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Yixiong Jia, Yiqin Su, Chenxi Wang, Yi Wang

Abstract—Solving AC-optimal power flow (AC-OPF) in
real-time is crucial for further power system operation and
security analysis. To this end, data-driven methods are em-
ployed to directly output the OPF solution. However, due to
the prediction error, it is a challenge for data-driven methods
to provide a feasible solution. To address this issue, different
feasibility-enhanced methods are proposed. However, they are
either computationally expensive or cannot provide feasible
solutions. In this paper, we propose an OptNet-embedded
data-driven approach for AC-OPF proxy to provide a feasible
solution efficiently. This approach designs a three-stage neural
network architecture to represent the OPF problem, where
the first stage is used to lift the dimension of the input, the
second stage is used to approximate the OPF problem using
OptNet, and the third stage is used to decouple the high-
dimensional solution to acquire the OPF solution. Finally, to
expedite the solving process, a two-step pruning method is
proposed to remove the unnecessary inequality constraints and
values. Numerical experiments on the IEEE 4- and 14-bus test
systems validate that the proposed approach can provide a
“good enough” feasible solution.

Index Terms—Optimal power flow, OptNet layer, model
pruning, data-driven, power system

I. Introduction

THE optimal power flow (OPF) is a fundamental tool
for power system operation and security analysis [1].

Traditionally, the interior-point method is used to obtain
the solution for OPF. However, due to the non-convex
and nonlinearity of the OPF problem, it is challenging to
meet the real-time requirement [2]. To expedite the solving
process and obtain the OPF solution in near real-time,
the convex relaxation [3] or linearization [4] forms of OPF
problem are widely studied, e.g. direct-current optimal
power flow (DC-OPF). However, such a simplified OPF
problem may provide suboptimal or infeasible solutions.

Currently, since the OPF dataset for power systems can
be simulated offline, it is possible to obtain an optimality
and feasibility-enhanced OPF solution in real-time by
shifting the computational burden from online optimiza-
tion to offline training [5] [6]. Based on this idea, different
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data-driven OPF methods have been proposed, most of
which are based on neural networks [7], such as deep
neural networks (DNN) [8] [9], stacked extreme learning
machines (SELM) [10], graph neural networks (GNN)
[11], Graph Convolutional Neural Network (GCNN) [13],
and convolutional neural networks (CNN) [12]. The core
concept of these methods is to learn the mapping between
the input (power demand) and the output (active power
generation, reactive power generation, voltage magnitude,
and voltage angle). Once the data-driven model is fully
trained, the solution of OPF can be obtained in real-time
by inputting the current power demand.

Even though the existing data-driven methods are
proven to be efficient in obtaining OPF solutions in
real-time, it remains a challenge for these methods to
provide a feasible solution. To resolve this issue, several
approaches have been proposed, which can be categorized
into the penalty approach, projection approach, mapping
approach, and implicit layer embedded approach.

For the penalty approach, it aims to add the physical
constraint (equality or inequality constraint) to the loss
function as the penalty term in order for the data-
driven method to provide a feasible solution. In [14],
the Karush-Kuhn-Tacker (KKT) conditions of OPF are
embedded into the neural network to guide the training.
In [15], the violation degrees for inequality and equality
equations are designed and added to the neural network
to capture the OPF constraints. Specifically, the max
function and absolute function are used to measure the
violation degrees for inequality and equality constraints,
respectively. Although the penalty approach is able to
generate OPF solutions with lower constraint violations,
it still can not guarantee the feasibility of OPF solutions.
Moreover, the penalty terms’ weights are hard to select.

For the post-processing approach, it aims to obtain the
preliminary solution of OPF (part or whole) from the
neural network. Then, the final solution can be acquired
through post-processing. In [16], two separate neural
networks called voltage magnitude predictor (VMP) and
voltage angle predictor (VAP) are used to produce the
rough estimation of voltage magnitude and voltage angle.
Then a two-step post-processing method is proposed to
improve the feasibility of the rough estimation. Finally, the
rest of the solutions are obtained based on the power flow
equations and corrected estimation values. In [17], random
forest is used to obtain an initial estimate of the OPF
solution. This estimate is then used as a warm start for the
traditional solver to obtain the final OPF solution. Since
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running the traditional solver to find the final solution can
also be regarded as the additional post-processing step,
we classify the method in [17] into the post-processing
approach. In [17], an additional step to calculate the power
flow equation is required, which means that accurate line
parameters are required. Once the line parameters are not
so accurate, the optimality and feasibility of the solution
may be compromised. To improve the feasibility of the DC-
OPF problem, in [18], the neural network is used to obtain
a rough solution first. Then, the final feasible solution is
obtained by solving a projection optimization problem.
Despite the effectiveness of the approach, obtaining a real-
time OPF solution remains difficult owing to the necessity
for the post-processing step.

For the mapping approach, it aims to create a one-
to-one mapping between the original feasible region and
the unit ball in high dimension. Once the relaxed optimal
solution in the unit ball is obtained, the feasible solution
of the original OPF problem may be derived by applying
the inverse mapping to the relaxed solution. To improve
the feasibility of the DC-OPF problem, in [19], the gauge
map is used to create the one-to-one mapping. Meanwhile,
a feasibility module including inequality completion and
equality completion is used to enforce the feasibility of
the solution. To improve the feasibility of the AC-OPF
problem, in [20], an invertible neural network is used
to learn the one-to-one mapping called homeomorphic
mapping between non-convex constraint and a unit ball
in high dimension. Then, a bisection function is used
to make sure the final solution satisfies the inequality
constraints. The mapping approach can provide a feasible
OPF solution because the solution is mapped into the
feasible region. Nevertheless, a desirable feasible solution
can be obtained only if the boundary of the non-convex
feasible region is well mapped, which needs sufficient
training data and requires the error of the mapping model
to be zero. Unfortunately, the mapping error cannot be
zero due to the neural network’s prediction error; thus a
feasible solution cannot be guaranteed.

For the implicit layer embedded approach, it aims to
incorporate the post-processing step as an implicit layer
within the neural network architecture and train the
neural network in an end-to-end manner. Due to the
implicit optimization layer embedded, the modified neural
network can provide a feasible solution. To improve the
feasibility of the DC-OPF problem, in [21], the projection
step is implemented as the final layer of the deep neural
network to guarantee the feasibility of the solution. To
improve the feasibility of the AC-OPF problem, in [22], the
estimation of the independent variable is provided by the
neural network first, then the power flow equality function
is implemented as an implicit layer to recover the rest
dependent variable. To satisfy the inequality constraint,
the simple unrolling gradient step is implemented. In [23],
the primal-dual method is implemented as an implicit
layer to enforce the output of the neural network to satisfy
the inequality constraints during the training process.
Compared to [22], [23] does not apply the primal-dual

method in the inference step, which largely reduces the in-
ference time. Despite the effectiveness of the implicit layer
embedded approach, they still face several challenges. For
[22] and [23], an unrolling inequality correction step and
primal-dual method are used, respectively. However, these
processes may compromise the equality feasibility.

To overcome the aforementioned challenges, we try to
construct an OPF proxy that offers feasible solutions with
acceptable time spent on problem-solving. In summary, we
propose an OptNet-embedded data-driven OPF approach
as a proxy for the OPF problem. The key contributions
of this paper are summarized as follows,

• New model: We propose a data-driven OPF model
by constructing a neural network architecture with
OptNet layer embedded. This model only needs
historical/simulated data but does not need network
parameters for post-processing correction. Moreover,
the proposed model serves as an OPF proxy to obtain
a feasible solution by solving a linear approximation
of the original OPF problem.

• New pruning method: Considering the high computa-
tional expense brought by OptNet layer embedding,
we design a two-step pruning method to expedite the
inference process of the proposed model. It is achieved
by identifying and removing the unnecessary values
and inequality constraints of the OptNet layer.

The rest of the paper is organized as follows: Section
II gives the basic problem description of OPF and two
questions this paper wants to answer. Section III describes
the proposed three-stage neural network architecture and
two-step pruning method to answer two questions. Section
IV applies the proposed approach to the IEEE 4- and 14-
bus systems. Section V draws conclusions and the future
work.

II. Problem Description
A standard OPF problem can be formulated as:

min
∑
i∈ΩG

(
a2,i · (PGi)

2
+ a1,i · PGi + a0,i

)
(1a)

Pij = GijV
2
i − ViVj (Gij cos θij +Bij sin θij) , ∀i, j ∈ ΩL

(1b)
Qij = −BijV

2
i − ViVj (Gij sin θij −Bij cos θij) , ∀i, j ∈ ΩL

(1c)
PGi − PDi =

∑
j∈i

Pij , ∀i ∈ ΩB (1d)

QGi −QDi =
∑
j∈i

Qij , ∀i ∈ ΩB (1e)

PGmin
i ≤ PGi ≤ PGmax

i , ∀i ∈ ΩG (1f)

QGmin
i ≤ QGi ≤ QGmax

i , ∀i ∈ ΩG (1g)

V min
i ≤ Vi ≤ V max

i , ∀i ∈ ΩB (1h)√
P 2
ij +Q2

ij ≤ Smax
ij , ∀i, j ∈ ΩL (1i)

where (1a) is the objective function that aims to min-
imize the generation cost, (1b)-(1e) are the power flow
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equation, (1f)-(1i) are the power, voltage, and power flow
constraints, a2,i, a1,i, a0,i represent the cost coefficients of
power generation at bus i, ΩG,ΩB ,ΩL are the generator
set, bus set and branch set, respectively, PGi, QGi are the
active and reactive power generation at bus i, respectively,
PGmin

i , PGmax
i are minimum and maximum active power

generation at generator i, QGmin
i , QGmax

i are minimum
and maximum reactive power generation at generator i,
PDi, QDi are the active and reactive power demand at bus
i, respectively, Vi, θi are the voltage magnitude and voltage
angle at bus i, V min

i , V max
i are minimum and maximum

voltage magnitude at bus i, θij = θi − θj is the voltage
angle difference between bus i and bus j, Gij , Bij are the
conductance and susceptance of branch between bus i and
bus j, Pij , Qij are active and reactive power flow of branch
between bus i and bus j, Smax

ij is the maximum power flow
at branch between bus i and bus j.

Data-driven OPF methods aim to learn the mapping
from the input xk to the output yk based on the dataset
generated by solving (1). This process could be formulated
as (2).

min
w

Loss (X,Y |w) =
1

ntrain

ntrain∑
k=1

L
(
yk, fNN

(
xk

∣∣w))
(2)

where fNN ( ·|w) : R2n → R2m+2n−2 represents the
mapping with parameter w, n denotes the number of
bus, m denotes the number of generator of the sys-
tem, D = {(X,Y )} =

{(
xk,yk

)}ntrain

k=1
is the training

dataset, ntrain represents the number of training sample,
xk =

(
PDk,QDk

)
represents the kth input, yk =(

PGk,QGk,V k,θk
)

represents the kth OPF solution,
L (·, ·) denotes the loss function. Since the learning objctive
is to obtain an accurate OPF solution, the mean square
error (MSE) is used as the loss function, which can be
formulated as:

L
(
yk, fNN

(
xk

∣∣w))
=

(
yk − fNN

(
xk

∣∣w))2 (3)

The aim of this work is to combine the neural networks
and optimization layer to provide a feasible solution for
the AC-OPF problem. To achieve this goal, two questions
need to be answered:
1) How to construct a neural network architecture as an

OPF proxy to provide a feasible solution?
2) How to expedite the model inference process and

minimize model accuracy loss?
In the following page, the first question will be answered

in subsection III-A by designing a three-stage neural
network architecture, and the second question will be
answered in subsection III-C by removing unnecessary
values and inequality constraints of the OptNet layer.

III. Methodology
In this section, a three-stage neural network architec-

ture is designed to serve as an OPF proxy. Specifically,
the OptNet layer is embedded into the neural network

architecture to provide a feasible solution. In addition,
considering the OptNet layer could slow the inference step,
a two-step pruning method is also proposed.

A. Neural Network Architecture Design
In this subsection, we describe the architecture of the

proposed model. The OptNet layer [24] has the ability to
learn and provide a feasible solution to an optimization
problem (for example, a Quadratic Programming prob-
lem). With the help of this layer, the architecture of the
proposed model is designed in Fig 1. The w1,w3 are
trainable parameters of neural networks in stage 1 and
stage 3, respectively.

According to Fig 1, one may observe that the archi-
tecture design consists of three stages. The first stage is
designed to project the input to a high-dimensional space.
Then, the second stage incorporates an OptNet layer to
solve the core optimization problem. Finally, the third
stage maps the high-dimensional output obtained from
the OptNet layer to the OPF solution.

Typically, for stage 2, the OptNet layer [24] is defined
to solve a quadratic programming problem, which can be
formulated as:

z2 = argmin
z

1

2
zT ·Q · z + cT · z (4a)

s.t. A · z = b (z1) , E · z ≤ h (4b)

where z ∈ RnQ×1 is the optimization variable, z2 is the
output of OptNet layer, Q ∈ RnQ×nQ , c ∈ RnQ×1,A ∈
Rneq×nQ ,E ∈ Rnineq×nQ ,h ∈ Rnineq×1 are parameters
will be learned from the dataset, b (z1) ∈ Rneq×1 is a
parameter related to the previous layer output z1, nQ

represents the dimension of lifted space, neq represents the
dimension of the equality constraints, and nineq represents
the dimension of the inequality constraints.

The idea behind this architecture and why the archi-
tecture can serve as an OPF proxy to provide a feasible
solution is easy to understand. Because of the non-linearity
and non-convexity of (1), solving the standard OPF
problem is challenging. To tackle this issue, various linear
approximations of OPF have been proposed. Among the
approximation methods, the most famous one is DC-OPF,
which can be formulated as a quadratic programming
problem. Also, comparing (1) with (4), one may observe
that once the power flow equation is transformed into a
linear one, (1) becomes a quadratic programming problem.
In addition, [25] and [26] suggest that the power flow
equation approximates linear when the state is lifted to a
high-dimensional space.

Thus, following these two ideas, Stage 1 is utilized to
lift the dimension of the input. Then, the OPF can be
considered as a quadratic programming problem and can
be solved in Stage 2, where the input b (z1) is equal to
the output of Stage 1. Since the dimension is lifted, the
output from Stage 2 differs from the original OPF solution.
Besides, the estimated solution of (1) is coupled in the
output of Stage 2, and the coupled one exactly satisfies
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Fig. 1. Architecture of the proposed data-driven OPF model

the constraints in high dimension. To decouple the output
of Stage 2 and obtain the final OPF solution, in Stage 3,
we use another neural network. In summary, the proposed
three-stage architecture can be considered as a proxy of
the OPF problem (1). Once the model is fully trained, the
forward pass can be considered to solve the linearization
OPF problem. In this way, we do not need to use correction
steps in our model and a feasible solution can be obtained.

B. Backpropagation
To update the trainable parameters of the proposed

model, we need to calculate the gradient of the loss
function with respect to the parameters. To elaborate
on this process, we take two trainable parameters as
examples. Typically, the gradient can be expressed as (5).
Note that the brackets with its variables are omitted on
the right-hand side in (5).

∇w3
Loss (X,Y |w) =

∂Loss

∂fNN
· ∂fNN

∂w3
(5a)

∇w1Loss (X,Y |w) =
∂Loss

∂fNN

∂fNN

∂z2

∂z2
∂b

∂b

∂z1

∂z1
∂w1

(5b)

In (5), the term ∂Loss
∂fNN

can be analytically obtained
based on (2) and (3), ∂fNN

∂w3
, ∂fNN

∂z2
and ∂z1

∂w1
are widely

used to update the parameters of neural network and can
be calculated easily. Thus, the key step to calculate (5b)
is to obtain the ∂z2

∂b and ∂b
∂z1

. To obtain ∂z2

∂b , we follow the
derivation process in [24].

The Lagrangian of (4) can be formulated as (6),

L (z, ν, λ) =
1

2
zTQz+cTz+νT (Az − b (zi))+λT (Ez − h)

(6)
where ν,λ ≥ 0 are Lagrangian multipliers.

By differentiating the KKT conditions of (6), the linear
matrix form can be obtained as (7), Q ET AT

G H 0
A 0 0

 dz2
dλ∗

dν∗

 =

 0
0
db

 (7)

where z2, λ∗ and ν∗ are optimal values for primal and dual
variable, G = diag (λ∗)E, H = diag (E · z2 − h), diag (·)
is an operator extracts the vector (·) to the diagonal
matrix. Thus, the ∂z2

∂b can be obtained by solving the
(7).

For ∂b
∂z1

, to simplify the architecture, we set z1 = b.
That means, ∂b

∂z1
= I in this paper. I represents the

identity matrix. Note that, the other parameters like ∂z2

∂Q

can be obtained in a similar way like (7). And the gradient
∇QLoss can be obtained like (5a) or (5b). Once the
gradient of each trainable parameter is known, then the
parameters can be updated using gradient-type methods.

C. Model Pruning
In this subsection, we describe the proposed two-step

pruning method. First, we randomly generate different
testing samples and compute the total inference time spent
in Stages 1 and 3 and Stage 2, as shown in Fig. 2 abd
Fig. 3, respectively. According to Fig. 2 and 3, one may
observe that almost 99% of inference time is spent in Stage
2. Thus, reducing the time spent on solving optimization
problem (4) is crucial to expedite the inference process.
In this regard, we proposed a two-step pruning method to
expedite the inference process with a little loss of accuracy.
The first step utilizes historical data to prune the inactive
inequality constraints away. Following the idea of the
neural networks pruning method, the second step removes
the unnecessary values of parameters in problem (4).

10 50 100 300 600
# of samples

0

0.01

0.02

0.03

0.04

0.05

0.06

T
im

e 
(s

)

Fig. 2. Time spent in Stages 1 and 3

1) Pruning away the inactive inequality constraints: For
the optimization problem (4), the nineq is pre-defined to
train the model. However, similar to the original OPF
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Fig. 3. Time spent in Stages 2

problem [27], many of the inequality constraints in (4) are
inactive and do not affect the optimum of the problem.
That means once the inactive inequality constraints are
removed, the inference time for the optimization problem
(4) will be reduced. In this regard, we define (8) to measure
the inequality distance and use (9) to find the inactive
inequality constraint set.

dl,k = ĥ(l) − Ê(l) · zk
2 (8)

where Ê
(l) represents the lth row of the fully trained pa-

rameter Ê, ĥ(l) represents the lth row of the fully trained
parameter ĥ, zk

2 represents the optimal solution of (4)
by inputting the kth training sample, l ∈ {1, · · · , nineq},
k ∈ {1, · · · , ntrain}.

l = max
l∈χ

∥dl,∗∥2
s.t. dl,k > ε, ∀k ∈ {1, · · · , ntrain}

(9)

where χ represents the active set, ε is used as a threshold,
dl,∗ =

[
dl,1 · · · dl,ntrain

]
.

The inactive set ϕ of inequality constraint can be
constructed iteratively by solving (9). For example, once
a new index l is found to be inactive, then this index will
be removed from χ, and this index will be added to the ϕ.
The final ϕ can be constructed until no inactive inequality
constraint index can be found.

The reason we use an iterative method to construct the
inactive inequality constraint set is easy to understand.
Since removing one inequality constraint may affect the
other, the iterative approach is a good way to find all the
inactive inequality constraints. It should be noted that the
inactive constraints set may be changed when the range
of power demand varies. To accommodate almost every
scenario and ensure the pruning method can be used in
the practical system, we sample the power demand from
0.85 to 1.45 in our training dataset.

With the help of ϕ, the inequality constraint in (4b)
can be equivalently simplified as (10),

Êϕ · z ≤ ĥϕ (10)

where Êϕ and ĥϕ are constructed by extracting selected
rows from E and h, the selected rows are in ϕ.

2) Pruning away the unnecessary values of parameter:
Similar to the deep neural network [28], the values in the
fully trained parameters in (4) may be redundant and
may be over-fitted in the training dataset. That means
once the redundant values are dropped, the performance
of the proposed model may not be affected, and the
computational expense to solve the optimization problem
(4) will be reduced because of the sparsity. Following this
idea, the pruning process of Q̂ can be visualized in Fig 4,
where Tr represents the pruning threshold; the position
with a red dashed circle represents the unnecessary values
of the parameters. The white blocks in Fig. 4 represent
zero values, and the colour blocks represent non-zero
values. Note that, the other parameters like ĉ also need to
be pruned. Since the matrix Q is decomposed to UTU+eps
in the OptNet layer, the estimation of Q will always be
symmetric in our method.

Original matrix Pruned matrix 

Tr

Q̂ ˆ
prunQ

Second 

pruning step

Fig. 4. Pruning process of Q̂

With the help of two-step’s pruning, the OptNet layer
for the stage 2 can be reformulated as (11).

z2 = argmin
z

1

2
zT · Q̂prun · z + ĉTprun · z (11a)

s.t. Âprun · z = b̂prun (z1) , Êϕ · z ≤ ĥϕ (11b)

where the subscript “prun” represents the pruned matrix
or vector.

Compared to (4), the redundant constraints and the
values are all removed. Hence, the computational efficiency
of the inference step (especially for stage 2 in the proposed
method) is significantly enhanced.

IV. Case Studies
In this section, to visualize the performance of the

proposed method, a 4-bus system is utilized first. Then,
OPF results comparison between the proposed method
and other baseline methods is shown based on a modified
14-bus system.

A. Simulation Settings
Test Case: In order to demonstrate the effectiveness of

the proposed method, 4- and 14-bus systems are utilized.
The detail of the 4- and 14-bus system are shown in Fig
5 and 6, respectively.
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Fig. 5. The 4-bus system
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Fig. 6. The modified 14-bus system

Data Generation: For the 4- and 14-bus systems, the
load dataset is generated based on the standard value
and the uniform distribution shown as (12) [29]. The α
is used to capture the load variation, and β is used to
capture the weather influence on the load. Note that,
when αi ∼ U [1.15, 1.45] we call it a heavy load scenario,
and when αi ∼ U [0.85, 1.15] we call it a light load
scenario. Note that we sample the power demand from
0.85 to 1.45 to contain almost every scenario. If the load
demand is outside the sample range, the optimality, and
feasibility of the solution may be affected. In addition, the
power output of each wind farm is generated by using the
parameters and the Weibull distribution in [30], which can
be formulated as (13). The PWi is the wind farm power
output at bus i, vi is the wind speed of the wind farm that
is connected to bus i, PWi,r is the rate capacity of the
wind farm that is connected to bus i, and vi,in, vi,r, vi,out
are the cut-in, rate, and cut-out wind speed of the wind
farm that is connected to bus i. Then, the OPF dataset is
constructed by using PyPower. Specifically, for the 4-bus
system, 5000 samples are generated for training. For the
14-bus system, 3000 samples are generated in the heavy
load scenario and light load scenario, respectively, where
80% samples are used for training and the other 20%
samples are used for testing.

PDi = (αi + βi) · PDstandard
i , ∀i ∈ ΩB (12a)

QDi = (αi + βi) ·QDstandard
i , ∀i ∈ ΩB (12b)

αi ∼ U [0.85, 1.45] , βi ∼ U [−0.025, 0.025] (12c)

PWi =


0, if 0 ≤ vi ≤ vi,in
PWi,r · vi−vi,in

vi,out−vi,in
, if vi,in ≤ vi ≤ vi,r

PWi,r, if vi,r ≤ vi ≤ vi,out
0, if vi,out ≤ vi

(13a)
Comparison Methods: the performance of the proposed

method is compared with five other methods, including,
1) Optimizer, which uses PyPower to obtain the OPF
solution; 2) neural network (NN), which trains a neural
network on the dataset to obtain the OPF solution; 3)
neural network-penalty (NN-P), which adds the penalty
term based on the physical constraint to the loss function
for the neural network training; 4) DC3, which applies
equality completion and unrolling gradient steps to recover
the feasibility of the solution provided by the neural
network; 5) neural network-OptNet (NN-OptNet), which
adopts OptNet layer in the neural network to provide
feasible OPF solution; 6) neural network-OptNet-Pruning
(NN-OptNet-Pr), which applies the proposed two-step
pruning method to speed up the inference process of NN-
OptNet. The illustration of comparison methods is shown
as Tab. I

TABLE I
Illustration of Comparison Methods

Methods Name NN NN-P DC3 NN-OptNet NN-OptNet-Pr
Reference [5] [15] [22] Proposed Proposed

Type
purely

data-driven
approach

penalty
approach

implicit layer
embedded
approach

implicit layer
embedded
approach

implicit layer
embedded
approach

Model Structure: To reduce the inference time of NN-
OptNet, only one layer is adopted in stage 1 and stage 3,
respectively. For the 14-bus system, nQ is set to 60, and
neq, nineq are assigned as 20. After the pruning, the nineq

is assigned as 12. The details of the hyper-parameters
selection are analyzed in subsection IV-D.

Evaluation Metrics: To evaluate the performance of
the proposed method, four criteria are used, where ntest
represents the number of testing sample. 1) Optimality:
The mean relative objective function error is used to
evaluate the optimality of the method, which can be
formulated as (14). For (14), c (·) represents the objective
function shown as (1a), P̂G represents the active power
output from the data-driven OPF method; 2) Equality
Feasibility: The mean power flow equation error is used
to evaluate the equality feasibility of the method, which
can be formulated as (15). For (15), P̂G, Q̂G, V̂ and θ̂
represents the OPF solution from the data-driven method,
PF (·, ·, ·, ·) represents the power flow equation shown
as (1b) to (1e); 3) Inequality Feasibility: The maximum
violation rate is used to evaluate the inequality feasibility
of the method, which can be formulated as (16). For (16),
the function g (·) is used to obtain the violation rate for the
variable (·), gs (·) is step function. 4) Time Complexity:
The total inference time in the testing dataset is used to
evaluate the time complexity of the method, which can
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be formulated as (17). The function time(·) is used to
calculate the inference time. Note that, for a traditional
solver, the sum of the solving time for the total testing
samples is utilized to evaluate the time complexity.

1

ntest

ntest∑
k=1


∣∣∣c(P̂G

k
)
− c

(
PGk

)∣∣∣
c
(
PGk

)
 (14)

1

ntest

ntest∑
k=1

∣∣∣PF
(
P̂G

k
, Q̂G

k
, V̂ k, θ̂k

)∣∣∣ (15)

1

{n,m} · ntest
·max

{
g
(
P̂G

)
, g

(
Q̂G

)
, g

(
V̂
)
, 0
}

(16a)

g
(
M̂

)
=

∑
i∈{ΩB ,ΩG}

ntest∑
k=1

 gs

(
M̂k

i −Mmax
i

)
+gs

(
Mmin

i − M̂k
i

)  (16b)

ntest∑
k=1

time
(
fNN

(
xk

∣∣ ŵ))
(17)

B. Case Study on 4-bus System
To visually demonstrate the optimality of the proposed

method for the 4-bus system, we fix the active power
demand at buses 3 and 4, as well as the reactive power
demand at buses 1 to 4. For buses 1 and 2, 200 active
power demands are generated using (12), respectively.
Then 40000 testing cases are generated by corresponding
to each other. By using the optimizer and the proposed
method, the objective function value comparison for the
40000 testing cases is shown in Fig 7. The horizontal and
vertical axes represent the active power demand (unit:
MW) at buses 1 and 2, respectively. Note that, the
different color represents different objective function value
(unit: $/hr), with more similar colors indicating closer
objective function values. Compare the top figure and the
bottom figure in Fig 7, one may observe that the NN-
OptNet is capable of generating accurate OPF solutions
for most cases and only for small cases on the right-
hand side, the NN-OptNet may provide conservative OPF
solutions resulting in lower power generation estimation
compared to the optimizer.

In addition to studying the optimality of the proposed
method, the inequality feasibility is also studied, which is
demonstrated in Fig 8. The horizontal and vertical axes
represent the estimated power generation (unit: MW) at
buses 1 and 4, respectively. Note that, the blue circle
and orange cross represent the power generation obtained
from optimizer and NN-OptNet, respectively. Overall, the
estimation results obtained from NN-OptNet are roughly
similar to those obtained from the Optimizer. This is
confirmed by taking a close look at the left area with a red
dash square. In addition, all the power generation results
obtained from NN-OptNet lay in the feasible region, which
can be verified from the right area with a red dash square.
All of these findings can confirm that the proposed method
can be considered as a proxy of the original OPF problem
(1).

Fig. 7. Objective function value comparison between Optimizer and
NN-OptNet

PG1

P
G
4

Fig. 8. Power generation comparison between Optimizer and NN-
OptNet

C. Case Study on 14-bus System
The performance comparison between various methods

in the heavy load scenario and light load scenario is shown
in Table II and Table III, respectively.

The second column in Table II and Table III compare
the Optimalty for different methods. One may observe
that the NN-OptNet achieves the smallest value compared
to the other three methods no matter in the heavy load
scenario or light load scenario. It means that the average
difference between the actual objective function value and
the estimated objective function value is the smallest,
which confirms the effectiveness of the proposed method.
Note that, the Optimality value for the NN-P is larger
than the NN in the heavy load scenario. It is because
when we use a large penalty value for NN-P, the violation
rate of NN-P will decrease, however, the large penalty
value will also have a negative impact on the Optimality.
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Comparing the NN-OptNet with NN-OptNet-Pr, one may
observe that a suitable pruning will boost the performance
of the NN-OptNet method in a light load scenario or
heavy load scenario. However, it is a challenge to select
the proper threshold to balance the model performance in
heavy and light scenarios.

The third column in Table II and Table III compare
the Equality Feasibility for different methods. One may
observe that the proposed method shows the best equal-
ity feasibility maintained compared to the other three
methods. For example, the equality feasibility for the NN-
OptNet is 1.10E-02, while this value reaches 3.51E-02 in
DC-3. Comparing the NN-OptNet with NN-OptNet-Pr,
the findings are similar to the Optimalty.

The fourth column in Table II and Table III compare the
Inequality Feasibility for different methods. It should be
noted that both the NN-OptNet and NN-OptNet-Pr can
maintain a zero violation rate. For the DC-3, the inequality
feasibility can be recovered to zero by setting more steps
in the inequality correction step, however, the time cost
will also be increased and the equality feasibility may also
be affected. Similar to DC-3, the inequality feasibility of
NN-P can also be recovered to zero, however, the equality
feasibility and optimality may be affected.

The fifth column in Table II and Table III compare the
Time Complexity for different methods. Both NN and NN-
P show excellent computational efficiency. However, they
may provide infeasible and sub-optimal OPF solutions.
Compared to the other three methods, the NN-OptNet
needs more time in the inference process because the
optimization layer is embedded. The NN-OptNet-Pr needs
less time to obtain the OPF solution compared to the NN-
OptNet but the performance may also be compromised.

TABLE II
Performance Comparison in Heavy Load Scenario

Optimality Equality
Feasibility

Inequality
Violation Rate Time

Optimizer – - – 143.01s
NN 5.68E-03 7.99E-02 23.30% 0.072s

NN-P 1.14E-02 4.65E-02 7.16% 0.075s
DC-3 3.62E-03 3.51E-02 2.54% 3.22s

NN-OptNet 2.22E-03 1.10E-02 0.00% 11.41s
NN-OptNet-Pr 4.95E-03 1.06E-02 0.00% 6.82 s

TABLE III
Performance Comparison in Light Load Scenario

Optimality Equality
Feasibility

Inequality
Violation Rate Time

Optimizer – - – 144.40s
NN 9.37E-03 8.43E-02 13.04% 0.071s

NN-P 7.43E-03 4.44E-02 6.33% 0.076s
DC-3 6.95E-03 3.62E-02 3.00% 3.21s

NN-OptNet 3.90E-03 8.62E-03 0.00% 11.43s
NN-OptNet-Pr 6.65E-04 8.90E-03 0.00% 6.56 s

D. Hyper-parameter Selection
Except for the hyper-parameters like learning rate, for

the NN-OptNet, the hyper-parameters also include the
number of layers, the dimension of lifted space nQ, the
dimension of the equality function neq, and the dimension
of inequality function nineq in the optimization layers. To
ensure the minimum inference time, the number of layers
is set to 1 in both stage 1 and stage 3. To determine the
other hyper-parameter, we use Fig 9 to show the time
complexity with different neq/nineq and nQ. Note that,
we set neq = nineq in the figure.

The x and y axes represent the dimension of lifted
space nQ and the dimension of the equality/inequality
function neq/nineq, respectively. The z axes represent
the inference time spent for the NN-OptNet method.
Note that, the problem (4) may be unsolvable when
neq/nineq > nQ. Thus, we set solving time to zero in Fig
(9) when the problem is unsolvable. There is no doubt that
the higher dimension may increase model accuracy, but
also increase time complexity. Thus, to balance the model
performance and the inference speed, we select nQ = 60,
neq = 20, nineq = 20 according to Fig (9).

Fig. 9. Inference time comparison with different hyper-parameters

E. Discussion
Since the OptNet layer is embedded in the proposed

architecture, our method will face the scalability issue for
a large power grid. Meanwhile, even though we can get
a feasible OPF solution from the simulation perspective,
the feasibility cannot be guaranteed from the theoretical
perspective.

In addition, we would like to compare the proposed
method and the convex-relaxation layer embedded ap-
proach in our future work.
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V. Conclusions
This paper proposes to represent the OPF problem

by a three-stage neural network architecture with the
OptNet layer embedded. The forward pass of the model is
equivalent to solving a linearization OPF problem. Thus,
the correction steps are not required for the proposed
approach. Then, a two-step pruning method is proposed to
identify and remove the unnecessary inequality constraints
and values to expedite the inference step. Therefore, the
computational burden of the proposed model can be
reduced. While we do not claim that the feasibility can
be guaranteed by using the proposed approach, numerical
experiments based on the IEEE 4- and 14-bus systems
show that the proposed approach can achieve positive
results in terms of feasibility and optimality compared
to the other three methods.

The quadratic programming problem is used in the
OptNet layer. However, QP is not a perfect approximation
of the OPF problem. In our future work, we would like to
construct or find an optimization layer to provide better
OPF solutions with fewer time costs in the inference step.
In addition, we would like to implement our approach to
the practical power grid to examine its practical value.
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