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Individual heterogeneity and airborne infection: Effect of
non-uniform air distribution

Abstract

The classical Wells—Riley equation assumes homogeneity of susceptible individuals
and environments to airborne exposure. However, individual susceptibility to
infection is mostly heterogeneous, and exposure variability could arise from
differences in inhalation rate, spatiotemporal non-uniformity of infectious aerosol
concentrations, and the exposure trajectory and time. Non-uniform air distribution
results in spatial non-uniformity of infectious aerosol concentrations. The
non-uniformity effect is essentially a problem of individual infection probability. Here,
we derived a general dose-response equation and a heterogeneous Wells—Riley
equation accounting for individual variability in infection probability. The
heterogeneous Wells-Riley equation shows the potential of the zone air distribution
effectiveness to consider spatial non-uniformity under steady-state conditions. An
existing quanta generation rate formula was theoretically justified. The new equation
was then applied to a restaurant reporting an outbreak of coronavirus disease 2019,
with spatial and/or temporal heterogeneity of infectious aerosol concentrations. Our
results show the need to include spatial non-uniformity in outbreak investigations. A
hypothetical two-zone setup was used to demonstrate how the inter-zonal distribution
of clean air and the inter-zonal exchange flow affect airborne infections. An infector
in a poorly diluted zone with the greatest number of susceptible individuals would
result in the most secondary infections, whereas an infector in a well-ventilated zone
with few susceptible individuals would result in the least secondary infections.
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1.Introduction

Airborne transmission has been accepted as a major route for the spread of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is suspected to be a
major route of transmission for most other respiratory infections (Tang et al., 2022).
Unlike investigations of infections originating from food and water (WHO, 2003),
quantitative microbial risk assessments (QMRA) have not been widely used for
airborne infection investigations (Haas, 2021). The Wells—Riley equation (Riley et al.,
1978) has traditionally been used to model the airborne transmission of infectious
diseases (Gammaitoni and Nucci, 1997; Rudnick and Milton, 2003). Parhizkar et al.
(2021) proposed a QMRA-based dose-response model of the airborne transmission of
SARS-CoV-2 that accounts for particle emission dynamics, particle deposition to
indoor surfaces, ventilation rate, and filtration.



These existing models of airborne transmission assume individual homogeneity in
susceptibility and exposure. However, significant heterogeneity in susceptibility exists
for some respiratory infections, e.g., SARS-CoV-2, due to different levels of
immunity (Moghadas et al., 2021) and contact. The Wells—Riley equation and
dose-response models have traditionally been considered to be two different
modelling categories (Sze To and Chao, 2010). The relationship between the two
models is discussed later in this paper. The respiratory deposition of aerosols differs
from the ingestion of pathogens contained in food or water due to variations in
deposition site and efficiency (Sze To and Chao, 2010; Parhizkar et al., 2021). As one
major intervention method, ventilation dilutes infectious aerosols in an occupied
space, but its effectiveness differs locally as the concentration of infectious aerosols
may be non-uniform within a space. Imagine the trajectory of a susceptible individual
who may walk through a space and stay at different locations. Each susceptible
individual has a unique exposure trajectory. Sze To and Chao (2010) considered the
spatial distribution of aerosols as one of the most important factors in the risk
assessment of respiratory infections. Sze To et al. (2008) proposed an exposure
assessment model using spatial distribution of expiratory aerosols and the viability of
airborne viruses. To model non-uniform distributions, Qian et al. (2009) implemented
an approach using computational fluid dynamics (CFD) and the infectious quantum
concept.

During the coronavirus disease 2019 (COVID-19) pandemic, an outbreak in a
restaurant in Guangzhou was shown to likely occur via airborne transmission (L1 et al.,
2021). Reconstruction of the airflow at the time of exposure in the restaurant using
CFD revealed a relatively stable air recirculation bubble in the Table ABC zone,
where all secondary infections occurred (Figure 3 in Li et al., 2021). One major
question was asked by several experts when the project team presented the study, i.e.,
would there have been fewer secondary infections if there was better mixing between
the Table ABC zone and non-ABC zone? One inherent factor makes it difficult to
answer this question. The 89 patrons in the restaurant arrived at and departed from the
restaurant at different times. Therefore, there was significant heterogeneity in
individual levels of exposure. It is difficult to estimate the number of secondary
infections using the traditional Wells-Riley equation when there are significant
differences in the probability of infection between individuals. Additionally,
heterogeneity in individual exposure levels also occurred due to the non-uniform
distribution of infectious aerosols in this restaurant. Similar levels of spatiotemporal
non-uniformity of infectious aerosols and individual heterogeneity exist in other
public spaces.

Air distribution is not difficult to analyse, but the existing Wells—Riley equation
cannot be used for non-uniform conditions. Three-dimensional air distribution has
been modelled since the 1980s, when CFD simulations were first applied to air
distribution analysis (Nielsen et al., 1978). At any spatial point in a space, we can now
estimate the local age of the air (i.e., the time since the first arrival of the air in a
specific place), the remaining time a contaminant will be present (before being
removed from the space), and the local ventilation index (the ratio of the local
concentration and the concentration at exhaust) (Etheridge and Sandberg, 1996). The
existing ventilation standard (ASHRAE 62.1, 2019) uses the ‘zone air distribution
effectiveness’ measure, E,, which measures ‘how effectively the zone air distribution
uses its supply air to maintain the acceptable air quality in the breathing zone’. The



required minimum ventilation is scaled according to the E, value. In a room with
poor air distribution, a larger ventilation rate is needed. The question remains
regarding how poor air distribution affects infection risk.

The key to studying the non-uniformity effect on airborne infections lies in
developing a risk assessment model that considers the individual probability of
infection. In addition to non-uniformity, individuality of infection risk may also arise
from different exposure times, even under uniform conditions and/or at individual
susceptibility levels. Integrating uncertainty and interindividual variability into risk
assessment has been well studied in food and water microbiology (Bogen and Spear,
1987).

Here, we extended a QMRA-based dose-response model used in food and water
microbiology for application to airborne transmission risk assessment. This resulted in
a new Wells—Riley equation for use in multiple heterogeneous conditions, e.g.,
non-uniform and temporally varying air distribution. Our key idea was to follow the
exposure trajectory of a susceptible individual in a room and estimate individual
inhalation probabilities of a virus particle (or virion) in a space. The individual
probability of infection was then estimated using the single-hit model reported by
Haas (1983). The population infection risk in the space was estimated using a
Poisson-binomial distribution, as reported by Bogen and Spear (1987) and Nicas
(1996). The relationship between this general dose-response model of airborne
infection and the Wells—Riley equation was naturally established. A new
heterogeneous Wells—Riley equation was then used to analyse the aforementioned
restaurant outbreak and a hypothetical outbreak in a two-zone restaurant setting.

2.Methodologies
2.1 Individual inhalation probability of a virion in room air

The inhalation probability of an airborne virion by individual i is fundamental to
airborne infection risk analysis. However, this probability has not been analysed in
previous studies. Each inhalation event differs. An individual may be at different
locations in a room and have different inhalation rates due to differences in physical
activity, respiratory activity, and posture. The concentration of aerosols or virions also
varies with both space and time.

Consider a room with an air volume of V (m?), N, susceptible individuals, and N,
infectors. For respiratory infections, two populations are involved: virus particles or
virions and susceptible individuals. Each virion in the room may be inhaled by a
susceptible individual and produce an infection.

Each point in space was defined as x(x, y, z). The trajectory of an individual was
denoted as X(t) at moment t. The airborne virion concentration, ¢, (x,t), varied
both spatially and temporally (Figure 1A). CFD predictions may be used to determine
cy(%,t) (Qian et al., 2009), and/or fine spatial- or temporal-resolution measurements
may become possible in the future.

<Figure 1> Model of an enclosed space, individuals, and their trajectories. (A)
Breathing zone in a room with one infector (in red) who caused an outbreak of a



respiratory infection amongst 19 susceptible individuals, with three infected (in
yellow) and 16 not infected. (B) The spatial trajectory, X;(t), of individual i who
arrives at time t;; and departs at time ¢, ;. The sphere symbols show the locations
where individual i spends some time. (C) The concept of the space—time prism for
defining the trajectory, X;(t), of individual i in the space.(For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)

We focused on a susceptible individual, i. The inhalation exposure of individual i,
Nin,i» 1S proportional to the inhalation flow rate, g;,;(t), and thus, q;,; may change
with time along individual i's trajectory, X;(t). Individual i arrives in the space at
time t;; and departs at time t,; (Figure 1B), and cy(X;(t)) is the virion
concentration along trajectory X;(t). Strictly speaking, ¢, (%;(t)) is the virion
concentration in the inhaled air volume, g;, ;(t)dt. Our notion of trajectory X;(t)
may be seen as an application of the space—time prism (Miller, 1991, and Figure 1C)
in indoor spaces.

The number of virions inhaled by individual i in space can be represented by:
tyi —
Nin,i = ft:lﬁ qin,i () cy (X (8)) dt.

The average number of virions in a space during the entire stay period of individual i
can be calculated as:

tai (v

ftl,i fo cy(xt)av dt

nv'i = PR ,
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where ¢, (x,t) is the virion concentration at location x and time t. Note the
difference between ¢y, (x,t) and ¢, (¥;(t)), which represent all spatial locations x
in space and only those spatial points, X;, along the trajectory of individual i,
respectively.

For any virion in space, its inhalation probability by individual i during the whole
exposure period becomes

Pini = 2k (1)

Ny,i

Equation (1) is important and fundamental. When it is in a steady state and ¢, (¥) is
) o in,iCyAt; in,ibt; :
uniformly distributed, p;,; = qm"/l EV - = qm"/l -. The new Equation (1) paves the way
|4
to estimate the individual infection probability due to inhalation exposure and the

number of secondary infections in a space.

2.2 Probability of infection of an individual

The probability that a virion is not inhaled by individual i becomes 1 —p;,; =1 —
Nin,i

The probability that j virions are inhaled by individual i follows a binomial
distribution, as indicated in Equation (2).
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Individuals vary in their level of immunity and other risk factors for respiratory
infections. The survival and infection probabilities of the virions inhaled by an
individual may also be ‘individual’. We used a dose-response parameter, 7;, for
susceptible individual i to denote such individual variability. The survival of a virion
from its release to infection was assumed to be independent. By definition, r; = 1
when the infectious quantum is used as the infectious unit (Sze To and Chao, 2010).

Using the single-hit model approach described by Haas (1983), we further obtained
the infection probability of individual i (the details are listed in Supplementary
Information S2). The probability that one or more of the n,; virions are inhaled by
susceptible individual i, survive, and lead to infection based on the single-hit theory
becomes

pi(d) =1—e™%, 3)

where the dose, d; = n,,;pin; = fttlzji Gin i (O)cy (X (t))dt, with the individual-based

dose-response parameter 7;. If all parameters are available, the probability of
infection, p;, can be obtained for every individual (i = 1,2, ..., N,).

2.3 Expected average number of infected individuals

We estimated the expected number of infected individuals (N,) amongst N,
susceptible individuals in a space. This estimation is equivalent to performing N,
independent experiments, i.e., Bernoulli trials, with the i*" experiment (individual i)
having a probability of success (infected), p;, or a probability of failure (not infected),
(1 — p;). The probability that k susceptible individuals (k < N,) are infected can be
written as a Poisson-binomial distribution (Bogen and Spear, 1987; Nicas, 1996).
Following the method detailed in Supplementary Information S3, we obtain the
average infection probability in the space

N, _ 1 <No  —rid;
v =Pi=1— o (e, )
Ng .
where p; = Ziz1Pi is the average infection probability of N, susceptible individuals.

The Poisson-binomial distribution also allows estimation of the probability that any k&

susceptible individuals (k < N,;) get infected.

The dose-response model (Equation 4) predicts the expected number of secondary
infections (N,), with each susceptible individual having their own probability of
infection. In this new model, the exposure dose, d;, and the dose-response parameter,
1;, may differ for each susceptible individual. In theory, when the ventilation rate or
the clean air flow rate is given for a group of susceptible individuals and infectors,
along with their detailed trajectories and metabolic or breathing activity, one can
estimate ¢, (X;(t)) and the exposure dose, d;, for every individual, and finally, the
average probability of infection in the room using Equation (4).



Equation (4) is not in its final form as the virion concentration, ¢, (X;(t)), is not
analytically linked to the virion emission of the infectors or the clean air flow rate.
The governing equations for airflow are the Navier—Stokes equations, and there are no
general analytical solutions (Berselli, 2021). It is not yet possible to write an
analytical formula for ¢, (¥;(t)) in general settings; however, the underlying
physical principles can be determined by examining ideal settings.

In cases where all individuals take fixed positions (x;) in a space, e.g., passengers in a
bus, train, or aeroplane cabin; students in a classroom; or patrons in a restaurant, and
the inhalation exposure during movement from the doorway to position x; can be
ignored, Equation (4) becomes

()

t2,i
_ N, _ 1 @Ng -1 f. 7 aini®cy (xpt)dt
pi ———N—02i=1<1—e bt :

Ng

Under steady-state conditions with a constant inhalation rate, a stable virus
concentration, and fixed locations, the average infection probability in the space
becomes

p; = Niazliv=01(1 — e Tilinicv(xDAL) (6)

If the spatial distributions of the virus concentrations ¢y, (X;(t)), ¢y (x;,t), or

cy (x;) are known, Equations (4), (5), or (6) can be used, respectively, to estimate the
average infection probability of all susceptible individuals in the space, depending on
the situation.

In existing outbreak analyses, although susceptible individuals have different
exposure times, investigators generally assume an equal dose by using an average
exposure time (Li et al., 2021). Investigators also assume a uniform distribution of the
virus concentration in space to estimate the infectious quantum emission rate of the
infected person. However, the validity of such assumptions has not been analysed,
and thus, the assumptions were investigated here.

2.4 Defining effective dilution air and intake fraction time
Estimating individual risk alone does not reveal the intervention mechanisms. We
aimed to develop simple indices to compare exposure efficiency at the individual and

population levels.

When the infection risk is low, Equation (5) becomes

t2,i
1 oN =1 [ 2 Qin,i(®) ey (xi,t)dt N, toi
N, = N N_Uzigl <1 —-e L ) ~ Zi=01 (ri ft:; qin,i(t)cv(xir t)dt)-
(7)

Similarly, using Equation (3), the infection probability of individual i becomes

pi(d) = 1— e ~ 1 [ gy (Dey (xy, D). )



The number of secondary infections (population risk, Equation 7) and the individual
infection probability (individual risk, Equation 8) are affected by parameters related to
the infector(s), environment, and susceptible individuals. It is useful to define simple
indices to represent the environmental dilution ability during exposure and the overall
exposure efficiency as affected by the environment and susceptible individual
parameters. These indices are the effective dilution air, q,., and intake fraction time,
(iF)¢. q. is a virtual effective clean air flow rate under pseudo-steady and
pseudo-mixing conditions that combines the effects of air volume, air distribution,
clean air rate, air change rate and exposure time variability into one variable. (iF);
may be understood as the effective exposure ‘time’ of susceptible individuals due to
direct inhalation of the expired infectious aerosols via the mouth/nose to mouth/nose
without any dilution in the room environment.

Let the estimated number of secondary infections (Equation 7) directly link to the
infectious quanta emission rate; thus, we obtain the effective dilution air and intake
fraction time. As previously mentioned, when the infectious quantum is used as the
infectious unit, 7; = 1. In theory, the infectious quantum emission rate can vary for
each susceptible individual if a unity value for the dose-response parameter is
enforced. For simplicity, we assumed that the emitted quanta rates were constant.

. 1 —
N, = (1F)tNIQ = N;Q q_eqinAta (9)

where intake fraction time (iF), = (iF)At , g, = NLZ?’:Ul Giniy At = Nizg’l At;,
g a

and the intake fraction (iF) = Zﬂ. Q is the average infectious quantum emission rate

e
of N; infectors for all susceptible individuals. In the following text, we also
considered a constant inhalation flow rate for all as gq;;,. The effective dilution air q,
is not a physical dilution air flow rate but should be equal to the physical dilution air
flow rate at steady-state and uniform conditions. ¢, is virtually equivalent to the
dilution air (due to indoor ventilation, virus deactivation, particle deposition and
filtration) in terms of the dilution effect. Effective dilution air is an inverse linear
variable used to determine the number of secondary infections, N,, in the same
manner as the clean air flow rate, g, at steady state and uniform conditions. The
concept of effective dilution air allows a direct comparison of dilution ability between
settings as affected by both the environmental conditions and susceptible individuals.

Our definition of intake fraction time (iF), follows an existing concept of intake
fraction in exposure science (Bennett et al., 2002). The number of secondary
infections, N,, is a simple linear function of intake fraction time. The intake fraction
time is likely the simplest and most straightforward parameter linking exposure and
source (Equation 9). A lower (iF); value leads to a lower level of exposure. One
should aim to reduce intake fraction time. The intake fraction (iF) is the average
ratio of the infectious quantum eventually inhaled by N, susceptible individuals to

the infectious quantum (N; QAt) released from N, infectors. Zﬂ is also known as the
rebreathed fraction (Rudnick and Milton, 2003).



We replaced the virion concentration, cy, with the infectious quantum concentration,
Co- Combining equations (9) and (7), we obtain

(F):N,Q = din 2?51 (fttlzlfi co(xi, t)dt) and (10)
! At o t U
N,Q P qinAt = qin Zlivzl (ftf,i Co (x;, t)dt) ) (11)

We thus obtain formulas for the effective dilution air, q,, and the intake fraction time,

(iF),.
Ain TG S colxyt)dt
(iF), = (O ) (12)

_NiQ
NIQAt (13)

B Zival(f L eo(x, t)dt)

The physics of these two new parameters cannot be obtained directly from Equations
(12) and (13). The following ideal setting sheds some light on this problem. If N; =1

at steady state and with full mixing, c,(x;) = Qq where q,, is the clean air flow
O'

rate per person, and all susceptible individuals have the same exposure time, At
(At = At), Equations (12) and (13) can be simplified to Equations (14) and (15).

QmZ f > lCQ(xl t)dt .
Al ) = din Ay (14)

Q dp
QAt
= = 15
de = Zival(f CQ(X; t)dt) p (15)

(iF), =

In such a setting, effective dilution air rate per person, ¢,, is simply the clean air flow
rate per person, qp, due to ventilation, virus deactivation, particle deposition and/or
filtration. There is a corresponding individual effective dilution air value, g, ;, and an
individual intake fraction time, (iF),;, for each susceptible individual i. We then
write equation (8) as

pi(d) = (iF)tiiN,Q and (16)
pl(d ) ~ NIQ CIlnlAth (17)

where (iF).; = (iF;)At; ,and (iF;) = qqi"’_i. We let

ta,i
pi(d) ~ (IF)“ s NiQ = Gin, J, 2 co(xp )dt and (18)
o
pi (d ) ~ NIQ CImLAt Qin,i ft:; CQ (xi: t)dta (19)
so that
NoQin,i f:z’.i cqlxt)dt
(iF)¢; = = and (20)

NiQ



NQAt;

Gei = (21)

2
Ng ftl ,il cQ (x3,t)dt

Thus, our derivation of individual infection probability (Equation 3) eventually led to
the possibility of evaluating ‘local’ or individual infection risk under different settings
and exposure conditions.

2.5 A two-zone setting

To demonstrate the applicability of individual infection probability for understanding
non-uniformity, we first estimated infection risk in a reported restaurant outbreak (Li
et al., 2021) using a two-zone model. A two-zone model provides analytical solutions
under constant-flow conditions (Sinden, 1978, Supplementary Information S5), which
enables a detailed investigation of mixing or non-uniformity effects. At least two
factors quantitatively contributed to the individual variability in infection in this
outbreak, i.e., the arrival and departure time of patrons at each table differed (Table 1)
and the local infectious quantum concentration differed by table and individual,
although the locations of the patrons were nearly fixed. The effect of individual
factors on infection can be considered by the new model. Some patrons may
occasionally have stood up, e.g., to pick up food, and their bodies and heads may also
have moved during conversation, which would affect both expiration (index case) and
inhalation (susceptible individuals). Such minor effects were ignored here, but
warrant investigation in future studies.

<Table 1>The arrival time, t, ;, and departure time, t,;, of patrons at each table

Estimations of the population effective dilution air and intake fraction time need to be
specific to the population level being analysed, i.e., the room or a specific zone within
the room. One also needs to be mindful that there is a major difference between
effective dilution air and intake fraction time, i.c., the effective dilution air is in the
denominator (Equation 9; see Supplementary Information S6). Our derivation of
individual infection probability (Equation 3) led to the possibility of evaluating the
‘local’ or individual infection risk under different settings and exposure conditions.\

Based on the restaurant data in Guangzhou, but allowing a larger number of
individuals, we set up a hypothetical large but poorly ventilated restaurant divided
into two zones (Figure 2B). We do not intend to endorse such a two-zone approach
for infection analysis, as in practice, zone division is difficult without detailed CFD or
tracer gas measurement data. Our purpose is to use this outbreak to analyse the effect
of non-uniformity with analytical solutions. The hypothetical restaurant had an air
volume of 1,000 m?, and 200 people were present (with Zone 1 having 200 m? and 40
people and Zone 2 having 800 m? and 160 people). The inhalation rate was constant at
0.2 L/s for all patrons. There was only one infector in Zone 1 or 2. The infector
emitted a constant quanta generation rate of 150 quanta/h, which was taken from the
above-mentioned analysis of the Guangzhou restaurant outbreak. The exposure time
of all patrons in each zone satisfied the normal distribution, N(62,10.5) (units of
min). All patrons arrived at the same time as the index case. The index case stayed in
the restaurant for 1 h.



<Figure 2>Two-zone division in a restaurant where a COVID-19 outbreak was
reported. (A) We divided the restaurant into two sections: Zone 1 or ABC, and Zone
2 or non-ABC. The locations of the tables are only approximate. The seats are shown
for Tables A, B, and C, with infected individuals shown in red circles. The numbers in
brackets indicate the number of people at each table. The drawing is not to scale. (B)
A hypothetical two-zone restaurant with an air volume of 1,000 m* and 200 persons
present (with 200 m?® and 40 persons in Zone 1, and 800 m? and 160 persons in Zone
2).

The clean air change rate, n., included the outdoor air supply, n, (ventilation); virus
deactivation, ng; aerosol settling, ng; and filtration, ns. The outdoor air supply was
1 L/s per person, so that ng = 0.72 h''. n, =ng+ny +ng + n, =072 +0.67 +
0.3 + 2 =3.69 (h!). The total clean air flow rates were represented by q. = n.V =
1025 L/s and q,, = 5.125 L/s per person. The contribution to total clean air by

filtration air (ny = 2) is greater than that by ventilation (n,=0.72). We maintained the

mean clean air rate per person, ¢,. If all ventilation air, ny, is in Zone 1, ny; =

1000x0.72 . e 1000x0.72
————==13.6 h’!, whereas if all ventilation air is in Zone 2, ny, = ———— = 0.9
200 L000x2 02 800
. . P X .
h''. If all filtration air, ng, is in Zone 1, nsy = o = 10 h'!, whereas if all
1000x2

g = 2.5 h™!. We used these data to set up

scenarios in the hypothetical two-zone restaurant (Table 2).

filtration air is in Zone 2, ns, =

<Table 2>The scenarios in the hypothetical two-zone restaurant

For the fully mixing condition, the number of secondary infections in the hypothetical
restaurant was 4.26 (i.e., 4 people). We aimed to analyse the effect of non-uniformity
in the two zones on the number of secondary infections under two defined scenarios,
i.e., when one zone was better ventilated or filtrated while the other was relatively
poorly ventilated or filtrated. The index case was placed in either the poorly diluted or
better diluted zone so that the role of exchange flow between the two zones could be
studied. We estimated the number of secondary infections in Zones 1 and 2, and the
individual and zonal effective dilution air and intake fraction time. For all scenarios,
we varied the exchange flow rate between the two zones from 0% to 200% of the total
clean air rate of 1025 L/s.

2.6 A simple model of spatial non-uniformity

We further explored the steady-state solution represented in Equation (6) to determine
the effect of non-uniform air distribution and to derive an equation to estimate the
quanta generation rate, allowing the derivation of a heterogeneous Wells—Riley
equation for non-uniform settings.

Under steady-state conditions, all newly released viral particles are removed by
ventilation, deposition, filtration, and virus deactivation. The total number of virus
particles released by N; infectors (expiration flow rate q.,; and virus particle
concentration ¢, ; at the mouth and nose for infector i) is balanced by their removal:

Ziv=11 Gex,iCqi = qcCe> (22)



where q. = q + qq + qf + g5, and q. is the combined clean air flow rate due to
ventilation, q; virus deactivation, qg; filtration, qy; and particle deposition, qs. ¢
is the mean concentration of virus particles at the exhaust(s):

Zlivzll ex,iCq,i

c, = Hi=lenttal (23)

Note that such an approach is not directly applicable to unsteady-state conditions with
non-uniform distribution.

Even under steady-state conditions, with spatial non-uniformity, the concentration,
cy (x;), remains unknown. A local ventilation index, £(x;), is defined as the ratio of
c. to the concentration, cy(x;), at point x; (Etheridge and Sandberg, 1996, page
268).

Ny O
s(x,) _ _ Zi:l Gex,iCq,i (24)

c (xl) qcey(xi)

The reciprocal of the local ventilation index is referred to as the susceptible exposure
index by Liu et al. (2017). In a fully mixed room, &(x;) = 1 in all locations, so that
cy(x;) = c.. The concentration at any location is the same as the concentration at the
exhaust points. The local ventilation index may be greater than one (Liu et al., 2017)
and may be a function of the exhalation orientation and the nasal or oral exhalation of
the index case (Qian et al., 2008). Air distribution may be designed with a specific
local ventilation index distribution, e.g., inverse design methods may be used to
design air distribution (Zhai et al., 2014).

Zlivz’l (ex,iCq,i- If all infectors

Following equations (23-24), we write ¢y (x;) = c@)q

are equal, Zli\gl Qex,iCqi = NiqexCq- Equation (6) then becomes
1 n,
_ N, 1 Ny z x__(N qexC Tl)Atl
Pi= = —N—Uziﬂ( e ae ) (25)

Recognising Q; = 17q.xCq, 1.€., the total quanta generation rate by an infector for
susceptible individual, I

1 din,i
pi=y=1- T ( e ”’Q> (26)

0'

Note that our derived expired quanta generation rate Q; = 7;qexCq 1s specific for
each susceptible individual. An almost identical equation was used by Buonanno et al.
(2020) to estimate quanta from viral load (c;) data. Our derivation provides the

theoretical justification and support for the model described by Buonanno et al.
(2020).

In this relatively heterogeneous Wells—Riley model for steady-state conditions, the
infectious quanta released by the same infector differ for each susceptible person who
is exposed to the infectious viral particles. This difference arises from inter-individual



variability in susceptibility to infection. Most studies of heterogeneity in the infection
probability of susceptible individuals have attributed the causes to differences in viral
load and contact patterns (Chen et al., 2021). Equation (26) shows that this difference
may also be due to variation in the local ventilation index, €(x;). The infection
probability may be high for someone who stays at a location with an €(x;) value
much less than 1.

The removal effectiveness of a room contaminant, (&), was defined based on the
average contaminant concentration in the room, {c) (Etheridge and Sandberg, 1996,

page 267), as follows: (&) = . C& 5 One may also define the average contaminant
v
Ce

removal effectiveness in the breathing zone as (€)preathing zone =

(CV(xi,breathing zone)y
Here, (€)preathingzone 1S the same zone air distribution effectiveness variable, E, as
specified in ASHRAE 62.1 (2019). E, = 1 in a room with complete mixing, but can
be > 1 in aroom ventilated by displacement and < 1 in a room with stagnation, in
which the contaminant is ‘locked in’. When a stratified air distribution system is used,
summer cooling may resultin E, > 1 ,and an E, value as high as 2 in an
auditorium. However, E, < 1 with winter heating (Lee et al., 2009a).

We approximated Equation (26) using the zone air distribution effectiveness variable,
E,, as follows:

1

din,i )
ﬁl — & — 1 _iZN—J <e EZAt"?NIQl)' (27)

Equation (27) is a useful model that uses the zone air distribution effectiveness of
ASHRAE 62.1 (2019) directly, while considering the individual probability of
infection. The model represented in Equation (27) may be further simplified into the
standard Wells—Riley equation (Riley et al., 1978) by considering the situation when
E, = 1, and all susceptible individuals are equal.

_ N
pi=—=1-

Ng

din
—N;Q—=At
e 1Q ac

(28)

3.Rsults
3.1 Two-zone analysis of a restaurant outbreak

We demonstrated our theory in a restaurant outbreak of COVID-19 (Li et al., 2021). If
the whole restaurant was considered as a single space studied (Method 1 in Table 3), a
steady-state estimation resulted in a quanta generation rate of 132.2 h'!. However,
considering the transient effect, the quanta generation rate is 154.9 h™'. Considering
the ABC zone as an ‘isolated’ space (Method 2 in Table 3, Parhizkar et al., 2021), we
obtained estimated quanta emission rates of 136.7 h™! and 164.3 h™! for the

steady-state and transient settings, respectively. The ABC zone estimates were
reasonably close to the whole restaurant estimates. Why does the ABC zone approach
work in this setting? To answer this question, we further considered a two-zone
approach, i.e., the ABC and non-ABC zones, with an estimated exchange airflow rate



between the two zones of 280 L/s (Table S1) based on tracer gas monitoring data
reported by Li et al. (2021).

<Table 3>Estimation of the infectious quantum emission rate when the zonal or total
space is assumed to be fully mixed

We used the analytical solutions of the two-zone model (Supplementary Information
S5) to estimate the spatiotemporal distribution of virus concentrations in the two
zones. Exposure level of each susceptible individual was estimated based on their
location (the ABC or non-ABC zone) and their arrival and departure times. Hence,
individual infection probability was considered. The exact arrival and departure times
of patrons at different tables were determined from closed-circuit television video
footage (Li et al., 2021). By the time the patrons at Table A arrived, most patrons had
already arrived, except those at Table C (2 min later), Table 08 (27 min), Table 12 (12
min), and Table 17 (59 min). By the time the patrons at Table A departed, those at
some other tables remained, including those at Table 08 (14 min more), Table 10 (5
min), Table 15 (7 min), and Table 17 (56 min, the last to leave). There were
significant variations in exposure time and timing (starting and ending time). As those
at Table A stayed for 82 min, the concentration did not reach full steady-state
conditions by the time they left. There was a decay period in virus concentration when
the remaining tables continued to be exposed.

To distinguish the contributions of spatial non-uniformity and exposure variability,
we first used the average exposure time in Methods 3 and 4 (Table 3), which assumed
that secondary infections may occur in the whole restaurant or only in the ABC zone,
respectively. The predicted quanta generation rate was 369.0 h'! when considering the
temporal variation in virus concentration using Method 4. A significant error occurred,
as secondary infections were also likely to occur in the non-ABC zone. We further
used the individual exposure time (with the detailed arrival and departure times listed
in Table 1). The two-zone model using the individual exposure time and focusing on
the whole restaurant (Method 5) predicted a quanta generation rate of 152.1 h™.
However, when focusing on the ABC zone (Method 6), the predicted quanta
generation rate of 368.8 h™! appeared to be over-estimated.

A comparison of the predicted quanta generation rates using Methods 3 and 5
suggested that the effect of using the arithmetic average of the exposure time was a
reasonable approach. However, this conclusion is only valid when there is no
variation in the inhalation rate. When variations exist in both the inhalation rate and
exposure time, errors may be expected. However, this requires further investigation.

To further examine the observed differences in predicted quanta generation rates
using the six different methods listed in Table 3, we predicted the number of
secondary infections in the ABC zone, the non-ABC zone, and the whole restaurant,
as the exchange air flow between two zones varied (Figure 3).

<Figure 3> Infection outbreak in the restaurant in Guangzhou analysed using a
two-zone model.

The mixing between ABC and non-ABC zones was reasonably significant at the time
of exposure when the outbreak occurred (shown by the vertical green line in Figure



3A). This explains why both the whole-zone and the single-ABC approaches
(Methods 1 and 2) produced similar infectious quantum emission rates. However,
when the ABC zone was assumed to produce the nine secondary infections, and both
zones were included in the analysis, a quanta generation rate greater than 330
quanta’h was predicted (Methods 4 and 6). The exchange airflow from the relatively
clean non-ABC zone to the ABC zone helps dilute the virus-containing aerosols in the
ABC zone (Figure 3C). To achieve the same number of secondary infections, a higher
quanta generation rate is needed. Note that a similar number of secondary infections
occurred in the ABC and non-ABC zones if based on an estimated exchange airflow
rate of 280 L/s.

The restaurant at which the outbreak occurred had two relatively ‘balanced’ ABC and
non-ABC zones, i.e., the population risks in the two zones were approximately equal
(Figure 3A or 3B), although the dilution capability was greater in the non-ABC zone
than the ABC zone (Figure 3C). There was relatively good mixing between the two
zones at the time of the COVID-19 outbreak. However, the situation differs when the
inter-zonal exchange flow is low. All secondary infections would occur in the ABC
zone when the exchange airflow was less than 20 L/s. At a possible exchange air flow
rate of 280 L/s, half of the secondary infections would occur in the ABC zone and
half would occur in the non-ABC zone, although the total number of secondary
infections would remain the same. Movement of the index case between the ABC
zone and the non-ABC zone would not lead to an increase in the total number of
secondary infections with a quanta generation rate of 152.1 h'l. This also explains
why Method 2 accurately described the outbreak. The analogue method, Method 6,
produced almost double the number of secondary infections in the entire restaurant.

The predicted effective dilution air of the total restaurant was approximately 10 L/s
per person, which was slightly higher than the combined clean air flow rate of 7.6 L/s
per person. The overall effective dilution air and overall intake fraction time varied
little when the exchange flow varied. Note that the effect of the inter-zonal exchange
flow on the overall intake fraction time did not fully follow its effect on the number of
secondary infections due to the linear approximation used in Equation 7 when the
infection risk was relatively large. If the intake fraction time is defined without a
linear approximation, the disagreement disappears (not shown here). The number of
secondary infections in the total restaurant remained relatively constant at nine cases
when the quanta generation rate was 152.1 h™!, as the exchange flow changed from 20
L/s to 6,000 L/s.

There was a significant decrease in the total number of secondary infections in the
restaurant at a quanta generation rate of 368.8 h”! when the exchange flow was low.
With this quanta generation rate, the expected total number of secondary infections in
the restaurant increased from 16 to 19 as the exchange flow increased from 20 L/s to
280 L/s (red line in Figure 3A). Such an effect was further analysed using a
hypothetical two-zone restaurant, in which the clean air rates per person due to
outdoor airflow and filtration differed in the two zones.

3.2 Non-uniformity

The values of E, are given in ASHRAE 62.1 (2019, Table 6-2) for typical air
distribution systems, with a large range of 0.7—1.5 (Figure 4). In the worst-case



scenario considered in ASHRAE 62.1 (2019), in which warm air is supplied into a
room with ceiling exhaust, E, = 0.7. In a displacement ventilated room, the
application of personalised ventilation would lead to E, = 1.5. Other air distribution
systems have E, values between those of these two systems.

<Figure 4>Air distribution effectiveness in the breathing zone for typical air
distribution systems.

Equation (27) may be simplified at a low infection probability and constant inhalation

. o _ N, _N ;
rate, exposure time, and quanta emission rate to p; = N—‘ ~ E#Q At qqﬂ. The number of
g z Cc
. . N ; .
secondary infections then becomes N, ~ — C At din, Assuming that all other

z dp
parameters are identical, a difference of 0.7—1.5 in the E, value results in more than

a 100% difference in the number of secondary infectionsv.

The contaminant removal effectiveness, €(x;), depends on the spatial location x;.
The use of the E, values reported in ASHRAE 62.1 (2019) may be problematic in
some situations. For example, in a displacement ventilated room, &(x;) =1 in the
upper mixing zone but may be much greater than 1 if the susceptible individual
inhales from the lower clean zone. As an example, consider 50% of N, (even
number) individuals in a room with €(x;) = 1.30 and their heads below the clean
zone height, and 50% of N, individuals in the same room with e(xy) = 0.96 and
their heads above the clean zone height (Lee et al., 2009a).

e i 1 Giny o
N ZO 5N0-< _ E(JCL) NIQL> + Zl OSN " <1 —e E(XU)Atl dc NIQ1> (29)

When the infection probability is low and each susceptible individual is identical for
exposure parameters (1.€., i ; = qin, At; = At and Q; = @), the average number
of secondary infections becomes

l 1
2 9 e(xp)

At q‘”N,Q+ N —Atq‘”N,Q (30)
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Substituting two-contaminant removal effectiveness into Equation (30), we obtain
N, = 0.91N,Q ZﬂAt. Thus, the number of secondary infections, N,, becomes 9%
p

fewer in such a room ventilated by displacement rather than by mixing ventilation.
Without using CFD, it is not possible to determine the effect of the location of the
breathing zone of infectors (below or above the clean zone height). Note that
displacement ventilation may enhance short-range airborne transmission (Liu et al.,
2019). The result of Equation (30) only applies to long-range airborne exposure.

The E, approach may be easily applied to airborne infection risk assessment
following our derivation. This is done by assuming a uniform level of ‘non-uniformity’
(i.e., uniform contaminant removal effectiveness £(x;) in the breathing zone).
However, in practice, a room may have multiple zones with different concentration
distributions. A simple model is depicted in Figure 5, in which a long room may be
divided into two zones — one with good dilution and another with poor dilution. Such

a model is similar to the scenario in the restaurant and cannot be analysed using the



E, approach. Thus, a two-zone (or multi-zone) approach may be a good model to
handle this issue.

<Figure 5>A long room with a two-zone air distribution mode.
3.3 Infection spread between two non-uniform zones

The non-uniformity of clean air distribution between two zones in a room and the
exchange airflow between the two zones are also important for airborne infections.
For the two basic scenarios in Table 2, we imposed uniformity in the dilution ratio per
person in and between the two zones. The exchange airflow between the two zones
did not significantly change the overall number of secondary infections in the
hypothetical restaurant (basic scenarios 01 and 02 in Figure 6A and 6B), i.e., with
approximately four individuals infected. This confirmed the findings in the restaurant
model described in Section 3.1. Of note, when Zone 1 is poorly ventilated (Figure 6A,
case 14) or poorly filtrated (Figure 6B, case 34), an index case in the better-ventilated
or better-filtrated Zone 2 would lead to the same number of secondary infections as
the two basic scenarios.

<Figure 6>Infection risk assessment in a hypothetical two-zone restaurant
considering the effects of clean air distribution and inter-zonal air mixing.

However, when the index case is in poorly ventilated Zone 2 (Figure 6A, case 13) or
poorly filtrated Zone 2 (Figure 6B, case 33), in which there are three times more
susceptible individuals than in Zone 1, the total number of secondary infections
increases to a maximum of five and seven individuals, respectively. These were the
greatest numbers of secondary infections of all tested cases listed in Table 2. The
corresponding intake fraction time was also the greatest for cases 13 and 33, whereas
the effective dilution air for these two cases was the least among all tested cases.

The least number of secondary infections occurred when the index case was in the
better-ventilated or better-filtrated Zone 1, in which there was a small number of
susceptible individuals (Figure 6A1, case 11 and Figure 6B1, case 31). The smallest
number of secondary infections occurred when there was a minimum exchange flow
between the two zones, i.e., three secondary infections in case 11 and only two
secondary infections in case 31. These cases represent a 25% and 50% reduction,
respectively, from four secondary infections in the fully mixing condition. The
corresponding intake fraction time was the least and the effective dilution air was the
greatest for cases 11 and 31 amongst all the test cases presented in Figure 6A and 6B.

For a fully mixing condition with four secondary infections, non-uniformity led to a
change in the number of secondary infections to 3—5 when ventilation was not
uniformly distributed (Figure 6A1), and to a wider range of 2—7 when filtration was
not uniformly distributed (Figure 6B1). The difference between the two ranges was
caused by the difference in the clean air flow rate due to ventilation and filtration. The
widest range occurred when the exchange flow rate between the two zones was the
lowest. As the exchange flow rate increased, the difference in the number of
secondary infections contributed by non-uniform ventilation or filtration became
smaller. Thus, enhanced inter-zonal mixing led to better uniformity in both virus



concentration (Figure 7A1, 7B1) and the number of secondary infections (Figure 6A1,
6B1).

<Figure 7>Infection risk assessment in a hypothetical two-zone restaurant with
the index case in Zone 1 for scenarios 01 and 31.

In summary, when all other parameters were identical, an index case in a
less-populated zone led to fewer secondary infections, and better dilution in the zone
where the index case was located minimised the total number of secondary infections.
When crowding and dilution were uniform between zones, inter-zonal mixing did not
significantly affect the total number of secondary infections. However, when the
index case was in a poorly diluted zone, greater inter-zonal mixing significantly
decreased the total number of infections. In contrast, when the index case was in a
well-diluted zone with a smaller population, greater inter-zonal mixing increased the
total number of infections.

We further compared the detailed zonal parameters between basic scenario 01 and
scenario 31 in Figure 7A and Figure 7B. The zonal parameters in both scenarios and
the overall parameters (room scale) in case 31 changed significantly with the
increasing exchange flow rate between the two zones. The overall parameters (room
scale) in basic scenario 01 remained unchanged basically with the increasing
exchange flow rate between the two zones, due to two equally diluted zones in case
01. In both scenarios, the overall parameters showed a similar trend to the parameters
of Zone 2 and the opposite trend to the parameters of Zone 1, as the index case stayed
in Zone 1. Both the number of secondary infections and the intake fraction time
satisfied the arithmetic sum rule (Zone 1 + Zone 2 = overall room, Equation S49), but
effective dilution air satisfied the harmonic mean (Equation S50). Despite the greatest
overall effective dilution air (Figure 7B4) and the shortest overall intake fraction time
(Figure 7B3), case 31 presents the lowest concentration of infectious quanta in both
zones (Figure 7B1). This resulted in the least number of secondary infections when
the exchange flow rate was lowest or zero. Our model also allowed the examination
of individual infection probability (Figure S1).

4.Discussion

The most significant effect of non-uniformity is the resulting inter-individual
variability in airborne exposure. Such heterogeneity affects both the individual
infection risk and population infection risk in the space (indicated by the number of
newly infected individuals). Our derived heterogeneous Wells—Riley equation, p; =

S=1-=57 (e o) " dc l>, enabled us to understand the effect of spatial
a

non-uniformity and the combined effects of spatial non-uniformity and temporal and
exposure time variability on infection risk. This new Wells—Riley equation was
derived using the Poisson-binomial distribution (Bogen and Spear, 1987; Nicas,
1996).

Heterogeneity also exists in the viral load released, number of contacts (e.g., the
number of people in a room), contact effectiveness (e.g., frequency of close contact or
dilution ability), and susceptibility level of susceptible individuals. All of these factors
lead to over-dispersion in the transmissibility of emerging respiratory viruses



(Lloyd-Smith et al., 2005; Chen et al., 2021). Our derived general dose-response
model, % =p;,=1-— NLZ?jl(e_Tidi), offers an approach for further investigations

of over-dispersion. This was not investigated in the current study, as we focused on
the non-uniformity effect. Our idea of following the trajectory of a susceptible
individual allowed us to estimate the individual inhalation probability of a virus
particle (virion) in space, which provided a direct link between the traditional Wells—
Riley equation and the dose-response model(s). Our derived formula for infectious
quantum emission is suitable for susceptible individual-based analyses and provides
theoretical support for the formula first proposed by Buonanno et al. (2020).

We demonstrated that the new model offers the possibility to consider spatial
non-uniformity when studying heterogeneity and paves the way to explore which
factor(s) play the most important role. This understanding is essential for designing
interventions, particularly for ventilation and air distribution. The question remains: is
infection heterogeneity virological, behavioural, or environmental? That is, is
infection heterogeneity mainly due to heterogeneity in the virus, the susceptible
individuals, or the environment? Heterogeneity is possible in both the dose-response
parameter, 1;, and the exposure dose, d;. 1; relates to the heterogeneity in
susceptibility, but d; relates to the heterogeneity in the viral load released, inhalation
rate (less variation), exposure time, spatiotemporal non-uniformity, and viral aerosol
dilution (e.g., heterogeneity in the ventilation rates). Our study shows that one cannot
ignore the effect of spatial non-uniformity. It also indicates that non-uniformity is an
important parameter in airborne outbreak investigations. There have been many
engineering studies of the air distribution effect on inhalation exposure (e.g., Sze To
et al., 2008). However, data from these studies cannot be used directly to estimate the
average number of secondary infections when there is non-uniformity. Our derived
heterogeneous Wells—Riley equation offers a framework for systematic studies of
airborne infection risk with individual variability, while accounting for the
non-uniformity effect.

Our data show that dead or less-diluted zones in a space may be risky when an index
case is present in these zones. In our modelling study, an index case in a relatively
isolated and well-diluted zone causes fewer secondary infections when there is
minimum mixing between the two zones than when there is sufficient inter-zonal
mixing. However, mixing or exchange airflow between two zones may have dual
effects. It may have a diluting effect if the source air is relatively clean, thus
decreasing the number of secondary infections, or it may have a contaminating effect
if the source air is relatively contaminated, thus increasing the number of secondary
infections.

An infector in a poorly diluted zone with many susceptible individuals increases the
risk of infection relative to the risk of infection when an infector is in a well-diluted
zone with few susceptible individuals (Figure 8). In the former setting, inter-zonal
mixing leads to a decrease in the total number of infections, whereas in the latter
setting, inter-zonal mixing leads to an increase in the total number of infections. In
general, the non-uniformity effect is complicated by variations in crowding, dilution
capacity, the location of the index case, and exchange airflow. The two-zone
non-mixing data presented in Figure 6 and Figure 7 offer important insights into
infection control. For example, a designated ‘fever area’ may be created in an



emergency department during a pandemic period (Wee et al., 2020). The observed
fewer overall secondary infections in a hypothetical two-zone restaurant with the
infector in a well-diluted zone (Figure 6) suggests the usefulness of keeping a ‘fever
area’ well diluted and isolated.

<Figure 8>

This study on mixing between two zones was supplemented by introducing two
relatively new concepts, i.e., the intake fraction time and effective dilution air. These
concepts are useful in explaining how the number of secondary infections changes as
environmental factors. The population intake fraction time (iF), directly measures
the effective exposure time of susceptible individuals due to direct inhalation of the
expired infectious aerosols via the mouth/nose to mouth/nose without any dilution in

the room environment. As N, = (iF);N;Q < 1, then (iF); < N—IQ The definition of
1

this parameter shows that it may be the simplest single parameter to measure the
combined effects of the environment and susceptible individuals on airborne
infections. When the emitted infectious quanta rate is known, the allowable maximum
intake fraction time to avoid a secondary infection is also known. The intake fraction
time is a collective parameter that includes the effects of the environment and
susceptible individual parameters on infection risk. We also defined the effective

dilution air (q,) at pseudo-steady and mixing conditions by (iF), = qi(jmﬂ, which is

a simple parameter that measures the effective dilution ability of the space
environment based on the clean air flow rate (including ventilation, virus deactivation,
particle deposition, and filtration), air distribution, air volume and transient factors.
The effective dilution air parameter, q,, is a surrogate for the dilution ability of the
environment. It is uniquely defined for an individual or population of individuals in a
room for a certain period of exposure. Infection control in a space setting must
consider everyone in the space, including residents and/or visitors. The individual
effective dilution air is a useful concept. It extends from ventilation air to all dilution
air and includes the effect of exposure time and timing related to the presence of the
index case. Residents and visitors have different exposure times and timing. We
expect that these two simple concepts will find more applications in the study of
airborne transmission.

For the restaurant outbreak in Guangzhou, our analysis showed that only a 20 L/s
inter-zonal exchange flow would have prevented secondary infections in the
non-ABC zone (Figure 3A). It is difficult to imagine that the exchange air flow
between two zones in such an open space can be as low as 20 L/s (Li et al., 2021).
However, it was not possible to reconstruct the airflow conditions at the time of
exposure. The number of asymptomatic infections was also unknown at the time of
the investigation (as it was very early in the pandemic). However, based on data
obtained from the original research team (Li et al., 2021), there appears to have been a
reasonable amount of mixing in the restaurant. The fully mixing model (Method 1,
Table 3) provided a reasonable estimate of the quanta generation rate, but the
locations where half of the secondary infections occurred were incorrect. Based on
this result, some people in the non-ABC zone appear to have been infected, however,
this was not observed. Our reanalysis of the outbreak revealed the difficulty in
reproducing the exposure setting at the time of an airborne outbreak. This restaurant
outbreak provided ‘a well-documented’ COVID-19 outbreak ‘with significant



meta-data available for purposes of model application’ (Parhizkar et al., 2021), but
our analysis shows that the description is incomplete. An airborne outbreak
investigation needs to consider non-uniformity. The new individual risk assessment
model for airborne infections developed here will provide a practical tool for future
outbreak investigations.

Our rigorous derivation shows that the existing zone air distribution effectiveness of
ASHRAE 62.1 (2019) may be used to estimate the effect of air distribution on
airborne infection risk. We first used the contaminant removal effectiveness
parameter, £(x;), and obtained an average value in the breathing zone identical to the
E, value (ASHRAE 62.1, 2019; Lee et al., 2009b). Though not as well known, the
concept of ‘ventilation effectiveness’, E,, was first proposed by Yaglou and
Witheridge (1937). The advantage of our derived formula is that it directly links our
threshold dilution airflow rate for a respiratory infection to the commonly used
ventilation effectiveness in the current minimum ventilation standards for indoor air
quality.

Our work has several major limitations. The first and most important limitation is that
the non-uniformity effect was studied in isolation, without considering heterogeneity
in susceptibility. Heterogeneity in susceptibility has been widely studied in the
virology and public health fields, which do not typically include the study of
non-uniformity. Our derived general dose-response model offers the possibility of
studying the non-uniformity effect and heterogeneity in susceptibility together, and
when data become available, such a study will become a reality in outbreak
investigations. The second limitation is that only a single virion was considered per
aerosol; thus, the probability of inhaling a single virion was estimated. However, one
aerosol may contain multiple virions, and inhaling aerosols containing multiple
virions differs from inhaling single-virion aerosols. With ten virions, 10 single-virion
aerosols may be inhaled by 10 people, while a 10-virion aerosol can only be inhaled
by one person. Thus, multi-virion aerosols impact on airborne infection risk. This
complex topic will be addressed in a future study.

5.Conclusions

The effect of infectious aerosol concentration non-uniformity on airborne infection
risk was studied by considering inter-individual variability in inhalation exposure. By
following the trajectory of a susceptible individual in a room, the individual inhalation
probability of a virus particle (or virion) in space was estimated for the first time. This
estimation enabled the derivation of a new general dose-response model and
heterogeneous Wells—Riley equation for airborne infections using the single-hit model
and Poisson-binomial distribution. The new heterogeneous Wells—Riley model
showed that the existing zone air distribution effectiveness of ASHRAE 62.1 (2019)
may be linked to spatial non-uniformity for airborne infection risk assessment, and
that the modelling of the quanta generation rate by Buonanno et al. (2020) is
theoretically justified. When there is uniformity in the zonal clean air rate per person,
inter-zonal air mixing does not change the number of secondary infections in the
space. However, when there is significant difference in clean air rate per person
between the two zones, inter-zonal air mixing may either increase or decrease the
number of secondary infections in the space, depending on the setting. Our data



suggest that future airborne outbreak investigations should consider airflow
non-uniformity.
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The arrival time, 1, ;. and departure time, ty;, of patrons at each table.

Table Arril:'nl I]epnr?ur-e Exposure stm:ts I-prnsurc ends
(24=h time) | (24=h time) | at Tabhle A (min) {main )
A 12:001 13:23 1] B2
B 11:37 12:54 1] 53
C 12:03 13:18 2 77
4 na fa na ia
03 11:32 12:53 1] 52
L] 11:36 13:23 1] B2
07 11:29 13:10 1] il
(8 12:28 13:37 27 9
0o 11:47 13:16 1] 75
10 1107 13:28 1] 87
11 11:32 13:11 0 70
12 12:13 13:17 12 76
13 11:53 12:51 0 50
14 11:23 13:02 0 &1
13 11:55 13:30 0 a9
L] 11:24 12:49 0 43
17 13:040 14:1% 59 138
18 11:34 13:18 0 7

Values in red indicate either arrival after the patrons at Table A arrived, or
departure after the patrons at Table A departed. na, not applicable.

Table 2

The scenarios in the hypothetical two-zone restaurant.

Case number Zone 1 Zone 2

01 [Zone 1, standard, standard]  Ny=1; No= 39.nm =072.ny = 067, =031y =2;qu =51 Ni=0; No= 160, nz = 072,03 = 0.67.n; =030z =2, g =5.1
Basic scenario

02 [Zone 2, standard, standard] Ny=0: N, =40.ny =072ng =067, =031 =2 gy =51 Ny=1:N,=18.nz =072y =0.67.n; =030 =2, qp =51
Basic scenario

11 [Zonel, ng = 36,05 = 0] Ni=1:Ns=3.ng =36ng =0.67.n. =03.npn =2 gu =91 Ni=0: No= 18001z =0.ng = 0.67.n, =03.np =2, g = 41
Poorly ventilated Zone 2
Index case in Zone 1

12 [Zonel,ng = O,nm = 0.9]  Ni=1; Ne= nm =0.ng = 0670 =030 =2 qm = 41 Ni=0; No= 160, 0z =0.9,ng = 067, =03, =2 qu =54
Poorly ventilated Zone 1
Index case in Zone 1

13 [ZoneZ,ng = 36,1 = 0]  Ny=0: N, = 40.ngy =3.6.ng = 0.67.n, =0.3np =2 gy = 0.1 Ny =
Poorly ventilated Zone 2
Index case in Zone 2

I N,=159,ng =0,ng = 0.67.n; =0.3.np =2; g = 41

14 [Zone 2, nm = 0, n = 0.9] Ni=0: Ne=40.nm =0.ng =0.67.n; =030 =2 gm =41 Ni=1: Ne= 18 0@z =09.n3 =067.0 =030 =2, g =54
Poorly ventilated Zone 1
Index case in Zone 2

31 [Zonel,ny = 10,n; = 0] Ny=1: N, = B.ng =072Zny =067.n, =03ny =10;gy =162 Ny =0: N,= 160.ngy = 0.72ny = 0.67.n, =035 = 0; g = 2.3
Poorly filtrated Zone 2
Index case in Zone 1

32 [Zone 1,np = 0,np = 2.5] Ni=1;Ne=3nm =072,n3 = 067.n =03,npn =0;qm =2.3 Ni=0; Ne= 160, npz = 072,03 =0.67.n; =0.3n2 =254,z =5.8
Poorly filtrated Zone 1
Index case in Zone 1

33 [Zone 2,npy = 10,0 = 0] Ni=0; No= 90,0 =072,ny =067,0 =030, =10qn =162 N =
Poorly filtrated Zone 2
Index case in Zone 2

i Na= 1580 =072,04 =067, =030 =0;qm =23

34 lZulm:Z.nJr] =0,np5 = 2.5) Ny=0:N,=40.ngy =072ng =067, =03.np =0 gy =23 Ny=1: No=18.ngz =072ng =0.67.n; =0.3n5 =25 g, =58
Poorly filtrated Zone 1
Index case in Zone 2

Each case is presented as Case # [Index case zone, Zone 1 setting, Zone 2 setting]. The clean air flow rate per person in the entire restaurant remained unchanged at
5.1 L/s per person in all cases. The clean air flow rate per personin Zone 1, gy, and in Zone 2, g, varied between cases. The index case was in either Zone 1 or Zone 2.

Table 3
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