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DiffLoad: Uncertainty Quantification in Electrical
Load Forecasting with the Diffusion Model

Zhixian Wang, Qingsong Wen, Chaoli Zhang, Liang Sun, and Yi Wang

Abstract—Electrical load forecasting plays a crucial role in
decision-making for power systems. The integration of renewable
energy sources and the occurrence of external events, such as
the COVID-19 pandemic, have rapidly increased uncertainties
in load forecasting. The uncertainties in load forecasting can
be divided into two types: epistemic uncertainty and aleatoric
uncertainty. Modeling these types of uncertainties can help
decision-makers better understand where and to what extent
the uncertainty is, thereby enhancing their confidence in the
following decision-making. This paper proposes a diffusion-based
Seq2seq structure to estimate epistemic uncertainty and employs
the robust additive Cauchy distribution to estimate aleatoric
uncertainty. Our method not only ensures the accuracy of load
forecasting but also demonstrates the ability to separate and
model the two types of uncertainties for different levels of loads.
The relevant code can be found at https://github.com/hkuedl/
DiffLoad-Uncertainty-Quantification-Load-Forecasting.

Index Terms—Generative diffusion model, Load forecasting,
Uncertainty quantification

I. INTRODUCTION

A. Background and Motivation

Electrical load forecasting is vital in helping power system
decision-making. In recent years, Neural Network (NN)-based
load forecasting methods have been widely applied [1], [2].
However, the uncertainties in NN-based load forecasting may
reduce decision-makers’ trust in the forecasts. The uncer-
tainties can be divided into two parts: epistemic uncertainty
and aleatoric uncertainty. For load forecasting, quantifying
these two types of uncertainties corresponds to different sce-
narios and has different applications. Quantifying aleatoric
uncertainty, what most probabilistic load forecasting does, can
leave a margin for ordinary power grid dispatching. Epistemic
uncertainty, on the other hand, quantifies whether the models
understand the data well. When the power system suffers
from external shocks such as the COVID-19 epidemic (shown
in Fig. 1) and extreme weather, the load data may shift
and forecasting errors may increase rapidly. Quantifying this
uncertainty can help downstream task decision-makers under-
stand the relevant risks to reduce economic losses. Therefore,
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Fig. 1: Visualization of sudden change effects caused by
external events in electricity load

to increase decision-makers’ confidence in forecasts, the model
should be able to model/quantify these uncertainties.

B. Literautre Review

Extensive work has been done on load forecasting, which
can be roughly divided into two categories. The first is
statistics-based methods, which explicitly construct the re-
lationship between input data (such as historical load) and
the load to be forecasted. [3] adopted temperature as an
exogenous variable and built autoregressive moving average
models with exogenous inputs (ARMAX) to forecast load.
The second is machine learning-based methods, which learn
latent patterns from known data and apply them to unknown
data. Traditional machine learning methods such as linear
regression and tree models are widely applied. [4] used
time, external variables (such as temperature), and day type
(holiday or not) to construct a linear regression model. [5]
decomposed the load series into trend series and multiple
fluctuation subsequences and then constructed several linear
regression models and Xgboost regression models to forecast
each series separately. Due to the relatively simple model
structure, traditional machine learning methods can usually
explain how input variables affect the forecasts well. However,
the simple structure often can not cope with strong nonlinearity
in reality. To this end, researchers have gradually turned their
attention to NN in recent years [6]–[8]. The Long Short Term
Memory (LSTM) recurrent NN was applied to model the
power load of individual electric customers [9], demonstrating
the superiority of NN in load forecasting tasks. In addition to
using existing NN, researchers also considered modifying NN
for load forecasting. [10] proposed an NN architecture with
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an attention mechanism for developing RNN-based building
energy forecasting and investigated the effectiveness of this at-
tention mechanism in improving interpretability. [11] designed
a method to handle external weather and calendar variables
jointly and then combined them with LSTM.

Although NN is widely used in load forecasting, various
issues like data noise and unknown external influences (such as
COVID-19) will make it difficult to model the load data well,
therefore bringing huge uncertainties. This makes researchers
shift their focus from point forecasting to probabilistic fore-
casting, which essentially models the uncertainties in forecast-
ing [12]. [13] proposed to use Pinball Loss to guide the LSTM
so that it can output the quantile of the data. In [14], a novel
deep ensemble learning-based probabilistic load forecasting
framework was proposed to quantify the load uncertainties of
individual customers. [15] considered peak areas with often
more significant uncertainty and supposed that the load data
consists of probabilistic normal load and the probabilistic peak
abnormal differential load. Apart from the methods mentioned
above, a recent trend is to employ the diffusion mechanism
to model the uncertainty. TimeGrad [16] and [17] used NN
to extract information from time series data and assist in
constructing Markov Chains, ultimately obtaining uncertainty
estimations that do not require hypothetical distributions.

Although these practices can provide probabilistic forecasts
to capture uncertainties, they did not clearly define what
uncertainty they were modeling and therefore can not provide
further insights into the forecasting process. [18] claimed
that the uncertainty of NN forecasting models can be cate-
gorized into epistemic uncertainty caused by the forecasting
model and aleatoric uncertainty caused by the data itself.
The existing common methods, such as deepAR [19], are
probabilistic modeling of forecasting errors, considering the
aleatoric uncertainty. In recent years, with the gradual increase
in the penetration rate of renewable energy generation, the
randomness of meteorological factors has affected renewable
energy generation, further affecting the uncertainty of load
forecasting [20]. The significance of this type of probabilistic
load forecasting is mainly to leave a margin for ordinary power
grid dispatching [21]. Epistemic uncertainties, on the other
hand, arise from incomplete information in the training set
[22]. When faced with deviations in the distribution of training
and test data, the existing method usually can not provide a
reasonable probabilistic forecasting interval, which may lead
to a huge economic loss, because it ignores the epistemic un-
certainty. In recent years, the impact of extreme external events
such as COVID-19 on load forecasting and downstream power
grid dispatching tasks has received increasing attention [23],
indicating that we not only need to consider the impact of
aleatoric uncertainty caused by data noise on normal situa-
tions but also the impact of epistemic uncertainty caused by
external events. For now, some methods have been proposed
to deal with different types of uncertainties, such as Bayesian
methods, ensemble methods, and dropout. Bayesian methods
assumed that different types of uncertainty followed Gaussian
distributions. [24] proposed a novel probabilistic day-ahead
net load forecasting method to capture epistemic and aleatoric
uncertainty using Bayesian deep learning. Similarly, [20] also

applied Bayesian NN to capture two types of uncertainties,
and the results were used in subsequent pooling clustering,
ultimately improving forecasting accuracy. In addition to the
Bayesian NN, dropout [25], a common technique for training
NN, has also been proved to be an approximation of the
Bayesian network, thus providing two types of uncertainty
estimates. Because epistemic uncertainty represents model
uncertainty during the training process, ensemble methods [26]
have become one of the methods for estimating model un-
certainty. However, these methods all had their drawbacks.
For the ensemble approach, the time and computational costs
were very expensive due to the need to train multiple models.
Similarly, the Bayesian method treated each NN parameter
as a random variable, making the training cost extremely
expensive. Meanwhile, these two methods typically relied on
Gaussian distributions, which limited the model’s expressive
power and was easily affected by data noise [27]. As for
dropout, the advantage of this method was that it did not
require assumptions about the distribution of uncertainty, and
compared to ensemble-based and Bayesian methods, it reduced
the computational time. However, it has been proven that its
forecasting performance was unstable due to inconsistencies
in the training and testing processes [28].

C. Contributions
Given that existing methods require significant computa-

tional resources or are susceptible to issues like data noise be-
cause of the Gaussian distribution, we are motivated to develop
a new uncertainty quantification framework. The framework
can estimate and separate the two kinds of uncertainties while
reducing distribution assumptions and does not significantly
increase the computational burden. To estimate the aleatoric
uncertainty, we propose to apply a heavy-tailed emission head
to wrap up the forecasting model, reducing the bad effect
caused by data noise. As for the epistemic uncertainty, we
propose a diffusion-based framework to concentrate the uncer-
tainty of the model on the hidden state, which only increases
the computational burden that can be borne. Combining two
types of uncertainties, our forecasting model will provide
high-quality load forecasts. This paper makes the following
contributions:

• Provide a new epistemic uncertainty quantification frame-
work in electrical load forecasting: Based on sequence-
to-sequence (Seq2Seq) and diffusion structure, we pro-
pose a new uncertainty quantification method for NN
forecasting models. Unlike previous methods that set
model parameters to random variables like Bayesian NN
and dropout, we utilize a diffusion-based encoder to
concentrate uncertainty in the hidden layer of the NN
before inputting it into the decoder. In this way, our
method provides estimations of model uncertainty while
bringing an affordable additional computational burden.

• Propose a robust emission head to capture the aleatoric
uncertainties: A likelihood model based on the additive
Cauchy distribution is proposed to estimate the uncer-
tainty of the data. Compared with the traditional Gaussian
likelihood, the Cauchy distribution is more robust to the
outlier and extreme values of the power load data.



SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS 3

Cauchy emission head

Encoder

…

Adding noise and reverse(optimized by ELBO)

Decoder

ˆ


ˆ


( )2 2ˆ ˆ ˆlog log ( )Loss ELBO y     = − + − +

Training

𝒉𝒕−𝟐

GRU GRU

𝒉𝒕−𝟏

𝑿𝒕−𝟐 𝑿𝒕−𝟏 𝑿𝒕

𝒉𝒕

…

ℎ0𝑡

෢ℎ0𝑡

ℎ1𝑡 ℎ𝑁
_1
𝑡 ℎ𝑁𝑡

… 𝒉
∗
𝒕−𝟏𝒉

∗
𝒕−𝟐

GRU GRU

𝑿𝒕−𝟐 𝑿𝒕−𝟏 𝑿𝒕

𝒉
∗
𝒕

GRU

Diffusion forecasting network

Cauchy NLL

Heavy-tail 

Cauchy distribution

Linear

Linear Softplus

Inference

𝒉
∗
𝒕−𝟏𝒉

∗
𝒕−𝟐

GRU GRU

𝑿𝒕−𝟐 𝑿𝒕−𝟏 𝑿𝒕

𝒉
∗
𝒕

GRU…

Inference M times

1ˆ


1ˆ


ˆM



ˆ M


…

1
ˆ i

M
 = 

1
ˆ ˆ ˆ( ( ) ( ))i

u lq q
M

   = + −

( ),y C  Inference:

Fig. 2: Overview of our proposed DiffLoad method.

• Conduct extensive experiments including load data at
different levels: We compared our methods with the
widely used uncertainty quantification method for NN
at different levels of load data. The experiment result
shows that our method outperforms traditional methods
at both system-level and building-level loads without
adding a significant computational burden. The experi-
ment’s code can be found in https://github.com/hkuedl/
DiffLoad-Uncertainty-Quantification-Load-Forecasting.

D. Paper Organization

The rest of the paper is structured as follows. Section II
elaborates our proposed method, including how to separate
two types of uncertainty using diffusion structure and robust
Cauchy distribution. Section III reports experimental results
and analysis. Section IV gives conclusions and directions for
further research.

II. PROPOSED METHOD

A. Framework

Fig. 2 depicts the overall framework of the proposed dif-
fusion forecasting model, including training and inference
phases. The proposed Diffusion Load Forecasting model,
called DiffLoad, consists of two parts: one is a diffusion
forecasting network based on the Seq2Seq structure; the other
is an emission head based on the Cauchy distribution. The first
part aims to model the probability distribution of hidden states
in NN by employing the diffusion structure. This distribution
can be seen as the uncertainty of the model itself, i.e.,
epistemic uncertainty. The second part employs the Cauchy
likelihood to model the load data. Based on the characteristics
of Cauchy distribution, we can model the uncertainty in load
data while resisting the potential adverse effects of issues
like data noise. In the following section, we will provide a

detailed introduction to the implementation details of these
two components and demonstrate how to combine these two
components for uncertainty quantification.

B. Epistemic Uncertainty Quantification

The diffusion model is widely used in generative tasks,
which require modeling the data distribution for sampling
purposes. However, it is challenging to model the desired
distribution without prior knowledge and assumptions. A com-
mon approach to address this issue is to transform the desired
distribution into a standard distribution and then perform
a quasi-transformation. Similar to Variational Auto Encoder
(VAE) [29] and Normalizing Flow [30], the diffusion model
starts with a normal distribution and eventually transforms it
into the desired distribution. Rather than directly transforming
the distribution, it proposes a Markov process that breaks the
transformation into several steps and adds noise to the original
data at each step [31]. Inspired by the TimeGrad [16], which
utilizes diffusion structure to generate probabilistic results
based on the autoregressive model, we propose to model
the distribution of the hidden state of the NN model by the
diffusion model. In our model, we transform the hidden state
of our Seq2Seq models instead of the original data. This
approach allows us to focus on the uncertainties of the model
within the hidden state and quantify them. To achieve this
goal, our model utilizes the Gated Recurrent Unit (GRU) [32]
as the Encoder, which effectively extracts features from time
series data.

Let qh
(
h0
t+1

)
denotes the desired distribution of the hidden

state. and let pθ
(
h0
t+1

)
denote the distribution we use to

approximate the real distribution qh
(
h0
t+1

)
. In the diffusion

model, we achieve the approximation by first adding noise ϵ
to the hidden state:

h0
t+1 = GRU(Xt+1,ht), (1)

hn+1
t+1 =

√
αnh

n
t+1 +

√
1− αnϵ, ϵ ∼ N (0, I) , (2)

where the {αn}n=1:N ∈ (0, 1) are set values the same as [31].
Note that the Gaussian distribution is stable and has additivity
so that we can get the relationship between the original hidden
state and the hidden state after N adding noise steps directly.

hN
t+1 =

√
ᾱNh0

t+1 +
√
1− ᾱN ϵ, ϵ ∼ N (0, I) , (3)

where ᾱN =
∏N

n=1 αn. From (3), we can see that the diffusion
process is a kind of interpolation, which makes the original
data gradually become white noise. In the following part,
we need to figure out how to reverse this process. Note that
we will omit the subscripts representing time points without
causing ambiguity.

By adding noise, we break the approximation of the desired
distribution into several parts qh

(
h0

)
:=

∫
qh

(
h0:N

)
dh1:N

so that we can forecast the desired distribution step by step.
However, this kind of breaking, which is denoted as

qh
(
h0 | h1:N

)
=

N∏
n=1

qh
(
hn−1 | hn

)
, (4)
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is not trainable. To transform the white noise into the hidden
state we want, we define a reverse process pθ

(
h0

)
modeled

by parameters θ. Similarly, we can break the joint distribution:

pθ
(
h0:N

)
:= p

(
hN

) N∏
n=1

pθ
(
hn−1 | hn

)
, (5)

where p
(
hN

)
is assumed to be the standard Gaussian distri-

bution and the other parts are given by a parametrization of
our choosing, denoted by

pθ
(
hn−1 | hn

)
:= N

(
hn−1;µθ (h

n, n) ,Σθ (h
n, n)

)
. (6)

With these preparations, we establish a model to eliminate
the Gaussian noise by minimizing the negative log-likelihood
(NLL): − log pθ

(
h0

)
. Note that we cannot get the closed

form of the reverse distribution qh
(
hn−1 | hn

)
. However, we

can fix this problem by considering the origin hidden state
as a condition and then minimizing Evidence Lower Bound
(ELBO) [33], which is the upper bound of the NLL.

− log pθ
(
h0

)
= − log

∫
pθ

(
h0:N

)
dh1:N (7)

≤ Eq(h1:N |h0)

[
log

pθ
(
h0:N

)
qh (h1:N | h0)

]
︸ ︷︷ ︸

ELBO

. (8)

By adding the origin hidden state as the condition, we can
rewrite the reverse process like this

qh
(
hn−1 | hn,h0

)
(9)

= qh
(
hn | hn−1,h0

) qh (
hn−1 | h0

)
qh (hn | h0)

,

∝ exp

(
−1

2

((
αn

βn
+

1

1− ᾱn−1

)
(hn−1)2

−
(
2
√
αn

βn
hn−1 +

2
√
ᾱn−1

1− ᾱn−1
h0

)
hn−1 + C

))
, (10)

where βn = 1 − αn, and this formula can be transformed in
the form of Gaussian density

qh
(
hn−1 | hn,h0

)
∝ N

(
hn−1; µ̃

(
hn,h0

)
, β̃nI

)
. (11)

where

β̃n = 1 =
1− ᾱn−1

1− ᾱn
βn, (12)

µ̃n

(
hn,h0

)
=

√
αn (1− ᾱn−1)

1− ᾱn
hn +

√
ᾱn−1βn

1− ᾱn
h0. (13)

Note that ELBO = L0 +
∑N

n=2 Ln−1 + LN , where

L0 := −Eqh(h1|h0) log pθ
(
h0 | h1

)
, (14)

Ln−1 := DKL

(
qh

(
hn−1 | hn,h0

)
∥pθ

(
hn−1 | hn

))
, (15)

LN := DKL

(
qh

(
hN | h0

)
∥p

(
hN

))
. (16)

Recalling from (6), we let Σθ (h
n, n) = β̃nI for n =

1, . . . , N − 1 to simplify the training and make the training
process smoother. In this way, we can solve the problem of

approximating the reverse distribution by approximating the
expectation, that is

(15) = Eqh(hn|h0)

[
1

2β̃n

∥∥µ̃n

(
hn,h0

)
− µθ (h

n, n)
∥∥2] .

(17)

For n = 0, [34] claims that we can ignore it for simplification.
As for n = N , p

(
hN

)
is the standard Gaussian distribution

that no parameters need to be learned. So far, we have demon-
strated how to construct a reverse distribution to denoise white
noise and it seems simple enough to use a NN to forecast the
expectation. However, it is worth noting that the expectation
here is generated by a non-standard normal distribution, which
cannot be processed by simple gradient descent. Therefore,
we need to use the re-parameter trick commonly used in VAE
models. Recalling from (3), we can replace expectations with
noise to rewrite optimization objectives:

(17)

= Eh0,ϵ∼N (0,I)

[
1

2β̃n

∥∥∥∥ 1
√
αn

(
hn

(
h0, ϵ

)
− βn√

1− ᾱn
ϵ

)
− µθ

(
hn

(
h0, ϵ

)
, n

)∥∥∥∥2], (18)

∝ Eh0,ϵ∼N (0,I)

∥∥ϵ− ϵθ
(√

ᾱnh
0 +
√
1− ᾱnϵ, n

)∥∥2 . (19)

Note that we removed the weight coefficients in the final
simplification step to obtain the final optimization goal. By
reducing the difference between the real generated Gaussian
noise and the noise generated by the NN, we can use the
pθ

(
hn−1 | hn

)
to approximate the qh

(
hn−1 | hn,h0

)
step

by step, thus transforming the white noise to a probabilistic
hidden state, which represents the epistemic uncertainty of the
model. We will illustrate the detailed process for training and
inference in Subsection II-D.

C. Aleatoric Uncertainty Quantification

To model aleatoric uncertainty, we will employ an emission
head to wrap the forecasting model. The emission head con-
trols the conditional error distribution between the labels and
forecasts. Instead of using the traditional Gaussian distribution
which is not heavy-tailed, we suggest using the heavy-tailed
Cauchy distribution to make the model more robust to outliers
and mutation according to robust statistics [27], [35]. Similar
to the Gaussian distribution, the Cauchy distribution can be
modeled by location and scale parameters:

f (y;µ, σ) =
1

πσ
[
1 +

(
y−µ
σ

)2] =
1

π

[
σ

(y − µ)
2
+ σ2

]
.

(20)

To demonstrate how the Cauchy distribution is robust and
tolerates the noise on standardized training labels {yt}t=1, we
first define three common types of training label noise:

1) Constant type noise: yAt = yt + ϵ, ϵ is constant.
2) Missing type noise: yAt = ϵ, ϵ is constant.
3) Gaussian type noise: yAt = yt + ϵ, ϵ ∼ N

(
0, σ2

)
.
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Note that {yt}t=1 represent clean labels without noise. In
observed training labels {ỹt}t=1, we assume that whether there
is noise depends on a binomial distribution, which means

ỹt =

{
yt, with probability 1− η,
yAt , with probability η.

Lemma 1. [36] Let ℓ be the loss function, f be the forecasting
model, Rℓ(f) be the empirical loss on the clean training set,
and Rη

ℓ (f) be the empirical loss on the training set with noise.
Under different noise anomalies with anomaly rate η < 0.5,
we have

Rη
ℓ (f) = (1− 2 · η) ·Rℓ(f) + η · Ex[ℓ (f(x), y) + ℓ(f(x), yA)]

(21)

Lemma 1 suggests that the empirical loss on clean labels
can be represented as an affine variation of the empirical
loss with noise. Therefore, the impact of the label noise on
the loss function (where we use negative log-likelihood with
different probability distributions) will mainly be reflected in
ℓ (f(x), y) + ℓ(f(x), yA).

Theorem 1. For outliers that exceed the predicted scale, i.e.,
|yA − f(x)| ≥ σ, we have

|dRc(f)

dyA
| ≤ |dRg(f)

dyA
|, (22)

where Rc(f) and Rg(f) represent the empirical loss of using
Cauchy likelihood and Gaussian likelihood, respectively.

Proof. According to Lemma 1, we only need to ana-
lyze ℓ (f(x), y) + ℓ(f(x), yA). Substitute the negative log-
likelihood functions of the Cauchy distribution and Gaussian
distribution separately and then take the derivative of the noisy
label, we have

|dRc(f)

dyA
| = 2|yA − f(x)|

(f(x)− yA)2 + σ2
(23)

|dRg(f)

dyA
| = |y

A − f(x)|
σ2

(24)

|dRc(f)

dyA
|/|dRg(f)

dyA
| = 2σ2

(f(x)− yA)2 + σ2
≤ 1 (25)

Theorem 1 indicates that the usage of Cauchy distribution
has a higher tolerance for outlier labels during training, and
the variation of outlier labels does not greatly affect the
performance of the model in fitting clean labels. In contrast,
Gaussian distribution is more susceptible to the influence of
outliers, and slight perturbations may cause significant changes
in the model, which is not conducive to learning with noisy
labels.

In our implementation, the parameters of the Cauchy distri-
bution will be given by the Decoder parameterized by ϕ like
this (To avoid confusion with the input of the encoder, we
mark * above to indicate the input of the decoder)

h∗
t+1 = GRU(Xt,h

∗
t ), (26)

pϕ
(
Xt+1 | h∗

t+1

)
= C

(
Xt+1;µϕ(t+1),σϕ(t+1)

)
, (27)

where

µϕ(t+1) = Linear1
(
h∗
t+1

)
, (28)

σϕ(t+1) = SoftPlus
[
Linear2

(
h∗
t+1

)]
. (29)

In this way, we can model the conditional distribution of the
error by the Cauchy distribution, which represents the aleatoric
uncertainty. Note that the Cauchy distribution is a special
case of Student-T distribution, as shown in Fig. 2. Although
some degrees of flexibility are sacrificed, the advantage of the
Cauchy distribution is that it is a α-stable distribution.

Definition 1. [37] α-stable distribution is a kind of distribu-
tion that has no general closed form, but it can be defined by
the continuous Fourier transform of its characteristic function
φ(t),

f(x;α, β, σ, µ) =
1

2π

∫ +∞

−∞
φ(t)e−itxdt, (30)

φ(t) = exp [itµ− |σt|α(1− iβ sgn(t)Φ)] , (31)

where

Φ =

{
−(2/π) log |t|, α = 1,
tan(πα/2), otherwise.

(32)

Note that Gaussian and Cauchy are both special cases of this
kind of distribution while Student-T is not. The advantage of
using α-stable distribution here is that we can combine two
kinds of uncertainties by their additivity and linear transfor-
mation invariance.

Lemma 2. Suppose X1 and X2 are two random variables
that subject to α-stable distribution f(x;α, β, σ1, µ1) and
f(x;α, β, σ2, µ2), then we have

aX1 + b ∼ f(x;α, β, aασ1, aµ1 + b), (33)

X1 +X2 ∼ f(x;α, β, (σα
1 + σα

2 )
1
α , µ1 + µ2). (34)

With this property, we can estimate two kinds of uncertain-
ties separately and combine the uncertainties by adding them
together directly, which will be described in the following
section.

D. Training and Inference

As shown in Fig. 2, we first get the hidden state ĥ0
t+1 after

inputting the data into the diffusion-based Encoder. During
this process, we concentrate the uncertainty of the model into
the hidden state. This idea was inspired by [38]. Based on
a fixed network structure, we can evaluate whether a neural
network has confidence in its hidden state by observing the
degree of change in the network’s hidden. Unlike [38], we
do not need to construct explicit constraints on the network’s
hidden state and train multiple models. Instead, we directly
use the diffusion model to model the probabilistic hidden
state. Through probabilistic modeling results, we can obtain
the confidence level of the model in the hidden state and thus
estimate the epistemic uncertainty. For the diffusion model,
we have the first term of the optimization goal, which is
stated in (19). Then, we put the estimated hidden state into
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the Decoder. The output of the Decoder will be seen as the
parameter of the emission distribution and optimized by the
NLL. During the training process, We combine the two losses
through hyperparameter λ:

L = λ · ELBO − log σ̂ϕ + log
(
(y − µ̂ϕ)

2 + σ̂2
ϕ

)
(35)

Algorithm 1: Training process of diffusion-based
Seq2Seq DiffLoad method.

Data: Encoder Pϕ; Decoder Qϕ; Reverse network Rθ

Input load history data X; label Y
1 while not convergence do
2 for batch in batch loader do
3 h0 ← Pϕ(X);
4 Add Gaussian to the hidden state for N steps,

hN =
√
ᾱNh0 +

√
1− ᾱN ϵ, ϵ ∼ N (0, I);

5 Sample n ∼ U({1, 2, 3 . . . N});
6 Sample ϵ ∼ N (0, I);
7 Calculate the ELBO loss, ELBOϵ =∥∥ϵ− ϵθ

(√
ᾱnh

0 +
√
1− ᾱnϵ, n,Rθ

)∥∥2;
8 Reconstruct the hidden state h∗;
9 σ̂ϕ, µ̂ϕ ← Qϕ(X,h∗);

10 Combine the ELBO with the NLL with
hyperparameter λ, L = (35);

11 Take gradient descent step on ∇θ,ϕL;
12 end
13 end

Result: Encoder Pϕ; Decoder Qϕ; Reverse network Rθ

As for the inference process, we will infer for M times
with all other settings consistent. In each inference process,
the output of the Encoder undergoes the process of adding
and removing noise, thus exhibiting randomness like most of
the deep state model [19]. The output of our model is the
parameters of the emission model and the location parameter
will be the average of multiple inferences.

µ̄ =
1

M

∑
µ̂i
ϕ (36)

In terms of uncertainty estimation, we separate the two
kinds of uncertainties. On the one hand, the scale parameters
provided by the model represent aleatoric uncertainty, and on
the other hand, the distance between upper and lower quantiles
of location parameters obtained through multiple inferences
represents epistemic uncertainty. For the probabilistic forecast-
ing, we use Lemma 1 to directly add the two uncertainties
together.

σ̄ = σ̂ϕ + σ̂θ, (37)

=
1

M

∑
σ̂i
ϕ + (qu(µ̂)− ql(µ̂)) (38)

where σ̂ϕ, σ̂θ represents the estimated epistemic and aleatoric
uncertainty seperately and qu() and ql() are the upper and and
lower quantile of the samples {µ̂1

ϕ, µ̂
2
ϕ, . . . , µ̂

M
ϕ }.

With the labels used above, we summarize the training
and inference process of our framework in Algorithm 1, and
Algorithm 2, respectively.

Algorithm 2: Inference process of diffusion-based
Seq2seq DiffLoad method.
Data: Encoder Pϕ; Decoder Qϕ; Reverse network Rθ

Input load history data X
1 for m = M to 1 do
2 h0 ← Pθ(X);
3 hN =

√
ᾱNh0 +

√
1− ᾱN ϵ, ϵ ∼ N (0, I);

4 for n = N to 1 do
5 if n > 1 then
6 Draw z ∼ N (0, I)
7 else
8 else set z = 0
9 end

10 Calculate re-parameterized term hn−1 =

1√
αn

(
hn − βn√

1−ᾱn
ϵθ (h

n, n,Rθ)
)
+

√
β̃tz;

11 end
12 σ̂m

ϕ , µ̂m
ϕ ← Qϕ(X,h∗);

13 end
Result: {σ̂1

ϕ, σ̂
2
ϕ, . . . , σ̂

M
ϕ }, {µ̂1

ϕ, µ̂
2
ϕ, . . . , µ̂

M
ϕ }

III. CASE STUDIES

A. Experimental Setups

In this section, we use three data sets to verify the effec-
tiveness of our method.

• Global Energy Forecasting (GEF) competition [39]. It
contains the power load data from 2004 to 2014. The
data from 2012 to 2014 is used to verify our model.

• The BDG2 dataset [40]. This data set contains energy data
for 2 years (from 2016 to 2017) from 1,636 buildings.
We randomly selected 10 buildings with different usages
(e.g., education, lodging, and industrial) from it.

• The dataset from Day-ahead electricity demand forecast-
ing competition: Post-covid paradigm [41]. This data set
contains energy data from 2017-03-08 to 2020-11-06. As
shown in Fig. 1, the power load data has significantly
deviated from the original pattern after the outbreak of
COVID-19.

Since our model can give both deterministic and probabilis-
tic forecasts. Mean Absolute Percentage Error (MAPE) is used
to evaluate the deterministic forecasts. To avoid the drawbacks
of MAPE which is sensitive to the value near 0 (even though
it is unusual in load forecasting), we also add the Mean
Absolute Error (MAE) metric as a supplement. Continuous
Ranked Probability Score (CRPS) [42] and Winker Score [43]
are used to evaluate the probabilistic forecasts. For comparison
baselines, we introduce two MLP-based time series forecasting
methods for deterministic forecasting and five probabilistic
methods for uncertainty quantification.

• NBEATS [44]: A time series forecasting method based on
MLP, which can select blocks with different structures to
decompose the sequence. Here we compared two types of
NBEATS. One is based on two Generic Blocks (denoted
as G), and the other is based on a Trend Block and a
Seasonality Block (denoted as TS). Note that here we
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consider the influence of covariates and use the version
from [45], denoted as NBEATSX.

• DLinear [46]: A time series forecasting method based
on MLP, which performs trend period decomposition on
time series. We added a linear layer to the model to map
multivariate sequences containing covariates to univariate
sequences.

• GRU [32]: a kind of RNN structure widely used in
sequence modeling. All the methods mentioned below
are based on the GRU structure. Here, we apply the
forecasting error of GRU on the training set to construct
probabilistic forecasting and quantify uncertainty [47].

• DeepAR [19]: a kind of deep state model, which uses
the normal distribution to model the output of the deep
neural network. In this way, we can model the aleatoric
uncertainty by the normal distribution.

• Deep Ensemble [26]: The methods mentioned above
only consider the aleatoric uncertainty caused by the
data itself, while ignoring the uncertainty introduced
by the neural network. Ensemble methods address this
by training multiple models during the training process.
During the testing process, we combine the outputs of all
networks and assume their output conforms to a normal
distribution, similar to the GRU with MSE loss functions.

• Bayes By Backprop(BBB) [18], [48]: Bayesian neural
network is an extension of the ensemble training method.
Rather than training multiple networks, Bayesian neural
networks consider the parameters in neural networks as
random variables instead of fixed values. Because of
the excellent conjugate property of normal distribution,
such methods usually assume that the prior distribution
of parameters is normal, and use the reparameterization
tricks to establish ELBO so that it can be optimized by
gradient descent methods.

• MC dropout (MCD) [25]: MC dropout has been proven
to be an approximation of Bayesian neural networks
while maintaining a much lower computational cost.
During the training process, we set the dropout layer in
the same manner as in ordinary settings. However, in
the inference process, we do not turn off the dropout
layer, allowing us to obtain probabilistic output. We then
consider the output to correspond to a normal distribution.

Methods based on GRU networks share the same hyper-
parameter shown in Table I. Specifically, for hidden size,
we choose from {32,64}, and then we test the performance
of the original GRU on the GEF dataset. For hidden layers
and bias, we did the same and chose the best setting from
{1,2} and {True, False}, respectively. And the hidden size of
NBEATS class methods is also 64. Note that all other methods
do not enable dropout except for the dropout method, which
requires adjusting the dropout rate to 0.25 for probability
output (the same in [47]). In addition to consistent model
parameters, all methods use the same training process, where
the batch size is 256, and we use Adam as the optimizer with
an initial learning rate of 5e-3. During training, we set the
hyperparameter λ to 1 and adopted an early stop mechanism.
If 15 consecutive gradient updates do not achieve better RMSE

on the validation set or if the total number of training epochs
reaches 300, we will stop continuing the training. In terms
of probability inferencing, we set the number of times M for
repeated inference to 100. At the same time, our method will
search the validation set, and select the quantile distance of
the lowest CRPS from the quantile distances of 10%, 30%,
50%, and 70% as our estimation of epistemic uncertainty.

TABLE I: Hyperparameters of the GRU module

hidden size hidden layers bias dropout rate
(64,64) 2 True 0(0.25)

B. Experimental Results

In this section, we will compare the performance of different
uncertainty estimation models on multiple datasets. Among
them, the dataset GEF is a relatively stable aggregated level
load. COV is also aggregated level data, but when COVID-
19 comes, it shows an obvious deviation. BDG2 includes
10 different types of buildings, some of which may have a
large number of outliers and bad data, making data cleaning
more difficult. To demonstrate the robustness of the Cauchy
emission head in combating outliers and offsets, we will not
perform additional processing on it.

1) Results Analysis and Discussion: Table II and Table III
summarize the deterministic forecasting result for different
methods. Our method has defeated all competitive baselines.
In addition to directly comparing the accuracy of different
models, we can also draw several conclusions from this
experimental result. Firstly, the simple GRU network achieved
the worst performance in almost all tasks. This indicates that
estimating uncertainty is not only beneficial for probabilistic
forecasting, but also has a positive effect on deterministic
forecasting. Similarly, models that consider the uncertainty
brought by the model itself, such as Ensemble, Bayesian, and
other methods, are also superior to the DeepAR model that
only considers aleatoric uncertainty in most cases. Indicating
that epidemic uncertainty is indeed a factor worth considering
in the training process of deep neural networks. Secondly, from
the perspective of model structure, our seq2seq structure based
on Gaussian distribution emission heads achieved suboptimal
results in the average of 10 building datasets and the GEF
dataset. However, the Gaussian emission head method yields
poor results in non-stationary datasets (COV). Compared with
the method based on Cauchy emission heads using the same
structure, the Gaussian distribution has significant shortcom-
ings in dealing with data mutations. Lastly, for different types
of epistemic uncertainty quantification methods, the dropout
method lags behind our method by 5.5%, 21%, and 8.7%
on three datasets, respectively. Especially in COV datasets,
such differences are even more pronounced. The possible
reason for this is that the dropout method undermines the
consistency between model training and inference. The strong
regularization effect brought by the dropout method makes it
difficult for the model to learn useful knowledge from data.
While compared with other methods such as the Bayesian
method, our method can significantly reduce the required
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computational time while maintaining performance advantages
(shown in Section III-B5). As for the MLP-based forecasting
method, they generally can not provide competitive perfor-
mance when considering external variables, especially DLin-
ear. The main reason for this is that these time series models
are mainly designed to model the temporal characteristic of
long sequences, and their performance may be poor when
external variables such as temperature need to be considered.
Even though NBEATSX, which considers external variables
to some degree, performs relatively well in the BDG2 dataset,
it still lags behind our methods by about 12% in the MAPE
metric.

TABLE II: MAPE comparison

MAPE

GRU deepAR MC dropout Bayesian Ensemble DLinear NBEATSX-G(TS) Ours Cauchy(Gaussian)

GEF 3.49 3.58 3.48 3.48 3.44 4.21 3.86(3.85) 3.29(3.44)

COV 2.34 2.04 2.44 1.96 1.98 3.51 2.46(2.59) 1.91(2.13)

BDG2 12.61 12.46 12.13 12.30 12.08 13.17 12.38(12.33) 10.83(11.95)

TABLE III: MAE comparison

MAE

GRU deepAR MC dropout Bayesian Ensemble DLinear NBEATSX-G(TS) Ours Cauchy(Gaussian)

GEF 117.15 119.47 116.98 116.29 115.30 142.72 130.59(129.90) 110.44(115.37)

COV 24859.30 21844.09 25821.99 20806.48 21044.39 39292.92 27358.27(28819.07) 20308.39(22512.37)

BDG2 12.82 12.76 12.25 12.74 12.48 12.85 12.28(12.31) 11.18(12.38)

Table IV summarizes the probabilistic forecasting result for
different methods. Among them, 25%, 50%, and 75% of the
Winker scores evaluated the probability estimates for non-
conservative, general, and conservative situations, respectively.
At the same time, we also used CRPS to evaluate the overall
performance of probability estimation. From the results, our
method maintains its advantages in most cases, only with a
reduction of 0.38% compared to the ensemble-based method
when calculating CRPS metrics on the GEF dataset. From the
perspective of the Winker Score, our method exhibits superior
performance compared to other baselines in conservative,
general, and non-conservative situations. In addition to the
overall situation, Fig. 3 also compares the forecasting accuracy
of 10 building datasets. It can be seen that our method can
provide advanced forecasting results and achieve significant
improvements in average results, except for a few datasets
with larger absolute load values. Fig. 4 provides a comparison
between our method and the probability forecasts provided by
other methods with a 75% confidence interval. It can be seen
that the 75% interval is sufficient to cover the actual load value.
However, compared to our method, the intervals given by other
methods are slightly wider, indicating that other methods are
too conservative and lead to a decrease in forecasting accuracy.

2) Epistemic Uncertainty Estimation: As shown in Fig. 5,
we visualized the results of different models’ estimation of the
relationship between the episodic uncertainty and the number
of training data on the COV dataset. The normal distribution
is estimated by calculating the standard deviation, and the
Cauchy distribution is estimated by calculating the quantile
distance. Note that although the estimation results of different

models cannot be directly compared, we can conclude the
trends of each model. As the number of training data continues
to increase, the model uncertainty of the dropout method
has maintained fluctuating up and down, indicating that the
dropout model does not learn enough about the data, resulting
in the model being unable to cope with data mutations. For our
model, as the amount of training data increases, the cognitive
uncertainty of our model first rapidly decreases and then
maintains a gentle downward trend. This indicates that our
model learned a large amount of data features in the early
stages, resulting in a rapid decrease in model uncertainty. Due
to sudden changes in the data, there is a deviation between
the training set data and the test set data. Therefore, even if
the training data continues to increase, the model uncertainty
does not show a significant downward trend. Compared with
other methods that exhibit abnormal increases in uncertainty,
our model’s uncertainty estimation keeps decreasing as the
data volume increases, which is more reasonable and likely to
approach the true uncertainty [49].

3) Robustness to outliers, noise, and data shift: According
to the definition of three types of noisy anomalies in Section
II-C, we perturb the training labels based on the basic training
settings. Specifically, we set up three types of perturbations:
1) constant additive perturbations, which add 0.2 times the
average value of all training labels on the real labels; 2)
missing perturbation, replacing the real labels with the av-
erage of all training labels; 3) Gaussian perturbation, adding
Gaussian noise with an expectation of 0 and a variance of 0.5
times the average of all training labels on the real labels. In
implementation, we adopted two different noise ratios of 0.1
and 0.2.

Table V reports different forecasting results which are
trained on the perturbed training set and then tested on the
test set. In addition to the uncertainty quantification methods
mentioned above, we replace the emission head of deepAR
with student-T distribution to examine the robustness of heavy-
tailed distribution to data noise and outliers. Note that the
Student-T distribution is not stable. Therefore, we can not
directly combine it with methods such as MC dropout to
quantify epistemic uncertainty. Overall, the higher the noise
ratio, the worse the test results of the model will be. From the
perspective of different types of noise, Gaussian noise has the
least impact on the test results. This is because the expectation
of Gaussian noise is 0. When there are enough samples, the
neural network has a strong resistance to this type of noise.
However, the other two types of noise have a significant impact
on the training of the model. Replacing the training label
with the average of the entire label to simulate missing values
has a generally less negative impact on model training than
adding a perturbation to the label, which is to simulate constant
noise. For different probabilistic methods, our approach, as
well as the heavy tail student-T distribution, is far less af-
fected by the training noise compared to other probabilistic
forecasting methods. This superiority is more pronounced in
constant noise and missing value scenarios, especially when
the ratio of noise is large (η = 0.2), our method can still
maintain almost consistent results with clean labels, with a
performance loss of about 4% in deterministic forecasting
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TABLE IV: Probabilistic result comparison

Metric Relative Improvement(%)

Dataset GRU deepAR MC dropout Bayesian Ensemble Ours Gaussian Ours Cauchy I GRU I deepAR I dropout I Bayesian I ensemble

Winker score(25%)

GEF 74.84 75.88 74.24 74.00 73.22 73.39 70.69 +5.54% +6.83% +4.78% +4.47% +3.45%

COV 15989.00 13966.90 16576.91 13310.35 13441.33 14398.77 13063.04 +18.30% +6.47% +21.19% +1.85% +2.81%

BDG2 8.21 8.14 7.91 8.15 8.05 7.93 7.17 +12.66% +11.91% +9.35% +12.02% +10.93%

Winker score(50%)

GEF 96.76 96.66 94.38 94.08 93.16 93.22 90.94 +6.01% +5.91% +3.64% +3.33% +2.38%

COV 20975.60 18069.30 21758.42 17185.82 17334.50 18601.00 17112.44 +18.41% +5.29% +21.35% +0.43% +12.81%

BDG2 10.68 10.48 10.44 10.56 10.38 10.28 9.36 +12.35% +10.68% +10.34% +11.36% +9.82%

Winker score(75%)

GEF 133.10 131.00 127.17 125.11 124.64 124.18 121.03 +9.06% +7.61% +4.82% +3.26% +2.89%

COV 29367.07 25408.52 31361.84 24022.10 23885.87 25988.62 23399.30 +20.32% +7.90% +25.38% +25.92% +2.03%

BDG2 14.82 14.39 14.71 14.55 14.36 14.26 13.60 +8.26% +5.48% +7.54% +6.52% +5.29%

CRPS

GEF 86.25 86.61 84.35 83.61 82.92 83.07 83.24 +3.48% +3.89% +1.31% +0.44% -0.38%

COV 18575.06 16263.42 19585.95 15438.46 15479.88 16705.65 15435.79 +16.90% +5.08% +21.18% +0.01% +0.28%

BDG2 9.50 9.35 9.25 9.39 9.21 9.16 8.72 +8.21% +6.73% +5.72% +7.13% +5.32%

Fig. 3: Comparison of metrics on ten building datasets.

while 16% in probabilistic forecasting. For other methods, the
best-performing method with Gaussian distribution has a per-
formance loss ratio of up to 33% and 48% in different types of
forecasting, respectively. This phenomenon precisely explains
why heavy-tail distribution methods perform better than other
probabilistic forecasting methods in building-level data, which
have relatively poor data quality and high noise. Furthermore,
it is worth noting that our method has consistent performance
advantages in both deterministic and probabilistic forecasting
in different types of noise. On the contrary, other methods,
such as the ensemble method, although suboptimal in deter-

ministic forecasting, perform significantly worse than other
competing methods in probabilistic forecasting scenarios with
constant noise. As for the comparison between our method and
the Student-T distribution, our method slightly outperforms
the Student-T distribution on the GEF and Building datasets.
On the COV dataset, the advantages of our method become
very obvious, mainly due to the significant shifts between the
training and test data in the COV dataset (not just noise and
outliers). This corresponds to situations with high epistemic
uncertainty. With the stability of Cauchy distribution and our
proposed diffusion structure, it can reduce the harm of data
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TABLE V: Forecasting robustness comparison among different noise

Dataset Metric Method Gaussian(η = 0.1) Gaussian(η = 0.2) Missing(η = 0.1) Missing(η = 0.2) Constant additive(η = 0.1) Constant additive(η = 0.2)

MC dropout 3.503 3.513 3.673 4.361 3.788 4.679

Bayesian 3.490 3.486 3.779 4.313 3.827 4.685

Ensemble 3.436 3.437 3.560 4.159 3.626 4.567

Student-T 3.402 3.438 3.405 3.541 3.436 3.495

MAPE

Ours 3.314 3.331 3.361 3.415 3.386 3.418
MC dropout 125.834 126.037 144.935 163.353 159.674 186.543

Bayesian 125.389 125.415 146.816 166.455 156.882 188.738

Ensemble 124.639 124.790 146.076 165.525 167.456 201.579

Student-T 125.419 126.995 123.320 137.679 125.449 138.606

GEF

Winker Score(75%)

Ours 121.090 121.350 122.827 132.098 127.143 140.790

MC dropout 2.449 2.449 2.733 3.183 3.167 4.346

Bayesian 1.962 1.962 2.211 3.047 3.718 5.151

Ensemble 1.988 1.988 2.235 2.678 2.500 3.503

Student-T 2.272 2.272 2.253 2.252 2.312 2.240

MAPE

Ours 1.912 1.912 2.022 1.963 1.987 1.985
MC dropout 31345.18 31342.77 36157.53 44386.80 41490.24 60022.86

Bayesian 24034.02 24039.80 32077.69 40005.05 47984.88 59775.89

Ensemble 23885.85 23885.84 26183.87 32233.43 28498.04 39111.33

Student-T 30143.72 30153.21 29322.96 29061.44 30336.88 29379.68

COV

Winker Score(75%)

Ours 23401.74 23411.95 24278.46 24312.98 24152.79 24969.68
MC dropout 12.468 12.378 13.898 15.391 13.293 14.299

Bayesian 12.275 12.277 13.785 16.295 12.888 14.248

Ensemble 12.103 12.119 13.321 15.306 12.670 13.554

Student-T 11.146 11.231 11.558 12.360 11.483 12.447

MAPE

Ours 10.795 10.891 10.923 11.145 10.952 11.334
MC dropout 14.331 14.582 15.063 15.674 14.738 14.959

Bayesian 14.663 14.686 15.310 16.030 14.881 15.395

Ensemble 14.405 14.440 15.157 15.770 14.823 15.344

Student-T 13.805 13.783 14.294 14.509 14.286 14.491

BDG2

Winker Score(75%)

Ours 13.561 13.671 14.063 14.469 13.849 14.363

Fig. 4: Visualization of 75 % interval of two datasets.

shifts to the model in such situations. However, for Student-T,
due to its lack of stability, it is difficult to directly combine
it with existing methods for quantifying epistemic uncertainty,
which leads to its poor performance on COV datasets.

4) Ablation Study: To clarify the effectiveness of the model
components, we will list additional ablation results in Table
VI. Our vanilla model here is actually the DeepAR model.
From the comparison results, it can be seen that our method

Fig. 5: Epistemic uncertainty estimation on COV dataset
between different methods

leads the Vanilla model in all data and metrics. As shown in
Fig. 6, even though the confidence intervals of both distri-
butions can roughly contain the true values, forecasts based
on Gaussian distributions may exhibit abnormally large confi-
dence intervals in certain areas, resulting in lower forecasting
accuracy.

5) Time Consuming Comparison: Although uncertainty es-
timation based on methods such as ensemble and Bayesian
neural networks can improve forecasting accuracy (compared
to simple DeepAR), the additional computational costs cannot
be ignored. Assume that the parameter quantity of the GRU
module is p, Table VII shows the complexity and the time
required for one training on ten building datasets, where γ1
and γ2 represent the number of additional parameters of the
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Fig. 6: Visualization of comparison between Gaussian and
Cauchy.

TABLE VI: Ablation study

Dataset Metric o/o d/o d/c
GEF

MAPE
3.58 3.44 3.29

COV 2.04 2.13 1.91
BDG2 12.46 11.95 10.83
GEF

MAE
119.47 115.37 110.44

COV 21844.0 22512.37 20308.3
BDG2 12.76 12.38 11.18
GEF

Winker Score(25%)
75.88 73.39 70.69

COV 13966.92 14398.77 13063.04
BDG2 8.14 7.93 7.17
GEF

Winker Score(50%)
96.66 93.22 90.94

COV 18069.34 18601.00 17112.44
BDG2 10.48 10.28 9.36
GEF

Winker Score(75%)
131.00 124.18 121.03

COV 25408.52 25988.62 23399.30
BDG2 14.39 14.26 13.60
GEF

CRPS
86.61 83.07 83.24

COV 16263.42 16705.65 15435.79
BDG2 9.35 9.16 8.72

1 o/o: without diffusion structure and use the Gaussian distribution.
2 d/o: with diffusion structure and use the Gaussian distribution.
3 d/c: with diffusion structure and use the Cauchy distribution.

network that are used to capture posterior distribution and K
represents the number of the models that are trained in ensem-
ble strategy. Since the Bayesian method requires modeling the
distribution of each parameter, the extra complexity will be
related to the number of the original model parameters while
our methods just need a small amount of extra parameters.
Because the deep ensemble approach necessitates training
numerous separate neural networks, its training time increases
linearly when compared to standard DeepAR. Similarly, the
Bayesian neural network technique treats every parameter
of the NN as a random variable with a minimum order of
magnitude of a million. Therefore, it is no wonder that these
methods require much more computational resources than
other methods. The dropout approach is less computationally
intensive than other uncertainty estimating techniques, but it
might result in inconsistent training and inference processes,
which can quickly reduce forecasting accuracy [28] (also
shown in the poor performance in the COV dataset). When
compared to the Bayesian and Ensemble approaches, our

method does not significantly differ from the simple model,
even though it takes more computing time than the simple
deepAR model because of the addition of diffusion structures.

TABLE VII: Time consumed by different methods.

Method GRU DeepAR Dropout Ensemble Bayesian Ours Gaussian Ours Cauchy
Time(s) 75.91 107.83 106.62 8880.56 20064.76 242.01 197.71

Complexity O(p) O(p) O(p) O(Kp) O(pγ1) O(p + γ2) O(p + γ2)

IV. CONCLUSIONS

This paper proposes a novel method for estimating un-
certainty and applying it to load forecasting. On the one
hand, we employ a robust heavy-tailed Cauchy distribution
to encapsulate our forecasting model, reducing the model’s
sensitivity to outliers and sudden changes. This approach
ensures the model’s training stability while estimating aleatoric
uncertainty. On the other hand, we propose a novel empirical
estimation method based on the diffusion model. Unlike
traditional methods focusing on the model’s parameters, our
approach utilizes the hidden state in Seq2Seq to estimate un-
certainty, significantly reducing the training time and providing
superior probabilistic forecasts. In future work, we will con-
sider combining this estimation method with online learning
to achieve higher forecasting accuracy through adaptive model
updates based on uncertainty estimation.
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