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1 Abstract

A computational framework was developed to capture the combined fluid- and
solid-like behavior of lipid membranes in a unified manner. Specifically, the
in-plane diffusion of lipid molecules and the associated evolution of membrane
tension were explicitly taken into account in the model. In addition, the out-
of-plane movement induced bending and shearing of membrane, along with its
thermal undulations caused by bombardment of medium molecules, were also
considered. The capability and validity of this approach were demonstrated by
simulating the enforced deformation and shape fluctuations of a lipid vesicle
under a variety of testing conditions as well as their comparison with corre-
sponding theoretical predictions. Our model could serve a useful platform for
investigating processes such as cell spreading and division where morphology
evolution of the membrane and transport of lipids/transmembrane proteins are
known to play key roles.

2 Introduction

Cell membrane is a phospholipid bilayer, with a thickness of only a few nanome-
ter, embedded with various proteins [1]. Physically, the interactions among
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phospholipids and their mobility give both elasticity and fluidity to the mem-
brane as well as restrict lateral diffusion of transmembrane proteins [2]. It is
well known that besides serving as a physical barrier, cell membrane also plays
a key role in many important cellular processes such as cell spreading, adhe-
sion, division etc [3, 4]. For this reason, intense effort has been invested over
the past few decades to understand and model the mechanical behavior of cell
membrane. For example, the membrane was often treated as an elastic layer
or a network consisting of different biological molecules with small or infinites-
imal thickness. Following classical theory of elastic thin-shells, the response of
membrane against bending was considered by many researchers [5, 6, 7]. In
addition, by adopting fluid-like elastic constitutive laws with volume and area
constraints, different finite element models have also been proposed to study
lipid membrane deformation [8, 9, 10, 11].

It must be pointed out that, these continuum mechanics-based formulations
did not consider the distinct roles of different constituents within the mem-
brane. This issue was first addressed by the so-called mosaic model [12] where
the membrane was treated as a two dimensional liquid with different embed-
ded molecules. Following such picture, Saffman et al. [13, 14] examined the
lateral and rotational Brownian diffusion of transmembrane proteins (simplified
as cylinders embedded in the lipid-bilayer). In addition, the mechanisms by
which specialized proteins capable of inducing shape remodeling of the mem-
brane [15, 16] and eventually directing certain cellular functions [17, 18] have
been extensively investigated.

Despite these aforementioned efforts, several important things remain unset-
tled. First of all, it is well-known that, microscopically, the mechanical response
of phospholipid bilayer originates from the hydrophobic/hydrophilic nature of
the lipid molecule [19, 20]. Specifically, within the membrane, hydrophilic heads
of lipids are exposed to water while the hydrophobic tails are hided in the mid-
dle of the bi-layer (refer to Figure 1). The lipid molecule can freely move within
each layer by lateral diffusion, leading to the fluid-like in-plane behavior of the
membrane. A reduced lipid density in certain region will expose the hydropho-
bic tails to water and result in an elevated in-plane tension locally [21], as well
as cause lipids nearby to "flow" into this region [22] and make the tension within
the membrane more homogeneous. However,to the best of our knowledge, such
coupling lipid transport with membrane tension in membrane deformation has
not been established in existing models. In addition, the bi-layer structure will
be under constant bombardment of medium molecule, resulting in spontaneous
undulations of the membrane [23, 24]. But, a method allowing us to introduce
such thermal excitation to membrane in a seamless manner is still lacking.

Aiming to address these outstanding problems, we proposed a new compu-
tational model where lipid molecules were allowed to diffuse within the mem-
brane despite being constrained by internal forces including in-plane tension and
bending moment. In addition, a random (both spatially and temporally) force
distribution on the membrane was also introduced to represent thermal undu-
lations. The validity and capability of the method were demonstrated through
several numerical examples as well as comparison with theoretical predictions.
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Figure 1: Schematic plot of a deformed lipid bi-layer membrane

3 Formulation

The linear diffusion equation, characterizing the collective motion of micro-
particles in a material resulting from their individual random movement, can
be used to describe the transport of lipid molecules within the membrane as

2
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where p and D are the areal density and diffusivity of lipid molecules. Since the
resistance of membrane against expansion originates from the extra hydrophobic
area exposed to water upon stretching, a nonuniform density distribution of lipid
molecules will lead to a non-homogeneous surface tension within the membrane.
Such effect can be taken into account as

7= —Ka(F0) )
Po

where K4 is the so-called area expansion modulus [25] and py represents the
reference lipid density (i.e. the density leading to zero membrane tension). Note
that, during bending deformation, one layer of lipids is stretched while the other
undergoes compression (refer to Fig. 1), both leading to an elevated energy of
membrane. This means that the bi-layer membrane also possesses a bending
stiffness k; (against out-of-plane deformations). According to the shell theory,
the bending moment developed within the membrane can be expressed as

mp = lib(01 + 02) (3)

where C7 and Cs are the two principal curvatures of the deformed membrane.

Next, to capture the shape evolution of the cell/vesicle membrane (immersed
in a viscous fluid), the immersed boundary integral method was adopted where
the velocity of membrane at point £ can be evaluated by [26, 27].
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where
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is the fundamental solution of the Stokes equation with r = |¢ — y|, located at
point y and oriented in the j* direction. Here n represents the unit out-normal
vector of membrane, and p is the cytosol viscosity.

The term Ao contains contributions from the tension-induced pressure dif-
ference across the membrane as well as the transverse shear stress (in the normal
direction) developed within the bi-layer. From Young-Laplace law, the pressure
difference o, can be found as

CTPZ’)/(Cl + Co) (6)

On the other hand, according to the elastic shell theory, the transverse shear
stress within membrane is related to the bending moment as

0 = Vmy (7)

where V2 stands for the Laplace operator. Therefore, Ao can be found to take
the form

Ac=0s+0p,= V2my +4(Cy + Cy). (8)

To avoid the singularity presented in Eq. (4) (as y approaches &), we can re-
write it as [2§]
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where the first term on the right hand side is a regular integral while the second
term vanishes for any self-enclosed membrane. In the end, we have

w© = | €3y () [Acly)  Ac(e)lds,, (10)

an expression that is readily to be used in simulating the shape evolution of
membrane.



4 Implementation in FEM simulations

The finite element method was used to calculate the in-plane tension (or equiv-
alently the lipid density distribution), transverse shear and bending moment
developed in the membrane. Specifically, the membrane was meshed by a net-
work of three-node triangles. According to Eq. (1), lipid density evolution at
point X; in the membrane can be captured by

p(Xi,t—i-At) —p(Xi,t) _ fA(Xi)Ap(xi7t)dA(Xi) (11>
At o A(Xi)
where t corresponds to time, A(x;) is the area/domain surrounding nodal point

x;(refer to Fig.2). By applying the discrete form of the Laplace-Beltrami equa-
tion (see Appendix A for details), Eq. (11) can be re-written as

n(x;)

0A(xy)

xj

Figure 2: Definition of the area A(x;), as well as its boundary 0A(x;), surround-
ing a nodal point x; in our numerical scheme. Note that, each side of A (x;)
crosses the mid-point of the segment x;x;, connecting x; and a neighboring point
Xj.

pxi t+ At) — p(xi,t) _ Dzj(cotcw + cotBi;) (p(x5,t) — p(xi,t))

At QA(Xi) (12)

where x; represents a neighboring nodal point of x; while «;; and 3;; correspond
to the two opposite angles of edge x;x; (refer to Fig.2). Once p is known, the
in-plane tension 7 of membrane can then be calculated and updated from Eq.
(2).

Next, notice that the mean curvature H; (defined as the average of two
principle curvatures, i.e. H; = (C1 + C2)/2) at a triangle element node x; can
be evaluated as [29, 30|

Ax; = -2 H;n (13)



where n is the unit normal vector of the deformed surface at position x;. There-
fore, o, at point x; can be expressed as

Zj(cotaij + cotﬁij)(xj — Xj)

) =2+vH, = 14
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The bending moment within the membrane is simply
mb(xi) = QIini (15)
from which the transverse shear stress can be found as
(cota;; + cotB; ) (mp(x;) — mp(X;
e = Zaleotans & cotfis)om(o) — mutx) »

2A(Xi)

Finally, from the boundary integral expression (i.e. Eq. (10)), the moving
velocity of membrane can be determined by

M 3
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r
m=1 k=1

(17)

where j and k mean the ;" and k*" components of a vector while M repre-
sents the total number of nodes over the membrane. Once the velocity field is
known, the shape evolution of the cell/vesicle can then be determined by simple
temporal integration.

5 Result and discussion

The computational model described above was then used to simulate the re-
sponse of a membrane vesicle (with an initial radius of R = 1um and immersed
in the cytosol with viscosity p = 1.2Pa - s [31]) under various experimental
conditions. Note that, for lipid membrane, the diffusivity of lipid molecules
is believed to be around D = 1um?/s [31], the areal expansion modulus is of
the order of K4 = 1pN - wum™! while the bending rigidity is typically around
kp = 20kpT[32, 33] (with kT being the thermal energy). Therefore, the di-
mensionless areal expansion modulus K 4 = KAR? /kp should be of the order
of 10. We then non-dimensionlized the problem by normalizing every length,
force, and time variables with R, x/R? and uR?/ky respectively. During the
simulation, the vesicle surface was meshed by 1806 triangle elements defined by
3608 nodal points.We must point out that, since the deformation was relatively
small in all the numerical examples presented here, no remeshing of the mem-
brane surface was carried out in our FEM simulations. However, such step may
become necessary once the distortion of membrane becomes severe.
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5.1 In-plane transport of lipids

We first examined the evolution of lipid density (or equivalently the in-plane
tension) distribution over the membrane when some lipid molecules were sud-
denly removed at the south pole of the vesicle. In this case, the initial membrane
tension was taken to be zero (i.e. choosing p = pg at ¢ = 0), and then a step
decrease in the lipid density at the south pole of vesicle was introduced. Ac-
cording to Eq. (2), the sudden removal of lipids at the pole will result in a step
increase in the membrane tension locally. On the other hand, such spatial vari-
ation in tension will decay gradually with respect to time as diffusion of lipid
molecules makes their distribution more homogeneous. Indeed, as illustrated
by Fig. 3 and 4, both the lipid density and tension distributions become more
and more uniform, before eventually reaching a steady state. Of course, the
diffusivity of lipids (D) and size of vesicle (R) largely determine how fast such
homogeneous/steady-state configuration can be reached.
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Figure 3: Lipid density (—P%) distribution along the meridian of the vesicle at

three normalized time ¢ points (i.e. # = m = 0.03,0.08 and 0.35). Here
-1 and 1 on the horizontal axis correspond to the south and north pole of the
vesicle, respectively.
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Figure 4: Snap-shots of the distribution of in-plane tension over the membrane
(t= m = 0.03,0.08 and 0.35)
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5.2 Shape evolution of vesicle under two stretching forces
at two opposing poles

Next, we considered the coupling between the out-of-plane deformation of mem-
brane with its in-plane tension evolution. In this case, two Gaussianly dis-

N

tributed pressures (i.e. o4(x) = poxe |2’f<0»‘1)>‘2 , with pg = 2Pa and xp = (0,0, —1)
or (0,0,1) for the south or north pole, respectively) were applied suddenly to
opposing poles of the vesicle, that is this o; was added to Eq. (8) in the calcu-
lation.

Snap-shots of the deformed vesicle are shown in Fig. 5, where the configura-
tion at t = 7 essentially shows the steady-state /equilibrium shape of the vesicle.
Interestingly, as both poles of the vesicle were pulled out, the membrane in those
regions underwent stretching which led to a reduced lipid density as well as an
elevated in-plane tension (Fig. 6). Such local changes in the density of lipids
will then induce their transport within the membrane, effectively transmitting
the influence of the applied loads to the other parts of the membrane.
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Figure 6: Snap-shots of in-plane tension distribution evolution over the mem-
brane (f = 77— =1,3 and 7)
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5.3 Shape fluctuations of the vesicle

The nanometer range thickness of cell membrane makes it extremely suscepti-
ble to thermal induced bending deformations, which are actually visible under
a microscope [34, 35]. Physically, this kind of thermal excitation originates
from collisions between the membrane and surrounding medium molecules, as
illustrated in Fig. 7(a).

Lipid membrane

(a) )

Figure 7: (a) Schematic of a lipid membrane immersed in the medium. (b)The
effect of collisions of fluid molecules on the membrane can be represented by a
randomly distributed load f.

To take such entropic effect into account in our model, a random force distri-
bution f (along the normal direction of membrane) was introduced to represent
continuous bombardments of fluid molecules on the membrane, a strategy sim-
ilar to that for the case of bio-filaments [36, 37]. To be self consistent, this
random force must be Gaussian with zero mean and relate to the bulk medium
viscosity p as

< f(Xi,t)f(Xj,’T) >= 2,U,kBT(5(Xi —Xj)é(t—’r) (18)

where ¢t and 7 represent time, ¢ is the Dirac delta function, x; and x; are the
position vectors and the brackets stand for average. Notice that, the Dirac
delta function here means that the distribution f is both spatially and tem-
porally uncorrelated. One thing to mention is that, compared to conventional
modal-analysis based approaches [38, 39] focusing on the long-term (i.e. when
thermodynamic equilibrium is reached) average behavior of the system, tran-
sient response of the undulated membrane can also be captured here. _

To implement this description in FEM simulation, a uniform load f} was
assumed to act on the area A(x;) (surrounding each node x;) over the time
interval [¢;t;41], that is

I . J (19)
= xj, t)dtd 19
A (1 — 1) Jaea Jyy

It can be shown that, according to Eq. (18), the so-called auto-correlation
function of f] takes the form
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g o kBT
< fifi >= mK i >=0 (20)
Essentially, the force acting on each nodal area must follow a Gaussian distri-
bution with zero mean and a variance of Kg(fi%. By adding this force to the
expression of Ao in Eq. (8), we can then simulate the spontaneous shape fluc-
tuations of the vesicle. For example, three snap-shots of a fluctuating vesicle
are shown in Fig. 8.

£=0.5

Figure 8: Snap-shots of an undulated vesicle (with zero in-plane tension). Here
the normal displacement of membrane was amplified by 10 times for clear pre-
sentation.

It is noteworthy to point out that the shape undulation of quasi-spherical
vesicles has been analyzed by several groups [40, 41, 42| before. For example,the
fluctuating shape of a quasi-spherical vesicle can be represented as

lmac

l
R(0,6) = Ro(1+ Y > wmYni(0,0)) (21)

1>0 m=—I

where 0 and ¢ are two polar coordinates, R represents the radius and Y;,; is
the so-called spherical harmonics function (with m and ! being its order and
degree respectively). From thermodynamic analysis, the long-term fluctuating
amplitude associated with Y;,,; can be found as [40]

< Jupm|? >= k’s—bT[(l +2)(1 - D[+ 1)1+

(22)
where T" refers to vesicle tension restricting the fluctuation of membrane.

To compare our results with predictions from Eq.(22), we carried out simu-
lations by setting k, = 25kgT and p = pg (i.e. zero in-plane tension), and then
monitored the radial position of membrane at an arbitrary point. As illustrated
in Fig. 9(a), due to thermal excitations, the radial position fluctuated around
the equilibrium value (i.e. the initial vesicle radius). Interestingly, after a short
transition period, the average amplitude of such undulation, calculated by inte-
gration over the whole time period, began to converge to the value predicted by
Eq. (22) with T" = 0, refer to Fig. 9(b), which again demonstrates the validity
and capability of our approach.
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Figure 9: (a)Simulated radial position r (normalized by initial vesicle radius R)
of membrane at an arbitrary point under zero in-plane tension. (b)Evolution of
the normalized undulation amplitude (i.e. u/R ) calculated from our simulations
(solid line). Prediction from Eq.(22) is given by the dotted line where l,,4, =
4 was used as contributions from higher undulation modes were found to be
negligible.

6 Conclusion

In this paper, we presented a novel computational framework to capture the
combined fluid- and solid-like response of lipid membranes and then used it
to investigate the enforced deformation and spontaneous shape fluctuation of
lipid vesicles under a variety of experimental conditions. Specifically, we showed
how transport of lipid molecules within the membrane modulates the in-plane
tension distribution, as well as its coupling with the out-of-plane response of
membrane. In addition, a self-consistent (Langevin dynamics based) method
was also introduced (and then verified) to take into account spontaneous thermal
undulations of membrane.

It must be pointed out that, compared to most existing FEM models, the
diffusion of lipids and the viscous resistance of surrounding medium against the
deformation of membrane are directly considered in the present formulation.
Furthermore, the continuum nature of the model also allows us to carry out
simulations on realistic spatial and temporal scales, something that could be
difficult to achieve in molecular dynamics-based approaches [43, 44, 45|. In this
regard, our model may serve as a computational platform for examining cellular
processes such as the formation of polymerization-induced membrane protru-
sion/movement [46, 47|, cell adhesion [48, 49] and migration [50, 51], where
morphology change of the membrane and transport of lipids/transmembrane
proteins are known to play key roles. In addition, the dynamic nature of our
model also make it suitable for studying transient phenomena like endocytosis
[52] and closed mitosis [53]. Investigations along these directions are underway.
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A Appendix - Details of FEM implementation

As illustrated in Fig. 2, the domain A(x;) of nodal point x; (within the trian-
gular mesh) can be defined as the one with each side of its boundary 9A(x;)
crossing the mid-point of the segment x;x; that connects x; with a neighboring
nodal point x;. Two opposite angles a;; and 3;;, with respect to x;x;, can then
be defined accordingly, refer to Fig. 2.

Within each triangle element, the conventional areal shape functions Bi, B
and Bj (see Fig. A1) were used to interpolate different variables. Under such
circumstance, the gradient of a piece-wise linear functionf (within the mesh)
can be calculated as

Vf(u) = fiVBi(u) + f;VBj(u) + fx VB (u)

= (f; — fi)VBj(u) + (fr — fi)Br(u)

where u represents any point within the triangle element, f; = f(xi), f; = f(x;)
and fr = f(xk). Note that, the gradient of the shape function takes the form

(A1)

VB;(u) = (i —x5)" (A2)
! 2At
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where the symbol 1 means a counterclockwise rotation of 90 degrees as show
in Fig. Al(a). Divergence theorem implies that

/Af(u)dA:/diva(u)dA
A A (A?))

= Vi) -n(u)dsS
A

where n is the outward normal vector of boundary dA, eventually leading to

Vi(u) -n(u)dsS = %Vf(u)(xj — xk)L

0A
Xi — X L Xi — X L
= (f; — gy 2 =0 (A1)
x; — %) (x5 —xp)t
+(fk7fz)( J 1)4137:] k)

Finally, the so-called average Laplace-Beltrami (over a certain region) can be
expressed as [54]

/ Af(u)dA = Zujezvl(ui)(comij; cotBi;)(f; — fi) (A5)
A

2wy Ns (uy) (C0tai; + cotBi;) (f (x5) — f(xi))
2A(Xi)

Af(u) = (A6)

where x; is the set of the neighboring vertices around x; (Fig. 2) while a;; and
Bi; are the two opposite angles of edge x;x;.
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