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Investigations of the boundary of the quantum correlation set have gained
increased attention in recent years. This is done through the derivation of quan-
tum Bell inequalities, which are related to Tsirelson’s problem and have signifi-
cant applications in device-independent (DI) information processing. However,
determining quantum Bell inequalities is a notoriously difficult task and only
isolated examples are known. In this paper, we present families of (almost-
)quantum Bell inequalities and highlight four foundational and DI applications.
Firstly, it is known that quantum correlations on the non-signaling boundary
are of crucial importance in the task of DI randomness extraction from weak
sources. In the practical Bell scenario of two players with two k-outcome mea-
surements, we derive quantum Bell inequalities that demonstrate a separation
between the quantum boundary and certain portions of the boundaries of the
no-signaling polytope of dimension up to 4k−8, extending previous results from
nonlocality distillation and the collapse of communication complexity. Secondly
as an immediate by-product, we give a general proof of Aumann’s Agreement
theorem for quantum systems as well as the almost-quantum correlations, which
implies Aumann’s agreement theorem is a reasonable physical principle in the
context of epistemics to pick out both quantum theory and almost-quantum
correlations from general no-signaling theories. Thirdly, we present a family
of quantum Bell inequalities in the two players with m binary measurements
scenarios, that we prove serve to self-test the two-qubit singlet and the cor-
responding 2m measurements. Interestingly, this claim generalizes the result
for m = 2 discovered by Tsirelson-Landau-Masanes and shows an improve-
ment over the state-of-the-art Device-Independent Randomness-Amplification
(DIRA). Lastly, we use our quantum Bell inequalities to derive the general
form of the principle of no advantage in nonlocal computation, which is an
information-theoretic principle that serves to characterize the quantum corre-
lation set.
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1 Introduction
One of the most striking features of quantum mechanics is nonlocality, the phenomenon of
violation of Bell inequalities by separated physical systems. The correlations between local
measurement outcomes on such systems show, in a fully device-independent manner, that
quantum theory differs fundamentally from all classical theories that are constrained by the
principle of local causality [1, 2]. Besides their foundational interest, in recent years, the
quantum correlations have been shown to be a vital resource in device-independent (DI)
information processing applications, such as quantum key distribution [3, 4], randomness
extraction and expansion [5, 6], self-testing of quantum states and measurements [7, 8],
and reduction of communication complexity [9].

The Bell inequalities delineate the boundary of the classical correlation set, and any
violation of a Bell inequality indicates that the observed distribution is nonlocal. More-
over, the verification of nonlocal correlations (and the correct execution of DI tasks built
upon these) can be performed by simple statistical tests of the measurement devices and
a fundamental rule of nature, viz. the no-superluminal signaling principle of relativity.
While the classification of the entire set of Bell inequalities for arbitrary numbers of mea-
surement systems, inputs and outputs is a challenge, at least a systematic method for the
identification of novel Bell inequalities is known since the work by Pitowsky [10].

On the other hand, the quantum correlation set, denoted Q, is known to lie in between
the classical set L and the general no-signaling set NS [11]. It’s essential to more precisely
characterize the quantum correlations set, and understand where it stands between the
classical and general non-signaling correlations polytopes. For instance, this characteri-
zation is crucial to identify the optimal quantum correlations for different applications.
However, the task of characterizing the quantum correlation set has proven to be a much
more challenging task compared to the classical one [12]. Indeed, for a given correlation
there is no general method to determine whether it belongs to the quantum correlation
set, no need to mention the difficulty of finding the quantum system that saturates this
correlation. Several different approaches have been proposed in the literature from differ-
ent perspectives in an attempt to partially answer this question. For instance, the NPA
hierarchy [13, 14] provides a numerical approximation of the quantum correlation set from
the outside, the convexity of the quantum correlation set and its extremal points (for some
specific scenarios) have been studied in [15, 12, 16, 17]. It has been proven that for the
scenarios involving any number of parties with binary inputs, the classical correlation poly-
tope is dual to the no-signaling polytope [18], the duality of the quantum correlation set,
which is convex but is in general not a polytope unlike L and NS, is less known and has
been studied for some specific scenarios [20, 21, 15, 18, 22, 19]. Analogs to using Bell in-
equalities to delineate the boundary of the classical correlation set, one can also derive the
quantum Bell inequality to study the boundary of the quantum correlation set, however,
these quantum Bell inequalities are more complicated compared to Bell inequalities, usually
non-linear and only a few examples have been found so far [25, 26, 24, 27, 23, 28, 22, 29].

Even though much effort has been put in, the boundary of the quantum correlation set is
still not completely understood. One question that is highly related to the characterization
of the quantum correlation set is to exclude the no-signaling correlations (usually termed
as no-signaling boxes) from the quantum set. It’s proven by one of us in [30] that all
nonlocal vertices of the no-signaling polytope are not quantum realizable, this result is
pretty general since it holds for any Bell scenario with the arbitrary number of parties,
inputs and outputs. Apart from that, in the simplest Bell scenario, the authors in [26]
looked for all the boxes on the coincident boundary of the quantum correlation set and
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no-signaling set, and the nonlocal boxes that collapse communication complexity [31] are
also outside of the quantum set. It has been observed that the physically achievable boxes
set must be closed under wirings [32]. In [33], the authors provided tools to systematically
construct sets of non-local boxes that are closed under wirings and by applying these tools
to the noisy PR box (isotropic boxes), they found a continuum of sets of non-local boxes
that are closed under wirings, thus partially answering the question of finding the feasible
non-local boxes in nature. Afterward, also in the simplest Bell scenario, the authors [25, 34]
identified a board class of ‘quantum void’ in the no-signaling set by utilizing the nonlocality
distillation protocol.

The practical implications of Quantum Bell Inequalities are profound, particularly in
the realm of DI applications. One important task that has gained prominence in recent
years is self-testing [35], namely the unique identification (up to local isometries) of a quan-
tum state and measurements, solely from the observed correlations in a Bell test without
trusting the internal workings of the devices. As such, this task requires the identification
of quantum correlations that can be generated in such a unique manner. The study of
Quantum Bell Inequalities is also important from a fundamental viewpoint in the prob-
lem of identifying appropriate physical and information-theoretic principles that single out
the set of quantum correlations from amongst general no-signaling ones. Of particular
importance are the principle of information causality [36], macroscopic locality [37], local
orthogonality [38], no advantage in nonlocal computation [28], the collapse of communica-
tion complexity [39], as well as Aumann’s Agreement theorem which is recently generalized
to the quantum system [40], all of which have been shown to lead to non-trivial bounds on
the set of quantum correlations. The identification of nonlocal no-signaling boxes that are
excluded from the quantum set serves as a useful testing ground and pointers towards the
ultimate principle picking out the quantum set.

In this paper, we explore the boundary of the quantum correlation set with specific
regard to regions coinciding with a no-signaling or a local boundary, and non-trivial regions
leading to self-testing. To do this, we expand on a class of non-linear (Almost-)Quantum
Bell Inequalities defining the boundary of the almost-quantum Set [41]. Such inequalities
were used to exclude all nonlocal vertices of the no-signaling polytope (for arbitrary number
of parties, inputs and outputs) by one of us in [30]. Here, we explore these inequalities to
exclude further non-trivial regions of the no-signaling polytope. Specifically, in the (2, 2, k)
Bell scenario (with two players performing two k−nary measurements), we derive optimal
inequalities that show the exclusion of nonlocal correlations on certain portions of the
boundaries of the no-signaling polytope of dimension up to 4k−8. This extends the known
region of excluded boxes from the no-signaling boundary obtained in other approaches
introduced before. As a direct consequence, we prove that Aumann’s Agreement theorem
holds for the quantum systems as well as the almost-quantum correlations. This result not
only corrects the proof presented in [40] but also answers the open question that Aumann’s
Agreement theorem is a reasonable physical principle in the context of epistemics and a
common feature of both the quantum thoery and almost-quantum correlations. Secondly,
we derive a class of tight quantum Bell inequalities in the (2,m, 2) Bell scenario (with
two players performing m binary measurements) and show their usefulness in self-testing
the two-qubit singlet state. In this regard, we generalize the results regarding the self-
testings of the singlet in the (2, 2, 2) scenario obtained in [42] and the self-testing of the
correlations leading to the optimal violation of the chained Bell inequality in [43]. Finally,
we study the faces of the (2,m, 2) correlation set (excluding the local marginals), and
identify low-dimensional regions in which the quantum correlation set coincides with the
classical correlation polytope. In this regard, we generalize the results obtained in [28].
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2 Almost-Quantum Bell Inequalities
2.0.1 Bell scenario and the set of quantum correlations

We label a Bell scenario as (n,m, k), in which n space-like separated parties perform mea-
surements on a shared physical system, each party has m choices of local measurement
and each measurement yields k possible outcomes. Specifically, we focus on the bipartite
scenario (2,m, k) (experimenters Alice and Bob), in which we label the local measurements
as x, y ∈ [m] (where [m] = {1, 2, . . . ,m}) and the possible outcomes of each measurement
are a, b ∈ [k] (where [k] = {1, 2 . . . , k}) respectively. Let p(a, b|x, y) denote the probabil-
ity of obtaining the outcomes a, b given that Alice and Bob chose measurement settings
x, y, these probabilities obey non-negativity p(a, b|x, y) ≥ 0,∀x, y, a, b and are normalized∑

a,b p(a, b|x, y) = 1, ∀x, y. A box then refers to a collection of conditional probability
distributions P := {p(a, b|x, y)}x,y∈[m];a,b∈[k] (we will also write a box in terms of a vector
P⃗ or |P⟩). There are three different physical models of our interest which can be translated
into three different types of constraints on the boxes. The first set of interest consists of
general no-signaling boxes. This set is defined by the requirement that the local marginal
probabilities of one party are well defined and not affected by the input of the other party,
i.e., the experimenters cannot signal their inputs to each other.∑

a

p(a, b|x, y) =
∑

a

p(a, b|x′, y) ∀b, x, x′, y∑
b

p(a, b|x, y) =
∑

b

p(a, b|x, y′) ∀a, x, y, y′ (1)

The set of all boxes satisfying the above no-signaling constraints forms the no-signaling
convex polytope NS(2,m, k). The second set of interest consists of the Quantum boxes. In
this case, there exists a quantum state ρ in some Hilbert space and a set of measurement
operators (positive operator valued measure (POVM) elements) {Aa

x} and {Bb
y} such that

the joint conditional probabilities obey the Born’s rule:

p(a, b|x, y) = Tr(ρAa
x ⊗Bb

y) ∀a, b, x, y (2)

All such quantum boxes form the quantum convex set Q(2,m, k). The third set of interest
consists of the Local Causal (Classical) boxes. In this case, there exist hidden variables λ
with distribution p(λ), and corresponding local response functions p(a|x, λ), P (b|y, λ) such
that

p(a, b|x, y) =
∑

λ

P (λ)p(a|x, λ)p(b|y, λ) ∀a, b, x, y (3)

We denote by L(2,m, k) the local convex polytope, and the extreme points of this set
L(2,m, k) are the local deterministic boxes. In general, the relationship of these three sets
is L(n,m, k) ⊊ Q(n,m, k) ⊊ NS(n,m, k).

2.0.2 Almost-quantum set and the Theta body of the Orthogonality Graph

In [13, 14], Navascues, Pironio, and Acín introduced a hierarchy of semi-definite pro-
grams (SDPs) that form an outer approximation of the quantum set. In the SDPs, the
requirement of tensor product structure of measurement operators of space-like separated
parties is replaced with the commutation requirement of the operators, thus the conditional
probabilities are expressed as

p(a, b|x, y) = ⟨ψ|Aa
xB

b
y|ψ⟩ ∀a, b, x, y (4)
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with projection operators {Aa
x}, {Bb

y} and the commutation requirement [Aa
x, B

b
y] = 0, ∀a, b,

x, y. In the hierarchy, let S1 := {I} ∪ {Aa
x} ∪ {Bb

y}, and the set Sk, k > 1 contains
Sk−1 and products of k elements of S1. For example, S1 = {I} ∪ {Aa

x} ∪ {Bb
y}, S2 =

S1 ∪ {Aa
xA

a′
x′} ∪ {Bb

yB
b′
y′} ∪ {Aa

xB
b
y}, etc. The moment matrix Γ(k) is associated with the set

Sk, the entry of moment matrix is Γ(k)
i,j = ⟨ψ|s(k)†

i s
(k)
j |ψ⟩ where s(k)

i ∈ Sk,∀i ∈ [|Sk|] and the
size of the moment matrix is |Sk| × |Sk|. It’s clear that the moment matrix Γ(k) is positive
semi-definite Γ(k) ⪰ 0,∀k. A box P belongs to the set Qk, if the elements of the box P are
equal to the corresponding entries of the moment matrix Γ(k). The sets Qk are convex and
they converge toward the quantum set Q from outside Q1 ⊋ Q2 ⊋ Q3 ⊋ · · · ⊋ Q. Thus,
for a box P, the lack of existence of Γ(k) ⪰ 0 at any level k of the hierarchy means P is
outside of the quantum set. A particular level of the hierarchy between levels 1 and 2 is
of great interest, which is labeled as level 1 + ab. And this set has been highlighted as the
Almost-Quantum set Q̃ [41], in the sense that the set Q̃ satisfies almost all the reasonable
information-theoretic principles (except the principle of information causality, for which a
proof is not known), that pick out quantum correlations from general no-signaling ones.

The orthogonality graph GB [44, 45] can be constructed for any Bell scenario. Take
the Bell scenario (2,m, k) as an example, each event (a, b|x, y) in the Bell scenario (2,m, k)
corresponds to a distinct vertex of the graph, and two vertices are connected by an edge if
the two events involve different outcomes for the same local measurement by at least one
of the parties (such events are termed locally orthogonal). The Theta body TH(G) of any
graph G = (V,E) is the convex set defined as follows.

Definition 1. ([46]) For any graph G = (V,E), TH(G) := {P⃗ = (|⟨ψ|ui⟩|2 : i ∈ |V |) ∈
R|V |

+ : ∥|ψ⟩∥ = ∥|ui⟩∥ = 1, {|ui⟩} is an orthonormal representation of G}.

We consider the orthogonality graph GB for a Bell scenario, and define a subset of the
Theta body TH(c)(GB) ⊊ TH(GB), in which additional clique constraints are applied to
the maximum cliques {c} of the orthogonality graph GB as:

Definition 2. ([45]) For the orthogonality graph GB corresponding to the Bell scenario
(n,m, k), define the set TH(c)(G) as

TH(c)(GB) :=
{

P⃗ =
(
|⟨ψ|ui⟩|2

)
∈ TH(GB) :

∑
i∈c

|⟨ψ|ui⟩|2 = 1,∀c ∈ Cn,ns

}
. (5)

Here, Cn,ns denotes the set of maximum cliques of orthogonality graph GB.

It has been shown that the set TH(c)(GB) is equivalent to the almost-quantum set.

Theorem. ([47]) For any Bell scenario (n,m, k), the almost-quantum set is equivalent to
the Theta body with maximum clique constraints, i.e., Q̃ = TH(c)(GB).

In summary, for a Bell scenario (2,m, k), we get the following important relationships:

TH(GB) ⊋ TH(c)(GB) = Q̃ = Q1+ab ⊋ Q (6)

Thus, the exclusion of a box P from the set TH(GB) implies that this box has no quantum
realization, i.e., P /∈ Q(2,m, k). Now, we utilize the following dual characterization of the
set TH(GB) [48]:

TH(GB) = {|P ⟩ ∈ R|V | : ⟨P |M |P ⟩ −
∑
i∈|v|

Mi,i|P ⟩i ≤ 0,∀M ∈ M} (7)
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with
M := {M ∈ S|V | : Mu,v = 0(u ̸= v, u ≁ v),M ⪰ 0}. (8)

The set of inequalities ⟨P |M |P ⟩ −
∑

i∈|v|Mi,i|P ⟩i ≤ 0 therefore defines a set of almost-
quantum Bell inequalities for any number of players, inputs and outputs separating (almost-
) quantum from the post-quantum set. Choosing appropriate M satisfying (8) allows us to
identify non-trivial boundaries of the almost-quantum set (and recovers some of the bound-
aries identified by principles such as macroscopic locality [49, 50] or local orthogonality
[38]). In certain Bell scenarios such as when two players perform binary measurements,
this class of inequalities also allows to identify tight boundary regions of the quantum set.

3 Excluding nonlocal no-signaling Boxes from the Quantum Set
We have seen a class of inequalities that provide a boundary on the (almost-)quantum set.
In [30], the authors used these inequalities to exclude, from the quantum set, all nonlocal
vertices of the no-signaling polytope for any number of players, inputs and outputs. In
this section, we generalize this statement and identify optimal quantum Bell inequalities to
exclude specific nonlocal regions of the no-signaling polytope. We thereby extend known
results regarding the excluded region of the no-signaling polytope, that were previously
obtained using the method of nonlocality distillation (any box that can be distilled to
a PR box through local operations and shared randomness must be excluded from the
quantum set) [25, 34] and the collapse of communication complexity [31]. The purpose of
this section is more generally to illustrate the utility of the class of inequalities in (7) in
easily exclude nonlocal regions of the no-signaling polytope from the quantum set.

To identify the optimal M satisfying (8) that serves to exclude a nonlocal box P, we
solve the following SDP:

max
M

⟨P|M |P⟩ −
∑

i∈|V |
Mi,i|P⟩i

s.t. M ⪰ 0
Mu,v = 0(u ̸= v, u ≁ v)
M ∈ S|V |

(9)

where |P⟩ is the vector form of the box P. If the solution to the SDP is a strictly positive
value, then the corresponding quantum Bell inequality certifies that the box P is not in
the quantum set. In this section, for specific regions of the no-signaling boundary in the
(2, 2, 2) and the (2, 2, k) Bell scenarios we analytically present psd matrices M̃ satisfying
(8) such that ⟨P|M̃ |P⟩ −

∑
i∈|v| M̃i,i|P⟩i > 0, thereby excluding these regions from the

quantum set.

Theorem 1. In the (2, 2, 2) Bell scenario, let P be a point on a face of the no-signaling
polytope NS(2, 2, 2) of dimension d ≤ 4, such that P /∈ L(2, 2, 2), then P /∈ Q(2, 2, 2).

It’s well-known that in this simplest (2, 2, 2) Bell scenario, there are 24 extreme vertices
of NS(2, 2, 2) and 8 of them are nonlocal denoted as PR boxes and the other 16 are local
deterministic boxes. The PR boxes [11] are equivalent up to relabeling of the inputs and
outputs. Due to the symmetries of the (2, 2, 2) scenario, each PR box is neighboring to 8
local deterministic boxes and they form an 8-dimensional simplex [51], to understand the
behavior of boxes on the boundary of the no-signaling polytope, we focus on the boxes on
the faces of this simplex. For the sake of readability, we provide the proofs for d = 0, 1
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here, while the detailed proofs of other faces are deferred to the Appendix A. The main
idea is that we present quantum Bell inequalities associated with M̃ for any nonlocal box
on the faces of the simplex up to dimension 4 which indicates that all nonlocal boxes on
the corresponding faces are outside of the quantum correlation set.

Proof. In the proof, we relabel the entries of |P⟩ which is the vector form of the box
{p(a, b|x, y)}, such that the first five entries of |P⟩ correspond to the probability of events
(1, 1|0, 1), (0, 0|0, 0), (1, 1|0, 0), (0, 0|1, 0), (1, 0|1, 1).

I. 0-dimensional faces (Nonlocal Vertices).
Since the 8 PR boxes in (2, 2, 2) scenario are equivalent (up to relabeling the indexes
of inputs and outputs), we will just analyze one with p(a, b|x, y) = 1/2 for a⊕b = x·y.
We construct the matrix M0 as:

M0 =
5∑

i=1
|ι(i,i+1)⟩⟨ι(i,i+1)| = |ι(1,2)⟩⟨ι(1,2)| + |ι(2,3)⟩⟨ι(2,3)|

+ |ι(3,4)⟩⟨ι(3,4)| + |ι(4,5)⟩⟨ι(4,5)| + |ι(5,1)⟩⟨ι(5,1)| ≻ 0
(10)

where |ι(i,i+1)⟩ is an indicator (with 0/1-entries) vector of length 5, with non-zero
entries in the positions i and i+ 1. M0 is positive definite, so there exists an ϵ > 0,
such that M̃0 = M0 − ϵ|ι(1)⟩⟨ι(1)| ⪰ 0. We therefore obtain the inequality

⟨P|M̃0|P⟩ −
5∑

i=1

(
M̃0
)

i,i
|P⟩i = −ϵ|P⟩1(|P⟩1 − 1) > 0, (11)

recovering the well-known fact that the PR box P has no quantum realization. Note
that here |P⟩ is a vector of length 16 and the M matrix in the definition of Theta
body TH(G) in this scenario is of size 16 × 16, but we have only picked five events
and constructed the matrix M̃0 of size 5×5. So that we implicitly extend the matrix
M̃0 with suitable 0 entries to obtain (11).

II. 1-dimensional faces. These are the convex combination of a PR box and one neigh-
boring Local deterministic box, that is

P = cNS · PR+ (1 − cNS) · Li (12)

where i ∈ {1, 2 . . . , 8} and 0 < cNS < 1. Without loss of the generality, here we
assume the local box in Eq. (12) is the one that p(0|x) = 1, p(0|y) = 1,∀x, y ∈ {0, 1}.
In this case, we construct a matrix M̃1 as:

M̃1 = 4 ·
4∑

i=1
|ι(i,i+1)⟩⟨ι(i,i+1)| + |ι(1)⟩⟨ι(5)| + |ι(5)⟩⟨ι(1)| =


4 4 0 0 1
4 8 4 0 0
0 4 8 4 0
0 0 4 8 4
1 0 0 4 4

 (13)

which can be verified to be positive definite by applying elementary row operations
to transform M̃1 to an upper triangular matrix with all the diagonal entries positive.
We obtain the inequality

⟨P|M̃1|P⟩ −
5∑

i=1

(
M̃1
)

(i,i)
|P⟩i = 2|P⟩1 · |P⟩5 > 0. (14)

Thus all the boxes on the 1-dimensional faces of the no-signaling polytope NS(2, 2, 2)
are excluded from the quantum set Q(2, 2, 2) in the same manner.
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Note that the optimal quantum point for the well-known Hardy paradox shows that the
quantum set reaches a five-dimensional nonlocal boundary of the non-signaling set, so that
the theorem is optimal. We now proceed to extend Thm. 1 to more general Bell scenarios
(2, 2, k) for k ≥ 2. To do this, we first study the structure of the no-signaling polytope
NS(2, 2, k), specifically focusing on identifying the regions that connect a non-local vertex
with certain local vertices.

Lemma 1. ([51]) The nonlocal vertices of NS(2, 2, k) for two inputs x, y ∈ {0, 1} and
outputs a ∈ {0, . . . , k − 1} and b ∈ {0, . . . , k − 1} are equivalent under local relabelling to

p(a, b|x, y) =


1/d : (b− a) mod d = x · y

a, b ∈ {0, . . . , d− 1}
0 : otherwise

(15)

for each d ∈ {2, . . . , k}.

Similar to the case of the PR box in (2, 2, 2) Bell scenario, all nonlocal vertices in the
above lemma with d = k are equivalent up to relabeling, and without loss of generality we
will only focus on the one listed above in Eq. (15) with d = k, and denote it by PR(k).

We now define a nonlocal game gk associated with the PR(k) box and examine the
corresponding classical value and the optimal local deterministic winning strategies for this
game. Later, we will demonstrate how to exclude nonlocal correlations on the boundary of
the no-signaling correlation set, with a dimension of up to 4k−8, provided the correlations
can be decomposed as a convex combination of the PR(k) box and certain optimal local
deterministic behaviors of the game gk.

The nonlocal game gk, which is the unique game defined by PR(k), is defined as follows:
the input distribution is uniform, i.e., Π(x, y) = 1/4, ∀(x, y), and the winning condition is
set to be W (a, b, x, y) = 1 for all events (a, b, x, y) for which p(a, b|x, y) ̸= 0 in PR(k) and
W (a, b, x, y) = 0 for all other events. It’s clear that the no-signaling value of this game gk

is 1, since this is achieved by the behavior PR(k). On the other hand, the classical value of
the game gk is 3/4, this can be seen as follows. The classical value is necessarily achieved
by a local deterministic strategy (being the extreme points of the classical polytope) and
for any local deterministic strategy L

(k)
i , the winning condition can be satisfied for at

most three out of the four pairs of inputs (x, y) (and in fact this is achievable by simply
outputting a = b = 0 for x, y ∈ {0, 1}). Thus, if L(k)

i is an optimal local deterministic
strategy for the game gk, it achieves the optimal classical value of 3/4. We now proceed
to show that there are 4k local deterministic boxes L(k)

i , i ∈ {1, . . . , 4k}, that achieve this
classical value. To see this we apply the notion of a no-signaling graph defined in [30] to
the game gk, denoting the corresponding no-signaling graph by Gk.

Definition 3 ( [30]). For any non-local game g, we define the no-signaling graph GNS(g) =
(V,E) associated with the game to have set of vertices v ∈ V , each of which is labeled by
a set of inputs and outputs that wins the game, v =

(
a(v),x(v)

)
. Two vertices v, v′ ∈ V

are connected be an edge if ∃S ⊆ [n] with |S| = n − 1 such that
(
a

(v)
i = a

(v′)
i ∧ x

(v)
i =

x
(v′)
i

)
∀i ∈ S.

See the illustration of g3 and one of its optimal local deterministic winning boxes, along
with the no-signaling graph G3 in Fig. 1.

Accepted in Quantum 2024-09-25, click title to verify. Published under CC-BY 4.0. 8



𝟎

𝟏

𝟏

𝟎

𝟎

𝟐 𝟏𝟎 𝟐

𝟐

𝟏

𝟎

𝟐

𝟏𝒙\𝒚

𝒂\𝒃

𝟎

𝟏

(a) The game g3 and its corresponding
no-signaling graph G3.
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(b) One optimal local deterministic
box for g3 and its no-signaling graph

Figure 1: (a) g3 is a non-local game in the (2, 2, 3) Bell scenario with its input distribution being
uniform and the winning conditions are labeled by ✕. The no-signaling graph G3 is represented with
the vertices labeled by ✕ and the red lines denoting edges. (b) One local deterministic box that achieves
the optimal classical value 3

4 of the game g3. The probabilities for the events labeled by ✕ are 1 and
others are 0. The no-signaling graph of this local deterministic box is shown with vertices labeled by
✕ and the red lines denoting edges. One can see that the intersection of these two graphs is a path
consisting of 3 vertices and 2 edges.

Note that the original definition of the no-signaling graph is associated with non-local
games, but it naturally extends to graphs Gl,i representing local deterministic boxes L(k)

i

in which the vertices v of Gl,i are labeled by the events v = (a,x) for which p (a|x) = 1 in
L

(k)
i , and the edges are defined as before. Thus, suppose that L(k)

i is an optimal classical
strategy of gk, meaning that exactly three of the winning conditions are satisfied by L(k)

i ,
then the intersection of their no-signaling graphs is directly seen to be a path consisting
of 3 vertices and 2 edges (see the example of k = 3 in Fig. 1). Under this consideration,
given a no-signaling graph Gl,i of L(k)

i that is optimal for the game gk, we can therefore
define a unique 2-edge path in Gk. On the other hand, given any 2-edge path in Gk, we
can also clearly construct a unique optimal local deterministic strategy for gk. Thus there
is a one-to-one correspondence between the optimal local deterministic strategies of gk and
the 2-edge paths in Gk. On the other hand, the number of 2-edge paths of Gk is the same
as the number of vertices in Gk, which is 4k.

Due to this structure, we can label each of these 4k local deterministic boxes by its
event that is not in common with the no-signaling graph of PR(k), these are written as
L

(k)
(a=b+1,b|x=0,y=0),∀b ∈ {0, . . . , k−1};L(k)

(a,b=a+1|x=0,y=1)∀a ∈ {0, . . . , k−1};L(k)
(a,b=a+1|x=1,y=0)

∀a ∈ {0, . . . , k−1} and L(k)
(a,b=a|x=1,y=1),∀a ∈ {0, . . . , k−1} (here we denote k := 0). Addi-

tionally, PR(k) is adjacent to these 4k local deterministic boxes in the NS(2, 2, k) polytope.
Due to the structure of the no-signaling graph Gk and these 4k optimal local determin-
istic strategies discussed above, the convex hull of PR(k) and any one of these 4k local
deterministic boxes is equivalent under the relabeling of the input and output indices.
Without loss of generality, we take the local deterministic box to be L(k)

(a=0,b=0|x=1,y=1). No
other local deterministic box lies on the region formed by the convex hull of PR(k) and
L

(k)
(a=0,b=0|x=1,y=1), as any other local deterministic box contributes probabilities to events

that have zero probability in both PR(k) and L(k)
(a=0,b=0|x=1,y=1). Additionally, no nonlocal
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extreme box lies on this region. If such a nonlocal extreme box {p(a, b|x, y)} existed, then
p(a = 0, b = 0|x = 1, y = 1) ̸= 0, otherwise, it would coincide with PR(k). On the other
hand, for any box that lies on this region, due to the definition of PR(k), the non-zero
probability events for settings x, y where x · y = 0 must be correlated, i.e., a = b. These
two conditions together contradict the fact that all nonlocal vertices in this scenario are of
the form shown in Eq. (15).

We proceed to determine the quantum realization of a box P that belongs to the re-
gion formed by the convex hull of PR(k) and 4k − 8 of the 4k local deterministic boxes
listed above. The eight excluded boxes are L

(k)
(a=0,b=k−1|x=0,y=0), L

(k)
(a=k−1,b=k−2|x=0,y=0),

L
(k)
(a=k−2,b=k−1|x=0,y=1),L

(k)
(a=k−1,b=0|x=0,y=1), L

(k)
(a=k−2,b=k−1|x=1,y=0), L

(k)
(a=k−1,b=0|x=1,y=0) and

L
(k)
(a=0,b=0|x=1,y=1), L

(k)
(a=k−1,b=k−1|x=1,y=1). More specifically, we consider a box P that can

be decomposed as follows:

P = cNSPR
(k) +

k−3∑
b=0

c(a=b+1,b|0,0) · L(k)
(a=b+1,b|x=0,y=0) +

k−3∑
a=0

c(a,b=a+1|x=0,y=1) · L(k)
(a,b=a+1|x=0,y=1)

+
k−3∑
a=0

c(a,b=a+1|x=1,y=0) · L(k)
(a,b=a+1|x=1,y=0) +

k−2∑
a=1

c(a,b=a|x=1,y=1) · L(k)
(a,b=a|x=1,y=1)

(16)

where the coefficients c are non-negative and their sum is equal to 1 and cNS ̸= 0.
We claim that P /∈ Q(2, 2, k). This is because we find an almost quantum Bell inequality
represented by M̃ (k) that rules out P.

M̃ (k) =


4 41×(k−1)2 0 01×(k−1)2 1

4(k−1)2×1 8(k−1)2×(k−1)2 4(k−1)2×1 0(k−1)2×(k−1)2 0(k−1)2×1
0 41×(k−1)2 8 41×(k−1)2 0

0(k−1)2×1 0(k−1)2×(k−1)2 41(k−1)2×1 8(k−1)2×(k−1)2 4(k−1)2×1
1 01×(k−1)2 0 41×(k−1)2 4

 (17)

where 41×(k−1)2 refers to a 1 × (k − 1)2 submatrix with all entries being 4. This matrix
Eq. (17) can be seen as an extension of the matrix Eq. (13) which is used to exclude points
on the 1-dimensional faces of NS(2, 2, 2) from Q(2, 2, 2). The matrix Eq. (13) has M̃1 ≻ 0,
so that automatically we have M̃ (k) ≻ 0.

If we relabel the entries of |P⟩ which is the vector form of the box P, such that
the first 2(k − 1)2 + 3 entries of it correspond to the probabilities of events (k − 1, k −
1|0, 1), (a, b|0, 0)∀a, b ∈ {0, k−2}, (k−1, k−1|0, 0), (a, b|1, 0)∀a, b ∈ {0, k−2}, (k−1, 0|1, 1)
in order, we obtain the following inequality:

⟨P|M̃ (k)|P⟩ −
2(k−1)2+3∑

i=1
M̃

(k)
(i,i)|P⟩i = 2p(k − 1, k − 1|0, 1) · p(k − 1, 0|1, 1) > 0. (18)

Thus all points P that can be written as Eq. (16) are outside of Q(2, 2, k).
Note that the correlations P considered in Eq. (16) lie on the boundary of the no-

signaling polytope NS(2, 2, k) of dimension up to 4k − 8. On the one hand, the region
formed by the convex hull of PR(k) and the 4k− 8 local deterministic boxes listed above is
part of a face of NS(2, 2, k). This follows from the definition of the no-signaling polytope,
where the half-space representation is defined by normalization conditions and no-signaling
conditions (both equality constraints), along with non-negativity conditions (inequality
constraints). A face of a polytope is defined when some of these inequality constraints are
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saturated, here meaning that the probability of certain events becomes zero due to the
saturation of non-negativity conditions. This is exactly the property that P, as considered
in Eq. (16), possesses. Thus, while we cannot conclusively state that this convex hull forms
a whole face of NS(2, 2, k), we can still assert that it lies on some face of NS(2, 2, k). On
the other hand, in the convex combination of PR(k) and the 4k − 8 local deterministic
boxes, each local deterministic box contributes uniquely to an event that no other box can.
Therefore, these 4k− 7 boxes (PR(k) and the 4k− 8 local deterministic boxes) are linearly
independent, and the dimension of the region formed by their convex hull is at most 4k−8.

4 Aumann’s Agreement theorem and its quantum generalization
In the last section, we have seen how to use the quantum Bell inequality associated with
the matrix M̃ to identify whether a no-signaling box belongs to the almost-quantum set.
This tool can be even applied to parameterized no-signaling boxes and by using this tool,
we excluded several classes of no-signaling boxes from the almost-quantum set (and so the
quantum correlation set). In this section, we show that these theorems can be directly
used as a crucial step in the proof of the quantum generalization of Aumann’s Agreement
theorem, which is recently defined in [40] as a candidate physical principle in the context
of epistemics to pick out the quantum theory from general no-signaling ones.

Aumann’s celebrated Agreement theorem states that ‘rational’ agents cannot agree to
disagree. More specifically, suppose a group of agents assign a probability to a given event
based on their own partial information, and if the individual probabilities of each agent
are common knowledge (or common certainty), then these individual probabilities must be
the same, even though the probabilities are obtained by different Bayesian updates due to
their different partial information. In plain language, the common knowledge (between two
agents) means an infinite list of A knows B’s probability (B knows A’s probability), and
B knows that A knows his probability (and also A knows that B knows her probability),
and so on. This Agreement theorem is a basic requirement in classical epistemics and has
been extensively used in decision theory and game theory.

Recently, the quantum generalization of the Agreement theorem has been studied in
[40]. In particular, the authors establish two analogous notions of the Agreement theorem
for the post-quantum (no-signaling) systems and characterize the no-signaling boxes that
display these behaviors. And then they discuss the possibility of the quantum realizations
of these no-signaling boxes, which concludes that the Agreement theorems still hold for
observers of quantum systems. We list the main theorems of [40] in the following. In short,
‘disagreement’ is the opposite concept of ‘agreement’, i.e., the agents can agree to disagree.

Theorem 2. (Theorem 3 and Theorem 7 in [40])
A two-input two-output no-signaling box gives rise to common certainty of disagreement
if and only if it takes the form of Table 1.
A two-input two-output no-signaling box gives rise to singular disagreement if and only if
it takes the form of Table 2.

In definition, the singular disagreement means to replace the common certainty (com-
mon knowledge) requirement for a given event with the requirement that Alice’s probability
is 1 and Bob’s probability is 0.
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xy\ab 00 01 10 11
00 r 0 0 1 − r

01 r − s s −r + t+ s 1 − t− s

10 t− u u r − t+ u 1 − r − u

11 t 0 0 1 − t

Table 1: Parametrization of two-input
two-output no-signaling boxes with com-
mon certainty of disagreement. Here,
r, s, t, u ∈ [0, 1] are the values that ensure
all entries of the box are non-negative,
with r > 0 and s− u ̸= r − t.

xy\ab 00 01 10 11
00 s t 1 − s− u− t u

01 0 s+ t r 1 − s− t− r

10 1 − u− t u+ t+ r − 1 0 1 − r

11 r 0 0 1 − r

Table 2: Parametrization of two-input two-output no-
signaling boxes with singular disagreement. Here, r, s, t, u ∈
[0, 1] are the values that ensure all entries of the box are
non-negative, with s > 0, and s+ t ̸= 0 and u+ t ̸= 1.

Theorem 3. (Theorem 4 and Theorem 8 in [40]) No two-input two-output quantum box
can give rise to common certainty of disagreement or singular disagreement.

The authors prove this theorem by deriving contradictions with Tsirelson’s theorem and
then use this theorem as the building blocks to extend to general scenarios with arbitrary
numbers of agents, inputs and outputs. However, Tsirelson’s theorem only holds for a
subset of nonlocal games named the correlation Bell expressions (XOR games), in which
only the correlators of the form ⟨AxBy⟩ appear but no local marginals ⟨Ax⟩ or ⟨By⟩. And
by using Tsirelson’s theorem, one can only get the quantum box that is achieved by the
maximally entangled state with the local marginals being ⟨Ax⟩ = 0, ⟨By⟩ = 0, ∀x, y. Thus
these quantum boxes are not general and a general proof of this theorem is needed.

Theorem 4. No two-input two-output quantum box or almost-quantum box can give rise
to common certainty of disagreement or singular disagreement.

We present a general proof of this theorem by showing that these two tables are on
the 4-dimensional faces of the (2, 2, 2) no-signaling polytope (we defer the details to Ap-
pendix. B). Thus according to Theorem 1, a direct consequence of it is that both tables
are outside of the quantum correlation set and also the almost-quantum set. This result
also answers the open question left in the discussion section of [40] that the Agreement
still holds in the almost-quantum correlations. Almost-quantum correlations is one of the
generalized quantum theories that is strictly larger than the quantum correlation set and
satisfies almost all the reasonable physical and information-theoretic principles (except the
principle of information causality, for which a proof is not known). This result then adds
one more common feature in the context of epistemics to quantum theory and almost-
quantum correlation.

5 Quantum Bell Inequalities and Self-testing
In the previous sections, we proved that there are no quantum realizations for nonlocal
boxes on the boundary of NS(2, 2, k) of dimension d ≤ 4k − 8, with k > 2. As stated
earlier, the well-known Hardy paradox shows that quantum theory allows for a realization
of a point on a five-dimensional face of the no-signaling set NS(2, 2, 2). In [52], we extended
this point to a whole region on the five-dimensional face that admits quantum realization
(in an effort to find an optimal point for DI randomness extraction). Furthermore, we
showed that these points allow to self-test all pure two-qubit entangled states except the
maximally entangled state.

In this section, we present a class of tight quantum Bell inequalities in the (2,m, 2)
Bell scenario where each player performs m ≥ 2 binary measurements. Let’s denote by Ai

and Bi (i = 1, . . . ,m) the binary observable (outcomes ±1) of Alice and Bob respectively.
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From the Tsirelson characterization of the set of quantum correlations in this scenario and
by considering the positive semidefinite completion problem for the set of correlators in
this cycle scenario [53], we obtain one boundary of the set of quantum correlations ⟨AxBy⟩
as follows.

Proposition 1. In the (2,m, 2) scenario, consider the 2m operators {A1, . . . , Am, B1, . . . , Bm}
with binary outcomes ±1 and assumed to fulfill [Ax, By] = 0 and an unknown state |ψ⟩.
Define the unit vectors A⃗x = Ax|ψ⟩ and B⃗y = By|ψ⟩, and the observed correlations
Ex,y ≡ ⟨ψ|AxBy|ψ⟩ = A⃗†

xB⃗y = cosαx,y, where αx,y ≥ 0 is the angle between A⃗x and
B⃗y. The set of correlations Ex,y achievable in quantum theory (up to relabeling the index
of operators) has the boundary:

m−1∑
i=1

(αi,i + αi+1,i) = α1,m − αm,m (19)

If this set of correlations Ex,y are available in quantum theory, then one can construct
a Gram matrix by using these unit vectors A⃗x, B⃗y such that the corresponding entries of
the Gram matrix are equal to the value of correlations Ex,y. The real positive definite
matrix completion problem for simple cycle graphs is studied in [53], where the vertices
of the cycle graphs are defined by the entries of the real positive definite matrix and two
vertices are connected by an edge if and only if the corresponding entries of the matrix are
in the same column or in the same row. Thus, by listing the vectors A⃗x, B⃗y as the column
of Vgram in the order that Vgram = [A⃗1, B⃗1, A⃗2, B⃗2, . . . , A⃗m, B⃗m] and defining the Gram
matrix as Mgram := V T

gramVgram, the solution of this Gram matrix completion problem
then suggests the above result Eq. (19). However, the semidefinite completion problem for
the cycle only considers correlations of the form Ex,y for y = x, x + 1, and as such only
gives an outer approximation boundary to the quantum set. In the following, we prove the
self-testing nature of the correlations satisfying Eq. (19) and in the process show that the
boundary is tight for the set of quantum correlations (excluding the marginals).

This statement generalizes the well-known boundary of the set of quantum correlations
in the (2, 2, 2) scenario characterized by Tsirelson-Landau-Masanes as [20, 21, 15]:∑

(x,y)̸=(i,j)
arcsin (⟨AxBy⟩) − arcsin (⟨AiBj⟩) = ξπ, (20)

where i, j ∈ {1, 2} and ξ = ±1. One can also see that the corresponding points on
the Q(2,m, 2) boundary optimally violate a weighted Braunstein-Caves chained inequality
expression of the form

Im
ch :=

m−1∑
i=1

(ci,i⟨AiBi⟩ + ci+1,i⟨Ai+1Bi⟩) + cm,m⟨AmBm⟩ − c1,m⟨A1Bm⟩ (21)

with appropriate coefficients ci,j . We now proceed to show that points on this boundary
serve to self-test the singlet state (along with suitable reference measurements). This gen-
eralizes the characterization of singlet self-testing boundary points in the (2, 2, 2) scenario
obtained in [42] and the self-testing of the chain inequality proven in [43] (where a robust
result was derived).

It’s easy to verify that the singlet is self-tested by this circuit shown in Fig. 2 if these
control operators are unitary (if they are not unitary, one can perform a regularization on
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Figure 2: Local isometry Φ used to self-test the singlet. H is the Hadamard gate.

the non-unitary operators) and satisfy [35]:

ZA|ψ⟩ = ZB|ψ⟩
XA|ψ⟩ = XB|ψ⟩

XAZA|ψ⟩ = −ZAXA|ψ⟩
XBZB|ψ⟩ = −ZBXB|ψ⟩

(22)

We will see how to construct these control operators ZA/B, XA/B from the binary mea-
surements Ax, By in the weighted chain inequality Eq. (21).

Let’s denote by θi,j(> 0) the angles between A⃗i and A⃗j . Given the scalar products of
A⃗i, A⃗i+1 with B⃗i, the angle θi,i+1, ∀i = 1, . . .m− 1 must satisfy:

|αi,i − αi+1,i| ≤ θi,i+1 ≤ αi,i + αi+1,i. (23)

The lower and upper bounds are reached when B⃗i lies in the same plane of A⃗i, A⃗i+1. And
the angle θm,1 satisfies:

|αm,m − α1,m| ≤ θm,1 ≤ αm,m + α1,m (24)

Together with the boundary condition Eq. (19), this implies that all vectors A⃗i, B⃗i ∀i =
1, . . . ,m lie on the same plane, inequalities in Eq. (23) reach the upper bound and inequal-
ities in Eq. (24) reach the lower bound. See Fig. 3.
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Figure 3: All vectors A⃗i, B⃗i ∀i = 1, . . . ,m lie on the same plane. And α1,1 + α2,1 + α2,2 = α1,2.
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In particular, we have

B⃗1 = sin (α1,1) A⃗2 + sin (α2,1) A⃗1
sin (α1,1 + α2,1)

A⃗2 = sin (α2,2) B⃗1 + sin (α2,1) B⃗2
sin (α2,1 + α2,2) .

(25)

Using the commutativity [Ax, By] = 0, and the fact that A2
x = B2

y = I (the outcomes
of the operators are binary outcomes ±1), we obtain:

(A1A2 +A2A1) |ψ⟩ = 2 cos (α1,1 + α2,1) |ψ⟩
(B1B2 +B2B1) |ψ⟩ = 2 cos (α2,2 + α2,1) |ψ⟩

(26)

Now, we can construct the control operators as:

ZA = A1

XA = A2 − cos (α1,1 + α2,1)A1
sin (α1,1 + α2,1)

ZB = sin (α1,2)B1 − sin (α1,1)B2
sin (α1,2 − α1,1)

XB = cos (α1,1)B2 − cos (α1,2)B1
sin (α1,2 − α1,1)

(27)

We now verify these control operators satisfy the conditions listed in Eq. (22).

(ZAXA +XAZA) |ψ⟩ = A1A2 +A2A1 − 2 cos (α1,1 + α2,1)
sin (α1,1 + α2,1) |ψ⟩ = 0

(ZBXB +XBZB) |ψ⟩ = sin (α1,2 + α1,1) (B1B2 +B2B1) − [sin (2α1,1) + sin (2α1,2)]
sin2 (α1,2 − α1,1)

|ψ⟩

= sin (α1,2 + α1,1) [B1B2 +B2B1 − 2 cos (α1,2 − α1,1)]
sin2 (α1,2 − α1,1)

|ψ⟩

= 2 sin (α1,2 + α1,1) [cos (α2,2 + α2,1) − cos (α1,2 − α1,1)]
sin2 (α1,2 − α1,1)

|ψ⟩ = 0

(28)

Note that we use sin (2α1,1) + sin (2α1,2) = 2 sin(α1,1 + α1,2) cos(α1,1 − α1,2) to simplify
above calculation. And we also have:

⟨ψ|ZAZB|ψ⟩ = ⟨ψ|ZAZB + ZBZA

2 |ψ⟩

= ⟨ψ|sin (α1,2) (A1B1 +B1A1) − sin (α1,1) (A1B2 +B2A1)
2 sin (α1,2 − α1,1) |ψ⟩

(29)

From Fig. 3, we have A⃗1 = sin(α1,2)B⃗1+sin(α1,1)B⃗2
sin(α1,1+α1,2) , thus we simplify the above Eq. (29)

to

⟨ψ|ZAZB|ψ⟩ = ⟨ψ| 2 sin2(α1,2) − 2 sin2(α1,1)
2 sin (α1,2 − α1,1) sin (α1,1 + α1,2) |ψ⟩

= ⟨ψ| cos(2α1,1) − cos(2α1,2)
2 sin (α1,2 − α1,1) sin (α1,1 + α1,2) |ψ⟩ = 1.

(30)
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Note that we use the equality cos (2α1,1) − cos (2α1,2) = −2 sin(α1,1 +α1,2) sin(α1,1 −α1,2)
in above calculation. And similarly, ⟨ψ|XAXB|ψ⟩ = 1 holds. Together with Eq. (28), (30)
this implies that the self-testing conditions Eq. (22) hold.

Any pair of vectors A⃗i, B⃗j can be written as

A⃗i = az,iZA|ψ⟩ + ax,iXA|ψ⟩
B⃗j = bz,jZB|ψ⟩ + bx,jXB|ψ⟩

(31)

where az,i = A⃗i ·ZA|ψ⟩, ax,i = A⃗i ·XA|ψ⟩, bz,j = B⃗j ·ZB|ψ⟩, bx,j = B⃗j ·XB|ψ⟩. Thus when
the isometry is applied to any pair of operators, we get

Φ (AiBj |ψ⟩ |00⟩) = az,ibz,jΦ (ZAZB |ψ⟩ |00⟩) + az,ibx,jΦ (ZAXB |ψ⟩ |00⟩)
+ ax,ibz,jΦ (XAZB |ψ⟩ |00⟩) + ax,ibx,jΦ (XAXB |ψ⟩ |00⟩)
= (az,ibz,j + ax,ibx,j) Φ (|ψ⟩ |00⟩) + (ax,ibz,j − az,ibx,j) Φ (XAZB |ψ⟩ |00⟩)

(32)

And the first term in Eq. (32) is

Φ (|ψ⟩ |00⟩) = 1
4 ((I + ZA) (I + ZB) |ψ⟩ |00⟩ +XA (I − ZA) (I + ZB) |ψ⟩ |10⟩

+XB (I + ZA) (I − ZB) |ψ⟩ |01⟩ +XAXB (I − ZA) (I − ZB) |ψ⟩ |11⟩)

= 1
2 ((I + ZA) |ψ⟩ |00⟩ +XAXB (I − ZA) |ψ⟩ |11⟩ + 0 · |ψ⟩ |10⟩ + 0 · |ψ⟩ |01⟩)

= 1√
2

(I + ZA) |ψ⟩ 1√
2

(|00⟩ + |11⟩) = |junk⟩|ϕ+⟩

(33)

The second term in Eq. (32) is

Φ (XAZB |ψ⟩ |00⟩) = 1
4((I + ZA) (I + ZB)XAZB |ψ⟩ |00⟩ +XA (I − ZA) (I + ZB)XAZB |ψ⟩ |10⟩

+XB (I + ZA) (I − ZB)XAZB |ψ⟩ |01⟩ +XAXB (I − ZA) (I − ZB)XAZB |ψ⟩ |11⟩)

= 1
4(XA (I − ZA) (I + ZB)ZB |ψ⟩ |00⟩ + (I + ZA) (I + ZB)ZB |ψ⟩ |10⟩

+ (I + ZA) (I + ZB)XAXBZB |ψ⟩ |01⟩ +XB (I + ZA) (I − ZB)ZB |ψ⟩ |11⟩)

= 1
4((I + ZA) (I + ZB) |ψ⟩ |10⟩ + (I + ZA) (I + ZB)XAXBZB |ψ⟩ |01⟩ + 0 · |ψ⟩ |00⟩ + 0 · |ψ⟩ |11⟩)

= 1√
2

(I + ZA) |ψ⟩ 1√
2

(|10⟩ − |01⟩) = |junk⟩σx,Aσz,B|ϕ+⟩

(34)

So Eq. (32) can be written as:

Φ (AiBj |ψ⟩ |00⟩) = (az,ibz,j + ax,ibx,j) Φ (|ψ⟩ |00⟩) + (ax,ibz,j − az,ibx,j) Φ (XAZB |ψ⟩ |00⟩)
= (az,ibz,j + ax,ibx,j) |junk⟩|ϕ+⟩ + (ax,ibz,j − az,ibx,j) |junk⟩σx,Aσz,B|ϕ+⟩
= |junk⟩ (az,iσz,Abz,jσz,B + ax,iσx,Abx,jσx,B + ax,iσx,Abz,jσz,B + az,iσz,Abx,jσx,B) |ϕ+⟩
= |junk⟩ÃiB̃j |ϕ+⟩

(35)

Note that σx,Aσx,B|ϕ+⟩ = σz,Aσz,B|ϕ+⟩ = |ϕ+⟩. Similarly for the local operators
Φ (Ai |ψ⟩ |00⟩) = |junk⟩Ãi|ϕ+⟩ and Φ (Bj |ψ⟩ |00⟩) = |junk⟩B̃j |ϕ+⟩, where Ãi, B̃j are the
reference measurements.
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6 Common faces of the Quantum and Classical Correlation sets
In the previous sections, we have studied the boundary of the quantum set with specific
regard to its relation with the no-signaling boundary and to self-testing applications. In
this section, we explore the region of the boundary of the quantum set that also serves as
the boundary of the classical set. Motivated by finding the nonlocal games that have no
quantum advantage, Linden et al. in [28] first discovered a family of two-party inequalities
that do not admit any quantum violation. These inequalities define the NLC (no advantage
in nonlocal computation) information-theoretic principle. As such, these regions serve as
testing grounds and pointers towards information-theoretic means of constraining general
non-signaling correlations and picking out quantum theory from among non-signaling the-
ories. It was proven in [54, 28, 23] that NLC games do not define facets of the classical
correlation set. In [55, 23], the authors studied the geometry of the common faces of the
quantum and classical correlation set and found that none of them are tight.

Specifically, we focus on the set of correlations alone, i.e., the correlators ⟨AxBy⟩ for
binary observables Ax, By excluding the local marginals ⟨Ax⟩, ⟨By⟩. Such correlation Bell
inequalities are also termed XOR games, and we present systematic constructions of non-
trivial XOR games with ma,mb inputs for Alice and Bob respectively such that the quan-
tum value of the game equals the classical value.

In this bipartite ma × mb-inputs, 2 × 2-outputs Bell scenario, we can represent the
extreme points of the local set as a column vector with 2ma+mb rows with all entries equal
to either plus or minus one. Using the well-known Tsirelson characterization [20, 56] of the
set of quantum correlations in this scenario as an elliptope, and leveraging results on the
facial structures of the set of correlation matrices [57], we obtain the following statement.

Theorem 5 ([57]). If there exists a subset R = {v1, ..., v|R|} ⊆ L, with cardinality r =
|R| ≤ log2(ma +mb), and for any subset I ⊆ {1, ..., |R|}, we have

⊙j∈{1,...,r}vI,j ̸= 0

where

vI,j =
{
I2ma+mb + vj if j ∈ I

I2ma+mb − vj if j ̸∈ I

and I2ma+mb is a column vector with 2ma+mb rows and all entries equal to one and ⊙ is
the Hadamard product. Then R forms the boundary of the local set which the quantum set
saturates to. In such a case, the subset R = {v1, ..., v|R|} is said to be in general position.

We utilize Theorem 5 to construct a class of low-dimensional faces of the set of classical
correlations that also serves as the boundary of the quantum set. In this respect, we recover
the class of games discovered by Linden et al. in [28] for the special case thatma = mb = 2k

for k ≥ 2. To do that, we first show that the set of vectors satisfying the conditions in
Theorem 5 are unique in the following sense:

Lemma 2. Let ma,mb ∈ N and N ∋ r ≤ log2(ma + mb). Let {v1, ..., vr} be a set of
general positions vectors of 2ma+mb rows. Then up to swapping rows and re-indexing, the
first 2r rows of them are unique. In particular, the unique choice for the first 2r rows is
the lexicographical ordering.

We defer the proof of this lemma to Appendix. C. By this lemma, if ma = mb = 2k,
where k ≥ 2, r = log2(ma + mb) = k + 1 and {v1, ..., vr} are in general positions, then
{v1, ..., vr} are unique up to swapping rows and re-indexing. We now focus on this case.
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For convenience reason, we first concatenate v1, ..., vr into one matrix, denoted by G2k (
G2k is a 2k+1 by r matrix). We then define the 2k by 2k game matrix G2k as follows. The
(i, j) position of the game matrix G2k associates with Alice’s ith input and Bob’s jth input.
In other words, the (i, j) position of G2k associates with the ith row and the (2k + j)th row
of G2k . Let ri = (x1, ..., xr) and rj = (y1, ..., yr) be the ith row and the (2k + j)th row of
G2k respectively. We define the (i, j) entry of G2k by using an operator ⋆ on the ith row
and the (2k + j)th row of G2k as follows:

(G2k)i,j = ri ⋆ rj =


1 if x1y1 + ...+ xryr > 0
−1 if x1y1 + ...+ xryr < 0
0 if x1y1 + ...+ xryr = 0

Under this construction, the game matrix G2k with k ≥ 4 is of a specific form:

Lemma 3. Consider the game matrix G2k , where k ≥ 4 and denote d = dim(G2k) = 2k.
The game matrix G2k has form

G2k =


A

(d)
2k−2 G2k−2 G2k−2 B

(d)
2k−2

G2k−2 A
(d)
2k−2 B

(d)
2k−2 G2k−2

G2k−2 B
(d)
2k−2 A

(d)
2k−2 G2k−2

B
(d)
2k−2 G2k−2 G2k−2 A

(d)
2k−2



where A(d)
2k−2 =

 A
(d)
2k−3 G d

4 ,2k−3

G d
4 ,2k−3 A

(d)
2k−3

, B(d)
2k−2 =

G d
4 ,2k−3 B

(d)
2k−3

B
(d)
2k−3 G d

4 ,2k−3

, A(d)
1 = 1 and B

(d)
1 =

−1.
G2k,x is defined to be the top left corner square block of G2k with dimension x by x and

G2k,x is the top-most right-most corner square block of G2k of dimension x by x.

This lemma and two concrete examples for k = 2 and k = 3 allow us to prove that
for any k ≥ 2, the game matrix G2k is diagonal in the Hadamard basis (details are in
Appendix. C), which reproduces the class of games discovered by Linden et al. in [28].

7 Conclusions and Open problems
The boundary of the set of quantum behaviors is notoriously difficult to characterise and
yet of fundamental and practical interest for device-independent applications. In this work,
we investigated the boundary by means of studying the class of almost-quantum Bell in-
equalities. We proved the utility of this class of inequalities in ruling out a large portion of
post-quantum no-signaling behaviors, extending previous results obtained through nonlo-
cality distillation and the collapse of communication complexity. As a direct consequence
of this investigation, we prove that Aumann’s Agreement theorem holds for the quantum
systems as well as the almost-quantum correlations, the investigation of the utility of this
principle in picking out quantum theory is of great interest for the future. In the scenario of
two players with m binary measurements, we provide a tight set of quantum Bell inequali-
ties and prove the self-testing property of the correlations therein. Finally, we utilised the
almost quantum Bell inequalities to derive a general form of the principle of no advantage
in nonlocal computation.

The following are few of the possible directions for extending this work:
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1. In the future, it would be very interesting to derive a class of quantum Bell inequali-
ties from SDP approximations of the quantum set going beyond the almost-quantum class.
2. Quantum realizations of the no-signaling boundary being crucial for device-independent
randomness amplification, our study of the experimentally friendly two-input inequalities
serves to pick out the optimal quantum correlations suited for this task. 3. The Braunstein-
Caves chained Bell inequality has found applications in many device-independent protocols,
specifically in the scenario of achieving security against non-signaling adversaries. We have
explored the boundary of the quantum correlation set in this scenario and demonstrated
their usefulness in self-testing the two-qubit singlet along with appropriate measurements.
In the future, it would be interesting to see if such weighted chain inequalities achieve
better performance in specific DI tasks [58, 59].

Acknowledgments
The authors thank Paweł Horodecki for useful discussions. The authors acknowledge
support from the Early Career Scheme (ECS) grant "Device-Independent Random Num-
ber Generation and Quantum Key Distribution with Weak Random Seeds" (Grant No.
27210620), the General Research Fund (GRF) grant "Semi-device-independent crypto-
graphic applications of a single trusted quantum system" (Grant No. 17211122) and the
Research Impact Fund (RIF) "Trustworthy quantum gadgets for secure online communi-
cation" (Grant No. R7035-21).

References
[1] J. S. Bell. The theory of local beables. Chapter 7 in Speakable and unspeakable in

Quantum Mechanics. Cambridge University Press (2011).

[2] J. S. Bell. Free variables and local causality. Chapter 12 in Speakable and unspeakable
in Quantum Mechanics. Cambridge University Press (2011).

[3] J. Barrett, L. Hardy, and A. Kent. No Signaling and Quantum Key Distribution.
Physical Review Letters 95(1): 010503 (2005).

[4] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani. Device-
Independent Security of Quantum Cryptography against Collective Attacks. Physical
Review Letters 98(23): 230501 (2007).

[5] S. Pironio, A. Acín, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz,
S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe. Random numbers
certified by Bell’s theorem. Nature 464(7291): 1021 – 1024 (2010).

[6] S. Pironio and S. Massar. Security of practical private randomness generation. Physical
Review A 87(1): 012336 (2013).

[7] D. Mayers and A. Yao. Quantum cryptography with imperfect apparatus. In IEEE
Proceedings of the 39th Annual Symposium on Foundations of Computer Science
(FOCS’98) 503 – 509 (1998).

[8] D. Mayers and A. Yao. Self testing quantum apparatus. arXiv:quant-ph/0307205
(2003)

[9] H. Buhrman, R. Cleve, S. Massar, and R. De Wolf. Nonlocality and communication
complexity. Reviews of Modern Physics 82(1): 665 (2010).

Accepted in Quantum 2024-09-25, click title to verify. Published under CC-BY 4.0. 19

 https://doi.org/10.1017/CBO9780511815676
 https://doi.org/10.1017/CBO9780511815676
 https://doi.org/10.1017/CBO9780511815676
 https://doi.org/10.1017/CBO9780511815676
https://doi.org/10.1103/PhysRevLett.95.010503
https://doi.org/10.1103/PhysRevLett.98.230501
https://doi.org/10.1103/PhysRevLett.98.230501
https://doi.org/10.1038/nature09008
https://doi.org/10.1103/PhysRevA.87.012336
https://doi.org/10.1103/PhysRevA.87.012336
https://doi.org/10.1109/SFCS.1998.743501
https://doi.org/10.1109/SFCS.1998.743501
https://doi.org/10.1109/SFCS.1998.743501
https://doi.org/10.48550/arXiv.quant-ph/0307205
https://doi.org/10.1103/RevModPhys.82.665


[10] I. Pitowsky. Correlation polytopes: Their geometry and complexity. Mathematical
Programming 50: 395 – 414 (1991).

[11] S. Popescu and D. Rohrlich. Quantum nonlocality as an axiom. Foundations of
Physics 24(3): 379 – 385 (1994).

[12] K. T. Goh, J. Kaniewski, E. Wolfe, T. Vértesi, X. Wu, Y. Cai, Y.-C. Liang, and
V. Scarani. Geometry of the set of quantum correlations. Physical Review A 97(2):
022104 (2018).

[13] M. Navascués, S. Pironio, and A. Acín. A convergent hierarchy of semidefinite pro-
grams characterizing the set of quantum correlations. New Journal of Physics 10(7):
073013 (2008).

[14] M. Navascués, S. Pironio, and A. Acín. Bounding the Set of Quantum Correlations.
Physical Review Letters 98(1): 010401 (2007).

[15] L. Masanes. Necessary and sufficient condition for quantum-generated correlations.
quant-ph/0309137 (2003).

[16] S. Ishizaka. Necessary and sufficient criterion for extremal quantum correlations in
the simplest bell scenario. Physical Review A, 97(5):050102 (2018).

[17] A. Mikos-Nuszkiewicz and J. Kaniewski. Extremal points of the quantum set in the
CHSH scenario: conjectured analytical solution. arXiv:2302.10658 (2023).

[18] T. Fritz. Polyhedral duality in Bell scenarios with two binary observables. Journal of
Mathematical Physics, 53(7) (2012).

[19] V. Barizien and J.-D. Bancal Extremal Tsirelson inequalities. Physical Review Letters
133(1): 010201 (2024).

[20] B. S. Cirel’son. Quantum generalizations of Bell’s inequality. Letters in Mathematical
Physics 4: 93 – 100 (1980).

[21] L. J Landau. Empirical two-point correlation functions. Foundations of Physics 18:
449 – 460 (1988).

[22] T. P. Le, C. Meroni, B. Sturmfels, R. F. Werner, and T. Ziegler. Quantum correlations
in the minimal scenario. Quantum 7, 947 (2023).

[23] R. Ramanathan. Violation of all two-party facet Bell inequalities by almost-quantum
correlations. Physical Review Research 3(3): 033100 (2021).

[24] M. L. Almeida, J.-D. Bancal, N. Brunner, A. Acín, N. Gisin, and S. Pironio. Guess
your neighbor’s input: A multipartite nonlocal game with no quantum advantage.
Physical Review Letters 104(23): 230404 (2010).

[25] A. Rai, C. Duarte, S. Brito, and R. Chaves. Geometry of the quantum set on no-
signaling faces. Physical Review A 99(3): 032106 (2019).

[26] K.-S. Chen, G. N. M. Tabia, C. Jebarathinam, S. Mal, J.-Y. Wu, and Y.-C. Liang.
Quantum correlations on the no-signaling boundary: self-testing and more. Quantum
7, 1054 (2023).

[27] R. Ramanathan, A. Kay, G. Murta, and P. Horodecki. Characterising the Performance
of XOR Games and the Shannon Capacity of Graphs. Physical Review Letters 113(24):
240401 (2014).

[28] N. Linden, S. Popescu, A. J. Short, and A. Winter. Quantum Nonlocality and Beyond:
Limits from Nonlocal Computation. Physical Review Letters 99(18): 180502 (2007).

Accepted in Quantum 2024-09-25, click title to verify. Published under CC-BY 4.0. 20

https://doi.org/10.1007/BF01594946
https://doi.org/10.1007/BF01594946
https://doi.org/10.1007/BF02058098
https://doi.org/10.1007/BF02058098
https://doi.org/10.1103/PhysRevA.97.022104
https://doi.org/10.1103/PhysRevA.97.022104
https://doi.org/10.1088/1367-2630/10/7/073013
https://doi.org/10.1088/1367-2630/10/7/073013
https://doi.org/10.1103/PhysRevLett.98.010401
https://doi.org/10.48550/arXiv.quant-ph/0309137
https://doi.org/10.1103/PhysRevA.97.050102
https://doi.org/10.48550/arXiv.2302.10658
https://doi.org/10.1063/1.4734586
https://doi.org/10.1063/1.4734586
https://doi.org/10.1103/PhysRevLett.133.010201
https://doi.org/10.1103/PhysRevLett.133.010201
https://doi.org/10.1007/BF00417500
https://doi.org/10.1007/BF00417500
https://doi.org/10.1007/BF00732549
https://doi.org/10.1007/BF00732549
https://doi.org/10.22331/q-2023-03-16-947
https://doi.org/10.1103/PhysRevResearch.3.033100
https://doi.org/10.1103/PhysRevLett.104.230404
https://doi.org/10.1103/PhysRevA.99.032106
https://doi.org/10.22331/q-2023-07-11-1054
https://doi.org/10.22331/q-2023-07-11-1054
https://doi.org/10.1103/PhysRevLett.113.240401
https://doi.org/10.1103/PhysRevLett.113.240401
https://doi.org/10.1103/PhysRevLett.99.180502


[29] L.-L Sun, S. Yu, and Z.-B. Chen. Uncertainty-complementarity balance as a general
constraint on non-locality. arXiv:1808.06416 (2018).

[30] R. Ramanathan, J. Tuziemski, M. Horodecki, and P. Horodecki. No Quantum Re-
alization of Extremal No-signaling Boxes. Physical Review Letters 117(5): 050401
(2016).

[31] P. Botteron, A. Broadbent and M.-O. Proulx. Extending the Known Region of Non-
local Boxes that Collapse Communication Complexity. Physical Review Letters 132,
070201 (2024).

[32] J. Allcock, N. Brunner, N. Linden, S. Popescu, P. Skrzypczyk, and T. Vértesi. Closed
sets of nonlocal correlations. Physical Review A, 80(6):062107 (2009).

[33] S. Beigi and A. Gohari. Monotone measures for non-local correlations. IEEE Trans-
actions on Information Theory, 61(9):5185–5208 (2015).

[34] S. G. A. Brito, M. G. M. Moreno, A. Rai, and R. Chaves. Nonlocality distillation and
quantum voids. Physical Review A 100(1): 012102 (2019).

[35] M. McKague, T. H. Yang, and V. Scarani. Robust self-testing of the singlet. Journal
of Physics A: Mathematical and Theoretical 45(45): 455304 (2012).

[36] M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, and M. Żukowski.
Information causality as a physical principle. Nature 461(7267): 1101 – 1104 (2009).

[37] M. Navascués and H. Wunderlich. A glance beyond the quantum model. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences 466(2115):
881 – 890 (2010).

[38] T. Fritz, A. B. Sainz, R. Augusiak, J. B. Brask, R. Chaves, A. Leverrier, and A.
Acín. Local orthogonality as a multipartite principle for quantum correlations. Nature
Communications 4(1): 2263 (2013).

[39] G. Brassard, H. Buhrman, N. Linden, A. A. Méthot, A. Tapp, and F. Unger. Limit on
nonlocality in any world in which communication complexity is not trivial. Physical
Review Letters 96(25): 250401 (2006).

[40] P. Contreras-Tejada, G. Scarpa, A. M. Kubicki, A. Brandenburger, and P. L. Mura.
Observers of quantum systems cannot agree to disagree. Nature Communications
12(1): 7021 (2021).

[41] M. Navascués, Y. Guryanova, M. J. Hoban, and A. Acín. Almost quantum correlations.
Nature Communications 6(1): 6288 (2015).

[42] Y. Wang, X. Wu, and V. Scarani. All the self-testings of the singlet for two binary
measurements. New Journal of Physics 18(2): 025021 (2016).

[43] I. Šupić, R. Augusiak, A. Salavrakos, and A. Acín. Self-testing protocols based on the
chained Bell inequalities. New Journal of Physics 18(3): 035013 (2016).

[44] A. B. Sainz, T. Fritz, R. Augusiak, J. B. Brask, R. Chaves, A. Leverrier, and A. Acín.
Exploring the local orthogonality principle. Physical Review A 89(3): 032117 (2014).

[45] A. Cabello, S. Severini, and A. Winter. (Non-)Contextuality of Physical Theories as
an Axiom. arXiv: 1010.2163 (2010).

[46] M. Grötschel, L. Lovász, and A. Schrijver. Relaxations of vertex packing. Journal of
Combinatorial Theory, Series B 40(3): 330 – 343 (1986).

Accepted in Quantum 2024-09-25, click title to verify. Published under CC-BY 4.0. 21

https://doi.org/10.48550/arXiv.1808.06416
https://doi.org/10.1103/PhysRevLett.117.050401
https://doi.org/10.1103/PhysRevLett.132.070201
https://doi.org/10.1103/PhysRevLett.132.070201
https://doi.org/10.1103/PhysRevA.80.062107
https://doi.org/10.1109/TIT.2015.2452253
https://doi.org/10.1109/TIT.2015.2452253
https://doi.org/10.1103/PhysRevA.100.012102
 https://doi.org/10.1088/1751-8113/45/45/455304
 https://doi.org/10.1088/1751-8113/45/45/455304
https://doi.org/10.1038/nature08400
https://doi.org/10.1098/rspa.2009.0453
https://doi.org/10.1098/rspa.2009.0453
https://doi.org/10.1098/rspa.2009.0453
https://doi.org/10.1038/ncomms3263
https://doi.org/10.1038/ncomms3263
https://doi.org/10.1103/PhysRevLett.96.250401
https://doi.org/10.1103/PhysRevLett.96.250401
https://doi.org/10.1038/s41467-021-27134-6
https://doi.org/10.1038/s41467-021-27134-6
https://doi.org/10.1038/ncomms7288
https://doi.org/10.1088/1367-2630/18/2/025021
https://www.doi.org/10.1088/1367-2630/18/3/035013
https://doi.org/10.1103/PhysRevA.89.032117
https://doi.org/10.48550/arXiv.1010.2163
https://doi.org/10.1016/0095-8956(86)90087-0
https://doi.org/10.1016/0095-8956(86)90087-0


[47] A. Acín, T. Fritz, A. Leverrier, and A. B. Sainz. A Combinatorial Approach to
Nonlocality and Contextuality. Communications in Mathematical Physics 334: 533 –
628 (2015).

[48] T. Fujie and A. Tamura. On Grötschel-Lovász-Schrijver’s relaxation of stable set
polytopes. Journal of the Operations Research Society of Japan 45(3): 285 – 292
(2002).

[49] M. Gachechiladze, B. Bąk, M. Pawłowski, and N. Miklin. Quantum Bell inequalities
from Information Causality – tight for Macroscopic Locality. Quantum 6, 717 (2022).

[50] T. H. Yang, M. Navascués, L. Sheridan, and V. Scarani. Quantum Bell inequalities
from macroscopic locality. Physical Review A 83(2): 022105 (2011).

[51] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts. Nonlocal
correlations as an information-theoretic resource. Physical Review A 71(2): 022101
(2005).

[52] S. Zhao, R. Ramanathan, Y. Liu, and P. Horodecki. Tilted Hardy paradoxes for
device-independent randomness extraction. Quantum 7, 1114 (2023).

[53] W. Barrett, C. R. Johnson, and P. Tarazaga. The real positive definite completion
problem for a simple cycle. Linear Algebra and its Applications, 192: 3 – 31 (1993).

[54] R. Ramanathan, M. Quintino, A. B. Sainz, G. Murta, and R. Augusiak. Tightness of
correlation inequalities with no quantum violation. Physical Review A, 95(1): 012139
(2017).

[55] L. Escolà, J. Calsamiglia, and A. Winter. All tight correlation Bell inequalities have
quantum violations. Physical Review Research, 2(1): 012044 (2020).

[56] B. S. Tsirel’son. Quantum analogues of Bell inequalities. The case of two spatially
separated domains. Journal of Soviet Mathematics 36: 557 – 570 (1987).

[57] M. Laurent and S. Poljak. On the Facial Structure of the Set of Correlation Matrices.
SIAM Journal on Matrix Analysis and Applications 17(3): 530 – 547 (1996).

[58] R. Ramanathan, M. Horodecki, H. Anwer, S. Pironio, K. Horodecki, M. Grünfeld, S.
Muhammad, M. Bourennane, and P. Horodecki. Practical No-signaling proof Ran-
domness Amplification using Hardy paradoxes and its experimental implementation.
arXiv: 1810.11648 (2018).

[59] R. Ramanathan, M. Banacki, and P. Horodecki. No-signaling-proof randomness ex-
traction from public weak sources. arXiv: 2108.08819 (2021).

A Excluding Nonlocal no-signaling Boxes from Q(2, 2, 2)
Proof of Theorem 1
Theorem A1. In the (2, 2, 2) Bell scenario, let P be a point on a face of the no-signaling
polytope NS(2, 2, 2) of dimension d ≤ 4, such that P /∈ L(2, 2, 2), then P /∈ Q(2, 2, 2).

Proof. In the main text, we have provided the proof to exclude the point P on the faces of
the no-signaling polytope NS(2, 2, 2) of dimension d = 0 (non-local vertices) and d = 1 from
the Quantum correlation set Q(2, 2, 2). Here we continue the proof for other cases. We first
show how to exclude P on the three-dimensional faces of NS(2, 2, 2) which automatically
includes the faces of lower dimensions and then discuss the 4-dimensional faces. The PR
box we mention in this proof is the one that p(a, b|x, y) = 1/2 for a⊕ b = x · y.
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I If P is on the three-dimensional faces of NS(2, 2, 2), it can be decomposed as the
convex combinations of a PR box and three neighboring Local deterministic boxes:

P = cNS · PR+ c1 · Li + ·c2 · Lj + c3 · Lk (36)

where i, j, k ∈ {1, 2 . . . , 8}, i ̸= j ̸= k and cNS , c1, c2, c3 are positive and cNS + c1 +
c2 + c3 = 1. Here we need to discuss the following two cases of the local boxes
Li, Lj , Lk in Eq. (36).
(1) Each of Li, Lj , Lk contains a non-zero probability event that is also the zero prob-
ability event of the PR box, and these events are in the settings (xi, yi), (xj , yj), (xk, yk)
that xi = xj = xk, yi = yj ̸= yk or xi = xj ̸= xk, yi = yj = yk. Without loss of
generality, we assume Li is the local box that p(0|x) = 1, p(0|y) = 1,∀x, y ∈ {0, 1},
Lj is the local box that p(1|x) = 1, p(1|y) = 1,∀x, y ∈ {0, 1} and Lk is the local box
that p(1|x = 0) = 1, p(0|x = 1) = 1, p(1|y) = 1, ∀y ∈ {0, 1}.
In this case, the matrix M̃3,1 is constructed as:

M̃3,1 = 8
(
|ι(1,2)⟩⟨ι(1,2)| + |ι(2,3)⟩⟨ι(2,3)| + |ι(3,4)⟩⟨ι(3,4)|

)
+ c2

NS

(
|ι(1)⟩⟨ι(1)| + |ι(4)⟩⟨ι(4)| + 2|ι(5)⟩⟨ι(5)|

)
+ 2cNS

(
|ι(1)⟩⟨ι(5)| + |ι(5)⟩⟨ι(1)| + |ι(4)⟩⟨ι(5)| + |ι(5)⟩⟨ι(4)|

)

=


8 + c2

NS 8 0 0 2cNS

8 16 8 0 0
0 8 16 8 0
0 0 8 8 + c2

NS 2cNS

2cNS 0 0 2cNS 2c2
NS


(37)

M̃3,1 can be verified to be positive definite for all 0 < cNS < 1 by applying elementary
row operations to transform the matrix to an upper triangular matrix with all the
diagonal entries positive. We find the five pivots of M̃3,1 are c2

NS +8, 16−64/(c2
NS +

8), (12c2
NS + 32)/(c2

NS + 4), (3c4
NS + 16c2

NS)/(3c2
NS + 8), (6c4

NS + 8c2
NS)/(3c2

NS + 16).
As before, we relabel the entries of |P⟩ which is the vector form of the box {p(a, b|x, y)},
such that the first five entries of |P⟩ correspond to the probability of events (1, 1|0, 1),
(0, 0|0, 0), (1, 1|0, 0), (0, 0|1, 0), (1, 0|1, 1). And we see that

⟨P|M̃3,1|P⟩ −
5∑

i=1
M̃3,1(i,i)|P⟩i

= c2
NS(|P⟩2

1 − |P⟩1 + |P⟩2
4 − |P⟩4 + 2|P⟩2

5 − 2|P⟩5) + 4cNS(|P⟩1|P⟩5 + |P⟩4|P⟩5)

= c2
NS

(
|P⟩2

1 + |P⟩2
4 + 2|P⟩2

5

)
+ c2

NS

(
|P⟩1( 2

cNS
|P⟩5 − 1) + |P⟩5( 2

cNS
|P⟩1 − 1)

+|P⟩4( 2
cNS

|P⟩5 − 1) + |P⟩5( 2
cNS

|P⟩4 − 1)
)
.

(38)

Since |P⟩i >
cNS

2 , ∀i ∈ {1, . . . , 5}, we see that (38) is positive.
(2) Each of Li, Lj , Lk contains a non-zero probability event that is also the zero prob-
ability event of the PR box, and these events are in the settings (xi, yi), (xj , yj), (xk, yk)
that xi = xj ̸= xk, yi ̸= yj = yk. Without loss of generality, we assume Li is
the local box that p(0|x) = 1, p(0|y) = 1,∀x, y ∈ {0, 1}, Lj is the local box that
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p(1|x = 0) = 1, p(0|x = 1) = 1, p(1|y) = 1,∀x, y ∈ {0, 1} and Lk is the local box that
p(0|x = 0) = 1, p(1|x = 1) = 1, p(1|y = 0) = 1, p(0|y = 1) = 1,∀y ∈ {0, 1}. In this
case, the matrix M̃3,2 is constructed as:

M̃3,2 = 8 ·
(
|ι(1,2)⟩⟨ι(1,2)| + |ι(2,3)⟩⟨ι(2,3)|

)
+ cNS

(
|ι(1)⟩⟨ι(1)| + |ι(3)⟩⟨ι(3)|

)
+ (2cNS + c2

NS)
(
|ι(4)⟩⟨ι(4)| + |ι(5)⟩⟨ι(5)|

)
+ 2cNS

(
|ι(1)⟩⟨ι(5)| + |ι(5)⟩⟨ι(1)| + |ι(3)⟩⟨ι(4)| + |ι(4)⟩⟨ι(3)| + |ι(4)⟩⟨ι(5)| + |ι(5)⟩⟨ι(4)|

)

=


8 + cNS 8 0 0 2cNS

8 16 8 0 0
0 8 8 + cNS 2cNS 0
0 0 2cNS 2cNS + c2

NS 2cNS

2cNS 0 0 2cNS 2cNS + c2
NS


(39)

M̃3,2 can be verified to be positive definite for all 0 < cNS < 1 by applying elementary
row operations to transform the matrix to an upper triangular matrix with all the
diagonal entries positive. We find the five pivots of M̃3,2 are cNS +8, 16−64/(cNS +
8), (c2

NS + 8cNS)/(cNS + 4), (c3
NS + 6c2

NS)/(cNS + 8), (c3
NS + 4c2

NS)/(cNS + 6).
Here we relabel the entries of |P⟩ which is the vector form of the box {p(a, b|x, y)},
such that the first five entries of |P⟩ correspond to the probability of events (1, 1|0, 1),
(0, 0|0, 1), (1, 1|0, 0), (0, 0|1, 0), (1, 0|1, 1), we have

⟨P|M̃3,2|P⟩ −
5∑

i=1
M̃3,2(i,i)|P⟩i = cNS

(
|P⟩2

1 − |P⟩1 + |P⟩2
3 − |P⟩3 + 2|P⟩2

4 − 2|P⟩4

+2|P⟩2
5 − 2|P⟩5

)
+ c2

NS

(
|P⟩2

4 − |P⟩4 + |P⟩2
5 − |P⟩5

)
+ 4cNS (|P⟩1|P⟩5 + |P⟩3|P⟩4

+|P⟩4|P⟩5) = 2cNS(|P⟩1 + |P⟩4 + |P⟩5)(|P⟩1 + |P⟩4 + |P⟩5 − 1)
+ c2

NS(|P⟩2
4 + |P⟩2

5) − c2
NS(|P⟩4 + |P⟩5).

(40)

Note that |P⟩1 = |P⟩3 = cNS/2 + c2 and |P⟩1 + |P⟩4 + |P⟩5 = 3
2cNS + c1 + c2 + c3 =

1 + 1
2cNS , so that (40) is positive.

Thus all the boxes on the 3-dimensional faces of the no-signaling polytope NS(2, 2, 2)
are excluded from the quantum set Q(2, 2, 2) in the same manner.

II . Now we discuss the 4-dimensional faces, point P that are on these faces can be
decomposed as the convex combination of one PR box and four neighboring Local
deterministic boxes:

P = cNS · PR+ c1 · Li + ·c2 · Lj + c3 · Lk + c3 · Lh (41)

where i, j, k, h ∈ {1, 2 . . . , 8}, i ̸= j ̸= k ̸= h and cNS , c1, c2, c3, c4 are positive and
cNS + c1 + c2 + c3 + c4 = 1. Similarly, different relationships of the local boxes
Li, Lj , Lk, Lh in Eq. (41) corresponds to different type of faces of NS(2, 2, 2).
(1) Each of Li, Lj , Lk, Lh contains a non-zero probability event that is also the zero
probability event of the PR box, and these events are in the settings (xi, yi), (xj , yj),
(xk, yk), (xh, yh) that xi = xj , xk = xh, yi = yj , yk = yh. Without loss of generality,
we assume Li is the local box that p(0|x) = 1, p(0|y) = 1, ∀x, y ∈ {0, 1}, Lj is
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the local box that p(1|x) = 1, p(1|y) = 1,∀x, y ∈ {0, 1}, Lk is the local box that
p(0|x = 0) = 1, p(1|x = 1) = 1, p(0|y) = 1, ∀y ∈ {0, 1} and Lh is the local box that
p(1|x = 0) = 1, p(0|x = 1) = 1, p(1|y) = 1,∀y ∈ {0, 1}. In this case, the matrix M̃3,2
can be directly used to exclude points P on this face with the first five entries of
P being the probability of events (1, 1|0, 1), (0, 0|0, 0), (1, 1|0, 0), (0, 0|1, 0), (1, 0|1, 1).
We have

⟨P|M̃3,2|P⟩ −
5∑

i=1
M̃3,2(i,i)|P⟩i = cNS(|P⟩2

1 − |P⟩1 + |P⟩2
3 − |P⟩3 + 2|P⟩2

4 − 2|P⟩4 + 2|P⟩2
5

− 2|P⟩5) + c2
NS(|P⟩2

4 − |P⟩4 + |P⟩2
5 − |P⟩5) + 4cNS(|P⟩1|P⟩5 + |P⟩3|P⟩4 + |P⟩4|P⟩5)

= 2cNS(|P⟩1 + |P⟩4 + |P⟩5)(|P⟩1 + |P⟩4 + |P⟩5 − 1)
+ c2

NS(|P⟩2
4 + |P⟩2

5) − c2
NS(|P⟩4 + |P⟩5).

(42)

where |P⟩1 = |P⟩3 = cNS/2+c2+c4 and |P⟩1+|P⟩4+|P⟩5 = 3
2cNS +c1+c2+c3+c4 =

1 + 1
2cNS , so that (42) is positive.

(2) Each of Li, Lj , Lk, Lh contains a non-zero probability event that is also the zero
probability event of the PR box, and these events are in the settings (xi, yi), (xj , yj),
(xk, yk), (xh, yh) that xi = xj ̸= xk, xk = xh, yi = yj = yk ̸= yh or xi = xj = xk ̸=
xh, yi = yj ̸= yk, yk = yh. Similar to case (1), the matrix M̃3,2 can be directly used
to exclude points P on this face with a suitable labeling of P, we omit the proof here.
(3) Each of Li, Lj , Lk, Lh contains a non-zero probability event that is also the zero
probability event of the PR box, and these events are in the settings (xi, yi), (xj , yj),
(xk, yk), (xh, yh) that xi = xj = xk ̸= xh, yi = yj = yh ̸= yk. Again similar to case
(1), the matrix M̃3,2 can be directly used to exclude points P on this face with a
suitable labeling of P, we omit the proof here.
(4) Each of Li, Lj , Lk, Lh contains a non-zero probability event that is also the zero
probability event of the PR box, and these events are in the settings (xi = 0, yi =
0), (xj = 0, yj = 1), (xk = 1, yk = 0), (xh = 1, yh = 1). Without loss of generality, we
assume Li is the local box that p(0|x) = 1, p(0|y) = 1,∀x, y ∈ {0, 1}, Lj is the local
box that p(1|x = 0) = 1, p(0|x = 1) = 1, p(1|y) = 1, ∀x, y ∈ {0, 1}, Lk is the local
box that p(0|x) = 1, p(0|y = 0) = 1, p(1|y = 1) = 1,∀x ∈ {0, 1} and Lh is the local
box that p(0|x = 0) = 1, p(1|x = 1) = 1, p(1|y = 0) = 1, p(0|y = 1) = 1. In this case,
we construct a matrix M̃4,1 as an extension of M̃3,2 that:

M̃4,1 =


8 + cNS 81×2 0 0 2cNS

82×1 162×2 82×1 02×1 02×1
0 81×2 8 + cNS 2cNS 0
0 01×2 2cNS 2cNS + c2

NS 2cNS

2cNS 01×2 0 2cNS 2cNS + c2
NS

 (43)

where 81×2 refers to a 1 × 2 submatrix with all entries being 8. This matrix
M̃4,1 is positive definite for all 0 < cNS < 1 is due to the fact that M̃3,2 is pos-
itive definite. With labeling the first six entries of P as the probability of events
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(1, 1|0, 0), (0, 0|0, 0), (0, 1|0, 0), (1, 1|0, 1), (1, 0|1, 1), (0, 0|1, 0) we have

⟨P|M̃3,2|P⟩ −
5∑

i=1
M̃3,2(i,i)|P⟩i = cNS(|P⟩2

1 − |P⟩1 + |P⟩2
4 − |P⟩4 + 2|P⟩2

5 − 2|P⟩5 + 2|P⟩2
6

− 2|P⟩6) + c2
NS(|P⟩2

5 − |P⟩5 + |P⟩2
6 − |P⟩6) + 4cNS(|P⟩1|P⟩6 + |P⟩4|P⟩5 + |P⟩5|P⟩6)

= 2cNS(|P⟩1 + |P⟩5 + |P⟩6)(|P⟩1 + |P⟩5 + |P⟩6 − 1)
+ c2

NS(|P⟩2
5 + |P⟩2

6) − c2
NS(|P⟩5 + |P⟩6).

(44)

|P⟩1 = |P⟩4 = cNS/2 + c2 + c4 and |P⟩1 + |P⟩5 + |P⟩6 = 3
2cNS + c1 + c2 + c3 + c4 =

1 + 1
2cNS , so that (44) is positive.

B Aumann’s Agreement theorem and its quantum generalization
Proof of theorem 4
Here we prove that these two tables Table 1 and Table 2 are on the 4-dimensional faces
of the (2, 2, 2) no-signaling polytope. This combined with the theorem 1 in the main text
concludes that the Agreement theorems hold for observers of quantum systems.

The proof is quite straightforward, we first rewrite the two tables into our usual form
of no-signaling boxes. Then decompose each of these two tables as the convex combination
of 1 PR box and 4 local deterministic boxes which are neighboring to the PR box. The
convex combination coefficients are directly written below each box, and it’s clear to see
their sum is 1. The non-negativity of these convex combination coefficients is since the
entries in the original tables are non-negative.

Table 1 and Table 2 can be rewritten as the following Tables A1 and Table A2:
x\y 0 1

a\b 0 1 0 1

0 0 r 0 r − s s
1 0 1 − r −r + t+ s 1 − t− s

0 0 t− u u t 0
1 r − t+ u 1 − r − u 0 1 − t

Table A1: Reformatted table of Table 1. All the
entries of the box are non-negative. r > 0, and
s− u ̸= r − t.

x\y 0 1
a\b 0 1 0 1

0 0 s t 0 s+ t
1 1 − s− u− t u r 1 − s− t− r

0 0 1 − u− t u+ t+ r − 1 r 0
1 0 1 − r 0 1 − r

Table A2: Reformatted table of Table 2. All the
entries of the box are non-negative. s > 0, and
s+ t ̸= 0 and u+ t ̸= 1.

1. Decomposition of Table A1 with s− u > r − t.

x\y 0 1
a\b 0 1 0 1

0 0 1/2 0 0 1/2
1 0 1/2 1/2 0

0 0 1/2 0 1/2 0
1 0 1/2 0 1/2

Table A3: 2(s+ t− r − u)

x\y 0 1
a\b 0 1 0 1

0 0 1 0 1 0
1 0 0 0 0

0 0 1 0 1 0
1 0 0 0 0

Table A4: r − s

x\y 0 1
a\b 0 1 0 1

0 0 1 0 0 1
1 0 0 0 0

0 0 0 0 0 0
1 1 0 0 1

Table A5: r − t+ u
x\y 0 1

a\b 0 1 0 1

0 0 0 0 0 0
1 0 1 1 0

0 0 0 1 1 0
1 0 0 0 0

Table A6: u

x\y 0 1
a\b 0 1 0 1

0 0 0 0 0 0
1 0 1 0 1

0 0 0 0 0 0
1 0 1 0 1

Table A7: 1 − t− s
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2. Decomposition of Table A1 with s− u < r − t.

x\y 0 1
a\b 0 1 0 1

0 0 1/2 0 1/2 0
1 0 1/2 0 1/2

0 0 0 1/2 1/2 0
1 1/2 0 0 1/2

Table A8: 2(u+ r − t− s)

x\y 0 1
a\b 0 1 0 1

0 0 1 0 1 0
1 0 0 0 0

0 0 1 0 1 0
1 0 0 0 0

Table A9: t− u

x\y 0 1
a\b 0 1 0 1

0 0 1 0 0 1
1 0 0 0 0

0 0 0 0 0 0
1 1 0 0 1

Table A10: s
x\y 0 1

a\b 0 1 0 1

0 0 0 0 0 0
1 0 1 1 0

0 0 0 1 1 0
1 0 0 0 0

Table A11: −r + t+ s

x\y 0 1
a\b 0 1 0 1

0 0 0 0 0 0
1 0 1 0 1

0 0 0 0 0 0
1 0 1 0 1

Table A12: 1 − r − u

3. Decomposition of Table A2.

x\y 0 1
a\b 0 1 0 1

0 0 1/2 0 0 1/2
1 0 1/2 1/2 0

0 0 1/2 0 1/2 0
1 0 1/2 0 1/2

Table A13: 2s

x\y 0 1
a\b 0 1 0 1

0 0 0 0 0 0
1 0 1 1 0

0 0 0 1 1 0
1 0 0 0 0

Table A14: u+ t+ r − 1

x\y 0 1
a\b 0 1 0 1

0 0 0 0 0 0
1 1 0 1 0

0 0 1 0 1 0
1 0 0 0 0

Table A15: 1 − s− u− t
x\y 0 1

a\b 0 1 0 1

0 0 0 0 0 0
1 0 1 0 1

0 0 0 0 0 0
1 0 1 0 1

Table A16: 1 − s− t− r

x\y 0 1
a\b 0 1 0 1

0 0 0 1 0 1
1 0 0 0 0

0 0 0 0 0 0
1 0 1 0 1

Table A17: t

C Common faces of the Quantum and Classical Correlation sets
In this section, we show proofs of lemmas we used in the main text, construction of the
game matrix G2k for the special case that ma = mb = 2k with k ≥ 2, and prove that G2k is
diagonal in the Hadamard basis which reproduces the class of games discovered by Linden
et al. in [28]

Lemma A1. Let ma,mb ∈ N and N ∋ r ≤ log2(ma +mb). Let {v1, ..., vr} be set of general
positions vector of 2ma+mb rows. Then up to swapping rows and re-indexing, the first 2r

rows are unique. In particular, the unique choice for the first 2r rows is the lexicographical
ordering.

Proof. Denote (vj)i to be the ith row of the vector vj . Fix I ⊆ {1, ..., r}. Since ⊙jvI,j ̸= 0,
there exists i ∈ {1, ...2r} such that

∏
j(vI,j)i ̸= 0. Thus (vI,j)i ̸= 0 for all j ∈ {1, ..., r}.

Therefore, we have (vj)i = 1 if j ∈ I and (vj)i = −1 if j ̸∈ I. Thus for every choice of I,
there is a unique row setting such that it ensures ⊙jvI,j ̸= 0. Since we have r vectors and
we need 2r difference row settings, up to swapping rows and re-indexing vi’s, the first 2r

rows are in a lexicographical ordering. In other words, up to swapping rows and re-indexing
vi’s, the first 2r rows are unique and are ordered by lexicographical ordering.
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By Lemma A1, if ma = mb = 2k, where k ≥ 2, r = log2(ma + mb) = k + 1 and
{v1, ..., vr} are in general positions, then {v1, ..., vr} are unique up to swapping rows and
re-indexing. We now focus on this case. For convenience reason, we first concatenate
v1, ..., vr into one matrix, denoted by G2k . Notice that G2k is a 2k+1 by r matrix. We then
define the 2k by 2k game matrix G2k as follows. The (i, j) position of G2k associates with
Alice’s ith input and Bob’s jth input. In other words, the (i, j) position of G2k associates
with the ith row and the (2k + j)th row of G2k respectively. Let ri = (x1, ..., xr) and
rj = (y1, ..., yr) be the ith row and the (2k + j)th row of G2k respectively. We define the
(i, j) entry of G2k be using an operator ⋆ on the ith row and the (2k + j)th row of G2k as
follows:

(G2k)i,j = ri ⋆ rj =


1 if x1y1 + ...+ xryr > 0
−1 if x1y1 + ...+ xryr < 0
0 if x1y1 + ...+ xryr = 0

Example A1. If k = 2 (thus ma = mb = 22 = 4 and r = 3), we have

v1 =



1
1
1
1

−1
−1
−1
−1


; v2 =



1
1

−1
−1
1
1

−1
−1


; v3 =



1
−1
1

−1
1

−1
1

−1


;G22 =



1 1 1
1 1 −1
1 −1 1
1 −1 −1

−1 1 1
−1 1 −1
−1 −1 1
−1 −1 −1


; G22 =


1 −1 −1 −1

−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 ;

for example, we have (G22)1,1 = (1, 1, 1)⋆(−1, 1, 1) = 1 and (G22)1,2 = (1, 1, 1)⋆(−1, 1,−1) =
−1.

If k = 3 (thus ma = mb = 23 = 8 and r = 4), we have

v1 =



1
1
1
1
1
1
1
1

−1
−1
−1
−1
−1
−1
−1
−1



; v2 =



1
1
1
1

−1
−1
−1
−1
1
1
1
1

−1
−1
−1
−1



; v3 =



1
1

−1
−1
1
1

−1
−1
1
1

−1
−1
1
1

−1
−1



; v4 =



1
−1
1

−1
1

−1
1

−1
1

−1
1

−1
1

−1
1

−1



;G23 =



1 1 1 1
1 1 1 −1
1 1 −1 1
1 1 −1 −1
1 −1 1 1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 −1

−1 1 1 1
−1 1 1 −1
−1 1 −1 1
−1 1 −1 −1
−1 −1 1 1
−1 −1 1 −1
−1 −1 −1 1
−1 −1 −1 −1



;
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and

G23 =



1 0 0 −1 0 −1 −1 −1
0 1 −1 0 −1 0 −1 −1
0 −1 1 0 −1 −1 0 −1

−1 0 0 1 −1 −1 −1 0
0 −1 −1 −1 1 0 0 −1

−1 0 −1 −1 0 1 −1 0
−1 −1 0 −1 0 −1 1 0
−1 −1 −1 0 −1 0 0 1


.

Definition A1. Define gk : {1, ..., 2k} → {0, 1}k by sending i ∈ {1, ..., 2k} to binary
representation of i − 1. Define fk : {0, 1}k → {±1}k by sending 0 to 1 and 1 to −1. Let
i ∈ {1, ..., 2k}, we denote ĩk = fk ◦ gk(i).

For example, g3(2) = (0, 0, 1), f3(0, 0, 1) = (1, 1,−1) and 2̃3 = (1, 1,−1).

By above definition, we can observe that (G2k)i,j = (1, ĩk) ⋆ (−1, j̃k).

Definition A2. Let k, x be positive integers. Define G2k,x to be the top left corner square
block of G2k with dimension x by x. Define G2k,x is the top-most right-most corner square
block of G2k of dimension x by x. In particular, G2k,2k = G2k,2k = G2k .

For example, G22,1 = (1), G22,1 = (−1), G22,2 =
(

1 −1
−1 1

)
and G22,2 =

(
−1 −1
−1 −1

)

Lemma A2. Consider the game matrix G2k , where k ≥ 4 and denote d = dim(G2k) = 2k.
The game matrix G2k has the form

G2k =


A

(d)
2k−2 G2k−2 G2k−2 B

(d)
2k−2

G2k−2 A
(d)
2k−2 B

(d)
2k−2 G2k−2

G2k−2 B
(d)
2k−2 A

(d)
2k−2 G2k−2

B
(d)
2k−2 G2k−2 G2k−2 A

(d)
2k−2



where A(d)
2k−2 =

 A
(d)
2k−3 G d

4 ,2k−3

G d
4 ,2k−3 A

(d)
2k−3

, B(d)
2k−2 =

G d
4 ,2k−3 B

(d)
2k−3

B
(d)
2k−3 G d

4 ,2k−3

, A(d)
1 = 1 and B

(d)
1 =

−1.

Proof. We first partition G2k into 16 sub square block matrices and label them as

G2k =


M1,1 M1,2 M1,3 M1,4
M2,1 M2,2 M2,3 M2,4
M3,1 M3,2 M3,3 M3,4
M4,1 M4,2 M4,3 M4,4


First, we want to show that M1,2 = M1,3 = M2,1 = M2,4 = M3,1 = M3,4 = M4,2 = M4,3 =
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G2k−2 . For i, j ∈ {1, ..., 2k−2}, we have

(M1,2)i,j = (1, 1, 1, ĩk−2) ⋆ (−1, 1,−1, j̃k−2) = (1,��1, 1 , ĩk−2) ⋆ (−1,���1,−1 , j̃k−2)
= (1, ĩk−2) ⋆ (−1, j̃k−2) = (G2k−2)i,j

(M1,3)i,j = (1, 1, 1, ĩk−2) ⋆ (−1,−1, 1, j̃k−2) = (1,��1, 1 , ĩk−2) ⋆ (−1,���−1, 1 , j̃k−2)
= (1, ĩk−2) ⋆ (−1, j̃k−2) = (G2k−2)i,j

(M2,1)i,j = (1, 1,−1, ĩk−2) ⋆ (−1, 1, 1, j̃k−2) = (1,���1,−1 , ĩk−2) ⋆ (−1,��1, 1 , j̃k−2)
= (1, ĩk−2) ⋆ (−1, j̃k−2) = (G2k−2)i,j

(M2,4)i,j = (1, 1,−1, ĩk−2) ⋆ (−1,−1,−1, j̃k−2) = (1,���1,−1 , ĩk−2) ⋆ (−1,����−1,−1 , j̃k−2)
= (1, ĩk−2) ⋆ (−1, j̃k−2) = (G2k−2)i,j

(M3,1)i,j = (1,−1, 1, ĩk−2) ⋆ (−1, 1, 1, j̃k−2) = (1,−��1, 1 , ĩk−2) ⋆ (−1,��1, 1 , j̃k−2)
= (1, ĩk−2) ⋆ (−1, j̃k−2) = (G2k−2)i,j

(M3,4)i,j = (1,−1, 1, ĩk−2) ⋆ (−1,−1,−1, j̃k−2) = (1,���−1, 1 , ĩk−2) ⋆ (−1,����−1,−1 , j̃k−2)
= (1, ĩk−2) ⋆ (−1, j̃k−2) = (G2k−2)i,j

(M4,2)i,j = (1,−1,−1, ĩk−2) ⋆ (−1,−1, 1, j̃k−2) = (1,����−1,−1 , ĩk−2) ⋆ (−1,���−1, 1 , j̃k−2)
= (1, ĩk−2) ⋆ (−1, j̃k−2) = (G2k−2)i,j

(M4,3)i,j = (1,−1,−1, ĩk−2) ⋆ (−1,−1, 1, j̃k−2) = (1,����−1,−1 , ĩk−2) ⋆ (−1,���−1, 1 , j̃k−2)
= (1, ĩk−2) ⋆ (−1, j̃k−2) = (G2k−2)i,j

Therefore M1,2 = M1,3 = M2,1 = M2,4 = M3,1 = M3,4 = M4,2 = M4,3 = G2k−2 . Next, we
consider M1,1,M2,2,M3,3 and M4,4. For i, j ∈ {1, ..., 2k−2}, we have

(M1,1)i,j = (1, 1, 1, ĩk−2) ⋆ (−1, 1, 1, j̃k−2)
(M2,2)i,j = (1, 1,−1, ĩk−2) ⋆ (−1, 1,−1, j̃k−2) = (1, 1, 1, ĩk−2) ⋆ (−1, 1, 1, j̃k−2) = (M1,1)i,j

(M3,3)i,j = (1,−1, 1, ĩk−2) ⋆ (−1,−1, 1, j̃k−2) = (1, 1, 1, ĩk−2) ⋆ (−1, 1, 1, j̃k−2) = (M1,1)i,j

(M4,4)i,j = (1,−1,−1, ĩk−2) ⋆ (−1,−1,−1, j̃k−2) = (1, 1, 1, ĩk−2) ⋆ (−1, 1, 1, j̃k−2) = (M1,1)i,j

Therefore M1,1 = M2,2 = M3,3 = M4,4. After that, consider M1,4,M2,3,M3,2 and M4,1.
For i, j ∈ {1, ..., 2k−2}, we have

(M1,4)i,j = (1, 1, 1, ĩk−2) ⋆ (−1,−1,−1, j̃k−2)
(M2,3)i,j = (1, 1,−1, ĩk−2) ⋆ (−1,−1, 1, j̃k−2) = (1, 1, 1, ĩk−2) ⋆ (−1,−1,−1, j̃k−2) = (M1,4)i,j

(M3,2)i,j = (1,−1, 1, ĩk−2) ⋆ (−1, 1,−1, j̃k−2) = (1, 1, 1, ĩk−2) ⋆ (−1,−1,−1, j̃k−2) = (M1,4)i,j

(M4,1)i,j = (1,−1,−1, ĩk−2) ⋆ (−1, 1, 1, j̃k−2) = (1, 1, 1, ĩk−2) ⋆ (−1,−1,−1, j̃k−2) = (M1,4)i,j

Thus M1,4 = M2,3 = M3,2 = M4,1. Hence we can conclude that

G2k =


A

(d)
2k−2 G2k−2 G2k−2 B

(d)
2k−2

G2k−2 A
(d)
2k−2 B

(d)
2k−2 G2k−2

G2k−2 B
(d)
2k−2 A

(d)
2k−2 G2k−2

B
(d)
2k−2 G2k−2 G2k−2 A

(d)
2k−2


for some 2k−2 × 2k−2 matrices A(d)

2k−2 and B(d)
2k−2 . We remain to consider matrix A(d)

2k−2 and
B

(d)
2k−2 .
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First, we consider A(d)
2k−2 and partition it into four sub square block matrices as A(d)

2k−2 =(
N1,1 N1,2
N2,1 N2,2

)
. For i, j ∈ {1, ..., 2k−3}, we have

(N1,2)i,j = (1, 1, 1, 1, ĩk−3) ⋆ (−1, 1, 1,−1, j̃k−3)
= (1, 1, 1,−1, ĩk−3) ⋆ (−1, 1, 1, 1, j̃k−3) = (N2,1)i,j

(N1,1)i,j = (1, 1, 1, 1, ĩk−3) ⋆ (−1, 1, 1, 1, j̃k−3)
= (1, 1, 1,−1, ĩk−3) ⋆ (−1, 1, 1,−1, j̃k−3) = (N2,2)i,j

(N1,2)i,j = (1, 1, 1, 1, ĩk−3) ⋆ (−1, 1, 1,−1, j̃k−3) = (1, 1,��1, 1 , ĩk−3) ⋆ (−1, 1,���1,−1 , j̃k−3)
= (1, 1, ĩk−3) ⋆ (−1, 1, j̃k−3)7 = (G d

4 ,2k−3)i,j

HenceN1,1 = N2,2 andN1,2 = N2,1 = G d
4 ,2k−3 . Therefore we haveA(d)

2k−2 =

 A
(d)
2k−3 G d

4 ,2k−3

G d
4 ,2k−3 A

(d)
2k−3


for some (2k−3 × 2k−3) matrix A(d)

2k−3 . Next, we continue to partition A
(d)
2k−3 into four sub

square blocks as A(d)
2k−3 =

(
N ′

1,1 N ′
1,2

N ′
2,1 N ′

2,2

)
. For i, j ∈ {1, ..., 2k−4}, we have

(N ′
1,2)i,j = (1, 1, 1, 1, 1, ĩk−4) ⋆ (−1, 1, 1, 1,−1, j̃k−4)

= (1, 1, 1, 1,−1, ĩk−4) ⋆ (−1, 1, 1, 1, 1, j̃k−4) = (N ′
2,1)i,j

(N ′
1,1)i,j = (1, 1, 1, 1, 1, ĩk−4) ⋆ (−1, 1, 1, 1, 1, j̃k−4)

= (1, 1, 1, 1,−1, ĩk−4) ⋆ (−1, 1, 1, 1,−1, j̃k−4) = (N ′
2,2)i,j

(N ′
1,2)i,j = (1, 1, 1, 1, 1, ĩk−4) ⋆ (−1, 1, 1, 1,−1, j̃k−4)7 = (1, 1, 1,��1, 1 , ĩk−4) ⋆ (−1, 1, 1,���1,−1 , j̃k−4)

= (1, 1, 1, ĩk−4) ⋆ (−1, 1, 1, j̃k−4)7 = (G d
4 ,2k−4)i,j

HenceN ′
1,1 = N ′

2,2 andN ′
1,2 = N ′

2,1 = G d
4 ,2k−4 . Therefore we haveA(d)

2k−3 =

 A
(d)
2k−4 G d

4 ,2k−4

G d
4 ,2k−4 A

(d)
2k−4


for some (2k−4 × 2k−4) matrix A(d)

2k−4 . We will continue the partition procedure (i.e., par-
tition A

(d)
2k−i for i ∈ {2, ..., k − 1}) and apply the same argument to obtain

A
(d)
2k−i =

 A
(d)
2k−i−1 G d

4 ,2k−i−1

G d
4 ,2k−i−1 A

(d)
2k−i−1


where i ∈ {2, ...k − 1}. For A(d)

1 , its entry equals to (G2k)1,1 = (1, ..., 1) ⋆ (−1, 1, ..., 1) = 1.
Next, we consider B(d)

2k−2 . First, we partition B
(d)
2k−2 into four sub blocks as B(d)

2k−2 =(
N1,1 N1,2
N2,1 N2,2

)
. For i, j ∈ {1, ..., 2k−3}, we have

(N1,2)i,j = (1, 1, 1, 1, ĩk−3) ⋆ (−1,−1,−1,−1, j̃k−3)
= (1, 1, 1,−1, ĩk−3) ⋆ (−1,−1,−1, 1, j̃k−3) = (N2,1)i,j

(N1,1)i,j = (1, 1, 1, 1, ĩk−3) ⋆ (−1,−1,−1, 1, j̃k−3)
= (1, 1, 1,−1, ĩk−3) ⋆ (−1,−1,−1,−1, j̃k−3) = (N2,2)i,j

(N1,1)i,j = (1, 1, 1, 1, ĩk−3) ⋆ (−1,−1,−1, 1, j̃k−3)
= (1, 1,��1, 1 , ĩk−3) ⋆ (−1,−1,���−1, 1 , j̃k−3) = (G d

4 ,2k−3)i,j

Accepted in Quantum 2024-09-25, click title to verify. Published under CC-BY 4.0. 31



Thus we have N1,1 = N2,2 = G d
4 ,2k−3 and N1,2 = N2,1. Hence we can conclude that

B
(d)
2k−2 =

G d
4 ,2k−3 B

(d)
2k−3

B
(d)
2k−3 G d

4 ,2k−3

 for some (2k−3 × 2k−3) matrix B(d)
2k−3 . Next, we continue to

partition B(d)
2k−3 into four blocks as B(d)

2k−3 =
(
N ′

1,1 N ′
1,2

N ′
2,1 N ′

2,2

)
. For i, j ∈ {1, ..., 2k−4}, we have

(N ′
1,2)i,j = (1, 1, 1, 1, 1, ĩk−4) ⋆ (−1,−1,−1,−1,−1, j̃k−4)

= (1, 1, 1, 1,−1, ĩk−4) ⋆ (−1,−1,−1,−1, 1, j̃k−4) = (N ′
2,1)i,j

(N ′
1,1)i,j = (1, 1, 1, 1, 1, ĩk−4) ⋆ (−1,−1,−1,−1, 1, j̃k−4)

= (1, 1, 1, 1,−1, ĩk−4) ⋆ (−1,−1,−1,−1,−1, j̃k−4) = (N ′
2,2)i,j

(N ′
1,1)i,j = (1, 1, 1, 1, 1, ĩk−4) ⋆ (−1,−1,−1,−1, 1, j̃k−4)

= (1, 1, 1,��1, 1 , ĩk−4) ⋆ (−1,−1,−1,���−1, 1 , j̃k−4) = (G d
4 ,2k−4)i,j

Thus we have N ′
1,1 = N ′

2,2 = G d
4 ,2k−4 and N ′

1,2 = N ′
2,1. Hence we can conclude that

B
(d)
2k−3 =

G d
4 ,2k−4 B

(d)
2k−4

B
(d)
2k−4 G d

4 ,2k−4

 for some (2k−4 × 2k−4) matrix B
(d)
2k−4 . We will continue the

partition procedure (i.e., partition B(d)
2k−i for i ∈ {2, ..., k−1}) and apply the same argument

to obtain

B
(d)
2k−i =

G d
4 ,2k−i−1 B

(d)
2k−i−1

B
(d)
2k−i−1 G d

4 ,2k−i−1


where i ∈ {2, ..., k − 1}. For B(d)

1 , its entry equals to (G2k)1,2k = (1, ..., 1) ⋆ (−1, ...,−1) =
−1.

Definition A3. The Hadamard matrix Hk is a 2k by 2k square matrix defines as follows:

H1 = 1√
2

(
1 1
1 −1

)

and
Hk = 1√

2

(
Hk−1 Hk−1
Hk−1 −Hk−1

)

Lemma A3. Let M =
(
A B
B A

)
where A and B be a 2k by 2k square matrix. If A and

B are diagonal in the Hadamard basis, then M is diagonal in the Hadamard basis.

Proof. By direct calculation, we have

Hk+1

(
A B
B A

)
H−1

k+1 =
(
Hk(A+B)H−1

k 0
0 Hk(A−B)H−1

k

)

Thus if A and B are diagonal in the Hadamard basis, then M is also diagonal in the
Hadamard basis.

Lemma A4. Consider the game matrix G2k where k ≥ 4.
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(1) If G2k−2,2i are diagonal in the Hadamard basis for all i ∈ {0, ..., k − 2}, then A
(2k)
2j

are diagonal in the Hadamard basis for all j ∈ {0, ..., k − 2}. Furthermore, we have G2k,2j

are diagonal in the Hadamard basis for all j ∈ {0, ..., k − 1}
(2) If G2k−2,2i are diagonal in the Hadamard basis for all i ∈ {0, ..., k − 2}, then B

(2k)
2j

are diagonal in the Hadamard basis for all j ∈ {0, ..., k − 2}. Furthermore, we have G2k,2j

are diagonal in the Hadamard basis for all j ∈ {0, ..., k − 1}

Proof. Let d = dim(G2k) = 2k. Recall that

A
(d)
2k−2 =

 A
(d)
2k−3 G d

4 ,2k−3

G d
4 ,2k−3 A

(d)
2k−3


Observe that G2k,2j = A

(d)
2j for all j ∈ {0, ..., k−2}. By Lemma A3, A(2k)

2 =
(

1 G2k−2,1
G2k−2,1 1

)
is diagonal in the Hadamard basis. By Lemma A3 again, since A(2k)

2 and G2k−2,2 are di-

agonal in the Hadamard basis, matrix A(2k)
22 =

 A
(2k)
2 G2k−2,2

G2k−2,2 A
(2k)
2

 is also diagonal in the

Hadamard basis. Inductively, we can conclude that A(2k)
2j = G2k,2j are diagonal in the

Hadamard basis for all j ∈ {0, ..., k − 2}. Since A
(2k)
2k−2 and G2k−2 are diagonal in the

Hadamard basis, by Lemma A3, matrix G2k,2k−1 =

A(2k)
2k−2 G2k−2

G2k−2 A
(2k)
2k−2

 is also diagonal in

the Hadamard basis. Thus statement (1) is proved.
Recall that

B
(d)
2k−2 =

G d
4 ,2k−3 B

(d)
2k−3

B
(d)
2k−3 G d

4 ,2k−3


Observe that G2k,2j = B

(d)
2k for all j ∈ {0, ..., k−2}. By Lemma A3, B(2k)

2 =
(

G2k−2,1 −1
−1 G2k−2,1

)
is diagonal in the Hadamard basis. By Lemma A3 again, since G2k−2,2 and B

(2k)
2 are di-

agonal in the Hadamard basis, matrix B(2k)
22 =

G2k−2,2 B
(2k)
2

B
(2k)
2 G2k−2,2

 is also diagonal in the

Hadamard basis. Inductively, we can conclude that G2k,2j = B
(d)
2k are diagonal in the

Hadamard basis for all j ∈ {0, ..., k − 2}. Since G2k−2 and B
(d)
2k−2 are diagonal in the

Hadamard basis, by Lemma A3, matrix G2k,2k−1 =
(

G2k−2 B
(d)
2k−2

B
(d)
2k−2 G2k−2

)
is also diagonal in

the Hadamard basis. Thus statement (2) is proved.

Corollary A1. Let k ≥ 2. Then G2k,2i and G2k,2i are diagonal in the Hadamard basis for
all i ∈ {0, ..., k}. In particular, the game matrix G2k is diagonal in the Hadamard basis.

Proof. We will proceed by induction. For the induction step. Assume G2k,2i and G2k,2i are
diagonal in the Hadamard basis for all i ∈ {0, ..., k}. By Lemma A4, G2k+2,2i and G2k+2,2i

are diagonal in the Hadamard basis for all i ∈ {0, ..., k + 1}. Observe that we can express
G2k+2 as

G2k+2 =
(

G2k+2,2k+1 G2k+2,2k+1

G2k+2,2k+1 G2k+2,2k+1

)
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By Lemma A4, since G2k+2,2k+1 and G2k+2,2k+1 are diagonal in the Hadamard basis, we can
conclude that G2k+2 is also diagonal in the Hadamard basis, which finishes the induction
step. The base cases are k = 2 and k = 3. Recall the matrix G4 and G8 are shown in
Example A1. We can check that for k ∈ {2, 3}, matrices G2k,2i and G2k,2i are diagonal in
the Hadamard basis for all i ∈ {0, ..., k}.
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