.L. Miller, Review and comparison of HVAC 

operation guidelines in different countries during the COVID-19 pandemic, Building and 

Environment, 187 (2021) 107368. DOI:10.1016/j.buildenv.2020.107368. 

[15] S. Kundrapu, V. Sunkesula, L.A. Jury, B.M. Sitzlar, C.J. Donskey, Daily disinfection of 

high-touch surfaces in isolation rooms to reduce contamination of healthcare workers' 

hands, Infection Control and Hospital Epidemiology, 33 (2012) 1039-1042. 

DOI:10.1086/667730. 

[16] H. Lei, S. Xiao, B.J. Cowling, Y. Li, Hand hygiene and surface cleaning should be paired 

for prevention of fomite transmission, Indoor Air, 30 (2020) 49-59. 

DOI:10.1111/ina.12606. 

[17] B. Dybiec, A. Kleczkowski, C.A. Gilligan, Controlling disease spread on networks with 



 

 29 

incomplete knowledge, Physical Review. E, Statistical, Nonlinear, and Soft Matter 

Physics, 70 (2004) 066145. DOI:10.1103/PhysRevE.70.066145. 

[18] K. Anderson, S. Lee, C. Menassa, Effect of social network type on building occupant 

energy use, in:  Proceedings of the Fourth ACM Workshop on Embedded Sensing 

Systems for Energy-Efficiency in Buildings, 2012, pp. 17-24. 

[19] H. Lei, Y. Li, S. Xiao, X. Yang, C. Lin, S.L. Norris, D. Wei, Z. Hu, S. Ji, Logistic growth 

of a surface contamination network and its role in disease spread, Scientific Reports, 7 

(2017) 14826. DOI:10.1038/s41598-017-13840-z. 

[20] P. Wang, N. Zhang, T. Miao, J.P.T. Chan, H. Huang, P.K.H. Lee, Y. Li, Surface touch 

network structure determines bacterial contamination spread on surfaces and occupant 

exposure, Journal of Hazardous Materials, 416 (2021) 126137. 

DOI:10.1016/j.jhazmat.2021.126137. 

[21] N. Zhang, Y. Li, H. Huang, Surface touch and its network growth in a graduate student 

office, Indoor Air, 28 (2018) 963-972. DOI:10.1111/ina.12505. 

[22] S. Xiao, R.M. Jones, P. Zhao, Y. Li, The dynamic fomite transmission of Methicillin-

resistant Staphylococcus aureus in hospitals and the possible improved intervention 

methods, Building and Environment, 161 (2019) 106246. 

DOI:10.1016/j.buildenv.2019.106246. 

[23] X. Liu, Z. Peng, X. Liu, R. Zhou, Dispersion characteristics of hazardous gas and exposure 

risk assessment in a multiroom building environment, International Journal of 

Environmental Research and Public Health, 17 (2019). DOI:10.3390/ijerph17010199. 

[24] M.D.F. Shirley, S.P. Rushton, The impacts of network topology on disease spread, 

Ecological Complexity, 2 (2005) 287-299. DOI:10.1016/j.ecocom.2005.04.005. 

[25] P. Kumar, A. Sinha, Information diffusion modeling and analysis for socially interacting 

networks, Social Network Analysis and Mining, 11 (2021) 11. DOI:10.1007/s13278-020-



 

 30 

00719-7. 

[26] N. Masuda, P. Holme, Temporal network epidemiology, Springer, 2017. 

[27] P. Zhao, Y. Li, Modeling and experimental validation of microbial transfer via surface 

touch, Environmental Science & Technology, 55 (2021) 4148–4161. 

DOI:10.1021/acs.est.0c04678. 

[28] P. Zhao, Y. Li, T.-L. Tsang, P.-T. Chan, Equilibrium of particle distribution on surfaces due 

to touch, Building and Environment, 143 (2018) 461-472. 

DOI:10.1016/j.buildenv.2018.07.023. 

[29] C.E. Shannon, A mathematical theory of communication, Bell System Technical Journal, 

27 (1948) 379-423. DOI:10.1002/j.1538-7305.1948.tb01338.x. 

[30] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science, 286 (1999) 

509-512. DOI:10.1126/science.286.5439.509. 

[31] P. Erdos, A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci, 

5 (1960) 17-60.  

[32] Q. Wang, Y. Li, D.C. Lung, P.T. Chan, C.H. Dung, W. Jia, T. Miao, J. Huang, W. Chen, Z. 

Wang, K.M. Leung, Z. Lin, D. Wong, H. Tse, S.C.Y. Wong, G.K. Choi, J.Y. Lam, K.K. 

To, V.C. Cheng, K.Y. Yuen, Aerosol transmission of SARS-CoV-2 due to the chimney 

effect in two high-rise housing drainage stacks, Journal of Hazardous Materials, 421 (2021) 

126799. DOI:10.1016/j.jhazmat.2021.126799. 

[33] WHO, WHO guidelines on hand hygiene in health care: a summary, in:  First global 

patient safety challenge, World Health Organization, Geneva, Switzerland, 2009. 

[34] B.M. Dzidek, M.J. Adams, J.W. Andrews, Z. Zhang, S.A. Johnson, Contact mechanics of 

the human finger pad under compressive loads, Journal of The Royal Society Interface, 

14 (2017) 20160935. DOI:10.1098/rsif.2016.0935. 

[35] W. Whyte, W. Carson, A. Hambraeus, Methods for calculating the efficiency of bacterial 



 

 31 

surface sampling techniques, Journal of Hospital Infection, 13 (1989) 33-41. 

DOI:10.1016/0195-6701(89)90093-5. 

[36] P. Zhao, Y. Li, New sequential-touch method to determine bacterial contact transfer rate 

from finger to surface, Journal of Applied Microbiology, 127 (2019) 605-615. 

DOI:10.1111/jam.14332. 

[37] F. Escolano, E.R. Hancock, M.A. Lozano, Heat diffusion: Thermodynamic depth 

complexity of networks, Physical Review E, 85 (2012) 036206. 

DOI:10.1103/PhysRevE.85.036206. 

[38] V. Nicosia, F. Bagnoli, V. Latora, Impact of network structure on a model of diffusion and 

competitive interaction, EPL (Europhysics Letters), 94 (2011) 68009. DOI:10.1209/0295-

5075/94/68009. 

[39] M. Lin, N. Li, Scale-free network provides an optimal pattern for knowledge transfer, 

Physica A: Statistical Mechanics and its Applications, 389 (2010) 473-480. 

DOI:10.1016/j.physa.2009.10.004. 

[40] J. Moody, Network Structure and Diffusion, Duke Population Research Institute Online 

Working Papers Series, (2009).  

[41] J.-C. Delvenne, R. Lambiotte, L.E. Rocha, Diffusion on networked systems is a question 

of time or structure, Nature Communications, 6 (2015) 1-10. DOI:10.1038/ncomms8366. 

[42] P. Holme, Temporal network structures controlling disease spreading, Physical Review E, 

94 (2016). DOI:10.1103/PhysRevE.94.022305. 

[43] J.M. Read, K.T. Eames, W.J. Edmunds, Dynamic social networks and the implications for 

the spread of infectious disease, Journal of The Royal Society Interface, 5 (2008) 1001-

1007. DOI:10.1098/rsif.2008.0013. 

[44] M.F. Shlesinger, B.J. West, Complex fractal dimension of the bronchial tree, Physical 

Review Letters, 67 (1991) 2106-2108. DOI:10.1103/PhysRevLett.67.2106. 



 

 32 

[45] L.K. Uahabi, M. Atounti, New approach to the calculation of fractal dimension of the 

lungs, Annals of the University of Craiova-Mathematics and Computer Science Series, 44 

(2017) 78-86.  

[46] G. Werner, Fractals in the nervous system: conceptual implications for theoretical 

neuroscience, Frontiers in Physiology, 1 (2010) 00015. DOI:10.3389/fphys.2010.00015. 

[47] O.M. Bruno, R. de Oliveira Plotze, M. Falvo, M. de Castro, Fractal dimension applied to 

plant identification, Information Sciences, 178 (2008) 2722-2733. 

DOI:10.1016/j.ins.2008.01.023. 

[48] H. Lei, Y. Li, S. Xiao, C.H. Lin, S.L. Norris, D. Wei, Z. Hu, S. Ji, Routes of transmission 

of influenza A H1N1, SARS CoV, and norovirus in air cabin: comparative analyses, 

Indoor Air, 28 (2018) 394-403. DOI:10.1111/ina.12445. 

[49] S. Xiao, Y. Li, M. Sung, J. Wei, Z. Yang, A study of the probable transmission routes of 

MERS-CoV during the first hospital outbreak in the Republic of Korea, Indoor Air, 28 

(2018) 51-63. DOI:10.1111/ina.12430. 

[50] Y. Xiao, Y. Zhou, S. Tang, Modelling disease spread in dispersal networks at two levels, 

Mathematical Medicine and Biology : a Journal of The IMA, 28 (2011) 227-244. 

DOI:10.1093/imammb/dqq007. 

[51] Q. Wang, C. Zhang, C. Ren, J. Hang, Y. Li, Urban heat island circulations over the Beijing-

Tianjin region under calm and fair conditions, Building and Environment, 180 (2020) 

107063. DOI:10.1016/j.buildenv.2020.107063. 

[52] A.B. Hansen, C.S. Witham, W.M. Chong, E. Kendall, B.N. Chew, C. Gan, M.C. Hort, S.-

Y. Lee, Haze in Singapore–source attribution of biomass burning PM 10 from Southeast 

Asia, Atmospheric Chemistry and Physics, 19 (2019) 5363-5385. DOI:10.5194/acp-19-

5363-2019. 

[53] Z. Wei, L. Wang, S. Ma, F. Zhang, J. Yang, Source contributions of PM2. 5 in the severe 



 

 33 

haze episode in Hebei cities, The Scientific World Journal, 2015 (2015). 

DOI:10.1155/2015/480542. 

[54] S. Xiao, J.W. Tang, Y. Li, Airborne or fomite transmission for norovirus? A case study 

revisited, International Journal of Environmental Research and Public Health, 14 (2017) 

1571. DOI:10.3390/ijerph14121571. 

[55] M.N. Zonouzi, M. Kargari, Modeling uncertainties based on data mining approach in 

emergency service resource allocation, Computers & Industrial Engineering, 145 (2020) 

106485. DOI:10.1016/j.cie.2020.106485. 

[56] W. Chen, G. Zhai, C. Ren, Y. Shi, J. Zhang, Urban resources selection and allocation for 

emergency shelters: In a multi-hazard environment, International Journal of 

Environmental Research and Public Health, 15 (2018) 1261. 

DOI:10.3390/ijerph15061261. 

[57] P. Davidsson, L. Henesey, L. Ramstedt, J. Törnquist, F. Wernstedt, An analysis of agent-

based approaches to transport logistics, Transportation Research part C: emerging 

technologies, 13 (2005) 255-271. DOI:10.1016/j.trc.2005.07.002. 

[58] O. Woolley-Meza, C. Thiemann, D. Grady, J.J. Lee, H. Seebens, B. Blasius, D. Brockmann, 

Complexity in human transportation networks: a comparative analysis of worldwide air 

transportation and global cargo-ship movements, The European Physical Journal B, 84 

(2011) 589-600. DOI:10.1140/epjb/e2011-20208-9. 

[59] N. Shinohara, J. Sakaguchi, H. Kim, N. Kagi, K. Tatsu, H. Mano, Y. Iwasaki, W. Naito, 

Survey of air exchange rates and evaluation of airborne infection risk of COVID-19 on 

commuter trains, Environment International, 157 (2021) 106774. 

DOI:10.1016/j.envint.2021.106774. 

[60] S. Karimzadeh, R. Bhopal, H.N. Tien, Review of infective dose, routes of transmission 

and outcome of COVID-19 caused by the SARS-COV-2: comparison with other 



 

 34 

respiratory viruses, Epidemiology & Infection, 149 (2021). 

DOI:10.1017/S0950268821000790. 

 

 Figure 1. Graphical representations of 10 networks: (a) networks I–V, which have four 
nodes; (b) network VI, which has eight nodes; (c) networks VII–X, which have five nodes. In 
each network, both the nodes and the edges are numbered. In each network, node 1 (gray 
shadow) is set as the contaminant source and contaminants spread from the source following 
the edge sequence. The networks with fractal, centralized, and linear structures are denoted 
with different colors. 

 
  



 

 35 

Figure 3 Layout of four multi-compartment cabins designed according to the structures of 
networks VII–X in Figure 1. Each cabin has five compartments connected by four doors (gray 
sectors), representing the five nodes and four time-series edges in the corresponding network. 
In each network, the tracer gas is released in compartment 1 and diffused as the four doors are 
opened and closed following the edge sequence. 

 

 
  



 

 36 

Figure 4 Defined touching patterns. Step 1: the two fingers approach each other. Step 2: the 
two fingers maintain tight contact for approximately 10 s while performing a twisting 90° back-
and-forth movement 10 times. Step 3: the two fingers separate. 
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Figure 5 Contaminant distribution evenness in different basic networks (N ≤ 8) as a function 
of the average path length of the source node (L). For each network, the evenness after different 
numbers of interaction rounds (T = 1, 2, 4, and 8) is quantified by the newly defined parameter 
E, which is calculated under (a) different numbers of nodes (N) with a constant transfer rate (τ 
= 0.5) and flow rate (RFlow = 0); (b) different transfer rates (τ) and flow rates (RFlow) with a 
constant number of nodes (N = 8). Each circle in a plot represents a network and is 
characterized by the degree of the source node (D, proportional to the symbol area) and the 
network framework (distinguished by the symbol color). The circles denoted by Roman 
numerals correspond to the networks in Figure 1. 
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Figure 6 Contaminant distribution evenness in different complex networks (N = 64) as a 
function of the average path length of the source node (L). For each network, the evenness after 
different numbers of interaction rounds (T = 1, 4, 8, and 12) is quantified by the newly defined 
parameter E, which is calculated with a transfer rate of τ = 0.5. Each circle in a plot represents 
a network and is characterized by the degree of the source node (D, proportional to the symbol 
area) and the network category (distinguished by the symbol color). A statistical result of the E 
values at T = 6 is presented to illustrate the average and various values of contaminant 
spreading efficiency for each network type. 
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Figure 7 Experimental data (columns) and theoretical predicted results (square symbols) of 
contaminant spreading in four networks (networks VII–X in Figure 1). In each network, the 
contaminant proportion on each node (𝐶𝐶𝑖𝑖/∑ 𝐶𝐶𝑗𝑗𝑁𝑁

𝑗𝑗=1 ) varies with increasing interaction round (T). 
(a) SF6 diffusion in multi-compartment cabins; (b) S. aureus spread in multi-finger networks, 
in which the error bars represent the standard deviations of three replicates in experiments. 
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Figure 8 Comparison of the E values based on the predicted results and experimental data from 
Figure 6 (blue: SF6 diffusion; red: S. aureus spread). For each network (VII–X in Figure 1) and 
interaction round (T = 1, 2, 4, or 8), a series of predicted E values (curve) was derived with a 
transfer rate of τ = 0–1; the experimental E value (cross point) was obtained according to the 
experimental data in the corresponding plot in Figure 6. We measured the transfer rate from a 
separate experiment (τ = 0.488 in SF6 diffusion; τ = 0.403 in S. aureus spread) to determine the 
horizontal positions of the cross-points. 
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Table 1 Assignment of fingers to the nodes in each designed network. The structures of 
networks VII–X are shown in Figure 1. In each network, node 1 is the bacteria source. 
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Table 2 Effects of different parameters on contaminant spreading efficiency represented by the 
E value. 

Parameters 
Effect on E value 

a 
τ → 0 τ → 1 

Interaction round, T + + 
Number of edges, M 
  (∝ average degree in a 
network) 
  (∝ network density) 

+ + 

Degree of source node, D 
  (∝ degree centrality of source 
node) 

+ − 

Average path length of source 
node, L 

– + 

Average path length in a network − + 
Network diameter − + 
Number of nodes, N − − 
Contaminant flow, RFlow − − 
Contaminant decay, RDecay NE NE 

a + (−) represents a positive (negative) effect, indicating that the E value increased 
(decreased) with an increase in the value of the parameter; and NE represents that the 
parameter has no effect on the E value. 
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