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Abstract—Simultaneously transmitting and reflecting (STAR)
reconfigurable intelligent surface (RIS) has recently emerged as a
promising enhancement to the traditional reflective only RIS. In
view of the difficulty of comparing wireless systems equipped with
different modes of STAR-RIS and the performance degradation
caused by the constraints involving discrete selection, this paper
proposes a unified optimization framework for handling the
constraints arising from various STAR-RIS operating modes and
discrete phase coefficients. With a judiciously introduced penalty
term, this framework transforms the original problem into two
iterative subproblems, with one containing the selection-type
constraints, and the other subproblem handling other wireless
resource. Convergent point of the whole algorithm is found to
be at least a stationary point under mild conditions. As an
illustrative example, the proposed framework is applied to a
sum-rate maximization problem in the downlink transmission.
Simulation results show that the algorithms from the proposed
framework not only outperform other existing algorithms tailored
for different STAR-RIS scenarios, but also facilitate a fair and
unified comparison among different operating modes of STAR-
RIS. Furthermore, it is found that 4 or even 2 discrete phases
STAR-RIS could achieve almost the same sum-rate performance
as the continuous phase setting, showing for the first time
that discrete phase is not necessarily a cause of significant
performance degradation.

Index Terms—simultaneously transmitting and reflecting re-
configurable intelligent surface (STAR-RIS), operating mode
constraint, discrete phase constraint, unified framework.

I. INTRODUCTION

The development of meta-surface/tunnel diode technology
provides a feasible avenue for the realization of reflective
intelligent surfaces (RIS) in the forthcoming communication
systems [1], [2]. RIS, characterized by its cost-effectiveness
and remarkable scalability, leverages an array of reflective
meta-surfaces affixed to walls or physical infrastructures.
These meta-surfaces are endowed with the capability to ma-
nipulate its phase shifts and amplitudes, thereby changing
the propagation channels [3]–[6]. By redirecting incoming
signals towards the receiver, the RIS establishes a virtual direct
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pathway connecting the transmitter and receiver, effectively
circumventing physical obstructions [7]. This innovation there-
fore facilitates wireless transmissions across a multitude of
challenging scenarios [8], [9].

Traditionally, RIS solely functions to reflect signals, limiting
its coverage to receivers positioned on the same side as the
transmitters. A recent ground-breaking approach to achieve
full 360◦ coverage is the concept of Simultaneously Trans-
mitting and Reflecting (STAR) RIS [10]–[12]. This innovative
paradigm enables the concurrent reflection and transmission
(refraction) of incident signals, effectively catering to users
situated on both sides of the surface.

To fully unlock the potential in STAR-RIS technology, the
transmitting and reflecting coefficients need to be properly
optimized. Compared to conventional RISs, the optimization
of the STAR-RIS coefficients is subjected to a set of intricate
constraints. For example, there are three distinct operational
modes - energy splitting (ES), mode switching (MS) and
time switching (TS). In ES mode, the principles of energy
conservation and lossless power considerations dictate that
the sum power of transmitting and reflecting coefficients
confines to unity. On the other hand, operation under MS
mode allocates each constituent element of the STAR-RIS
to either transmission or reflection, resulting in a mixed-
integer programming (MIP) problem, which is NP-hard even
under the simple quadratic objective function [13]. To address
this intricacy, a prevalent strategy involves the conversion of
integer constraints into a penalty term and adds it to the
objective function [14]–[16]. As the penalty weight increases,
each STAR-RIS element is forced to either transmission or
reflection. In TS mode, all elements of the STAR-RIS are
dedicated to fully transmission or reflection at any given time.
Therefore, the amplitude of the STAR-RIS transmission and
reflection coefficients are constrained to be one. In this mode,
the optimization problem is to determine the phase of the
STAR-RIS coefficients and the optimal time allocation for
reflection and transmission [15].

Furthermore, recent investigations have unveiled a distinc-
tive phase coupling phenomenon in ES STAR-RIS. This
intriguing property dictates that the difference between the
phases of reflection and transmission is consistently main-
tained at π/2 [17]–[19]. This constraint does not exists in
reflective only RIS so its exploration is still at its infancy.
The earliest attempt to incorporate this constraint within
STAR-RIS optimization employs the element-wise alternating
optimization (AO) method [19]. In this approach, optimization
is carried out for individual RIS elements sequentially so
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that each subproblem has only two potential choices (either
transmission phase surpasses the reflection phase by π/2
or vice versa), and the solution with better objective value
is then chosen as the subsequent iteration point. Although
this leads to a duplication in the number of optimization
subproblems, it circumvents the combinatorial challenge of
jointly determining the coupled-phase options of all STAR-
RIS elements. More recently, [20] proposes to transform the
coupled-phase constraint and the previously mentioned sum
power constraint into penalty terms. Then, AO was employed
to alternatively optimize the amplitude and phase of the STAR-
RIS coefficients. Compared with elementwise-AO method, the
solution quality of this penalty-based algorithm is guaranteed
when the problem satisfies the Mangasarian-Fromovitz con-
straint qualification (MFCQ) conditions.

While the prevailing model in existing STAR-RIS research
adopts continuous phase shifts, it is essential to acknowledge
that practical limitations from finite control signal resolution or
hardware constraints leads to a finite number of permissible
phases [21]. Such discrete phase phenomenon has emerged
as one of the basic models in reflective only RIS. It is
reasonable to anticipate that STAR-RIS encounters the same
discrete phase constraints. However, the combinatorial nature
of discrete phase optimization has an exponential compleixty
order with the number of STAR-RIS elements. This inherent
complexity renders exhaustive searching approach compu-
tationally infeasible for STAR-RIS with massive elements.
Therefore, numerous extant studies would simply ignore this
discrete phase constraint during optimization, and then apply
quantization to the resultant continuous phase design [22].
Regrettably, such quantization-based strategy lacks a guarantee
in solution quality, and leads to a significant performance loss
if the number of allowable phases is small (e.g., 2 or 4).

Through the preceding deliberations, it is evident that differ-
ent constraints in STAR-RIS were handled with a multitude
of optimization techniques, which makes the comparison of
different types of STAR-RIS difficult. Furthermore, when mul-
tiple mentioned constraints appear concurrently, it is unclear
which of the existing methods can be generalized to such
scenario. To fill this gap, this paper for the first time establishes
an innovative unified framework for handling the operating
mode and discrete phase constraints. Through the introduc-
tion of auxiliary variables for the STAR-RIS coefficients, we
strategically transform the original problem into two distinct
subproblems. One subproblem is dedicated to constraints
involving discrete selection, while the other addresses the sum
power constraint along with the additional wireless resource
constraints. This strategic decoupling enables the derivation of
a closed-form global optimal solution for the subproblem as-
sociated with selection constraints, which facilitates the proof
of solution quality of the proposed framework. Specifically,
the converged solution is guaranteed to be at least a stationary
point under mild conditions. To the best of our knowledge, this
is an inaugural work that provides solution quality guarantee in
various STAR-RIS configurations, even under discrete phases.

To illustrate the efficiency of the proposed framework, we
apply it to a downlink STAR-RIS assisted sum-rate maximiza-
tion system. Through this framework, the solutions for various

Fig. 1: A typical STAR-RIS assisted communication system

types of STAR-RIS can be obtained simultaneously. Simula-
tion results show that the proposed framework outperforms
other existing methods. Furthermore, the proposed framework
enables performance of discrete phase setting akin to that of
continuous phase even as sparse as four or two discrete phases,
which overthrows the conventional notion that discrete phase is
to be blamed for performance degradation. Since the proposed
framework separates the handling of selection-type constraints
arising from STAR-RIS and the optimization of other wireless
resource, it can be easily extended to communication scenarios
involving other objective functions and radio resources. Such
versatility substantially mitigates the anticipated challenges as-
sociated with future resource allocation problem under STAR-
RIS.

The rest of the paper is organized as follows. The general
STAR-RIS aided communication model, its penalty formu-
lation, and the conditions for solution quality guarantee are
presented in Section II. Then the closed-form solution of
the selection related subproblem is derived in Section III.
The downlink STAR-RIS assisted sum-rate maximization is
formulated and solved according to the proposed penalty
framework in Section IV. Simulation results are provided in
Section V and conclusions are drawn in Section VI.

II. A GENERAL STAR-RIS OPTIMIZATION MODEL

We consider a communication system assisted by a STAR-
RIS as shown in Fig. 1. Users are distributed on both sides
of STAR-RIS with M elements. We denote the transmission
coefficient and the reflection coefficient at the mth STAR-RIS
element as vtm ∈ C and vrm ∈ C respectively. Depending
on the types of STAR-RIS, the STAR-RIS coefficients are
subjected to different constraints, which are discussed below.

A. Modeling of STAR-RIS Constraints

There are three types of constraints for STAR-RISs, namely
operating mode constraint, lossless power constraint and phase
constraint. These constraints are detailed as follows.
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TABLE I: Typical STAR-RIS models

STAR-RIS
Case Index

Operating
mode

Amplitude
constraint

Coupled-phase constraint
∠vtm − ∠vrm =

{π/2 (mod2π) ,−π/2 (mod2π)}

Discrete phase constraint
{0, 2π/L, · · · 2π (L− 1)/L}

Time allocation
constraint

λt + λr = 1

Existing works
employing
this model

1 TS 1 " [15], [23], [24]

2 " " [25], [26]

3 MS {0, 1} [14], [24], [27]

4 "
No existing

work considered
this model yet

5

ES [0, 1]

[28]–[30]

6 " [31], [32]

7 "
[20], [23], [33]

[19], [34]

8 " " [34]

Fig. 2: Three operating modes of the STAR-RIS

1) Operating mode constraint. There are commonly three
operating modes of STAR-RIS [15]. The first one is ES
mode, where the incident signal is split between reflection
and transmission, giving rise to the constraint

∣∣vtm∣∣, |vrm| ∈
[0, 1]. The second one is MS mode where each STAR-
RIS element is dedicated to reflection or transmission,
giving rise to the constraint

∣∣vtm∣∣, |vrm| ∈ {0, 1}. The third
one is TS mode which divides the transmission interval
into two sub-intervals, with one sub-interval dedicated to
reflection while the other to transmission. Let λt ≥ 0
and λr ≥ 0 denoting the percentage of the time allocated
to transmission period and reflection period respectively,
we have λt + λr = 1. On the other hand, for ES and
MS modes, as both transmission and reflection occupy the
whole interval, we can set λt = λr = 1.

2) Lossless power constraint. It is usually assumed that the
metasurface is lossless. Hence, in ES and MS mode, the
reflected energy plus transmitted energy must be equal to
the incident signal energy. This gives rise to the constraint∣∣vtm∣∣2 + |vrm|2 = 1. On the other hand, in TS mode, since
transmission or reflection is the only operation in a certain
time interval, lossless constraint means

∣∣vtm∣∣ = |vrm| =
1. Fig. 2 illustrates the STAR-RIS operating in different
modes and the corresponding constraints.

3) Phase constraint. It is known that the STAR-RIS phase
may not take infinite resolution in practice. In this case,
∠vtm, ∠vrm ∈ {0, 2π/L, · · · 2π (L− 1)/L}, where L is

the number of allowable phases. More recently, a new
coupled-phase model is proposed in [17]–[19], which
states that a necessary condition for a physically realizable
STAR-RIS should satisfy

∣∣vtm∣∣ |vrm| cos (∠vtm − ∠vrm
)
=

0. In ES mode, this is equivalent to ∠vtm − ∠vrm ∈
{π/2 (mod2π) ,−π/2 (mod2π)}.

Different types of STAR-RIS are the results of mix and
match of above constraints, and they are summarized in Table
I. Notice that MS with coupled-phase is just the basic MS
STAR-RIS since MS requires

∣∣vtm∣∣, |vrm| ∈ {0, 1}. Together
with the lossless power constraint

∣∣vtm∣∣2 + |vrm|
2
= 1, we

must have either
∣∣vtm∣∣ = 0 or |vrm| = 0. This makes the

coupled-phase constraint
∣∣vtm∣∣ |vrm| cos (∠vtm − ∠vrm

)
= 0

automatically satisfied. For the TS mode, since only reflection
phase or transmission phase of each STAR-RIS element is used
in a certain time period, coupled-phase constraint could not
exist. Therefore, MS and TS STAR-RIS with coupled-phase
(with or without discrete phase constraint) are not feasible and
we do not list them in Table I.

Let z denote other communication resources to be op-
timized and vt =

[
vt1 , · · · , vtM

]T
, vr = [vr1 , · · · , vrM ]

T

be the shorthand notations for the collection of
{
vtm
}M
m=1

and {vrm}
M
m=1 respectively, a general optimization problem

involving STAR-RIS can be formulated as

min
{z,vt,vr ,λt,λr}

F
(
z,vt,vr, λt, λr

)
(1a)

s.t. λt
∣∣vtm∣∣2 + λr|vrm|

2
= 1, (1b)

∣∣vtm∣∣ = |vrm| = 1,
{
λt, λr

}
≥ 0, if TS∣∣vtm∣∣ , |vrm| ∈ {0, 1} , λt = λr = 1, if MS

∠vtm − ∠vrm ∈ {π/2 (mod2π) ,
−π/2 (mod2π)} , λt = λr = 1,

if ES

(1c)

∠vtm,∠v
r
m ∈ {0, 2π/L, · · · , 2π (L− 1)/L} , (1d)(

z,vt,vr, λt, λr
)
∈ Ω. (1e)

where F is the objective function and is assumed to be
bounded from below, which is a trivial assumption since
the problem in (1) is a minimization problem. The objective
function in (1) can represent different forms of system per-
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formance. For example, it can be power consumption [15],
[19], or mean square error function [26]. On the other hand,
the sum-rate [14], [20], spectral efficiency [29] and secrecy
capacity [30], [34] are also frequently used optimization
objectives, but they need a negative sign if they are used in (1)
since these criteria should be maximized instead of minimized.
Ω is the coupled constraint set of z, vt, vr , λt, λr . Constraint
(1b) is a general expression covering all three modes of STAR-
RIS. In particular, when

∣∣vtm∣∣ = |vrm| = 1, (1b) reduces to time
allocation constraint λt+λr = 1 in the TS mode. On the other
hand, in ES or MS mode, they do not involve the allocated time
variables λt, λr and therefore setting λt = λr = 1 make (1b)
reduces to the lossless constraint

∣∣vtm∣∣2 + |vrm|2 = 1. Notice
that the ES mode constraint

∣∣vtm∣∣, |vrm| ∈ [0, 1] is implicitly
included in (1b), therefore it is not listed in (1). The discrete
phase constraint (1d) are compatible with the coupled-phase
constraint (third line of (1c)) if L is an even number greater
than 2. For example, when L = 4, ∠φt

m ∈ {0, π/2, π, 3π/2}
and the coupled constraint would make the reflection phase
∠φr

m = ∠φt
m ± π/2, which is still in {0, π/2, π, 3π/2}.

Similar observations can be made as long as L > 2 and is
an even number. This condition can be easily satisfied when
the number of information bit for phase control is larger than
1.

Existing works only solve special cases of (1). For example,
when only (1b) and the second constraint in (1c) are included,
this corresponds to the typical MS model, and a penalty term∣∣vtm∣∣2− ∣∣vtm∣∣ is commonly introduced to relax the {0, 1} con-
straint into [0, 1] [14], [24], [27]. On the other hand, when only
(1b) with λt = λr = 1 and (1d) are included, (1) becomes
the discrete ES STAR-RIS, and a common approach is to
relax the discrete phase temporarily and then quantizing the
continuous-valued result into discrete phase [31]. Furthermore,
with (1b) and the first case of (1c), the general formulation
(1) becomes the TS STAR-RIS optimization problem. Since
the transmission and reflection coefficients are not coupled in
TS STAR-RIS and the time allocation constraint is convex,
techniques such as semidefinite relaxation (SDR) [15] and
gradient descent (GD) method [25] for traditional reflection
only RIS can be adopted to handle the phase optimization.
Recently, a coupled-phase STAR-RIS model was considered
in [19], [20], where (1b) and the third line of (1c) are included.
To overcome the difficulty introduced by the elementwise
coupled-phase constraint, [19] proposes an elementwise-AO
method, and [20] puts forward a penalty-based algorithm by
moving both (1b) and the second line of (1c) into a penalty
term. Also, [34] uses the same penalty form to solve the
secrecy beamforming problem under the coupled-phase STAR-
RIS.

Although there exists studies handling different special
cases of problem (1) by invoking different optimization
schemes, a unified framework for solving the general problem
including diverse types of STAR-RIS in (1) is missing. Espe-
cially, the discrete phase-shift constraint (1d) is dominantly
handled by quantization, which may introduce noticeable
performance loss when the number of allowable phases is
small (e.g., L = 2 or 4), not to mention the lack of solution

quality guarantee by such approach. Coming up with a unified
framework not only saves the effort of finding optimization
algorithms for various special cases falling into the form of
(1), but also facilitates the comparison among various STAR-
RIS models in a particular communication scenario.

B. A Penalty-based Reformulation of (1)
Notice that problem (1) is challenging to solve for STAR-

RIS coefficients vt and vr since the constraint (1c) contains
binary selection. More specifically, the second constraint and
the third constraint in (1c) are the binary selection for the
amplitude and the difference of the two phases, respectively.
Moreover, possible occurance of the discrete phases (1d) also
makes (1) a mixed integer optimization problem.

To tackle this problem, we propose to employ auxiliary
vectors φt, φr∈ CM×1 together with a penalty term to handle
constraints (1c) and (1d). The reformulated problem is written
as

min{
z,vt,vr ,φt,
φr ,λt,λr

}F
(
z,vt,vr, λt, λr

)
+
γ

2

∑
p=t,r

|vp −φp|22

(2a)

s.t.


∣∣φt
m

∣∣ = |φr
m| = 1,

{
λt, λr

}
≥ 0, if TS∣∣φt

m

∣∣ , |φr
m| ∈ {0, 1} , λt = λr = 1, if MS

∠φt
m − ∠φr

m ∈ {π/2 (mod2π) ,
−π/2 (mod2π)} , λt = λr = 1,

if ES

(2b)

∠φt
m,∠φ

r
m ∈ {0, 2π/L, · · · , 2π (L− 1)/L} ,

(2c)
(1b), (1e)

where γ is the penalty coefficient. When the penalty coefficient
increases, the RIS coefficient vectors vt and vr will be forced
to take the same values as the auxiliary vectors φt and φr ,
respectively, which makes vt and vr satisfy the constraints
(1c) and (1d).

Recognizing that the constraints for
{
φt,φr

}
and{

z,vt,vr, λt, λr
}

in (2) are not coupled, BCD framework
can be adopted to handle this problem, which involves solving
the following two subproblems alternatively:

P1 : min
{φt,φr}

∣∣vt −φt
∣∣2
2
+ |vr −φr|22

s.t.


∣∣φt
m

∣∣ = |φr
m| = 1, if TS∣∣φt

m

∣∣ , |φr
m| ∈ {0, 1} , if MS

∠φt
m − ∠φr

m ∈ {π/2 (mod2π) ,
−π/2 (mod2π)} , if ES

∠φt
m,∠φ

r
m ∈ {0, 2π/L, · · · , 2π (L− 1)/L} .

P2 : min{
z,vt,vr ,
λt,λr

}F (
z,vt,vr, λt, λr

)
+
γ

2

∑
p=t,r

|vp −φp|22

s.t.


λt + λr = 1,

{
λt, λr

}
≥ 0, if TS∣∣vtm∣∣2 + |vrm|2 = 1,

λt = λr = 1,
if MS/ES(

z,vt,vr, λt, λr
)
∈ Ω
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The advantage of solving subproblems P1 and P2 iteratively
is that it separates the constraints due to discrete selection (i.e.,
STAR-RIS coefficients of (2b) and (2c)) from the objective
function F. This means that when we solve subproblem P2,
we do not need to consider discrete selection constraints, and
when we solve P1, we do not need to consider F and other
communication resources. Together with an increasing weight
of the penalty term, the overall algorithm for solving (1) is
summarized in Algorithm 1.

Notice that P2 appears as an optimization problem similar
to that in many conventional wireless systems. In fact, the pro-
posed framework intentionally handles the discrete constraints
arising from STAR-RIS in P1, so that P2 can be tackled by
traditional optimization techniques. Therefore, the proposed
framework covers any wireless system and resource allocation
objective, with the variation of specific details only reflected in
P2 but not P1. This judicious design allows easy incorporation
of STAR-RIS to any wireless system, without complicating the
corresponding optimization problem.

One may doubt the necessity of introducing auxiliary vari-
ables in the proposed framework, as setting γ = 0 also break
the original problem (1) into two subproblems, with the first
subproblem being a projection onto discrete constraint, while
the second subproblem handling other continuous constraints.
However, such approach would lead to both subproblems
containing constraints of vtm and vrm. Then the projection
operation in the first subproblem would lead to violation of
the constraints in another subproblem, resulting in infeasible
solution for the overall problem. In contrast, the proposed
framework uses the auxiliary variables

{
φt,φr

}
to satisfy

the STAR-RIS coefficient constraints of P1 and
{
vt,vr

}
to

satisfy the lossless power constraints
∣∣vtm∣∣2 + |vrm|

2
= 1 of

P2. Then by using penalty method, vt and vr are forced to
be close enough to φt and φr . Consequently, vt and vr

will satisfy all the STAR-RIS coefficient constraints in the
proposed framework.

In a recent work dealing with ES STAR-RIS with coupled-
phase [20], the idea of penalty is also employed. The dif-
ference in the proposed framework is that we cover differ-
ent STAR-RIS types (shown in Table I) while [20] is only
tailored for ES STAR-RIS with coupled-phase. Furthermore,
we include discrete phase constraint in the penalty while [20]
did not, making the proposed framework more general. More
importantly, we retain the constraint (1b) in the subproblem P2
with respect to the original optimization variables, while [20]
enforces (1b) using auxiliary variables. Although the last point
seems to be a unremarkable difference, this subtle change leads
to significant consequences due to the following reasons:

1) For the subproblem P1, closed-form global optimal solu-
tions for all STAR-RIS models in Table I can be obtained,
even with the presence of discrete phase constraint (1d).
Details will be presented in the next section. In contrast, in
the corresponding subproblem of [20], it requires alterna-
tively solving for the amplitude and phase of φt and φr ,
which slow down the convergence of the algorithm at the
subproblem level.

2) Under the special case of ES STAR-RIS with coupled-

Algorithm 1 Penalty-based BCD algorithm

Input:
Initialize γ, increasing ratio of the penalty c > 1, and the
penalty fulfillment threshold δ.

General step:
Initialize a feasible starting point for z, vt, vr , φt, φr ,
λt, λr .
Do

For n = 0, 1, 2, ... execute the following steps:
optimize

{
z,vt,vr, λt, λr

}
by solving P2.

optimize
{
φt,φr

}
by solving P1.

until the objective function (2a) converge.
γ ← cγ.

until max
m

∣∣vtm − φt
m

∣∣ ≤ δ and max
m
|vrm − φr

m| ≤ δ.

phase in (2), the split of the constraints (1b) and (2b)-(2c)
means that we are moving the solution of basic ES STAR-
RIS (corresponding to subproblem P2) toward the solution
of the coupled-phase ES STAR-RIS. However, the penalty
method in [20] is to move the unconstrained STAR-RIS
(with no operating mode information) solution to approach
the coupled-phase ES STAR-RIS solution. In this case, the
penalty weight required by the framework in [20] would
be larger than that of the proposed framework to reach
convergence. Since the penalty loop is the outer layer of the
algorithm, a small penalty ratio for reaching convergence
reduces the computational time of the proposed algorithm.
This point will be further illustrated in the simulation
results section.

Before we present the solution to the subproblem P1 in the
next section, we reveal the following proposition about the
solution quality of the Algorithm 1.

Proposition 1. Suppose the solution from solving P2 takes
finite value for all n. Also assume that a stationary solution
of P2 and the global optimal solution of P1 can be obtained.
Then we have
1) The limit point generated by the BCD loop in Algorithm

1 is a stationary solution of (2) under any fixed penalty γ.
2) As the penalty weight γ increase to ∞, the limit point

generated by Algorithm 1 is a stationary point of the
original problem (1).

Proof. See Appendix A in supplementary material.
Proposition 1 gives the legitimacy of using BCD under a

fixed penalty parameter, and the penalty framework to enforce
the STAR-RIS constraints in (1). Notice that convergence
of solution also guarantees the convergence of the objective
function value. Therefore, Proposition 1 is stronger than just
the objective function value convergence. To facilitate the
understanding of the proposed penalty framework and the
solution quality guarantee by Proposition 1, Fig. 3 summa-
rizes various key problem formulations and the conditions of
convergence.

Although penalty method and the BCD method are com-
monly used in multivariate optimization, convergence are only
thoroughly studied in cases with smooth objective function and
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Fig. 3: Summary of the proposed framework and its solution
quality

constraints [35], [36]. However, the problem in this paper is
a mixed discrete-continuous optimization which may contains
discrete phase and 0-1 amplitude of the STAR-RIS coefficient.
Current research of BCD and penalty method in discrete
optimization are mainly for linear and polynomial optimization
[37], [38]. Even there exists a recent work focusing on nonlin-
ear mixed discrete programming [39], many strict assumptions,
which are hard to be verified, are imposed to ensure the
solution quality. Therefore, even though we employ penalty
and BCD methods for optimization, due to the mixed discrete-
continuous variables, the solution quality and convergence
guarantee cannot be covered by existing theory. This challenge
is resolved in this paper through the convergence guarantee
from Proposition 1, which enable other researchers to be free
from the burden of analyzing the convergence themselves.

Regarding the assumption in Proposition 1, the first as-
sumption is trivial and can be easily satisfied since the wireless
resources are limited and their corresponding optimization
variables should not grow to infinity. For the requirement of the
stationary solution of P2, since no discrete selection constraint
is involved, it is easily satisfied from solutions obtained
by successive convex approximation (SCA) technique [40],
[41] or first-order optimization methods [42], [43] in many
communication problems. On the other hand, it seems quite
daunting at the first sight as the global optimal solution of
P1 is required. We will reveal in the next section that this is
possible.

III. OPTIMIZING AUXILIARY VARIABLES φ IN P1

Notice that the elements of φt and φr are not coupled
in P1. Therefore, P1 can be parallelized into M subproblems
with the mth subproblem given by

min
φt

m,φ
r
m

∣∣vtm − φt
m

∣∣2 + |vrm − φr
m|

2

s.t.


∣∣φt
m

∣∣ = |φr
m| = 1, if TS∣∣φt

m

∣∣ , |φr
m| ∈ {0, 1} , if MS

∠φt
m − ∠φr

m ∈ {π/2 (mod2π) ,
−π/2 (mod2π)} , if ES

∠φt
m,∠φ

r
m ∈ {0, 2π/L, · · · , 2π (L− 1)/L} .

(3)

As shown in Table I, different combinations of the constraints
in (3) result in different types of STAR-RIS. Below, we divide
the discussion in two cases. First, we consider the cases
without coupled-phase constraint, which corresponds to cases
1-6 in Table I. Then we discuss coupled-phase cases 7 and 8
in Table I.

STAR-RISs without coupled-phase: The resulting subprob-
lem is

min
φt

m,φ
r
m

∣∣vtm − φt
m

∣∣2 + |vrm − φr
m|

2 (4a)

s.t.


∣∣φt
m

∣∣ = |φr
m| = 1, if TS∣∣φt

m

∣∣ , |φr
m| = {0, 1} or {1, 0} , if MS

φt
m, φ

r
m ∈ C, if ES

(4b)

∠φt
m,∠φ

r
m ∈ {0, 2π/L, · · · , 2π (L− 1)/L} . (4c)

Generally, this is a problem containing interger variables since
the phase is discrete, which is hard to solve. However, since
the amplitude and phase constraints are not coupled in (4), we
can solve them separately and obtain closed-form solution of
(4) given by the following lemma.

Lemma 1. Define αt
m = ProjΘ

(
∠vtm

)
, αr

m =
ProjΘ (∠vrm), βt

m =
∣∣vtm∣∣ cos (αt

m − ∠vtm
)

and βr
m =

|vrm| cos (αr
m − ∠vrm). The optimal solution of (4) is

φt
m = ejα

t
m , φr

m = ejα
r
m , if TS

φt
m =

1+sgn(βt
m−βr

m)
2 ejα

t
m , φr

m =
1+sgn(βr

m−βt
m)

2 ejα
r
m , if MS

φt
m = βt

me
jαt

m , φr
m = βr

me
jαr

m , if ES
(5)

where Θ = {0, 2π/L, · · · , 2π (L− 1)/L}, ProjA (b) is to
project b to the set A, and sgn is the sign function.

Proof. See Appendix B in supplementary material.
STAR-RISs with coupled-phase: Noting that coupled-phase

only occurs in ES mode, leading to the subproblem P1 reduces
to

min
φt

m,φ
r
m

∣∣vtm − φt
m

∣∣2 + |vrm − φr
m|

2 (6a)

s.t. ∠φt
m − ∠φr

m ∈ {π/2 (mod2π) ,−π/2 (mod2π)} ,
(6b)

∠φt
m,∠φ

r
m ∈ {0, 2π/L, · · · , 2π (L− 1)/L} . (6c)

As illustrated below (1), when L > 2 and is an even number,
constraint (6b) and (6c) are compatible. In this case, the global
optimal solution of (6) is given in Lemma 2.

Lemma 2. If L > 2 and is an even number, the optimal
solution of (6) is

φt
m =

∣∣vtm∣∣ cos (θtm − ∠vtm
)
ejθ

t
m ,

φr
m = |vrm|

∣∣sin (θtm − ∠vrm
)∣∣ ej(θtm−π

2 sgn(sin(θtm−∠vrm))),
(7)

where θtm = ProjΘ
(
∠vtm−bm/2 + π/2

)
and bm = −j ln( [

|vrm|2 cos(2∠vtm−2∠vrm)+|vtm|2
]
+j|vrm|2 sin(2∠vtm−2∠vrm)√

[|vrm|2 cos(2∠vtm−2∠vrm)+|vtm|2]
2
+[|vrm|2 sin(2∠vtm−2∠vrm)]

2

)
.

Proof. See Appendix C in supplementary material.
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Lemmas 1 and 2 cover both discrete and continuous phase
STAR-RIS. For the latter case, it is equivalent to taking L→
∞, and the projection functions in Lemmas 1 and 2 can be
skipped. It is worth noting that for the simplest ES STAR-
RIS (the fifth case in Table I), since there is no phase and
amplitude constraint involved in (3), the optimal solution of
the auxiliary variables φt and φr will always be equal to vt

and vr , respectively. Hence, the penalty loop would only be
executed once, which reduces to the conventional non-penalty
design in many existing works [28], [44].

Since the solutions of P1 cover all existing type of STAR-
RISs, once P2 is solved, one can easily compare the system
performance of all STAR-RIS types. This is the first time such
comparison is enabled in a unified way. This is important
since if we optimize the resource allocation problems (1)
under different STAR-RIS modes independently, the difference
in performance may not only come from the difference in
operating modes, but also the difference in algorithms. Hence,
the proposed framework provides a unified way for communi-
cation system researchers to decide which types of STAR-RIS
is the best for a particular scenario or application. An example
of such comparison will be provided in Section V.

IV. A CASE STUDY OF P2 ON DOWNLINK STAR-RIS
ASSISTED TRANSMISSION SYSTEM

The proposed framework in Section II is based on judi-
ciously decomposing the original problem into two subprob-
lems: P1 for the discrete constraints arising from STAR-RIS;
and P2 for the optimization of other wireless resources. With
the closed-form solution of P1 derived for various types of
STAR-RIS in Section III, researchers only need to focus on
solving P2, which is typical in wireless communication re-
source allocation. This section provides an illustrative example
on downlink STAR-RIS assisted communication system.

Assume that the BS has N antennas and the STAR-RIS
comprises M elements. Furthermore, there are Kr users and
Kt users with single antenna in the reflection region and the
transmission region, respectively. In this paper, we assume
that channel state information (CSI) is available at the BS.
Let si ∈ C with normalized power represents the information
symbol targeted to the ith user (i = 1, ...,Kr + Kt). With
the individual beamforming vectors wi ∈ CN×1 applied at
the BS, the signal transmitted from the BS is ΣK

r+Kt

i=1 wisi.
Define the reflection user set and transmission user set as
Kr = {1, · · · ,Kr} and Kt =

{
Kr + 1, · · · ,Kr +Kt

}
respectively, the received signal of the lth user is

yl =


Kr+Kt∑
i=1

(
hTl diag (v

r)G+ dTl
)
wisi + nl, l ∈Kr

Kr+Kt∑
i=1

(
hTl diag

(
vt
)
G+ dTl

)
wisi + nl, l ∈Kt

,

(8)
where G ∈ CM×N and hl ∈ CM×1 are the channels from
the BS to the STAR-RIS and the STAR-RIS to the lth user,
respectively. dl ∈ CN×1 is the direct link channel from the
BS to the lth user and nl ∈ C is Gaussian noise with zero
mean and variance σ2

l .

In this section, we consider the downlink sum-rate maxi-
mization problem. Since the information symbols of different
users and noise are uncorrelated, the sum-rate of the whole
system is [23]

R
(
w,vt,vr, λt, λr

)
=

λr
Kr∑
l=1

log

1 +

∣∣aTl wl

∣∣2/λr∑Kr+Kt

i=1,̸=l

∣∣aTl wi

∣∣2/λr + σ2
l


+ λt

Kr+Kt∑
l=Kr+1

log

1 +

∣∣aTl wl

∣∣2/λt∑Kr+Kt

i=1,̸=l

∣∣aTl wi

∣∣2/λt + σ2
l

,
(9)

where al =

{
GTdiag (vr)hl + dl, l ∈Kr

GTdiag
(
vt
)
hl + dl, l ∈Kt and w =

{wl}K
r+Kt

l=1 . In (9), the term
∣∣aTl wi

∣∣2 is divided by λr or λt

because the signal is recieved only in a fraction (λr or λt) of
the total communication time [15]. This often occurs in system
model involving time allocation [45], [46]. Furthermore, for
MS and ES modes, λt and λr are set to 1, and therefore (9)
reduces to traditional sum-rate expression.

In (9), the set of beamforming vectors w and the RIS
coefficients vt, vr are nonlinearly coupled in both numerator
and denominator. Besides, there is a summation of various data
rates, which makes this objective function hard to tackle. If
there is only one user, optimizing the data rate is equivalent to
maximizing the signal-to-interference plus noise ratio (SINR)
and hence quadratic transform [47] can be adopted to handle
this single fraction. On the other hand, due to the presence
of multiple users, we need the following equivalent sum-rate
function for (9).

Lemma 3. The sum-rate function R
(
w,vt,vr, λt, λr

)
=

max
ρ,x

F1

(
w,ρ,x,vt,vr, λt, λr

)
, where F1 is shown in (10)

on the top of next page, ρ = {ρ1, · · · , ρKr+Kt} and x =
{x1, · · · , xKr+Kt} are sets of auxiliary variables.

Proof. See Appendix D in supplementary material.
According to the proposed framework, since the objective

function is only involved in P2, we set the sum-rate function
in Lemma 3 as the F in P2. Further recognizing that z in
P2 corresponds to {w,ρ,x} in this particular application, P2
can be written as

minw,ρ,x,
vt,vr,
λt,λr


−F1

(
w,ρ,x,vt,vr, λt, λr

)
+
γ

2

∑
p=t,r

|vp −φp|22

s.t.

{
λt + λr = 1,

{
λt, λr

}
≥ 0, if TS∣∣vtm∣∣2 + |vrm|2 = 1, if MS/ES

Kr+Kt∑
l=1

|wl|22 ≤ PBS .

(11)

To solve (11), recognizing that the constraints for w, ρ, x,{
vt,vr

}
and

{
λt, λr

}
are separable, BCD algorithm can be

adopted, and the details of solving different subproblems are
given below.
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F1

(
w,ρ,x,vt,vr, λt, λr

)
=λr

Kr∑
l=1

[log (1 + ρl)− ρl] + λt
Kr+Kt∑
l=Kr+1

[log (1 + ρl)− ρl]

+ λr
Kr∑
l=1

2 (1 + ρl)Re
[
xla

T
l wl

]
− (1 + ρl) |xl|2

Kr+Kt∑
i=1

∣∣aTl wi

∣∣2 + λrσ2
l


+ λt

Kr+Kt∑
l=Kr+1

2 (1 + ρl)Re
[
xla

T
l wl

]
− (1 + ρl) |xl|2

Kr+Kt∑
i=1

∣∣aTl wi

∣∣2 + λtσ2
l

,
(10)

A. Optimizing x, ρ, w, λt and λr

Under the BCD formulation, the subproblems with respect
to the auxiliary variables x, ρ, the beamforming vector w and
time allocation variables

{
λt, λr

}
are convex problems, and

they are relatively easy to handle.
Optimizing auxiliary variable x: Noting that F1 is a

convex function of x with each element {xl}K
r+Kt

l=1 being
separable, we can take derivative of F1 with respect to each
xl and set them to zero, yielding the following the optimal
solution

xl =


aT

l wl

ΣKr+Kt

i=1 |aT
l wi|2+λrσ2

l

, l ∈Kr,

aT
l wl

ΣKr+Kt

i=1 |aT
l wi|2+λtσ2

l

, l ∈Kt.
(12)

Optimizing auxiliary variable ρ: Since each element in ρ
is also separable, by taking the derivative of F1 with respect
to each ρl (l = 1, 2, ...,Kr + Kt) and set them to zero, we
obtain

ρl =


|aT

l wl|2
ΣKr+Kt

i=1, ̸=l |aT
l wi|2+λrσ2

l

, l ∈Kr,

|aT
l wl|2

ΣKr+Kt

i=1, ̸=l |aT
l wi|2+λtσ2

l

, l ∈Kt.
(13)

Optimizing beamforming vector w: Focusing on the com-
ponents related to w in (11), the following subproblem of w
is obtained and it is a convex quadratic problem:

min
w

Kr+Kt∑
l=1

{
wH
l Ξwl − 2Re

[
qHl wl

]}
(14a)

s.t.

Kr+Kt∑
l=1

wH
l wl ≤ PBS , (14b)

where ql =

{
λr (1 + ρl)xlal, l ∈ Kr

λt (1 + ρl)xlal, l ∈ Kt and Ξ =

λrΣK
r

i=1(1 + ρi) |xi|2aiaTi + λtΣK
r+Kt

i=Kr+1(1 + ρi) |xi|2aiaTi
with ai denoting the conjugate of ai. Notice that problem
(14) is a convex quadratically constrained quadratic program
(QCQP), one popular option is to employ CVX to tackle this
problem.

However, CVX tool does not take the advantage of the
structure of (14). Since this problem has only one constraint,
the following lemma with bisection method can be adopted to
solve this problem optimally.

Lemma 4. Denote the eigenvalue decomposition of Ξ as
UΛUH , and B = ΣK

r+Kt

l=1 UHqlq
H
l U , the optimal beam-

forming vector of (14) is wl = U(Λ+ µI)
−1

UHql, where

µ =

{
0, if Tr

(
Λ−2B

)
≤ PBS

solution of Tr
(
(Λ+ µI)

−2
B
)
= PBS , otherwise

.

(15)
Since Tr

(
(Λ+ µI)

−2
B
)

is a strictly decreasing function of
µ, the solution of the second case in (15) can be found by
bisection method from interval

[
0,
√

Tr (B)/PBS

]
.

Proof. See Appendix E in supplementary material.

Optimizing time allocation variables
{
λt, λr

}
: For ES

and MS mode, we have λt = λr = 1. Hence, only λt

and λr in the TS mode need to be optimized. Focusing on
the components related to λt and λr in (11), the following
subproblem is obtained,

min
λt,λr

(
λt
)2
ψt + (λr)

2
ψr + λt

Kr+Kt∑
l=Kr+1

ηtl + λr
Kr∑
l=1

ηrl

(16a)

s.t. λt + λr = 1,
{
λt, λr

}
≥ 0, (16b)

where ηrl = (1 + ρl)
[
|xl|2

∑Kr+Kt

i=1

∣∣aTl wi

∣∣2 − 2Re
(
xla

T
l wl

)]
− log (1 + ρl)+ ρl, ηtl = (1 + ρl)

[
|xl|2

∑Kr+Kt

i=1

∣∣aTl wi

∣∣2 −
2Re

(
xla

T
l wl

)]
− log (1 + ρl) + ρl, ψr = ΣK

r

l=1σ
2
l and

ψt = ΣK
r+Kt

l=Kr+1σ
2
l . Substituting λr = 1− λt in (16a), (16) is

equivalent to

min
λt

(
ψt + ψr

)(
λt − 2ψr − ηt + ηr

2ψt + 2ψr

)2

s.t. λt ∈ [0, 1] ,

(17)

where ηt =
∑Kr+Kt

l=Kr+1 η
t
l and ηr =

∑Kr

l=1 η
r
l . Therefore, the

optimal solution is λt = Proj[0,1]

(
2ψr−ηt+ηr
2ψt+2ψr

)
and λr =

1− Proj[0,1]

(
2ψr−ηt+ηr
2ψt+2ψr

)
.
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B. Optimizing vt and vr

To better illustrate the optimization subproblem with respect
to vt and vr , we define two shorthand notations:

Al =

(1 + ρl) |xl|2diag
(
hHl
)
G

(
Kr+Kt∑
i=1

wiw
T
i

)
GTdiag (hl) ,

(18)

bl =

2 (1 + ρl) diag
(
hHl
)
G

[
|xl|2

(
Kr+Kt∑
i=1

wiw
T
i

)
dl − xlwl

]
.

(19)
Focusing on the terms related to vt and vr in (11), the

subproblem becomes

min
vt,vr

∑
p=t,r

(vp)
H
Apvp +Re

[
(bp)

H
vp
]

(20a)

s.t.
∣∣vtm∣∣2 + |vrm|2 = 1, m ∈ {1, 2, ...,M} , if ES/MS

(20b)

where Ar = γIM/2 + λrΣK
r

l=1Al, At = γIM/2 +

λtΣK
r+Kt

l=Kr+1Al, br = −γφr + λrΣK
r

l=1bl and bt = −γφt +

λtΣK
r+Kt

l=Kr+1bl.
For the TS mode, we do not have the constraint (20b). This

is an unconstrained quadratic optimization and the closed-form
solution is obtained by

vt = −1

2

(
At
)−1

bt ; vr = −1

2
(Ar)

−1
br. (21)

For the ES and MS modes, recognizing that (20) has M non-
convex and quadratic equality constraints, SCA is not suitable
since the equality constraints cannot be approximated. On the
other hand, noticing that the constraints (20b) is separable
with different index m, the coefficient pair

{
vtm, v

r
m

}
can be

sequentially updated under the BCD framework from m = 1
to m = M with the rest coefficient pairs fixed. Hence, the
subproblem with respect to

{
vtm, v

r
m

}
is

min
vtm,v

r
m

∑
p=t,r

Ap
m,m|vpm|

2
+Re

{(
cpm
)
vpm

}
s.t.

∣∣vtm∣∣2 + |vrm|2 = 1,

(22)

where ctm = btm + 2Σj ̸=mAt
m,jv

t
j and crm = brm +

2Σj ̸=mAr
m,jv

r
j , with At

i,j and Ar
i,j denote the (i, j)

th element
of At and Ar , respectively.

Expressing vtm =
∣∣vtm∣∣ ej∠vtm and vrm = |vrm| ej∠v

r
m , and

noticing that the phases ∠vtm and ∠vrm only affect the value
of Re

{(
ctm

)
vtm + (crm)vrm

}
, the phases ∠vtm and ∠vrm that

minimize (22) should be chosen as

∠vtm = π + ∠ctm ; ∠vrm = π + ∠crm. (23)

Putting this result to (22) and it reduces to

min
|vtm|,|vrm|

∑
p=t,r

Ap
m,m|vpm|

2 − |cpm| |vpm|

s.t.
∣∣vtm∣∣2 + |vrm|2 = 1.

. (24)

Problem (24) is a real-valued optimization problem with
a circular constraint. This problem would be easier to solve
if we define |vrm| = cos (ϕm) and

∣∣vtm∣∣ = sin (ϕm) and
transfer the unknown to ϕm ∈ [0, π/2] with the constraint of
(24) guaranteed to satisfy. Then, the resulting one dimension
unconstrained problem becomes

min
ϕm∈[0,π2 ]

f (ϕm) =
(
Ar
m,m −At

m,m

)
cos2 (ϕm)

− |crm| cos (ϕm)−
∣∣ctm∣∣ sin (ϕm).

(25)

If we compute the gradient ∇f (ϕm), it is found that

∇f (ϕm) = sin (ϕm) cos (ϕm)

×

[
|crm|

cos (ϕm)
−

∣∣ctm∣∣
sin (ϕm)

− 2
(
Ar
m,m −At

m,m

)]
.

(26)

Since the function in the square bracket is a monotonic
increasing function taking values from (−∞,∞), the zero
point of the gradient can be obtained by the bisection method
from the interval [0, π/2]. Denoting the estimated ϕm of (25)
by bisection method as ϕ̂m, the solution of (22) is then given
by

vtm = sin
(
ϕ̂m

)
ej(π+∠ctm) ; vrm = cos

(
ϕ̂m

)
ej(π+∠crm).

(27)

C. Summary and Time Complexity of the Proposed Algorithm

The proposed algorithms for sum-rate maximization under
different STAR-RISs are summarized in Table II. From Table
II, we can see the operating mode constraint and discrete phase
constraint are handled using equations (5) and (7). Hence,
algorithm designers only need to focus on the subproblem P2.
Since P2 under ES mode and MS mode are the same, there
are only two variations (ES/MS and TS) for three kinds of
STAR-RIS modes. Furthermore, from Table II, we can see that
there are many common equations in algorithms for different
STAR-RISs. This is how the proposed framework facilitates
the design of algorithms under different types and operating
modes of STAR-RIS.

Since individual variable in (11) is updated with the optimal
closed-form solution under the BCD framework, the solution
of (11) is a stationary point [48], [49]. Together with the global
optimal solution of P1 and Proposition 1, the solution gener-
ated by the Algorithm 1 is at least a stationary point of the
original STAR-RIS assisted downlink sum-rate maximization
problem.

For the complexity of Algorithm 1 in the context
of STAR-RIS assisted downlink transmission, updating
x and ρ with closed-form expressions (12), (13) takes
O
((
Kr +Kt

)
N/P

)
, where P is the parallel processing

factor since all these variables can be updated in parallel.
For updating w, according to Lemma 4, its complexity
mainly come from the eigenvalue decomposition of Ξ and
the bisection method of finding µ, Therefore, its complexity
is O

(
N3
)
+ O

(
log
(√

Tr (B)
/
ε2PBS

))
, where ε is the

accuracy of bisection search. It is shown in Appendix F of
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TABLE II: Equations related to different types of STAR-RIS

Operating
mode

Coupled-phase
constraint

Discrete phase
constraint

Equations related
to subproblem P1

Time allocation
constraint

Equations related
to subproblem P2

TS First line of (5) " (12),(13),(15),(21)
" "

MS Second line of (5)

(12),(13),(15),(27)
"

ES
Third line of (5)

"

" (7)
" "

the supplementary material that Tr(B) scales linearly with
the number of users in the system.

For the update of RIS coefficient vt and vr , since we
sequentially update M pairs of

{
vtm, v

r
m

}M
m=1

, and each pair
involves a bisection search with range from 0 to π/2, the
corresponding complexity is O (M log (π/2ς)), where ς is the
accuracy of bisection search. For the auxiliary variables φt

and φr , it can be parallelized and updated with closed-form
according to Lemmas 1 and 2, with the complexity of this
update being O (M/P ).

In total, the complexity of the penalty based BCD
algorithm for this sum-rate maximization is IpenIBCD (
O
((
Kr +Kt

)
N
/
P +N3

)
+O (M/P ) +O (M log (π/2ς))

+ O
(
log
(√

Tr (B)
/
ε2PBS

)))
, where IPen and IBCD are

the number of penalty iterations and BCD iterations, respec-
tively.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the downlink sum-rate transmis-
sion performance through simulation. All problem instances
are simulated using Matlab-R2023a on a Windows x64 desk-
top with 2.8 GHz CPU and 16 GB RAM, and the simulation
results are obtained via averaging over 100 simulation trials.
The parallel processing index P = 4 is used in the simulation.
In the simulations, the BS and STAR-RIS are located at the
coordinate (0,20m) and (40m,0), respectively. The STAR-RIS
is placed along the y-axis and perpendicular to the ground.
The reflection and transmission users are uniformly located
within 8m of two sides of the STAR-RIS. The parameters
{G,hl,dl} are modeled as the Rician fading channels, which
contain both the line-of-sight (LoS) and non-LoS (NLoS)
components [50]. Take hl as an example, the Rician fading
channel model is hl =

√
νhl

/(κh + 1)
(√
κhh

LoS
l + hNLoSl

)
and each parameter is specified below.
1) νhl

= L0(dhl
/d0)

−αh is the distance dependent path-
loss from RIS to the lth user, where L0 = −30dB denotes
the path loss at the reference distance d0 = 1m. dhl

is
the distance between STAR-RIS and the lth user. αh =
2.2 denotes the path-loss exponent for the RIS-user link.
Correspondingly, the path-loss exponents for the BS-RIS
link and the BS-user link are 2.2 and 3.6, respectively.

2) κh is the Rician factor for the RIS-user link. A higher value
of Rician factor means stronger LoS component. When the

Rician factor is 0, it means there is no LoS signal and the
channel reduces to the Rayleigh fading. In the simulations,
the Rician factors for the RIS-user link κh is set to 5.
Correspondingly, the Rician factor of the BS-RIS link and
the BS-user link are 5 and 0, respectively.

3) The LoS component hLoSl is modeled as the steering vector
of the array responses. Hence the mth element

[
hLoSl

]
m

=

ej2π(m−1)dA sin(ω)/λ, where ω denotes the angle-of-arrival
(AoA) or angle-of-departure (AoD) of the array. In the
simulation, dA/λ = 1/2 and the ω is modeled as uniform
distributed in [0, 2π). On the other hand, hNLoSl denotes
the NLoS component signal with each element obeying the
normalized complex Gaussian distribution.

To avoid repeating figure descriptions, the settings for (M ,
N , Kr , Kt, L, PBS , σ2

l ) are provided in the caption of each
figure.

For implementation, we employ exponential increase of γ,
γ ← γ × 1.2 after each iteration, which is widely adopted
in existing works involving penalty method [51]–[54]. The
penalty parameter is increased until the distance between{
vt,vr

}
and

{
φt,φr

}
of alternating optimization falls below

a predefined tolerance. It is known that as long as the increase
of penalty parameter is within a moderate range in each
iteration, the performance would remain the same. This is
shown by simulations in Figs. 4(a) and 4(b) for the ES STAR-
RIS and MS STAR-RIS, respectively.

Fig. 5 compares the sum-rate performance among the eight
types of STAR-RIS using the proposed general optimization
framework. Firstly, we can see that additional discrete phase
constraint only slightly reduce the network throughput (2.94%
for two discrete phases in ES, 6.16% and 8.31% for two
discrete phases in MS and TS, respectively), which is different
from the finding in [55] that sparse phase (lower than 8 phases)
will significantly affect the performance. The key reason is
that the conclusion in [55] is based on quantization from
continuous phase solution to its nearest discrete phase. Under
the very few allowable discrete phases (e.g., in the simulation
only 2 phases are allowed), the continuous phase and its closest
discrete value are very different. Since the quantization is
applied independently in each RIS element, the cumulated
performance degradation will be significant compared to the
continuous optimal solution. In contrast, the auxiliary variables
φt, φr in the proposed algorithm are only affected by the
phase constraints, which can be regarded as the phase corrector



11

4 6 8 10 12 14 16 18 20 22 24

Antenna numbers at BS

0

5

10

15

20

25

30

35

40

45

50
S

u
m

-r
at

e 
(b

it
s/

s/
H

z)

Penalty increase ratio 1.05

Penalty increase ratio 1.2

Penalty increase ratio 1.4

(a) ES STAR-RIS at M = 30, Kr = Kt = 4, PBS = 20dBm and σ2
l = −80dBm

10 11 12 13 14 15 16 17 18 19 20

Power of BS (dBm)

10

15

20

25

30

35

40

45

50

S
u

m
-r

at
e 

(b
it

s/
s/

H
z)

Penalty increase ratio 1.05

Penalty increase ratio 1.2

Penalty increase ratio 1.4

(b) MS STAR-RIS at M = 20, N = 16, Kr = Kt = 5 and σ2
l = −80dBm

Fig. 4: Performance comparison under different penalty in-
crease ratio

for vt, vr . Instead of directly quantizing the vt, vr to
φt, φr , a penalty term is introduced to enforce an indirect
quantization and it allows more freedom for v and φ to search
for better solution. This avoids the significant performance
loss and shows that quantization is a more influential factor
than discrete phase that leads to performance degradation.
Secondly, it is notice that the discrete phase constraint in
MS and TS modes lead to more performance loss than that
in the ES mode. This is probably because of the additional
amplitude constraint of (1c) imposed on MS and TS STAR-
RIS coefficients. Without the amplitude constraint, ES STAR-
RIS can optimize the amplitude to compensate the loss brought
by the discrete phase constraint. Thirdly, from the magnified
part of Fig. 5, we notice that the continuous coupled-phase
constraint in STAR-RIS almost have no influence (only 0.89%
loss) on the system throughput compared to noncoupled-phase
case, which is consistent with the conclusion in [20]. In
contrast, the throughput degradation introduced by the 0-1
amplitude constraint in the MS mode is more obvious. This
shows that amplitude constraint affects system performance
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Fig. 5: Sum-rate comparison of the eight types of STAR-RIS
at M = 30, N = 16, Kr = Kt = 4 and σ2

l = −80dBm

more than the phase constraint. This insight is revealed for the
first time due to the ease of comparison using the proposed
unified penalty framework.

Figs. 6(a) and 6(b) focus on the ES STAR-RIS with
coupled-phase (i.e., cases 7 and 8 in Table I) and com-
pare the convergence behavior of the proposed algorithm
with the elementwise-AO [19], the coupled-phase STAR-
RIS framework (named as CP framework) [20] and penalty-
based secrecy beamforming (PSB) algorithm [34]. Although
the original PSB algorithm was derived for secrecy sum-
rate, we can modify it to handle sum-rate maximation. For
the continuous coupled-phase case in Fig. 6(a), the proposed
algorithm converges to the highest sum-rate with the shortest
execution time. PSB algorithm and CP framework are slightly
worse and the elementwise-AO performs the worst. As ex-
plained before Proposition 1 (Section IIB), the penalty weight
required in the CP and PSB algorithms would be larger than
the proposed algorithm and slows down their convergence
speeds. On the other hand, elementwise-AO needs to solve
nonconvex subproblems on STAR-RIS element-wise level,
which are handled by SCA and CVX, and thus incurs heavy
computations.

To further illustrate the complexity of the proposed and
compared algorithms, Table III summarizes the complexities
of various algorithms, where IAO is the number of alternative
optimization (AO) iteration. Notice that ς in the proposed
framework is the accuracy of bisection search. From Table III,
ignoring the terms common to all methods, it can be seen that
the proposed framework has a complexity order scales linearly
with respect to M in each iteration, i.e., O (M). In contrast,
the CP framework and PSB algorithm take at least O

(
M2
)

in each iteration. As the number of STAR-RIS element M is
usually larger than the number of BS antennas N and number
of users Kr and Kt, the complexities of the CP framework
and the PSB algorithms would be much larger than that of the
proposed framework. Although the element-wise AO does not
have outer penalty loop, the complexity order contains a term
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Fig. 6: Convergence behaviour with M = 30, N = 16, Kr =
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l = −100dBm

IAOO
(
M3.5

)
, which heavily slows down the whole execution

time. Due to the low complexity of the proposed method in
each iteration, as shown in Fig. 6(a), the proposed algorithm
reduces almost a factor of 10 in computation time compared to
the CP framework and the PSB algorithm, and almost a factor
of 100 compared to the elementwise AO algorithm. Notice
that since the CP framework, PSB algorithm and the proposed
algorithm introduce penalty terms, the sum-rate may not be
monotonic with respect to iterations as the monotonic property
only holds for objective function including the penalty term.

For the discrete coupled-phase case in Fig. 6(b), the CP
framework and elementwise-AO have noticeable performance
decline when the number of iteration increases. This is due
to the quantization to the continuous phase solution. This
phenomenon coincides with the general statement from [55]
that quantization in sparse phase (lower than 3 or 4 information
bits) will strongly affect the performance. The PSB algorithm
performs better than the elementwise-AO and CP framework
because it employs quantization at RIS coefficient subproblem
level. Compared with only one time quantization on the final
continuous phase solution, repeated quantization at the level of
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Fig. 7: Sum-rate of ES STAR-RIS with M = 30, Kr = Kt =
4, PBS = 20dBm and σ2
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RIS-subproblems avoids a sharp performance loss. Different
from the above three methods, the proposed algorithm finds the
global optimal closed-form solution at the RIS coefficient level
subproblem even under the discrete phase constraint, which
leads to the best throughput performance for the discrete and
coupled-phase STAR-RIS in Fig. 6(b).

Although the execution times reported in Fig. 6 are in the
order of second and are much longer than the typical wireless
channel coherence time, these numbers are obtained by Matlab
running on a consumer grade computer. The purpose of these
numbers are for comparing the speeds of different algorithms
under the same hardware platform. It does not necessarily
mean this is the time needed if the algorithm is implemented
in a product. For example, in actual deployment, we can
use C++, instead of Matlab, to shorten its execution time.
Furthermore, we can use better hardware, instead of desktop
computer, for implementation. Moreover, we can run the
proposed framework offline to generate many training samples
and use them to train a deep neural network. This would enable
a super fast inference time.

Fig. 7 compares the sum-rate performance between the
proposed algorithm, the AO algorithm [14] and SDR-DC
method [15] for the basic ES STAR-RIS (i.e., the fifth and
sixth cases in Table I). Under continuous phase shift, the
proposed algorithm performs the best and SDR-DC performs
the worst, but the performance gap is not significant. However,
under 2 discrete phases, the proposed algorithm performs only
slight worse than continuous phase case (only 3.81% degrada-
tion), and significantly outperforms the other two algorithms.
This again verifies that discrete phase is not the major reason
for performance degradation. It is just that the widely used
quantization is not a good strategy for ES STAR-RIS under
small number of phases.

Fig. 8 compares the sum-rate performance in TS STAR-RIS
system (i.e., first two cases in Table I) among the proposed
algorithm, the SDR algorithm [15] with Gaussian random, and
gradient descent (GD) method [25], [56]. From Fig. 8, we can
see that under continuous phase shift, the proposed algorithm
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TABLE III: Computational complexities of various algorithms

Algorithms Computational complexity

CP framework IpenIBCD

(
O
((
Kr +Kt

)
N/P +N3

)
+O

(
M2

)
+O

(
log

(√
Tr (B) /ε2PBS

))
+ IAOO (M/P )

)
PSB algorithm IpenIBCD

(
O
((
Kr +Kt

)
N/P +N3

)
+O

(
M2

)
+O

(
log

(√
Tr (B) /ε2PBS

))
+O (2M/P )

)
Elementwise-AO IBCD

(
O
((
Kr +Kt

)
N/P +N3

)
+O

(
log

(√
Tr (B) /ε2PBS

))
+ IAOO

(
M3.5

))
Proposed framework IpenIBCD

(
O
((
Kr +Kt

)
N/P +N3

)
+O (M log (π/2ς))) +O

(
log

(√
Tr (B) /ε2PBS

))
+O (M/P )

)
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performs the best, and then followed closely by SDR algorithm
and GD method. However, under 2 discrete phase case, the GD
method and SDR algorithm fail completely.

Fig. 9 compares the sum-rate performance between the
proposed algorithm and the direct penalty algorithm with the
widely used penalty term

∣∣vkm∣∣−∣∣vkm∣∣2 = 0,∀k ∈ {t,r} ,m ∈
{1, · · · ,M} [15], [34] for MS STAR-RIS (i.e., the third and
fourth cases in Table I). Since no existing literature studies the
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MS STAR-RIS under discrete phase, we add a quantization
step after the direct penalty algorithm to make the discrete
phase constraint satisfied. From Fig. 9, we observe that when
there is no discrete phase constraint, the proposed auxiliary
variable based penalty method outperforms the direct penalty
method, and the performance of direct penalty method is even
worse than the proposed algorithm with discrete phase L = 8.
This shows the possibility of exploring better penalty term
to improve the performance of continuous phase MS STAR-
RIS. In additional, the discrete phase constraint just slightly
degrades the performance (2.28% for L = 4 and 1.27% for
L = 8) if the proposed algorithm is employed, which coincides
with the conclusion in ES STAR-RIS that the discrete phase is
not the major reason for performance degradation. In contrast,
the quantization adopted in discrete MS STAR-RIS heavily
impairs the performance (28.3% degradation at L = 4 and
14.1% degradation at L = 8). Besides, quantization in MS
STAR-RIS makes the sum-rate grows slowly with the power
of BS. This all shows that quantization is not a good option
for MS STAR-RIS under discrete phase.

Next, we evaluate the performance of the proposed al-
gorithm when compared to exhaustive search solution. In
particular, we consider the discrete phase MS STAR-RIS case,
in which both amplitude and phase are discrete variables. For a
MS STAR-RIS with M elements and L discrete phase, it will
have (2L)

M different combinations, which is exponential with
M . Therefore, exhaustive search algorithm is only possible
for small M and L. Fig. 10 shows the results of L = 2 and
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M = 6. It can be seen that the performance degradation of the
proposed method from the optimal solution using exhaustive
searching is only 2.4%∼4.3%, and their sum-rates grow at
the same rate as the power of BS increases. However, for the
direct penalty algorithm with

∣∣vkm∣∣− ∣∣vkm∣∣2 = 0,∀k ∈ {t,r},
the degradation is more significant (14.7%∼29.2%) and shows
a slower rate of sum-rate increase with power of BS.

Finally, to show the applicability of the proposed frame-
work to other resource allocation problems, we consider the
energy efficiency maximization problem, which has the same
constraints as the sum-rate maximization problem (11) but the
objective function F1 is divided by

1

η

Kr+Kt∑
l=1

|wl|2 + Pa +
(
Kr +Kt

)
Pc +MPs, (28)

where η is the power amplifier efficiency, Pa, Pc and
Ps are the hardware-dissipated power at the BS, the cir-
cuit power at each user, and the hardware-dissipated power
at each STAR-RIS element, respectively [8], [57]. In this
simulation, these parameters are set as (η, Pa, Pc, Ps) =
(0.311, 39dBm, 20dBm, 10dBm) [8], [58]. For the optimiza-
tion algorithm, we need Dinkelbatch algorithm as an extra
outer layer to handle the fractional form of the objective
function compared to the sum-rate optimization algorithm. It
can be seen from Fig. 11 that the ES STAR-RIS with coupled
phase performs the best. Then, it is followed by MS STAR-
RIS and ES STAR-RIS, while TS STAR-RIS performs much
worse than other modes. Compared to Fig. 5, it is observed that
the relative performance order of different operating modes in
energy efficiency maximization is different from that of the
sum-rate maximization. Besides, the influence of the discrete
phase constraint is even smaller in energy efficiency problem
than in sum-rate maximization. Fig. 11 not only shows the
versatile applicability of the proposed framework to different
objective functions, but also demonstrates the importance of
having a convenient way of comparing the performance of
different operating modes of STAR-RIS, as their relative
performance would highly depend on the objective of the
optimization problem.

Notice that although TS STAR-RIS performs the worst
among different STAR-RIS operating modes, the pro-
posed algorithm still outperforms an existing approach:
complex circle manifold (CCM) approach [59], [60],
which projects the STAR-RIS coefficient onto the circle
manifold constraints

{
vt :

∣∣vtm∣∣ = 1,m = 1, 2, · · · ,M
}

and
{vr : |vrm| = 1,m = 1, 2, · · · ,M}. From Fig. 12, it can be
seen that the proposed framework performs better than CCM
algorithm for both continuous phase and discrete phase STAR-
RIS, but the advantage of the proposed framework is more
pronounced for the case of two allowable discrete phases.

VI. CONCLUSIONS

This paper proposed a unified framework to efficiently
handle the constraints introduced by various kinds of STAR-
RISs, even with discrete and coupled phase constraints. The
proposed unified framework introduces auxiliary variables for
the STAR-RIS phases such that closed-form global optimal
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solution is possible at the subproblem level. In addition
to unifying the algorithm derivations for systems involving
various kinds of STAR-RISs and lowering the computational
complexity, convergence to a stationary point under such
framework was established theoretically. As an illustrated
example, a downlink STAR-RIS assisted transmission system
was investigated under the proposed framework. Simulation
results showed that the proposed framework outperforms other
existing state-of-the-art methods, and revealed for the first
time that discrete phase may not cause significant performance
degradation.
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SUPPLEMENTARY MATERIAL

VII. APPENDIX

A. Proof of Proposition 1

Let pnγ =
[
znγ , λ

t,n
γ , λr,nγ

]
, vnγ =

[
vt,n
γ ,vr,n

γ

]
and φnγ =[

φt,n
γ ,φr,n

γ

]
as the solutions at the nth BCD iteration under

the penalty γ. Using the above compact notations, the penalty
term at the nth BCD iteration under the penalty γ is reformu-
lated as G

(
vnγ ,φ

n
γ

)
= γ

2

∣∣vnγ −φnγ
∣∣2
2
. Since the BCD iteration

is monotonic under any fixed γ, we have

G
(
vnγ ,φ

n
γ

)
≤ F

(
p0
γ ,v

0
γ

)
+G

(
v0
γ ,φ

0
γ

)
−F

(
pnγ ,v

n
γ

)
. (29)

With
{
p0
γ ,v

0
γ ,φ

0
γ

}
being the initial point of the BCD iteration,

we can always select them so that the first two terms of the
right hand side of (29) are bounded. Besides, F is bounded
from below in order to make its minimization meaningful.
This makes −F

(
pnγ ,v

n
γ

)
bounded from above, so does the

right hand side of (29). Therefore, the left hand side of (29)
is bounded from above for all n. That is, γ

2

∣∣vnγ −φnγ
∣∣2
2

is
bounded from above for all n.

On the other hand, since the Proposition 1 assumes that
the

{
pnγ ,v

n
γ

}
of P2 does not contains infinite value, there

exists a sufficient large D so that
∣∣[pnγ ,vnγ ]∣∣ ≤ D for all

n (otherwise,
∣∣[pnγ ,vnγ ]∣∣ → ∞ for some n and it contains

infinite point, which violates the assumption in Proposition 1).
Therefore, we obtain φnγ is bounded for all n. Notice that the
solution pnγ ,v

n
γ are also bounded by D, there must exist a sub-

sequence
{
p
nj
γ ,v

nj
γ ,φ

nj
γ

}
j∈N converges to some limit point{

p∗
γ ,v

∗
γ ,φ

∗
γ

}
based on Bolzano-Weierstrass Theorem [61].

For the ease of representation, the constraints of P2
are denoted using an indicator function I1 (p,v) ={

0, if the constraints in P2 hold
∞, otherwise . By assumption in

Proposition 1 that the solution p
nj
γ , vnj

γ of P2 is a stationary
point, the first-order optimality condition holds [42], which
is shown in (30), where ∂pI1 (p,v) and ∂vI1 (p,v) are the
limiting subdifferential of the non-smooth function I1 (p,v)
with respect to p and v, respectively.

Since
{
p
nj
γ ,v

nj
γ

}
j∈N and

{
p∗
γ ,v

∗
γ

}
are feasible

points of P2, we have lim
j→∞

∂pI1
(
p
nj
γ ,v

nj
γ

)
=

∂pI1

(
lim
j→∞

p
nj
γ ,v

nj
γ

)
= ∂pI1

(
p∗
γ ,v

∗
γ

)
and

lim
j→∞

∂pI1
(
p
nj
γ ,v

nj
γ

)
= ∂pI1

(
p∗
γ ,v

∗
γ

)
. Then, taking j → ∞

in (30), we obtain (31), which can be written as

0 ∈
[

∇pF
(
p∗
γ ,v

∗
γ

)
+ ∂pI1

(
p∗
γ ,v

∗
γ

)
∇vF

(
p∗
γ ,v

∗
γ

)
+∇vG

(
v∗
γ ,φ

∗
γ

)
+ ∂vI1

(
p∗
γ ,v

∗
γ

) ] .
(32)

On the other hand, since by the assumption in Proposition
1 that the global optimal solution of P1 is obtained, we have

G
(
vnj
γ ,φ

)
+ I2 (φ) ≥ G

(
vnj
γ ,φnj

γ

)
+ I2

(
φnj
γ

)
, ∀φ, (33)

where I2 (φ) =

{
0, if the constraints in P1 hold
∞, otherwise . Rec-

ognizing the constraints in P1 are compact constraint sets,

I2 (φ) is a lower semi-continuous function [62], and conse-
quently we have

lim inf
j→∞

I2

(
φnj
γ

)
≥ I2

(
φ∗
γ

)
. (34)

Taking j →∞ in (33) and applying (34), we obtain

G
(
v∗
γ ,φ

)
+ I2 (φ) ≥ G

(
v∗
γ ,φ

∗
γ

)
+ I2

(
φ∗
γ

)
, ∀φ, (35)

which guarantees that

0 ∈ ∇φG
(
v∗
γ ,φ

∗
γ

)
+ ∂φI2

(
φ∗
γ

)
. (36)

Since I1 (p,v) does not depend on φ, we have 0 ∈
∂φI1

(
p∗
γ ,v

∗
γ

)
. Using similar arguments, we also have 0 ∈

∇φF
(
p∗
γ ,v

∗
γ

)
, 0 ∈ ∇pG

(
v∗
γ ,φ

∗
γ

)
, 0 ∈ ∂pI2

(
φ∗
γ

)
and

0 ∈ ∂vI2
(
φ∗
γ

)
. Based on these and combine with (32) and

(36), we obtain (37). Therefore, this limit point
{
p∗
γ ,v

∗
γ ,φ

∗
γ

}
is a stationary point of (2) [63]. Part 1) of Proposition 1 is
thus proved.

With lim
j→∞

(
p
nj
γ ,v

nj
γ ,φ

nj
γ

)
=
(
p∗
γ ,v

∗
γ ,φ

∗
γ

)
, and the se-

quence of solutions
{
p
nj
γ ,v

nj
γ ,φ

nj
γ

}
j∈N are bounded for

any γ, we know
{
p∗
γ ,v

∗
γ ,φ

∗
γ

}
is also bounded for any

γ. Then there must exist a subsequence
{
p∗
γl
,v∗
γl
,φ∗

γl

}
l∈N

converges to the limit point {p∗
∞,v

∗
∞,φ

∗
∞} based on Bolzano-

Weierstrass Theorem [61].
Suppose that v∗

∞ ̸= φ∗
∞, we would have

∣∣v∗
γl
−φ∗

γl

∣∣2
2
>

c0 for a positive c0 and sufficiently large l. That yields
lim
l→∞

G
(
v∗
γl
,φ∗

γl

)
= lim

l→∞
γl
2

∣∣v∗
γl
−φ∗

γl

∣∣2
2
= ∞, which vio-

lates the bounded property obtained below (29). Hence, by
contradiction, we must have v∗

∞ = φ∗
∞. According to part 1)

of the Proposition 1,
{
p∗
γ ,v

∗
γ ,φ

∗
γ

}
is a stationary point of

(2) for any γ. Thus we have {p∗
∞,v

∗
∞,φ

∗
∞} is a stationary

point of (2). Together with v∗
∞ = φ∗

∞, which means that (2)
is equivalent to (1), we obtain that {p∗

∞,v
∗
∞} is a stationary

point of (1). This completed the proof of part 2).

B. Proof of Lemma 1

Firstly, we discuss the ES and TS STAR-RIS cases. Since
φt
m and φr

m are separable in both the objective function and
constraints, we can consider one φt

m or φr
m at a time. Taking

φt
m as an example, the optimization problem (4) with respect

to φt
m is

min
φt

m

∣∣φt
m

∣∣2 − 2
∣∣vtm∣∣ ∣∣φt

m

∣∣ cos (∠φt
m − ∠vtm

)
(38a)

s.t.
∣∣φt
m

∣∣ = 1, if TS (38b)

∠φt
m ∈ {0, 2π/L, · · · , 2π (L− 1)/L} , (38c)

where we have expanded
∣∣vtm − φt

m

∣∣2 and removed terms not
related to φt

m. To minimize (38a), cos
(
∠φt

m − ∠vtm
)

should
be maximized. Taking the consideration of (38c), the optimal
phase of ∠φt

m is equal to ProjΘ
(
∠vtm

)
. Since TS mode

restrict the amplitude of φt
m, ProjΘ

(
∠vtm

)
is the solution

of the TS mode. For the ES STAR-RIS, we put this optimal
phase back into the objective function (38a), the resulting
problem with respect to

∣∣φt
m

∣∣ is an unconstrained quadratic
optimization problem and the closed-form solution is shown
in Lemma 1.
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〈[
∇pF

(
p
nj
γ ,v

nj
γ

)
+ ∂pI1

(
p
nj
γ ,v

nj
γ

)
∇vF

(
p
nj
γ ,v

nj
γ

)
+∇vG

(
v
nj
γ ,φ

nj−1
γ

)
+ ∂vI1

(
p
nj
γ ,v

nj
γ

) ] , [ p− p
nj
γ

v − v
nj
γ

]〉
≥ 0,∀p,v, (30)

〈[
∇pF

(
p∗
γ ,v

∗
γ

)
+ ∂pI1

(
p∗
γ ,v

∗
γ

)
∇vF

(
p∗
γ ,v

∗
γ

)
+∇vG
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v∗
γ ,φ

∗
γ

)
+ ∂vI1

(
p∗
γ ,v

∗
γ

) ] , [ p− p∗
γ

v − v∗
γ

]〉
≥ 0, ∀p,v, (31)

0 ∈

 ∇pF
(
p∗
γ ,v

∗
γ

)
+∇pG

(
v∗
γ ,φ

∗
γ

)
+ ∂pI1

(
p∗
γ ,v

∗
γ

)
+ ∂pI2

(
φ∗
γ

)
∇vF

(
p∗
γ ,v

∗
γ

)
+∇vG

(
v∗
γ ,φ

∗
γ

)
+ ∂vI1

(
p∗
γ ,v

∗
γ

)
+ ∂vI2

(
φ∗
γ

)
∇φF

(
p∗
γ ,v

∗
γ

)
+∇φG

(
v∗
γ ,φ

∗
γ

)
+ ∂φI1

(
p∗
γ ,v

∗
γ

)
+ ∂φI2

(
φ∗
γ

)
 . (37)

For the MS STAR-RIS, there are two possibilities for the
amplitude variables.

1)
∣∣φt
m

∣∣ = 0 and |φr
m| = 1. Through expanding the

objective function in (4a) and removing the terms unrelated
to φr

m, the following optimization problem can be obtained
from (4):

min
∠φr

m

− 2 |vrm| cos (∠φr
m − ∠vrm)

s.t. ∠φr
m ∈ {0, 2π/L, · · · , 2π (L− 1)/L} .

(39)

Therefore, the optimal solution of ∠φr
m is ProjΘ (∠vrm), and

the minimal value is −2 |vrm| cos (ProjΘ (∠vrm)− ∠vrm) =
−2βr

m.
2)

∣∣φt
m

∣∣ = 1 and |φr
m| = 0. With similar

derivations to the above case, the optimal solution of
∠φt

m is ProjΘ
(
∠vtm

)
. Hence, the minimal value is

−2
∣∣vtm∣∣ cos (ProjΘ (∠vtm)− ∠vtm

)
= −2βt

m.
Finally, the optimal solution can be obtained by choosing

the minimal value of the above two cases and the result is
expressed in Lemma 1 using sgn (·) function.

C. Proof of Lemma 2

Let φt
m = atme

jθtm , where atm ∈ R and θtm ∈
{0, 2π/L, · · · , 2π (L− 1)/L}. By expanding (6a) and remov-
ing the terms irrelvant to φt

m and φr
m, we have the optimiza-

tion problem (40).
To minimize (40), ∠φr

m should be chosen to maximize
the term Re

{
ej(∠φ

r
m−∠vrm)

}
. On the other hand, from the

constraint in (40), once θtm is obtained, there are only two
possible values for ∠φr

m to choose from. Hence we have

∠φr
m =

{
θtm + π/2, if sin

(
θtm − ∠vrm

)
≤ 0,

θtm − π/2, otherwise.
(41)

Putting (41) into (40), the problem is reduced to (42). This is
an unconstrained quadratic function for atm and |φr

m|, hence
their optimal solutions are{

atm =
∣∣vtm∣∣ cos (θtm − ∠vtm

)
,

|φr
m| = |vrm|

∣∣sin (θtm − ∠vrm
)∣∣ . (43)

With the second line of (43) and using (41), we obtain the
solution of φr

m.

Finally, substituting (43) back to (42), the resulting problem
with respect to θtm is

min
θtm

−
∣∣vtm∣∣2cos2 (θtm − ∠vtm

)
− |vrm|

2
sin2

(
θtm − ∠vrm

)
.

s.t. θtm ∈ {0, 2π/L, · · · , 2π (L− 1)/L} .
(44)

Since cos2u = (1 + cos 2u) /2 and sin2u = (1− cos 2u) /2,
optimizing (44) is equivalent to

min
θtm

|vrm|
2
cos
(
2θtm − 2∠vrm

)
−
∣∣vtm∣∣2 cos (2θtm − 2∠vtm

)
s.t. θtm ∈ {0, 2π/L, · · · , 2π (L− 1)/L} .

(45)

Using sum-difference-product formula for trigonometric func-
tions, the objective function in (45) is equal to

√
χm cos

(
2θtm − 2∠vtm + bm

)
, (46)

where χm =
[
|vrm|

2
cos
(
2∠vtm − 2∠vrm

)
+
∣∣vtm∣∣2]2 +[

|vrm|
2
sin
(
2∠vtm − 2∠vrm

)]2
and bm is defined in Lemma

2. Since χm is unrelated to θtm, (46) is equivalent to

min
θtm

cos
(
2θtm − 2∠vtm + bm

)
s.t. θtm ∈ {0, 2π/L, · · · , 2π (L− 1)/L} .

(47)

Hence, the optimal solution of θtm is
ProjΘ

(
∠vtm−bm/2 + π/2

)
and the optimal solution of

(6) shown in Lemma 2.

D. Proof of Lemma 3

Firstly, to deal with the sum-of-logarithms-of-ratio objective
function in (9), the closed-form fractional programming (FP)
approach in [47], [64] is introduced, which has two key steps.

1) Lagrangian Dual Transform: The logarithm function can
be represented with an auxiliary variable ρ as

log (1 + γ) = max
ρ

log (1 + ρ)− ρ+ (1 + ρ) γ

1 + γ
, (48)
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min
atm,θ

t
m,φ

r
m

(
atm
)2 − 2atm

∣∣vtm∣∣ cos (θtm − ∠vtm
)
+ |φr

m|
2 − 2 |vrm| |φr

m|Re
{
ej(∠φ

r
m−∠vrm)

}
s.t. ∠φr

m = θtm ± π/2 (mod2π) ,

θtm ∈ {0, 2π/L, · · · , 2π (L− 1)/L} .

(40)

min
atm,θ

t
m,|φr

m|

(
atm
)2 − 2atm

∣∣vtm∣∣ cos (θtm − ∠vtm
)
+ |φr

m|
2 − 2 |vrm| |φr

m|
∣∣sin (θtm − ∠vrm

)∣∣
s.t. θtm ∈ {0, 2π/L, · · · , 2π (L− 1)/L} .

(42)

where the optimal solution occurs at ρ = γ. Based on (48),
the objective function (9) can be written as

R
(
w,vt,vr, λt, λr

)
=

max
ρ

λr
Kr∑
l=1

log (1 + ρl)− ρl +
(1 + ρl)

∣∣aTl wl

∣∣2∑Kr+Kt

i=1

∣∣aTl wi

∣∣2 + λrσ2
l

+ λt
Kr+Kt∑
l=Kr+1

log (1 + ρl)− ρl +
(1 + ρl)

∣∣aTl wl

∣∣2∑Kr+Kt

i=1

∣∣aTl wi

∣∣2 + λtσ2
l

.

(49)

The second step is to tackle the fractional term in (49).
2) Quadratic transform: By introducing the auxiliary vari-

able x, the following equation holds.

|A (u)|2

B (u)
= 2Re {xA (u)} − |x|2B (u) . (50)

The equivalence can be proved by substituting x =
A (u)/B (u). With the transformation in (50), (49) can be
converted into

R
(
w,vt,vr, λt, λr

)
= max

ρ,x
F1

(
w,ρ,x,vt,vr, λt, λr

)
,

(51)
where F1 is defined in (10).

E. Proof of Lemma 4

Introducing the dual variable µ to the constraint (14b), the
problem (14) is equivalent to

max
µ≥0

min
w

Kr+Kt∑
l=1

wH
l Ξwl − 2Re

[
qHl wl

]
+ µ

(
wH
l wl − PBS

)
.

(52)
For each fixed µ, this problem is a quadratic function
for all {wl}K

r+Kt

l=1 . Therefore, the optimal solution of wl

is (Ξ+ µI)
−1

ql. Through eigenvalue decomposition Ξ =
UΛUH , the optimal wl can be rewritten as

wl = U(Λ+ µI)
−1

UHql. (53)

According to the complementary slackness, there are two cases
for µ:

1) µ = 0. That means the constraint (14b) is
inactive. This happens when ΣK

r+Kt

l=1 wH
l wl ≤ PBS

with wl = UΛ−1UHql, which is equivalent to
ΣK

r+Kt

l=1 qHl UΛ−2UHql ≤ PBS . Recall the definition

of B in Lemma 4, ΣK
r+Kt

l=1 qHl UΛ−2UHql = Tr
(
Λ−2B

)
.

Hence, this case only occurs when Tr
(
Λ−2B

)
≤ PBS .

2) µ > 0. That means the constraint (14b) is active. There-
fore, we need to solve the equation ΣK

r+Kt

l=1 wH
l wl = PBS

with each wl given by (53). Putting (53) into the constraint
ΣK

r+Kt

l=1 wH
l wl = PBS and rearrange the terms with the trace

operator, it can be shown that

Tr
(
(Λ+ µI)

−2
B
)
= PBS . (54)

Notice that the left hand side expression is a monotonic
decreasing function of µ. The bisection method with searching
interval [0, µmax] can be adopted to find this solution, where
µmax should satisfies

Tr
(
(Λ+ µmaxI)

−2
B
)
≤ PBS . (55)

Since Ξ is a positive semidefinite matrix, the diagonal ele-
ment of Λ is non-negative. Hence, if Tr

(
(µmaxI)

−2
B
)
≤

PBS holds, we would also have (55) holds. From
Tr
(
(µmaxI)

−2
B
)
≤ PBS , we can set µmax =√

Tr (B)/PBS .

F. Further analysis of Tr (B)

Since B = ΣK
r+Kt

l=1 UHqlq
H
l U in Lemma 4

and U is a unitary matrix, we have Tr (B) =∑Kr+Kt

l=1 Tr
(
UHqlq

H
l U

)
=

∑Kr+Kt

l=1 |ql|2. With the
definition of ql under (14), and noticing that the time
allocation variables

{
λr, λt

}
and the auxiliary variables

{ρl, xl}K
r+Kt

l=1 are all bounded, we have

Tr (B) ∝
Kr+Kt∑
l=1

|al|2 =

Kr∑
l=1

∣∣GTdiag (vr)hl + dl
∣∣2 + Kr+Kt∑

l=Kr+1

∣∣GTdiag
(
vt
)
hl + dl

∣∣2,
(56)

where the equality is based on the definition of al under (9).
Now, we focus on the first term:
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Kr∑
l=1

∣∣GTdiag (vr)hl + dl
∣∣2

≤
Kr∑
l=1

(∣∣GTdiag (vr)hl
∣∣+ |dl|)2

≤ 2

Kr∑
l=1

(∣∣GTdiag (vr)hl
∣∣2 + |dl|2)

≤ 2

Kr∑
l=1

(
|G|2|diag (vr)|2|hl|2 + |dl|2

)
≤ 2

Kr∑
l=1

(
|G|2|hl|2 + |dl|2

)
.

(57)

The first inequality is due to the triangle inequality of the 2-
Norm. The second inequality holds due to the basic inequality
(a+ b)

2 ≤ 2a2 + 2b2. The third inequality is due to the
compatibility of 2-Norm. The last inequality holds since
diag (vr) is a diagonal matrix with every diagonal element
bounded by 1.

Similarly, the second term is bounded by
2
∑Kr+Kt

l=1+Kr

(
|G|2|hl|2 + |dl|2

)
. Therefore, Tr (B) is

bounded by 2
∑Kr+Kt

l=1

(
|G|2|hl|2 + |dl|2

)
. Notice that G,

hl and dl are the all channel coefficients, Tr (B) is related
to the strength of the channel coefficients and only grows
linearly with the number of users.


