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Individual heterogeneity and airborne infection: Effect of 
non-uniform air distribution 
 
 
Abstract 
 
The classical Wells–Riley equation assumes homogeneity of susceptible individuals 
and environments to airborne exposure. However, individual susceptibility to 
infection is mostly heterogeneous, and exposure variability could arise from 
differences in inhalation rate, spatiotemporal non-uniformity of infectious aerosol 
concentrations, and the exposure trajectory and time. Non-uniform air distribution 
results in spatial non-uniformity of infectious aerosol concentrations. The 
non-uniformity effect is essentially a problem of individual infection probability. Here, 
we derived a general dose-response equation and a heterogeneous Wells–Riley 
equation accounting for individual variability in infection probability. The 
heterogeneous Wells-Riley equation shows the potential of the zone air distribution 
effectiveness to consider spatial non-uniformity under steady-state conditions. An 
existing quanta generation rate formula was theoretically justified. The new equation 
was then applied to a restaurant reporting an outbreak of coronavirus disease 2019, 
with spatial and/or temporal heterogeneity of infectious aerosol concentrations. Our 
results show the need to include spatial non-uniformity in outbreak investigations. A 
hypothetical two-zone setup was used to demonstrate how the inter-zonal distribution 
of clean air and the inter-zonal exchange flow affect airborne infections. An infector 
in a poorly diluted zone with the greatest number of susceptible individuals would 
result in the most secondary infections, whereas an infector in a well-ventilated zone 
with few susceptible individuals would result in the least secondary infections. 
 
(216 words) 
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1.Introduction 
Airborne transmission has been accepted as a major route for the spread of severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is suspected to be a 
major route of transmission for most other respiratory infections (Tang et al., 2022). 
Unlike investigations of infections originating from food and water (WHO, 2003), 
quantitative microbial risk assessments (QMRA) have not been widely used for 
airborne infection investigations (Haas, 2021). The Wells–Riley equation (Riley et al., 
1978) has traditionally been used to model the airborne transmission of infectious 
diseases (Gammaitoni and Nucci, 1997; Rudnick and Milton, 2003). Parhizkar et al. 
(2021) proposed a QMRA-based dose-response model of the airborne transmission of 
SARS-CoV-2 that accounts for particle emission dynamics, particle deposition to 
indoor surfaces, ventilation rate, and filtration. 
 



These existing models of airborne transmission assume individual homogeneity in 
susceptibility and exposure. However, significant heterogeneity in susceptibility exists 
for some respiratory infections, e.g., SARS-CoV-2, due to different levels of 
immunity (Moghadas et al., 2021) and contact. The Wells–Riley equation and 
dose-response models have traditionally been considered to be two different 
modelling categories (Sze To and Chao, 2010). The relationship between the two 
models is discussed later in this paper. The respiratory deposition of aerosols differs 
from the ingestion of pathogens contained in food or water due to variations in 
deposition site and efficiency (Sze To and Chao, 2010; Parhizkar et al., 2021). As one 
major intervention method, ventilation dilutes infectious aerosols in an occupied 
space, but its effectiveness differs locally as the concentration of infectious aerosols 
may be non-uniform within a space. Imagine the trajectory of a susceptible individual 
who may walk through a space and stay at different locations. Each susceptible 
individual has a unique exposure trajectory. Sze To and Chao (2010) considered the 
spatial distribution of aerosols as one of the most important factors in the risk 
assessment of respiratory infections. Sze To et al. (2008) proposed an exposure 
assessment model using spatial distribution of expiratory aerosols and the viability of 
airborne viruses. To model non-uniform distributions, Qian et al. (2009) implemented 
an approach using computational fluid dynamics (CFD) and the infectious quantum 
concept.  
 
During the coronavirus disease 2019 (COVID-19) pandemic, an outbreak in a 
restaurant in Guangzhou was shown to likely occur via airborne transmission (Li et al., 
2021). Reconstruction of the airflow at the time of exposure in the restaurant using 
CFD revealed a relatively stable air recirculation bubble in the Table ABC zone, 
where all secondary infections occurred (Figure 3 in Li et al., 2021). One major 
question was asked by several experts when the project team presented the study, i.e., 
would there have been fewer secondary infections if there was better mixing between 
the Table ABC zone and non-ABC zone? One inherent factor makes it difficult to 
answer this question. The 89 patrons in the restaurant arrived at and departed from the 
restaurant at different times. Therefore, there was significant heterogeneity in 
individual levels of exposure. It is difficult to estimate the number of secondary 
infections using the traditional Wells-Riley equation when there are significant 
differences in the probability of infection between individuals. Additionally, 
heterogeneity in individual exposure levels also occurred due to the non-uniform 
distribution of infectious aerosols in this restaurant. Similar levels of spatiotemporal 
non-uniformity of infectious aerosols and individual heterogeneity exist in other 
public spaces. 
 
Air distribution is not difficult to analyse, but the existing Wells–Riley equation 
cannot be used for non-uniform conditions. Three-dimensional air distribution has 
been modelled since the 1980s, when CFD simulations were first applied to air 
distribution analysis (Nielsen et al., 1978). At any spatial point in a space, we can now 
estimate the local age of the air (i.e., the time since the first arrival of the air in a 
specific place), the remaining time a contaminant will be present (before being 
removed from the space), and the local ventilation index (the ratio of the local 
concentration and the concentration at exhaust) (Etheridge and Sandberg, 1996). The 
existing ventilation standard (ASHRAE 62.1, 2019) uses the ‘zone air distribution 
effectiveness’ measure, 𝐸𝐸𝑧𝑧, which measures ‘how effectively the zone air distribution 
uses its supply air to maintain the acceptable air quality in the breathing zone’. The 



required minimum ventilation is scaled according to the 𝐸𝐸𝑧𝑧 value. In a room with 
poor air distribution, a larger ventilation rate is needed. The question remains 
regarding how poor air distribution affects infection risk. 
 
The key to studying the non-uniformity effect on airborne infections lies in 
developing a risk assessment model that considers the individual probability of 
infection. In addition to non-uniformity, individuality of infection risk may also arise 
from different exposure times, even under uniform conditions and/or at individual 
susceptibility levels. Integrating uncertainty and interindividual variability into risk 
assessment has been well studied in food and water microbiology (Bogen and Spear, 
1987).  
 
Here, we extended a QMRA-based dose-response model used in food and water 
microbiology for application to airborne transmission risk assessment. This resulted in 
a new Wells–Riley equation for use in multiple heterogeneous conditions, e.g., 
non-uniform and temporally varying air distribution. Our key idea was to follow the 
exposure trajectory of a susceptible individual in a room and estimate individual 
inhalation probabilities of a virus particle (or virion) in a space. The individual 
probability of infection was then estimated using the single-hit model reported by 
Haas (1983). The population infection risk in the space was estimated using a 
Poisson-binomial distribution, as reported by Bogen and Spear (1987) and Nicas 
(1996). The relationship between this general dose-response model of airborne 
infection and the Wells–Riley equation was naturally established. A new 
heterogeneous Wells–Riley equation was then used to analyse the aforementioned 
restaurant outbreak and a hypothetical outbreak in a two-zone restaurant setting.  
 
2.Methodologies 
 
2.1 Individual inhalation probability of a virion in room air 
 
The inhalation probability of an airborne virion by individual 𝑖𝑖 is fundamental to 
airborne infection risk analysis. However, this probability has not been analysed in 
previous studies. Each inhalation event differs. An individual may be at different 
locations in a room and have different inhalation rates due to differences in physical 
activity, respiratory activity, and posture. The concentration of aerosols or virions also 
varies with both space and time. 
 
Consider a room with an air volume of 𝑉𝑉 (m3), 𝑁𝑁𝜎𝜎 susceptible individuals, and 𝑁𝑁𝐼𝐼 
infectors. For respiratory infections, two populations are involved: virus particles or 
virions and susceptible individuals. Each virion in the room may be inhaled by a 
susceptible individual and produce an infection. 
 
Each point in space was defined as 𝒙𝒙(𝑥𝑥,𝑦𝑦, 𝑧𝑧). The trajectory of an individual was 
denoted as 𝑥⃗𝑥(𝑡𝑡) at moment 𝑡𝑡. The airborne virion concentration, 𝑐𝑐𝑉𝑉(𝒙𝒙, 𝑡𝑡), varied 
both spatially and temporally (Figure 1A). CFD predictions may be used to determine 
𝑐𝑐𝑉𝑉(𝒙𝒙��⃗ , 𝑡𝑡) (Qian et al., 2009), and/or fine spatial- or temporal-resolution measurements 
may become possible in the future.  
 
<Figure 1> Model of an enclosed space, individuals, and their trajectories. (A) 
Breathing zone in a room with one infector (in red) who caused an outbreak of a 



respiratory infection amongst 19 susceptible individuals, with three infected (in 
yellow) and 16 not infected. (B) The spatial trajectory, 𝒙𝒙��⃗ 𝑖𝑖(𝑡𝑡), of individual 𝑖𝑖 who 
arrives at time 𝑡𝑡1,𝑖𝑖 and departs at time 𝑡𝑡2,𝑖𝑖. The sphere symbols show the locations 
where individual 𝑖𝑖 spends some time. (C) The concept of the space–time prism for 
defining the trajectory, 𝒙𝒙��⃗ 𝑖𝑖(𝑡𝑡), of individual 𝑖𝑖 in the space.(For interpretation of the  
references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
 
We focused on a susceptible individual, 𝑖𝑖. The inhalation exposure of individual 𝑖𝑖, 
𝑛𝑛𝑖𝑖𝑖𝑖,𝑖𝑖, is proportional to the inhalation flow rate, 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖(𝑡𝑡), and thus, 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖 may change 
with time along individual 𝑖𝑖's trajectory, 𝒙𝒙��⃗ 𝑖𝑖(𝑡𝑡). Individual 𝑖𝑖 arrives in the space at 
time 𝑡𝑡1,𝑖𝑖 and departs at time 𝑡𝑡2,𝑖𝑖 (Figure 1B), and 𝑐𝑐𝑉𝑉(𝒙𝒙��⃗ 𝑖𝑖(𝑡𝑡)) is the virion 
concentration along trajectory 𝒙𝒙��⃗ 𝑖𝑖(𝑡𝑡). Strictly speaking, 𝑐𝑐𝑉𝑉(𝒙𝒙��⃗ 𝑖𝑖(𝑡𝑡)) is the virion 
concentration in the inhaled air volume, 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑. Our notion of trajectory 𝒙𝒙��⃗ 𝑖𝑖(𝑡𝑡) 
may be seen as an application of the space–time prism (Miller, 1991, and Figure 1C) 
in indoor spaces. 
 
The number of virions inhaled by individual 𝑖𝑖 in space can be represented by: 
𝑛𝑛𝑖𝑖𝑖𝑖,𝑖𝑖 = ∫ 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖(𝑡𝑡)𝑐𝑐𝑉𝑉(𝒙𝒙��⃗ 𝑖𝑖(𝑡𝑡)) 𝑑𝑑𝑑𝑑𝑡𝑡2,𝑖𝑖

𝑡𝑡1,𝑖𝑖
.  

 
The average number of virions in a space during the entire stay period of individual 𝑖𝑖 
can be calculated as: 

𝑛𝑛𝑣𝑣,𝑖𝑖 =
∫ ∫ 𝑐𝑐𝑉𝑉(𝒙𝒙,𝑡𝑡)𝑑𝑑𝑑𝑑𝑉𝑉

0
𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖

𝑑𝑑𝑑𝑑

𝑡𝑡2,𝑖𝑖−𝑡𝑡1,𝑖𝑖
,  

 
where 𝑐𝑐𝑉𝑉(𝒙𝒙, 𝑡𝑡) is the virion concentration at location 𝒙𝒙 and time 𝑡𝑡. Note the 
difference between 𝑐𝑐𝑉𝑉(𝒙𝒙, 𝑡𝑡) and 𝑐𝑐𝑉𝑉(𝒙𝒙��⃗ 𝑖𝑖(𝑡𝑡)), which represent all spatial locations 𝒙𝒙 
in space and only those spatial points, 𝒙𝒙��⃗ 𝑖𝑖 , along the trajectory of individual 𝑖𝑖, 
respectively. 
 
For any virion in space, its inhalation probability by individual 𝑖𝑖 during the whole 
exposure period becomes  
 
 𝑝𝑝𝑖𝑖𝑖𝑖,𝑖𝑖 = 𝑛𝑛𝑖𝑖𝑖𝑖,𝑖𝑖

𝑛𝑛𝑣𝑣,𝑖𝑖
.          (1) 

 
Equation (1) is important and fundamental. When it is in a steady state and 𝑐𝑐𝑉𝑉(𝒙𝒙��⃗ ) is 
uniformly distributed, 𝑝𝑝𝑖𝑖𝑖𝑖,𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖𝑐𝑐𝑉𝑉∆𝑡𝑡𝑖𝑖

𝑉𝑉𝑐𝑐𝑉𝑉
= 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖∆𝑡𝑡𝑖𝑖

𝑉𝑉
. The new Equation (1) paves the way 

to estimate the individual infection probability due to inhalation exposure and the 
number of secondary infections in a space. 
 
2.2 Probability of infection of an individual 
 
The probability that a virion is not inhaled by individual 𝑖𝑖 becomes 1 − 𝑝𝑝𝑖𝑖𝑖𝑖,𝑖𝑖 = 1 −
𝑛𝑛𝑖𝑖𝑖𝑖,𝑖𝑖
𝑛𝑛𝑣𝑣,𝑖𝑖

. 

The probability that 𝑗𝑗 virions are inhaled by individual 𝑖𝑖 follows a binomial 
distribution, as indicated in Equation (2). 



𝑝𝑝(𝑗𝑗) = Pr�𝑋𝑋 = 𝑗𝑗|𝑛𝑛𝑣𝑣,𝑖𝑖 ,𝑝𝑝𝑖𝑖𝑖𝑖,𝑖𝑖� = 𝑛𝑛𝑣𝑣,𝑖𝑖!
𝑗𝑗!�𝑛𝑛𝑣𝑣,𝑖𝑖−𝑗𝑗�!

𝑝𝑝𝑖𝑖𝑖𝑖,𝑖𝑖
𝑗𝑗�1 − 𝑝𝑝𝑖𝑖𝑖𝑖,𝑖𝑖�

𝑛𝑛𝑣𝑣,𝑖𝑖−𝑗𝑗  (2) 

 
Individuals vary in their level of immunity and other risk factors for respiratory 
infections. The survival and infection probabilities of the virions inhaled by an 
individual may also be ‘individual’. We used a dose-response parameter, 𝑟𝑟𝑖𝑖, for 
susceptible individual 𝑖𝑖 to denote such individual variability. The survival of a virion 
from its release to infection was assumed to be independent. By definition, 𝑟𝑟𝑖𝑖 = 1 
when the infectious quantum is used as the infectious unit (Sze To and Chao, 2010).  
 
Using the single-hit model approach described by Haas (1983), we further obtained 
the infection probability of individual 𝑖𝑖 (the details are listed in Supplementary 
Information S2). The probability that one or more of the 𝑛𝑛𝑣𝑣,𝑖𝑖 virions are inhaled by 
susceptible individual 𝑖𝑖, survive, and lead to infection based on the single-hit theory 
becomes 
 
𝑝𝑝𝑖𝑖(𝑑𝑑𝑖𝑖) = 1 − 𝑒𝑒−𝑟𝑟𝑖𝑖𝑑𝑑𝑖𝑖,        (3) 
 
where the dose, 𝑑𝑑𝑖𝑖 = 𝑛𝑛𝑣𝑣,𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖,𝑖𝑖 = ∫ 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖(𝑡𝑡)𝑐𝑐𝑉𝑉(𝒙𝒙��⃗ 𝑖𝑖(𝑡𝑡))𝑑𝑑𝑑𝑑𝑡𝑡2,𝑖𝑖

𝑡𝑡1,𝑖𝑖
, with the individual-based 

dose-response parameter 𝑟𝑟𝑖𝑖. If all parameters are available, the probability of 
infection, 𝑝𝑝𝑖𝑖, can be obtained for every individual (𝑖𝑖 = 1,2, … ,𝑁𝑁𝜎𝜎). 
 
2.3 Expected average number of infected individuals 
 
We estimated the expected number of infected individuals (𝑁𝑁𝜄𝜄) amongst 𝑁𝑁𝜎𝜎 
susceptible individuals in a space. This estimation is equivalent to performing 𝑁𝑁𝜎𝜎 
independent experiments, i.e., Bernoulli trials, with the 𝑖𝑖𝑡𝑡ℎ experiment (individual 𝑖𝑖) 
having a probability of success (infected), 𝑝𝑝𝑖𝑖, or a probability of failure (not infected), 
(1 − 𝑝𝑝𝑖𝑖). The probability that k susceptible individuals (𝑘𝑘 ≤ 𝑁𝑁𝜎𝜎) are infected can be 
written as a Poisson-binomial distribution (Bogen and Spear, 1987; Nicas, 1996). 
Following the method detailed in Supplementary Information S3, we obtain the 
average infection probability in the space 
 
𝑁𝑁𝜄𝜄
𝑁𝑁𝜎𝜎

= 𝑝̅𝑝𝑖𝑖 = 1 − 1
𝑁𝑁𝜎𝜎
∑ (𝑒𝑒−𝑟𝑟𝑖𝑖𝑑𝑑𝑖𝑖)𝑁𝑁𝜎𝜎
𝑖𝑖=1 ,      (4) 

 

where 𝑝̅𝑝𝑖𝑖 =
∑ 𝑝𝑝𝑖𝑖
𝑁𝑁𝜎𝜎
𝑖𝑖=1
𝑁𝑁𝜎𝜎

 is the average infection probability of 𝑁𝑁𝜎𝜎 susceptible individuals. 
The Poisson-binomial distribution also allows estimation of the probability that any k 
susceptible individuals (𝑘𝑘 ≤ 𝑁𝑁𝜎𝜎) get infected. 
 
The dose-response model (Equation 4) predicts the expected number of secondary 
infections (𝑁𝑁𝜄𝜄), with each susceptible individual having their own probability of 
infection. In this new model, the exposure dose, 𝑑𝑑𝑖𝑖, and the dose-response parameter, 
𝑟𝑟𝑖𝑖, may differ for each susceptible individual. In theory, when the ventilation rate or 
the clean air flow rate is given for a group of susceptible individuals and infectors, 
along with their detailed trajectories and metabolic or breathing activity, one can 
estimate 𝑐𝑐𝑉𝑉(𝒙𝒙��⃗ 𝑖𝑖(𝑡𝑡)) and the exposure dose, 𝑑𝑑𝑖𝑖, for every individual, and finally, the 
average probability of infection in the room using Equation (4). 
 



Equation (4) is not in its final form as the virion concentration, 𝑐𝑐𝑉𝑉(𝒙𝒙��⃗ 𝑖𝑖(𝑡𝑡)), is not 
analytically linked to the virion emission of the infectors or the clean air flow rate. 
The governing equations for airflow are the Navier–Stokes equations, and there are no 
general analytical solutions (Berselli, 2021). It is not yet possible to write an 
analytical formula for 𝑐𝑐𝑉𝑉(𝒙𝒙��⃗ 𝑖𝑖(𝑡𝑡)) in general settings; however, the underlying 
physical principles can be determined by examining ideal settings.  
 
In cases where all individuals take fixed positions (𝒙𝒙𝒊𝒊) in a space, e.g., passengers in a 
bus, train, or aeroplane cabin; students in a classroom; or patrons in a restaurant, and 
the inhalation exposure during movement from the doorway to position 𝒙𝒙𝒊𝒊 can be 
ignored, Equation (4) becomes 
  

𝑝̅𝑝𝑖𝑖 = 𝑁𝑁𝜄𝜄
𝑁𝑁𝜎𝜎

= 1
𝑁𝑁𝜎𝜎
∑ �1 − 𝑒𝑒

−𝑟𝑟𝑖𝑖 ∫ 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖(𝑡𝑡)𝑐𝑐𝑉𝑉(𝒙𝒙𝒊𝒊,𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖 �𝑁𝑁𝜎𝜎

𝑖𝑖=1 .     (5) 

 
Under steady-state conditions with a constant inhalation rate, a stable virus 
concentration, and fixed locations, the average infection probability in the space 
becomes 
 
𝑝̅𝑝𝑖𝑖 = 1

𝑁𝑁𝜎𝜎
∑ �1 − 𝑒𝑒−𝑟𝑟𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖𝑐𝑐𝑉𝑉(𝒙𝒙𝒊𝒊)∆𝑡𝑡𝑖𝑖�𝑁𝑁𝜎𝜎
𝑖𝑖=1  .      (6) 

 
If the spatial distributions of the virus concentrations 𝑐𝑐𝑉𝑉(𝒙𝒙��⃗ 𝑖𝑖(𝑡𝑡)), 𝑐𝑐𝑉𝑉(𝒙𝒙𝒊𝒊, 𝑡𝑡), or 
𝑐𝑐𝑉𝑉(𝒙𝒙𝒊𝒊) are known, Equations (4), (5), or (6) can be used, respectively, to estimate the 
average infection probability of all susceptible individuals in the space, depending on 
the situation. 
 
In existing outbreak analyses, although susceptible individuals have different 
exposure times, investigators generally assume an equal dose by using an average 
exposure time (Li et al., 2021). Investigators also assume a uniform distribution of the 
virus concentration in space to estimate the infectious quantum emission rate of the 
infected person. However, the validity of such assumptions has not been analysed, 
and thus, the assumptions were investigated here. 
 
2.4 Defining effective dilution air and intake fraction time  
 
Estimating individual risk alone does not reveal the intervention mechanisms. We 
aimed to develop simple indices to compare exposure efficiency at the individual and 
population levels.  
 
When the infection risk is low, Equation (5) becomes 
 

𝑁𝑁𝜄𝜄 ≈ 𝑁𝑁𝜎𝜎
1
𝑁𝑁𝜎𝜎
∑ �1 − 𝑒𝑒

−𝑟𝑟𝑖𝑖 ∫ 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖(𝑡𝑡)𝑐𝑐𝑉𝑉(𝒙𝒙𝒊𝒊,𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖 �𝑁𝑁𝜎𝜎

𝑖𝑖=1 ≈ ∑ �𝑟𝑟𝑖𝑖 ∫ 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖(𝑡𝑡)𝑐𝑐𝑉𝑉(𝒙𝒙𝒊𝒊, 𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖

�𝑁𝑁𝜎𝜎
𝑖𝑖=1 .

 (7) 
 
Similarly, using Equation (3), the infection probability of individual 𝑖𝑖 becomes 
 
𝑝𝑝𝑖𝑖(𝑑𝑑𝑖𝑖) = 1 − 𝑒𝑒−𝑟𝑟𝑖𝑖𝑑𝑑𝑖𝑖 ≈ 𝑟𝑟𝑖𝑖 ∫ 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖(𝑡𝑡)𝑐𝑐𝑉𝑉(𝒙𝒙𝒊𝒊, 𝑡𝑡)𝑑𝑑𝑑𝑑

𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖

.      (8) 



 
The number of secondary infections (population risk, Equation 7) and the individual 
infection probability (individual risk, Equation 8) are affected by parameters related to 
the infector(s), environment, and susceptible individuals. It is useful to define simple 
indices to represent the environmental dilution ability during exposure and the overall 
exposure efficiency as affected by the environment and susceptible individual 
parameters. These indices are the effective dilution air, 𝑞𝑞𝑒𝑒, and intake fraction time, 
(iF)𝑡𝑡. 𝑞𝑞𝑒𝑒 is a virtual effective clean air flow rate under pseudo-steady and 
pseudo-mixing conditions that combines the effects of air volume, air distribution, 
clean air rate, air change rate and exposure time variability into one variable. (iF)𝑡𝑡 
may be understood as the effective exposure ‘time’ of susceptible individuals due to 
direct inhalation of the expired infectious aerosols via the mouth/nose to mouth/nose 
without any dilution in the room environment. 
 
Let the estimated number of secondary infections (Equation 7) directly link to the 
infectious quanta emission rate; thus, we obtain the effective dilution air and intake 
fraction time. As previously mentioned, when the infectious quantum is used as the 
infectious unit, 𝑟𝑟𝑖𝑖 = 1. In theory, the infectious quantum emission rate can vary for 
each susceptible individual if a unity value for the dose-response parameter is 
enforced. For simplicity, we assumed that the emitted quanta rates were constant.  
 
𝑁𝑁𝜄𝜄 = (iF)𝑡𝑡𝑁𝑁𝐼𝐼𝑄𝑄 = 𝑁𝑁𝐼𝐼𝑄𝑄

1
𝑞𝑞𝑒𝑒
𝑞𝑞�𝑖𝑖𝑖𝑖∆𝑡𝑡���,      (9) 

 
where intake fraction time (iF)𝑡𝑡 = (iF)∆𝑡𝑡��� , 𝑞𝑞�𝑖𝑖𝑖𝑖 = 1

𝑁𝑁𝜎𝜎
∑ 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖
𝑁𝑁𝜎𝜎
𝑖𝑖=1 , ∆𝑡𝑡��� = 1

𝑁𝑁𝜎𝜎
∑ ∆𝑡𝑡𝑖𝑖
𝑁𝑁𝜎𝜎
𝑖𝑖=1 , 

and the intake fraction (iF) = 𝑞𝑞�𝑖𝑖𝑖𝑖
𝑞𝑞𝑒𝑒

. 𝑄𝑄 is the average infectious quantum emission rate 
of 𝑁𝑁𝐼𝐼 infectors for all susceptible individuals. In the following text, we also 
considered a constant inhalation flow rate for all as 𝑞𝑞𝑖𝑖𝑖𝑖. The effective dilution air 𝑞𝑞𝑒𝑒 
is not a physical dilution air flow rate but should be equal to the physical dilution air 
flow rate at steady-state and uniform conditions. 𝑞𝑞𝑒𝑒 is virtually equivalent to the 
dilution air (due to indoor ventilation, virus deactivation, particle deposition and 
filtration) in terms of the dilution effect. Effective dilution air is an inverse linear 
variable used to determine the number of secondary infections, 𝑁𝑁𝜄𝜄, in the same 
manner as the clean air flow rate, 𝑞𝑞𝑝𝑝, at steady state and uniform conditions. The 
concept of effective dilution air allows a direct comparison of dilution ability between 
settings as affected by both the environmental conditions and susceptible individuals. 
 
Our definition of intake fraction time (iF)𝑡𝑡 follows an existing concept of intake 
fraction in exposure science (Bennett et al., 2002). The number of secondary 
infections, 𝑁𝑁𝜄𝜄, is a simple linear function of intake fraction time. The intake fraction 
time is likely the simplest and most straightforward parameter linking exposure and 
source (Equation 9). A lower (iF)𝑡𝑡 value leads to a lower level of exposure. One 
should aim to reduce intake fraction time. The intake fraction (iF) is the average 
ratio of the infectious quantum eventually inhaled by 𝑁𝑁𝜎𝜎 susceptible individuals to 
the infectious quantum (𝑁𝑁𝐼𝐼𝑄𝑄∆𝑡𝑡) released from 𝑁𝑁𝐼𝐼 infectors. 𝑞𝑞𝑖𝑖𝑖𝑖

𝑞𝑞𝑒𝑒
 is also known as the 

rebreathed fraction (Rudnick and Milton, 2003). 
 



We replaced the virion concentration, 𝑐𝑐𝑉𝑉, with the infectious quantum concentration, 
𝑐𝑐𝑄𝑄. Combining equations (9) and (7), we obtain 
 
(iF)𝑡𝑡𝑁𝑁𝐼𝐼𝑄𝑄 ≈ 𝑞𝑞𝑖𝑖𝑖𝑖 ∑ �∫ 𝑐𝑐𝑄𝑄(𝒙𝒙𝒊𝒊, 𝑡𝑡)𝑑𝑑𝑑𝑑

𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖

�𝑁𝑁𝜎𝜎
𝑖𝑖=1  and  (10) 

𝑁𝑁𝐼𝐼𝑄𝑄
1
𝑞𝑞𝑒𝑒
𝑞𝑞𝑖𝑖𝑖𝑖∆𝑡𝑡��� ≈ 𝑞𝑞𝑖𝑖𝑖𝑖 ∑ �∫ 𝑐𝑐𝑄𝑄(𝒙𝒙𝒊𝒊, 𝑡𝑡)𝑑𝑑𝑑𝑑

𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖

�𝑁𝑁𝜎𝜎
𝑖𝑖=1  .    (11) 

 
We thus obtain formulas for the effective dilution air, 𝑞𝑞𝑒𝑒, and the intake fraction time, 
(iF)𝑡𝑡. 
 

(iF)𝑡𝑡 =
𝑞𝑞𝑖𝑖𝑖𝑖 ∑ �∫ 𝑐𝑐𝑄𝑄(𝒙𝒙𝒊𝒊,𝑡𝑡)𝑑𝑑𝑑𝑑

𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖

�𝑁𝑁𝜎𝜎
𝑖𝑖=1

𝑁𝑁𝐼𝐼𝑄𝑄
     (12) 

𝑞𝑞𝑒𝑒 = 𝑁𝑁𝐼𝐼𝑄𝑄∆𝑡𝑡���

∑ �∫ 𝑐𝑐𝑄𝑄(𝒙𝒙𝒊𝒊,𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖

�𝑁𝑁𝜎𝜎
𝑖𝑖=1

     (13) 

 
The physics of these two new parameters cannot be obtained directly from Equations 
(12) and (13). The following ideal setting sheds some light on this problem. If 𝑁𝑁𝐼𝐼 = 1 
at steady state and with full mixing, 𝑐𝑐𝑄𝑄(𝒙𝒙𝒊𝒊) = 𝑄𝑄

𝑁𝑁𝜎𝜎𝑞𝑞𝑝𝑝
, where 𝑞𝑞𝑝𝑝 is the clean air flow 

rate per person, and all susceptible individuals have the same exposure time, ∆𝑡𝑡 
(∆𝑡𝑡��� = ∆𝑡𝑡), Equations (12) and (13) can be simplified to Equations (14) and (15). 
 

(iF)𝑡𝑡 =
𝑞𝑞𝑖𝑖𝑖𝑖 ∑ �∫ 𝑐𝑐𝑄𝑄(𝒙𝒙𝒊𝒊,𝑡𝑡)𝑑𝑑𝑑𝑑

𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖

�𝑁𝑁𝜎𝜎
𝑖𝑖=1

𝑄𝑄
= 𝑞𝑞𝑖𝑖𝑖𝑖

𝑞𝑞𝑝𝑝
∆𝑡𝑡   (14) 

𝑞𝑞𝑒𝑒 = 𝑄𝑄∆𝑡𝑡

∑ �∫ 𝑐𝑐𝑄𝑄(𝒙𝒙𝒊𝒊,𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖

�𝑁𝑁𝜎𝜎
𝑖𝑖=1

= 𝑞𝑞𝑝𝑝     (15) 

 
In such a setting, effective dilution air rate per person, 𝑞𝑞𝑒𝑒, is simply the clean air flow 
rate per person, 𝑞𝑞𝑝𝑝, due to ventilation, virus deactivation, particle deposition and/or 
filtration. There is a corresponding individual effective dilution air value, 𝑞𝑞𝑒𝑒,𝑖𝑖 , and an 
individual intake fraction time, (iF)𝑡𝑡,𝑖𝑖, for each susceptible individual 𝑖𝑖. We then 
write equation (8) as 
 
𝑝𝑝𝑖𝑖(𝑑𝑑𝑖𝑖) ≈ (iF)𝑡𝑡,𝑖𝑖

1
𝑁𝑁𝜎𝜎
𝑁𝑁𝐼𝐼𝑄𝑄 and      (16) 

𝑝𝑝𝑖𝑖(𝑑𝑑𝑖𝑖) ≈ 𝑁𝑁𝐼𝐼𝑄𝑄
1

𝑁𝑁𝜎𝜎𝑞𝑞𝑒𝑒,𝑖𝑖
𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖∆𝑡𝑡𝑖𝑖,      (17) 

 
where (iF)𝑡𝑡,𝑖𝑖 = (iF𝑖𝑖)∆𝑡𝑡𝑖𝑖 , and (iF𝑖𝑖) = 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖

𝑞𝑞𝑒𝑒,𝑖𝑖
. We let  

 
𝑝𝑝𝑖𝑖(𝑑𝑑𝑖𝑖) ≈ (iF)𝑡𝑡,𝑖𝑖

1
𝑁𝑁𝜎𝜎
𝑁𝑁𝐼𝐼𝑄𝑄 = 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖 ∫ 𝑐𝑐𝑄𝑄(𝒙𝒙𝒊𝒊, 𝑡𝑡)𝑑𝑑𝑑𝑑

𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖

  and   (18) 

𝑝𝑝𝑖𝑖(𝑑𝑑𝑖𝑖) ≈ 𝑁𝑁𝐼𝐼𝑄𝑄
1

𝑁𝑁𝜎𝜎𝑞𝑞𝑒𝑒,𝑖𝑖
𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖∆𝑡𝑡𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖 ∫ 𝑐𝑐𝑄𝑄(𝒙𝒙𝒊𝒊, 𝑡𝑡)𝑑𝑑𝑑𝑑

𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖

,   (19) 

 
so that 

(iF)𝑡𝑡,𝑖𝑖 =
𝑁𝑁𝜎𝜎𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖 ∫ 𝑐𝑐𝑄𝑄(𝒙𝒙𝒊𝒊,𝑡𝑡)𝑑𝑑𝑑𝑑

𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖
𝑁𝑁𝐼𝐼𝑄𝑄

 and     (20) 



𝑞𝑞𝑒𝑒,𝑖𝑖 = 𝑁𝑁𝐼𝐼𝑄𝑄∆𝑡𝑡𝑖𝑖
𝑁𝑁𝜎𝜎 ∫ 𝑐𝑐𝑄𝑄(𝒙𝒙𝒊𝒊,𝑡𝑡)𝑑𝑑𝑑𝑑

𝑡𝑡2,𝑖𝑖
𝑡𝑡1,𝑖𝑖

.       (21) 

 
Thus, our derivation of individual infection probability (Equation 3) eventually led to 
the possibility of evaluating ‘local’ or individual infection risk under different settings 
and exposure conditions. 
 
2.5 A two-zone setting  
 
To demonstrate the applicability of individual infection probability for understanding 
non-uniformity, we first estimated infection risk in a reported restaurant outbreak (Li 
et al., 2021) using a two-zone model. A two-zone model provides analytical solutions 
under constant-flow conditions (Sinden, 1978, Supplementary Information S5), which 
enables a detailed investigation of mixing or non-uniformity effects. At least two 
factors quantitatively contributed to the individual variability in infection in this 
outbreak, i.e., the arrival and departure time of patrons at each table differed (Table 1) 
and the local infectious quantum concentration differed by table and individual, 
although the locations of the patrons were nearly fixed. The effect of individual 
factors on infection can be considered by the new model. Some patrons may 
occasionally have stood up, e.g., to pick up food, and their bodies and heads may also 
have moved during conversation, which would affect both expiration (index case) and 
inhalation (susceptible individuals). Such minor effects were ignored here, but 
warrant investigation in future studies.  
 
<Table 1>The arrival time, 𝑡𝑡1,𝑖𝑖 , and departure time, 𝑡𝑡2,𝑖𝑖, of patrons at each table 
 
Estimations of the population effective dilution air and intake fraction time need to be 
specific to the population level being analysed, i.e., the room or a specific zone within 
the room. One also needs to be mindful that there is a major difference between 
effective dilution air and intake fraction time, i.e., the effective dilution air is in the 
denominator (Equation 9; see Supplementary Information S6). Our derivation of 
individual infection probability (Equation 3) led to the possibility of evaluating the 
‘local’ or individual infection risk under different settings and exposure conditions.\ 
 
Based on the restaurant data in Guangzhou, but allowing a larger number of 
individuals, we set up a hypothetical large but poorly ventilated restaurant divided 
into two zones (Figure 2B). We do not intend to endorse such a two-zone approach 
for infection analysis, as in practice, zone division is difficult without detailed CFD or 
tracer gas measurement data. Our purpose is to use this outbreak to analyse the effect 
of non-uniformity with analytical solutions.  The hypothetical restaurant had an air 
volume of 1,000 m3, and 200 people were present (with Zone 1 having 200 m3 and 40 
people and Zone 2 having 800 m3 and 160 people). The inhalation rate was constant at 
0.2 L/s for all patrons. There was only one infector in Zone 1 or 2. The infector 
emitted a constant quanta generation rate of 150 quanta/h, which was taken from the 
above-mentioned analysis of the Guangzhou restaurant outbreak. The exposure time 
of all patrons in each zone satisfied the normal distribution, 𝑁𝑁(62, 10.5) (units of 
min). All patrons arrived at the same time as the index case. The index case stayed in 
the restaurant for 1 h.  
 



<Figure 2>Two-zone division in a restaurant where a COVID-19 outbreak was 
reported. (A) We divided the restaurant into two sections: Zone 1 or ABC, and Zone 
2 or non-ABC. The locations of the tables are only approximate. The seats are shown 
for Tables A, B, and C, with infected individuals shown in red circles. The numbers in 
brackets indicate the number of people at each table. The drawing is not to scale. (B) 
A hypothetical two-zone restaurant with an air volume of 1,000 m3 and 200 persons 
present (with 200 m3 and 40 persons in Zone 1, and 800 m3 and 160 persons in Zone 
2).   
 
The clean air change rate, 𝑛𝑛𝑐𝑐 , included the outdoor air supply, 𝑛𝑛0 (ventilation); virus 
deactivation, 𝑛𝑛𝑑𝑑; aerosol settling, 𝑛𝑛𝑠𝑠; and filtration, 𝑛𝑛𝑓𝑓. The outdoor air supply was 
1 L/s per person, so that 𝑛𝑛0 = 0.72 h-1. 𝑛𝑛𝑐𝑐 = 𝑛𝑛0 + 𝑛𝑛𝑑𝑑 + 𝑛𝑛𝑠𝑠 + 𝑛𝑛𝑓𝑓 = 0.72 + 0.67 +
0.3 + 2 = 3.69 (h-1). The total clean air flow rates were represented by 𝑞𝑞𝑐𝑐 = 𝑛𝑛𝑐𝑐𝑉𝑉 = 
1025 L/s and 𝑞𝑞𝑝𝑝 = 5.125 L/s per person. The contribution to total clean air by 
filtration air (𝑛𝑛𝑓𝑓 = 2) is greater than that by ventilation (𝑛𝑛0=0.72). We maintained the 
mean clean air rate per person, 𝑞𝑞𝑝𝑝. If all ventilation air, 𝑛𝑛0, is in Zone 1, 𝑛𝑛01 =
1000×0.72

200
= 3.6 h-1, whereas if all ventilation air is in Zone 2, 𝑛𝑛02 = 1000×0.72

800
= 0.9 

h-1. If all filtration air, 𝑛𝑛𝑓𝑓, is in Zone 1, 𝑛𝑛𝑓𝑓1 = 1000×2
200

= 10 h-1, whereas if all 

filtration air is in Zone 2, 𝑛𝑛𝑓𝑓2 = 1000×2
800

= 2.5 h-1. We used these data to set up 
scenarios in the hypothetical two-zone restaurant (Table 2).  
 
<Table 2>The scenarios in the hypothetical two-zone restaurant 
 
For the fully mixing condition, the number of secondary infections in the hypothetical 
restaurant was 4.26 (i.e., 4 people). We aimed to analyse the effect of non-uniformity 
in the two zones on the number of secondary infections under two defined scenarios, 
i.e., when one zone was better ventilated or filtrated while the other was relatively 
poorly ventilated or filtrated. The index case was placed in either the poorly diluted or 
better diluted zone so that the role of exchange flow between the two zones could be 
studied. We estimated the number of secondary infections in Zones 1 and 2, and the 
individual and zonal effective dilution air and intake fraction time. For all scenarios, 
we varied the exchange flow rate between the two zones from 0% to 200% of the total 
clean air rate of 1025 L/s.  
 
2.6 A simple model of spatial non-uniformity 

We further explored the steady-state solution represented in Equation (6) to determine 
the effect of non-uniform air distribution and to derive an equation to estimate the 
quanta generation rate, allowing the derivation of a heterogeneous Wells–Riley 
equation for non-uniform settings.  
 
Under steady-state conditions, all newly released viral particles are removed by 
ventilation, deposition, filtration, and virus deactivation. The total number of virus 
particles released by 𝑁𝑁𝐼𝐼 infectors (expiration flow rate 𝑞𝑞𝑒𝑒𝑒𝑒,𝑖𝑖 and virus particle 
concentration 𝑐𝑐𝑞𝑞,𝑖𝑖 at the mouth and nose for infector 𝑖𝑖) is balanced by their removal: 
 
∑ 𝑞𝑞𝑒𝑒𝑒𝑒,𝑖𝑖𝑐𝑐𝑞𝑞,𝑖𝑖
𝑁𝑁𝐼𝐼
𝑖𝑖=1 = 𝑞𝑞𝑐𝑐𝑐𝑐𝑒𝑒,         (22) 

 



where 𝑞𝑞𝑐𝑐 = 𝑞𝑞 + 𝑞𝑞𝑑𝑑 + 𝑞𝑞𝑓𝑓 + 𝑞𝑞𝑠𝑠, and 𝑞𝑞𝑐𝑐 is the combined clean air flow rate due to 
ventilation, 𝑞𝑞; virus deactivation, 𝑞𝑞𝑑𝑑; filtration, 𝑞𝑞𝑓𝑓; and particle deposition, 𝑞𝑞𝑠𝑠. 𝑐𝑐𝑒𝑒 
is the mean concentration of virus particles at the exhaust(s):  
 

𝑐𝑐𝑒𝑒 =
∑ 𝑞𝑞𝑒𝑒𝑒𝑒,𝑖𝑖𝑐𝑐𝑞𝑞,𝑖𝑖
𝑁𝑁𝐼𝐼
𝑖𝑖=1

𝑞𝑞𝑐𝑐
        (23) 

 
Note that such an approach is not directly applicable to unsteady-state conditions with 
non-uniform distribution.  
 
Even under steady-state conditions, with spatial non-uniformity, the concentration, 
𝑐𝑐𝑉𝑉(𝒙𝒙𝒊𝒊), remains unknown. A local ventilation index, 𝜀𝜀(𝒙𝒙𝒊𝒊), is defined as the ratio of 
𝑐𝑐𝑒𝑒 to the concentration, 𝑐𝑐𝑉𝑉(𝒙𝒙𝒊𝒊), at point 𝒙𝒙𝒊𝒊 (Etheridge and Sandberg, 1996, page 
268). 
 

𝜀𝜀(𝒙𝒙𝒊𝒊) = 𝑐𝑐𝑒𝑒
𝑐𝑐𝑉𝑉(𝒙𝒙𝒊𝒊)

=
∑ 𝑞𝑞𝑒𝑒𝑒𝑒,𝑖𝑖𝑐𝑐𝑞𝑞,𝑖𝑖
𝑁𝑁𝐼𝐼
𝑖𝑖=1
𝑞𝑞𝑐𝑐𝑐𝑐𝑉𝑉(𝒙𝒙𝒊𝒊)

       (24) 
 
The reciprocal of the local ventilation index is referred to as the susceptible exposure 
index by Liu et al. (2017). In a fully mixed room, 𝜀𝜀(𝒙𝒙𝒊𝒊) = 1 in all locations, so that 
𝑐𝑐𝑉𝑉(𝒙𝒙𝒊𝒊) = 𝑐𝑐𝑒𝑒. The concentration at any location is the same as the concentration at the 
exhaust points. The local ventilation index may be greater than one (Liu et al., 2017) 
and may be a function of the exhalation orientation and the nasal or oral exhalation of 
the index case (Qian et al., 2008). Air distribution may be designed with a specific 
local ventilation index distribution, e.g., inverse design methods may be used to 
design air distribution (Zhai et al., 2014).  
   
Following equations (23-24), we write 𝑐𝑐𝑉𝑉(𝒙𝒙𝒊𝒊) = 1

𝜀𝜀(𝒙𝒙𝒊𝒊)𝑞𝑞𝑐𝑐
∑ 𝑞𝑞𝑒𝑒𝑒𝑒,𝑖𝑖𝑐𝑐𝑞𝑞,𝑖𝑖
𝑁𝑁𝐼𝐼
𝑖𝑖=1 . If all infectors 

are equal, ∑ 𝑞𝑞𝑒𝑒𝑒𝑒,𝑖𝑖𝑐𝑐𝑞𝑞,𝑖𝑖
𝑁𝑁𝐼𝐼
𝑖𝑖=1 = 𝑁𝑁𝐼𝐼𝑞𝑞𝑒𝑒𝑒𝑒𝑐𝑐𝑞𝑞. Equation (6) then becomes 

 

𝑝̅𝑝𝑖𝑖 = 𝑁𝑁𝜄𝜄
𝑁𝑁𝜎𝜎

= 1 − 1
𝑁𝑁𝜎𝜎
∑ �𝑒𝑒

− 1
ε�𝒙𝒙𝒊𝒊�

𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖
𝑞𝑞𝑐𝑐

�𝑁𝑁𝐼𝐼𝑞𝑞𝑒𝑒𝑒𝑒𝑐𝑐𝑞𝑞𝑟𝑟𝑖𝑖�∆𝑡𝑡𝑖𝑖�𝑁𝑁𝜎𝜎
𝑖𝑖=1 .    (25) 

 
Recognising 𝑄𝑄𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑞𝑞𝑒𝑒𝑒𝑒𝑐𝑐𝑞𝑞, i.e., the total quanta generation rate by an infector for 
susceptible individual, 𝑖𝑖, 
 

𝑝̅𝑝𝑖𝑖 = 𝑁𝑁𝜄𝜄
𝑁𝑁𝜎𝜎

= 1 − 1
𝑁𝑁𝜎𝜎
∑ �𝑒𝑒

− 1
ε�𝒙𝒙𝒊𝒊�

∆𝑡𝑡𝑖𝑖
𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖
𝑞𝑞𝑐𝑐

𝑁𝑁𝐼𝐼𝑄𝑄𝑖𝑖�𝑁𝑁𝜎𝜎
𝑖𝑖=1 .     (26) 

 
Note that our derived expired quanta generation rate 𝑄𝑄𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑞𝑞𝑒𝑒𝑒𝑒𝑐𝑐𝑞𝑞 is specific for 
each susceptible individual. An almost identical equation was used by Buonanno et al. 
(2020) to estimate quanta from viral load (𝑐𝑐𝑞𝑞) data. Our derivation provides the 
theoretical justification and support for the model described by Buonanno et al. 
(2020).  
 
In this relatively heterogeneous Wells–Riley model for steady-state conditions, the 
infectious quanta released by the same infector differ for each susceptible person who 
is exposed to the infectious viral particles. This difference arises from inter-individual 



variability in susceptibility to infection. Most studies of heterogeneity in the infection 
probability of susceptible individuals have attributed the causes to differences in viral 
load and contact patterns (Chen et al., 2021). Equation (26) shows that this difference 
may also be due to variation in the local ventilation index, ε(𝒙𝒙𝒊𝒊). The infection 
probability may be high for someone who stays at a location with an ε(𝒙𝒙𝒊𝒊) value 
much less than 1.  
 
The removal effectiveness of a room contaminant, 〈𝜀𝜀〉, was defined based on the 
average contaminant concentration in the room, 〈𝑐𝑐〉 (Etheridge and Sandberg, 1996, 
page 267), as follows: 〈𝜀𝜀〉 = 𝑐𝑐𝑒𝑒

〈𝑐𝑐𝑉𝑉(𝒙𝒙𝒊𝒊)〉
. One may also define the average contaminant 

removal effectiveness in the breathing zone as 〈𝜀𝜀〉breathing zone = 𝑐𝑐𝑒𝑒
〈𝑐𝑐𝑉𝑉�𝒙𝒙𝒊𝒊,breathing zone�〉

. 

Here, 〈𝜀𝜀〉breathing zone is the same zone air distribution effectiveness variable, 𝐸𝐸𝑧𝑧, as 
specified in ASHRAE 62.1 (2019). 𝐸𝐸𝑧𝑧 = 1 in a room with complete mixing, but can 
be > 1 in a room ventilated by displacement and < 1 in a room with stagnation, in 
which the contaminant is ‘locked in’. When a stratified air distribution system is used, 
summer cooling may result in 𝐸𝐸𝑧𝑧 > 1 , and an 𝐸𝐸𝑧𝑧 value as high as 2 in an 
auditorium. However, 𝐸𝐸𝑧𝑧 < 1 with winter heating (Lee et al., 2009a). 
 
We approximated Equation (26) using the zone air distribution effectiveness variable, 
𝐸𝐸𝑧𝑧, as follows: 
 

𝑝̅𝑝𝑖𝑖 = 𝑁𝑁𝜄𝜄
𝑁𝑁𝜎𝜎

= 1 − 1
𝑁𝑁𝜎𝜎
∑ �𝑒𝑒−

1
𝐸𝐸𝑧𝑧
∆𝑡𝑡𝑖𝑖

𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖
𝑞𝑞𝑐𝑐

𝑁𝑁𝐼𝐼𝑄𝑄𝑖𝑖�𝑁𝑁𝜎𝜎
𝑖𝑖=1 .    (27) 

 
Equation (27) is a useful model that uses the zone air distribution effectiveness of 
ASHRAE 62.1 (2019) directly, while considering the individual probability of 
infection. The model represented in Equation (27) may be further simplified into the 
standard Wells–Riley equation (Riley et al., 1978) by considering the situation when 
𝐸𝐸𝑧𝑧 = 1, and all susceptible individuals are equal. 
 

𝑝̅𝑝𝑖𝑖 = 𝑁𝑁𝜄𝜄
𝑁𝑁𝜎𝜎

= 1 − 𝑒𝑒−𝑁𝑁𝐼𝐼𝑄𝑄
𝑞𝑞𝑖𝑖𝑖𝑖
𝑞𝑞𝑐𝑐
∆𝑡𝑡      (28) 

 
 
3.Rsults 
 
3.1 Two-zone analysis of a restaurant outbreak  
 
We demonstrated our theory in a restaurant outbreak of COVID-19 (Li et al., 2021). If 
the whole restaurant was considered as a single space studied (Method 1 in Table 3), a 
steady-state estimation resulted in a quanta generation rate of 132.2 h-1. However, 
considering the transient effect, the quanta generation rate is 154.9 h-1. Considering 
the ABC zone as an ‘isolated’ space (Method 2 in Table 3, Parhizkar et al., 2021), we 
obtained estimated quanta emission rates of 136.7 h-1 and 164.3 h-1 for the 
steady-state and transient settings, respectively. The ABC zone estimates were 
reasonably close to the whole restaurant estimates. Why does the ABC zone approach 
work in this setting? To answer this question, we further considered a two-zone 
approach, i.e., the ABC and non-ABC zones, with an estimated exchange airflow rate 



between the two zones of 280 L/s (Table S1) based on tracer gas monitoring data 
reported by Li et al. (2021).  
 
<Table 3>Estimation of the infectious quantum emission rate when the zonal or total 
space is assumed to be fully mixed 
 
We used the analytical solutions of the two-zone model (Supplementary Information 
S5) to estimate the spatiotemporal distribution of virus concentrations in the two 
zones. Exposure level of each susceptible individual was estimated based on their 
location (the ABC or non-ABC zone) and their arrival and departure times. Hence, 
individual infection probability was considered. The exact arrival and departure times 
of patrons at different tables were determined from closed-circuit television video 
footage (Li et al., 2021). By the time the patrons at Table A arrived, most patrons had 
already arrived, except those at Table C (2 min later), Table 08 (27 min), Table 12 (12 
min), and Table 17 (59 min). By the time the patrons at Table A departed, those at 
some other tables remained, including those at Table 08 (14 min more), Table 10 (5 
min), Table 15 (7 min), and Table 17 (56 min, the last to leave). There were 
significant variations in exposure time and timing (starting and ending time). As those 
at Table A stayed for 82 min, the concentration did not reach full steady-state 
conditions by the time they left. There was a decay period in virus concentration when 
the remaining tables continued to be exposed. 
 
To distinguish the contributions of spatial non-uniformity and exposure variability, 
we first used the average exposure time in Methods 3 and 4 (Table 3), which assumed 
that secondary infections may occur in the whole restaurant or only in the ABC zone, 
respectively. The predicted quanta generation rate was 369.0 h-1 when considering the 
temporal variation in virus concentration using Method 4. A significant error occurred, 
as secondary infections were also likely to occur in the non-ABC zone. We further 
used the individual exposure time (with the detailed arrival and departure times listed 
in Table 1). The two-zone model using the individual exposure time and focusing on 
the whole restaurant (Method 5) predicted a quanta generation rate of 152.1 h-1. 
However, when focusing on the ABC zone (Method 6), the predicted quanta 
generation rate of 368.8 h-1 appeared to be over-estimated. 
 
A comparison of the predicted quanta generation rates using Methods 3 and 5 
suggested that the effect of using the arithmetic average of the exposure time was a 
reasonable approach. However, this conclusion is only valid when there is no 
variation in the inhalation rate. When variations exist in both the inhalation rate and 
exposure time, errors may be expected. However, this requires further investigation. 
 
To further examine the observed differences in predicted quanta generation rates 
using the six different methods listed in Table 3, we predicted the number of 
secondary infections in the ABC zone, the non-ABC zone, and the whole restaurant, 
as the exchange air flow between two zones varied (Figure 3). 
 
<Figure 3> Infection outbreak in the restaurant in Guangzhou analysed using a 
two-zone model.  
 
The mixing between ABC and non-ABC zones was reasonably significant at the time 
of exposure when the outbreak occurred (shown by the vertical green line in Figure 



3A). This explains why both the whole-zone and the single-ABC approaches 
(Methods 1 and 2) produced similar infectious quantum emission rates. However, 
when the ABC zone was assumed to produce the nine secondary infections, and both 
zones were included in the analysis, a quanta generation rate greater than 330 
quanta/h was predicted (Methods 4 and 6). The exchange airflow from the relatively 
clean non-ABC zone to the ABC zone helps dilute the virus-containing aerosols in the 
ABC zone (Figure 3C). To achieve the same number of secondary infections, a higher 
quanta generation rate is needed. Note that a similar number of secondary infections 
occurred in the ABC and non-ABC zones if based on an estimated exchange airflow 
rate of 280 L/s.  
 
The restaurant at which the outbreak occurred had two relatively ‘balanced’ ABC and 
non-ABC zones, i.e., the population risks in the two zones were approximately equal 
(Figure 3A or 3B), although the dilution capability was greater in the non-ABC zone 
than the ABC zone (Figure 3C). There was relatively good mixing between the two 
zones at the time of the COVID-19 outbreak. However, the situation differs when the 
inter-zonal exchange flow is low. All secondary infections would occur in the ABC 
zone when the exchange airflow was less than 20 L/s. At a possible exchange air flow 
rate of 280 L/s, half of the secondary infections would occur in the ABC zone and 
half would occur in the non-ABC zone, although the total number of secondary 
infections would remain the same. Movement of the index case between the ABC 
zone and the non-ABC zone would not lead to an increase in the total number of 
secondary infections with a quanta generation rate of 152.1 h-1. This also explains 
why Method 2 accurately described the outbreak. The analogue method, Method 6, 
produced almost double the number of secondary infections in the entire restaurant.  
 
The predicted effective dilution air of the total restaurant was approximately 10 L/s 
per person, which was slightly higher than the combined clean air flow rate of 7.6 L/s 
per person. The overall effective dilution air and overall intake fraction time varied 
little when the exchange flow varied. Note that the effect of the inter-zonal exchange 
flow on the overall intake fraction time did not fully follow its effect on the number of 
secondary infections due to the linear approximation used in Equation 7 when the 
infection risk was relatively large. If the intake fraction time is defined without a 
linear approximation, the disagreement disappears (not shown here). The number of 
secondary infections in the total restaurant remained relatively constant at nine cases 
when the quanta generation rate was 152.1 h-1, as the exchange flow changed from 20 
L/s to 6,000 L/s.  
 
There was a significant decrease in the total number of secondary infections in the 
restaurant at a quanta generation rate of 368.8 h-1 when the exchange flow was low. 
With this quanta generation rate, the expected total number of secondary infections in 
the restaurant increased from 16 to 19 as the exchange flow increased from 20 L/s to 
280 L/s (red line in Figure 3A). Such an effect was further analysed using a 
hypothetical two-zone restaurant, in which the clean air rates per person due to 
outdoor airflow and filtration differed in the two zones.       
 
3.2 Non-uniformity 
 
The values of 𝐸𝐸𝑧𝑧 are given in ASHRAE 62.1 (2019, Table 6-2) for typical air 
distribution systems, with a large range of 0.7–1.5 (Figure 4). In the worst-case 



scenario considered in ASHRAE 62.1 (2019), in which warm air is supplied into a 
room with ceiling exhaust, 𝐸𝐸𝑧𝑧 = 0.7. In a displacement ventilated room, the 
application of personalised ventilation would lead to 𝐸𝐸𝑧𝑧 = 1.5. Other air distribution 
systems have 𝐸𝐸𝑧𝑧 values between those of these two systems. 
 
<Figure 4>Air distribution effectiveness in the breathing zone for typical air 
distribution systems. 
 
Equation (27) may be simplified at a low infection probability and constant inhalation 
rate, exposure time, and quanta emission rate to 𝑝̅𝑝𝑖𝑖 = 𝑁𝑁𝜄𝜄

𝑁𝑁𝜎𝜎
≈ 𝑁𝑁𝐼𝐼𝑄𝑄

𝐸𝐸𝑧𝑧
∆𝑡𝑡 𝑞𝑞𝑖𝑖𝑖𝑖

𝑞𝑞𝑐𝑐
. The number of 

secondary infections then becomes 𝑁𝑁𝜄𝜄 ≈
𝑁𝑁𝐼𝐼𝑄𝑄
𝐸𝐸𝑧𝑧
∆𝑡𝑡 𝑞𝑞𝑖𝑖𝑖𝑖

𝑞𝑞𝑝𝑝
. Assuming that all other 

parameters are identical, a difference of 0.7–1.5 in the 𝐸𝐸𝑧𝑧 value results in more than 
a 100% difference in the number of secondary infectionsv. 
 
The contaminant removal effectiveness, 𝜀𝜀(𝒙𝒙𝒊𝒊), depends on the spatial location 𝒙𝒙𝒊𝒊. 
The use of the 𝐸𝐸𝑧𝑧 values reported in ASHRAE 62.1 (2019) may be problematic in 
some situations. For example, in a displacement ventilated room, 𝜀𝜀(𝒙𝒙𝒊𝒊) = 1 in the 
upper mixing zone but may be much greater than 1 if the susceptible individual 
inhales from the lower clean zone. As an example, consider 50% of 𝑁𝑁𝜎𝜎 (even 
number) individuals in a room with 𝜀𝜀(𝒙𝒙𝑳𝑳) = 1.30 and their heads below the clean 
zone height, and 50% of 𝑁𝑁𝜎𝜎 individuals in the same room with 𝜀𝜀(𝒙𝒙𝑼𝑼) = 0.96 and 
their heads above the clean zone height (Lee et al., 2009a). 
 

𝑁𝑁𝜄𝜄 = ∑ �1 − 𝑒𝑒
− 1
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𝑁𝑁𝐼𝐼𝑄𝑄𝑖𝑖�𝑁𝑁𝜎𝜎
𝑖𝑖=0.5𝑁𝑁𝜎𝜎+1   (29) 

 
When the infection probability is low and each susceptible individual is identical for 
exposure parameters (i.e., 𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑖𝑖, ∆𝑡𝑡𝑖𝑖 = ∆𝑡𝑡 and 𝑄𝑄𝑖𝑖 = 𝑄𝑄), the average number 
of secondary infections becomes 
 
𝑁𝑁𝜄𝜄 ≈

1
2
𝑁𝑁𝜎𝜎

1
ε(𝒙𝒙𝑳𝑳)∆𝑡𝑡

𝑞𝑞𝑖𝑖𝑖𝑖
𝑞𝑞𝑐𝑐
𝑁𝑁𝐼𝐼𝑄𝑄 + 1

2
𝑁𝑁𝜎𝜎

1
ε(𝒙𝒙𝑼𝑼)∆𝑡𝑡

𝑞𝑞𝑖𝑖𝑖𝑖
𝑞𝑞𝑐𝑐
𝑁𝑁𝐼𝐼𝑄𝑄.       (30) 

 
Substituting two-contaminant removal effectiveness into Equation (30), we obtain 
𝑁𝑁𝜄𝜄 ≈ 0.91𝑁𝑁𝐼𝐼𝑄𝑄

𝑞𝑞𝑖𝑖𝑖𝑖
𝑞𝑞𝑝𝑝
∆𝑡𝑡. Thus, the number of secondary infections, 𝑁𝑁𝜄𝜄, becomes 9% 

fewer in such a room ventilated by displacement rather than by mixing ventilation. 
Without using CFD, it is not possible to determine the effect of the location of the 
breathing zone of infectors (below or above the clean zone height). Note that 
displacement ventilation may enhance short-range airborne transmission (Liu et al., 
2019). The result of Equation (30) only applies to long-range airborne exposure. 
 
The 𝐸𝐸𝑧𝑧 approach may be easily applied to airborne infection risk assessment 
following our derivation. This is done by assuming a uniform level of ‘non-uniformity’ 
(i.e., uniform contaminant removal effectiveness 𝜀𝜀(𝒙𝒙𝒊𝒊) in the breathing zone). 
However, in practice, a room may have multiple zones with different concentration 
distributions. A simple model is depicted in Figure 5, in which a long room may be 
divided into two zones – one with good dilution and another with poor dilution. Such 
a model is similar to the scenario in the restaurant and cannot be analysed using the 



𝐸𝐸𝑧𝑧 approach. Thus, a two-zone (or multi-zone) approach may be a good model to 
handle this issue. 
 
<Figure 5>A long room with a two-zone air distribution mode. 
 
3.3 Infection spread between two non-uniform zones 
 
The non-uniformity of clean air distribution between two zones in a room and the 
exchange airflow between the two zones are also important for airborne infections. 
For the two basic scenarios in Table 2, we imposed uniformity in the dilution ratio per 
person in and between the two zones. The exchange airflow between the two zones 
did not significantly change the overall number of secondary infections in the 
hypothetical restaurant (basic scenarios 01 and 02 in Figure 6A and 6B), i.e., with 
approximately four individuals infected. This confirmed the findings in the restaurant 
model described in Section 3.1. Of note, when Zone 1 is poorly ventilated (Figure 6A, 
case 14) or poorly filtrated (Figure 6B, case 34), an index case in the better-ventilated 
or better-filtrated Zone 2 would lead to the same number of secondary infections as 
the two basic scenarios. 
 
<Figure 6>Infection risk assessment in a hypothetical two-zone restaurant 
considering the effects of clean air distribution and inter-zonal air mixing. 
 
However, when the index case is in poorly ventilated Zone 2 (Figure 6A, case 13) or 
poorly filtrated Zone 2 (Figure 6B, case 33), in which there are three times more 
susceptible individuals than in Zone 1, the total number of secondary infections 
increases to a maximum of five and seven individuals, respectively. These were the 
greatest numbers of secondary infections of all tested cases listed in Table 2. The 
corresponding intake fraction time was also the greatest for cases 13 and 33, whereas 
the effective dilution air for these two cases was the least among all tested cases.  
 
The least number of secondary infections occurred when the index case was in the 
better-ventilated or better-filtrated Zone 1, in which there was a small number of 
susceptible individuals (Figure 6A1, case 11 and Figure 6B1, case 31). The smallest 
number of secondary infections occurred when there was a minimum exchange flow 
between the two zones, i.e., three secondary infections in case 11 and only two 
secondary infections in case 31. These cases represent a 25% and 50% reduction, 
respectively, from four secondary infections in the fully mixing condition. The 
corresponding intake fraction time was the least and the effective dilution air was the 
greatest for cases 11 and 31 amongst all the test cases presented in Figure 6A and 6B.  
 
For a fully mixing condition with four secondary infections, non-uniformity led to a 
change in the number of secondary infections to 3–5 when ventilation was not 
uniformly distributed (Figure 6A1), and to a wider range of 2–7 when filtration was 
not uniformly distributed (Figure 6B1). The difference between the two ranges was 
caused by the difference in the clean air flow rate due to ventilation and filtration. The 
widest range occurred when the exchange flow rate between the two zones was the 
lowest. As the exchange flow rate increased, the difference in the number of 
secondary infections contributed by non-uniform ventilation or filtration became 
smaller. Thus, enhanced inter-zonal mixing led to better uniformity in both virus 



concentration (Figure 7A1, 7B1) and the number of secondary infections (Figure 6A1, 
6B1). 
 
<Figure 7>Infection risk assessment in a hypothetical two-zone restaurant with 
the index case in Zone 1 for scenarios 01 and 31. 
 
In summary, when all other parameters were identical, an index case in a 
less-populated zone led to fewer secondary infections, and better dilution in the zone 
where the index case was located minimised the total number of secondary infections. 
When crowding and dilution were uniform between zones, inter-zonal mixing did not 
significantly affect the total number of secondary infections. However, when the 
index case was in a poorly diluted zone, greater inter-zonal mixing significantly 
decreased the total number of infections. In contrast, when the index case was in a 
well-diluted zone with a smaller population, greater inter-zonal mixing increased the 
total number of infections. 
 
We further compared the detailed zonal parameters between basic scenario 01 and 
scenario 31 in Figure 7A and Figure 7B. The zonal parameters in both scenarios and 
the overall parameters (room scale) in case 31 changed significantly with the 
increasing exchange flow rate between the two zones. The overall parameters (room 
scale) in basic scenario 01 remained unchanged basically with the increasing 
exchange flow rate between the two zones, due to two equally diluted zones in case 
01. In both scenarios, the overall parameters showed a similar trend to the parameters 
of Zone 2 and the opposite trend to the parameters of Zone 1, as the index case stayed 
in Zone 1. Both the number of secondary infections and the intake fraction time 
satisfied the arithmetic sum rule (Zone 1 + Zone 2 = overall room, Equation S49), but 
effective dilution air satisfied the harmonic mean (Equation S50). Despite the greatest 
overall effective dilution air (Figure 7B4) and the shortest overall intake fraction time 
(Figure 7B3), case 31 presents the lowest concentration of infectious quanta in both 
zones (Figure 7B1). This resulted in the least number of secondary infections when 
the exchange flow rate was lowest or zero. Our model also allowed the examination 
of individual infection probability (Figure S1). 
 
4.Discussion 
 
The most significant effect of non-uniformity is the resulting inter-individual 
variability in airborne exposure. Such heterogeneity affects both the individual 
infection risk and population infection risk in the space (indicated by the number of 
newly infected individuals). Our derived heterogeneous Wells–Riley equation, 𝑝̅𝑝𝑖𝑖 =
𝑁𝑁𝜄𝜄
𝑁𝑁𝜎𝜎

= 1 − 1
𝑁𝑁𝜎𝜎
∑ �𝑒𝑒

− 1
ε�𝒙𝒙𝒊𝒊�

∆𝑡𝑡𝑖𝑖
𝑞𝑞𝑖𝑖𝑖𝑖,𝑖𝑖
𝑞𝑞𝑐𝑐

𝑁𝑁𝐼𝐼𝑄𝑄𝑖𝑖�𝑁𝑁𝜎𝜎
𝑖𝑖=1 , enabled us to understand the effect of spatial 

non-uniformity and the combined effects of spatial non-uniformity and temporal and 
exposure time variability on infection risk. This new Wells–Riley equation was 
derived using the Poisson-binomial distribution (Bogen and Spear, 1987; Nicas, 
1996).   
 
Heterogeneity also exists in the viral load released, number of contacts (e.g., the 
number of people in a room), contact effectiveness (e.g., frequency of close contact or 
dilution ability), and susceptibility level of susceptible individuals. All of these factors 
lead to over-dispersion in the transmissibility of emerging respiratory viruses 



(Lloyd-Smith et al., 2005; Chen et al., 2021). Our derived general dose-response 
model, 𝑁𝑁𝜄𝜄

𝑁𝑁𝜎𝜎
= 𝑝̅𝑝𝑖𝑖 = 1 − 1

𝑁𝑁𝜎𝜎
∑ (𝑒𝑒−𝑟𝑟𝑖𝑖𝑑𝑑𝑖𝑖)𝑁𝑁𝜎𝜎
𝑖𝑖=1 , offers an approach for further investigations 

of over-dispersion. This was not investigated in the current study, as we focused on 
the non-uniformity effect. Our idea of following the trajectory of a susceptible 
individual allowed us to estimate the individual inhalation probability of a virus 
particle (virion) in space, which provided a direct link between the traditional Wells–
Riley equation and the dose-response model(s). Our derived formula for infectious 
quantum emission is suitable for susceptible individual-based analyses and provides 
theoretical support for the formula first proposed by Buonanno et al. (2020).      
 
We demonstrated that the new model offers the possibility to consider spatial 
non-uniformity when studying heterogeneity and paves the way to explore which 
factor(s) play the most important role. This understanding is essential for designing 
interventions, particularly for ventilation and air distribution. The question remains: is 
infection heterogeneity virological, behavioural, or environmental? That is, is 
infection heterogeneity mainly due to heterogeneity in the virus, the susceptible 
individuals, or the environment? Heterogeneity is possible in both the dose-response 
parameter, 𝑟𝑟𝑖𝑖, and the exposure dose, 𝑑𝑑𝑖𝑖. 𝑟𝑟𝑖𝑖 relates to the heterogeneity in 
susceptibility, but 𝑑𝑑𝑖𝑖 relates to the heterogeneity in the viral load released, inhalation 
rate (less variation), exposure time, spatiotemporal non-uniformity, and viral aerosol 
dilution (e.g., heterogeneity in the ventilation rates). Our study shows that one cannot 
ignore the effect of spatial non-uniformity. It also indicates that non-uniformity is an 
important parameter in airborne outbreak investigations. There have been many 
engineering studies of the air distribution effect on inhalation exposure (e.g., Sze To 
et al., 2008). However, data from these studies cannot be used directly to estimate the 
average number of secondary infections when there is non-uniformity. Our derived 
heterogeneous Wells–Riley equation offers a framework for systematic studies of 
airborne infection risk with individual variability, while accounting for the 
non-uniformity effect.  
 
Our data show that dead or less-diluted zones in a space may be risky when an index 
case is present in these zones. In our modelling study, an index case in a relatively 
isolated and well-diluted zone causes fewer secondary infections when there is 
minimum mixing between the two zones than when there is sufficient inter-zonal 
mixing. However, mixing or exchange airflow between two zones may have dual 
effects. It may have a diluting effect if the source air is relatively clean, thus 
decreasing the number of secondary infections, or it may have a contaminating effect 
if the source air is relatively contaminated, thus increasing the number of secondary 
infections.  
 
An infector in a poorly diluted zone with many susceptible individuals increases the 
risk of infection relative to the risk of infection when an infector is in a well-diluted 
zone with few susceptible individuals (Figure 8). In the former setting, inter-zonal 
mixing leads to a decrease in the total number of infections, whereas in the latter 
setting, inter-zonal mixing leads to an increase in the total number of infections. In 
general, the non-uniformity effect is complicated by variations in crowding, dilution 
capacity, the location of the index case, and exchange airflow. The two-zone 
non-mixing data presented in Figure 6 and Figure 7 offer important insights into 
infection control. For example, a designated ‘fever area’ may be created in an 



emergency department during a pandemic period (Wee et al., 2020). The observed 
fewer overall secondary infections in a hypothetical two-zone restaurant with the 
infector in a well-diluted zone (Figure 6) suggests the usefulness of keeping a ‘fever 
area’ well diluted and isolated. 
 
<Figure 8> 
 
This study on mixing between two zones was supplemented by introducing two 
relatively new concepts, i.e., the intake fraction time and effective dilution air. These 
concepts are useful in explaining how the number of secondary infections changes as 
environmental factors. The population intake fraction time (iF)𝑡𝑡 directly measures 
the effective exposure time of susceptible individuals due to direct inhalation of the 
expired infectious aerosols via the mouth/nose to mouth/nose without any dilution in 
the room environment. As 𝑁𝑁𝜄𝜄 = (iF)𝑡𝑡𝑁𝑁𝐼𝐼𝑄𝑄 < 1, then (iF)𝑡𝑡 < 1

𝑁𝑁𝐼𝐼𝑄𝑄
. The definition of 

this parameter shows that it may be the simplest single parameter to measure the 
combined effects of the environment and susceptible individuals on airborne 
infections. When the emitted infectious quanta rate is known, the allowable maximum 
intake fraction time to avoid a secondary infection is also known. The intake fraction 
time is a collective parameter that includes the effects of the environment and 
susceptible individual parameters on infection risk. We also defined the effective 
dilution air (𝑞𝑞𝑒𝑒) at pseudo-steady and mixing conditions by (iF)𝑡𝑡 = 1

𝑞𝑞𝑒𝑒
𝑞𝑞�𝑖𝑖𝑖𝑖∆𝑡𝑡���, which is 

a simple parameter that measures the effective dilution ability of the space 
environment based on the clean air flow rate (including ventilation, virus deactivation, 
particle deposition, and filtration), air distribution, air volume and transient factors. 
The effective dilution air parameter, 𝑞𝑞𝑒𝑒, is a surrogate for the dilution ability of the 
environment. It is uniquely defined for an individual or population of individuals in a 
room for a certain period of exposure. Infection control in a space setting must 
consider everyone in the space, including residents and/or visitors. The individual 
effective dilution air is a useful concept. It extends from ventilation air to all dilution 
air and includes the effect of exposure time and timing related to the presence of the 
index case. Residents and visitors have different exposure times and timing. We 
expect that these two simple concepts will find more applications in the study of 
airborne transmission.  
 
For the restaurant outbreak in Guangzhou, our analysis showed that only a 20 L/s 
inter-zonal exchange flow would have prevented secondary infections in the 
non-ABC zone (Figure 3A). It is difficult to imagine that the exchange air flow 
between two zones in such an open space can be as low as 20 L/s (Li et al., 2021). 
However, it was not possible to reconstruct the airflow conditions at the time of 
exposure. The number of asymptomatic infections was also unknown at the time of 
the investigation (as it was very early in the pandemic). However, based on data 
obtained from the original research team (Li et al., 2021), there appears to have been a 
reasonable amount of mixing in the restaurant. The fully mixing model (Method 1, 
Table 3) provided a reasonable estimate of the quanta generation rate, but the 
locations where half of the secondary infections occurred were incorrect. Based on 
this result, some people in the non-ABC zone appear to have been infected, however, 
this was not observed. Our reanalysis of the outbreak revealed the difficulty in 
reproducing the exposure setting at the time of an airborne outbreak. This restaurant 
outbreak provided ‘a well-documented’ COVID-19 outbreak ‘with significant 



meta-data available for purposes of model application’ (Parhizkar et al., 2021), but 
our analysis shows that the description is incomplete. An airborne outbreak 
investigation needs to consider non-uniformity. The new individual risk assessment 
model for airborne infections developed here will provide a practical tool for future 
outbreak investigations. 
 
Our rigorous derivation shows that the existing zone air distribution effectiveness of 
ASHRAE 62.1 (2019) may be used to estimate the effect of air distribution on 
airborne infection risk. We first used the contaminant removal effectiveness 
parameter, 𝜀𝜀(𝒙𝒙𝒊𝒊), and obtained an average value in the breathing zone identical to the 
𝐸𝐸𝑧𝑧 value (ASHRAE 62.1, 2019; Lee et al., 2009b). Though not as well known, the 
concept of ‘ventilation effectiveness’, 𝐸𝐸𝑧𝑧, was first proposed by Yaglou and 
Witheridge (1937). The advantage of our derived formula is that it directly links our 
threshold dilution airflow rate for a respiratory infection to the commonly used 
ventilation effectiveness in the current minimum ventilation standards for indoor air 
quality.  
 
Our work has several major limitations. The first and most important limitation is that 
the non-uniformity effect was studied in isolation, without considering heterogeneity 
in susceptibility. Heterogeneity in susceptibility has been widely studied in the 
virology and public health fields, which do not typically include the study of 
non-uniformity. Our derived general dose-response model offers the possibility of 
studying the non-uniformity effect and heterogeneity in susceptibility together, and 
when data become available, such a study will become a reality in outbreak 
investigations. The second limitation is that only a single virion was considered per 
aerosol; thus, the probability of inhaling a single virion was estimated. However, one 
aerosol may contain multiple virions, and inhaling aerosols containing multiple 
virions differs from inhaling single-virion aerosols. With ten virions, 10 single-virion 
aerosols may be inhaled by 10 people, while a 10-virion aerosol can only be inhaled 
by one person. Thus, multi-virion aerosols impact on airborne infection risk. This 
complex topic will be addressed in a future study. 
 
5.Conclusions 
 
The effect of infectious aerosol concentration non-uniformity on airborne infection 
risk was studied by considering inter-individual variability in inhalation exposure. By 
following the trajectory of a susceptible individual in a room, the individual inhalation 
probability of a virus particle (or virion) in space was estimated for the first time. This 
estimation enabled the derivation of a new general dose-response model and 
heterogeneous Wells–Riley equation for airborne infections using the single-hit model 
and Poisson-binomial distribution. The new heterogeneous Wells–Riley model 
showed that the existing zone air distribution effectiveness of ASHRAE 62.1 (2019) 
may be linked to spatial non-uniformity for airborne infection risk assessment, and 
that the modelling of the quanta generation rate by Buonanno et al. (2020) is 
theoretically justified. When there is uniformity in the zonal clean air rate per person, 
inter-zonal air mixing does not change the number of secondary infections in the 
space. However, when there is significant difference in clean air rate per person 
between the two zones, inter-zonal air mixing may either increase or decrease the 
number of secondary infections in the space, depending on the setting. Our data 



suggest that future airborne outbreak investigations should consider airflow 
non-uniformity.  
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