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Abstract: The full data set of the Daya Bay reactor neutrino experiment is used to probe
the effect of the charged current non-standard interactions (CC-NSI) on neutrino oscillation
experiments. Two different approaches are applied and constraints on the corresponding CC-
NSI parameters are obtained with the neutrino flux taken from the Huber-Mueller model with
a 5% uncertainty. For the quantum mechanics-based approach (QM-NSI), the constraints on
the CC-NSI parameters ϵeα and ϵs

eα are extracted with and without the assumption that the
effects of the new physics are the same in the production and detection processes, respectively.
The approach based on the weak effective field theory (WEFT-NSI) deals with four types
of CC-NSI represented by the parameters [εX ]eα. For both approaches, the results for the
CC-NSI parameters are shown for cases with various fixed values of the CC-NSI and the
Dirac CP-violating phases, and when they are allowed to vary freely. We find that constraints
on the QM-NSI parameters ϵeα and ϵs

eα from the Daya Bay experiment alone can reach the
order O(0.01) for the former and O(0.1) for the latter, while for WEFT-NSI parameters
[εX ]eα, we obtain O(0.1) for both cases.
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1 Introduction

Neutrino oscillation has been observed for more than two decades. Most results of the
oscillation experiments can be explained with good accuracy in the standard three-flavor
neutrino oscillation framework which is parameterized with three mixing angles θ12, θ23 and
θ13, one Dirac CP-violating phase δCP and two mass squared differences ∆m2

21 ≡m2
2−m2

1
and ∆m2

32 ≡m2
3−m2

2 (and thus ∆m2
31 = ∆m2

32+∆m2
21). Although the values of most of the

parameters have been measured at the percent level, the mass ordering (
∣∣∆m2

31
∣∣= ∣∣∆m2

32
∣∣±∣∣∆m2

21
∣∣ where the sign + (−) is for the normal (inverted) ordering), the value of δCP and

the octant of θ23 are still unknown. Together with other undetermined neutrino properties,
e.g., the nature of neutrinos (whether Dirac or Majorana), these unknowns about neutrinos
are the goals of the current and future neutrino experiments [1].

The phenomena of neutrino oscillations indicate that neutrinos are massive particles, as
opposed to the hypothesis of the Standard Model (SM) of particle physics. The source of
the neutrino masses is expected to originate from new physics (NP) beyond the SM. The
NP not only gives rise to the neutrino masses and mixing but may also modify neutrino
interactions. In the case that the scale of the NP is much larger than the typical energy
scale of the experiment of interest, the effect of the NP can be approximated by an effective
four-fermion Lagrangian [2]. Such new interactions are referred to as the non-standard
interactions (NSI) [3–10]. NSI involving neutrinos can have charged current (CC) and neutral
current (NC) types and can be written as

LCC-NSI =−2
√

2GF

∑
f,f ′,α,β,P

ϵf,f ′,P
αβ [ν̄βγµPLlα][f̄γµPf ′]+h.c., (1.1)

LNC-NSI =−2
√

2GF

∑
f,α,β,P

ϵf,P
αβ [ν̄αγµPLνβ ][f̄γµPf ], (1.2)

– 1 –
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where the lepton flavor index α,β = e,µ,τ , the fermions f ̸= f ′ = u,d for CC-NSI and f = e,u,d

for NC-NSI. The chirality projection operator P can take on the values of either PL = (1−γ5)/2
or PR = (1+γ5)/2. The dimensionless parameters ϵf,f ′,P

αβ and ϵf,P
αβ quantify the relative strength

of the neutrino NSI with respect to the SM Fermi constant GF . In general, both the CC
and NC NSI parameters ϵf,f ′,P

αβ and ϵf,P
αβ are complex parameters. It is expected that the size

of each NSI parameter is of order |ϵ| ∼ g2
NPM2

W /M2
NP [2, 11] where MW , gNP and MNP are

the W boson mass, the coupling constant and the mass of the new mediator, respectively.
The existence of non-vanishing CC-NSI parameters ϵf,f ′,P

αβ for α ̸= β indicates violation of the
lepton flavor number conservation, and ϵf,f ′,P

αα ̸= ϵf,f ′,P
ββ violation of lepton flavor universality.

In the case that ϵf,f ′,P
αβ = 0, SM CC weak interactions are recovered. Note that the total

lepton number is conserved in both the NSI described by eqs. (1.1) and (1.2) and SM at
classical level. In the presence of CC-NSI, the production and detection processes of neutrinos
would be modified. The NC-NSI could also affect neutrino propagation in matter. Both
CC-NSI and NC-NSI can thus be probed in experiments involving the measurement of the
Fermi constant GF , the unitarity of the Cabibbo-Kobayash-Maskawa (CKM) matrix, and
pion-related decay rates, among many others [5, 12, 13]. These precision experiments could
constrain |ϵ| or Re(ϵ) to O(10−6) under different assumptions. Of course, both CC-NSI
and NC-NSI may also manifest themselves in neutrino oscillation experiments and give rise
to effective mixing angles and mass squared differences [14–19]. In this paper, we use the
full data set of the Daya Bay experiment to probe the effects of CC-NSI with two different
approaches.1 We assume that the effects of NSI are subdominant and the shifts between the
standard and the effective oscillation parameters except θ13 are small.

The rest of the paper is organized as follows: in section 2, the two approaches to formulate
CC-NSI in neutrino oscillation experiments and their corresponding CC-NSI parameters are
introduced. Section 3 gives a brief description of the Daya Bay reactor neutrino experiment.
The constraints on CC-NSI parameters extracted from the Daya Bay experiment are shown
in section 4. We summarize and conclude in section 5.

2 Two approaches to CC-NSI

There are two approaches to describe CC-NSI in neutrino oscillation experiments. One
approach is based on the ordinary quantum mechanics (QM), and referred to as QM-
NSI [22, 23]. The second approach deals with CC-NSI under the framework of the weak
effective field theory (WEFT) [13], and is denoted as WEFT-NSI in this paper.

1The effect of NC-NSI on neutrino propagation in matter can be ignored and only CC-NSI are relevant for
short baseline reactor neutrino oscillation experiments [20, 21].

– 2 –
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2.1 Neutrino transition probability in the standard case

In the standard three-flavor neutrino oscillation framework, the survival probability of the
electron antineutrinos with energy Eν propagating in vacuum over a distance Lν is

P std
ν̄e→ν̄e

=
3∑

j,k

|Uej |2 |Uek|2 exp
(
−

∆m2
jkLν

2Eν

)

= 1−sin2(2θ13)
[
cos2 θ12 sin2

(
∆m2

31Lν

4Eν

)
+ sin2 θ12 sin2

(
∆m2

32Lν

4Eν

)]

−cos4 θ13 sin2(2θ12)sin2
(

∆m2
21Lν

4Eν

)
, (2.1)

under the plane-wave approximation. The Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
lepton mixing matrix U [24–28] relates the neutrino fields in the flavor basis to the mass basis
and UU † = I is assumed. The neutrino mixing parameters θ12, θ13 and the mass squared
differences ∆m2

21 and ∆m2
32 are involved in eq. (2.1), while the mixing parameter θ23 and

the Dirac CP-violating phase δCP are not relevant. With NSI being present, however, the
dependence on θ23 and δCP emerges in general, as can be seen below.

We note that the survival probability of eq. (2.1) is insensitive to the mass ordering for
Daya Bay experiment, since the difference in the survival probability of the two orderings
is small (of order sin2(2θ13)cos2 θ12 sin(∆m2

32Lν/2Eν)) in this case. When the effects of
CC-NSI are included, the difference depends on the CC-NSI parameters also. The survival
probability remains insensitive to the mass ordering, if the CC-NSI parameters are smaller
than unity. In the following, we probe the constraints of the Daya Bay experiment on CC-NSI
assuming the normal mass ordering. We have checked that the results are similar for the
case of the inverted mass ordering.

We also note that eq. (2.1) is dominated by the first two terms with the third term,
depending on ∆m2

21Lν/4Eν , negaligible for Daya Bay experiment. This leads to an approxi-
mate symmetry of the survival probability, i.e., P std

ν̄e→ν̄e
is invariant under the exchange of

θ13 ↔π/2−θ13, which may still be a good symmetry when CC-NSI are present.

2.2 QM-NSI with parameters ϵs and ϵd at production and detection

Under the framework of QM-NSI, the interaction eigenstate
∣∣∣νs/d

α

〉
(where s/d represents

source or detection) with the presence of NSI is assumed to be in a superposition of the
SM weak eigenstates |να⟩ with α = e,µ,τ [20, 29–34], i.e.,

|νs
α⟩= 1

N s
α

(
|να⟩+

∑
γ

ϵs
αγ |νγ⟩

)
, (2.2)

and 〈
νd

β

∣∣∣= 1
Nd

β

(
⟨νβ |+

∑
γ

ϵd
γβ ⟨νγ |

)
, (2.3)

such that
∣∣∣νd

β

〉
=
(
|νβ⟩+

∑
γ ϵd†

βγ |νγ⟩
)

/Nd
β , where N s

α =
√

[(I+ϵs)(I+ϵs†)]αα and

Nd
β =

√
[(I+ϵd†)(I+ϵd)]ββ are the normalization factors. Note these states are not orthog-

onal [35], similar to the case of the non-unitary mixing matrix [36]. The NSI parameters

– 3 –
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ϵs/d defined here are the effective coefficients which are different from those defined at the
Lagrangian level in eq. (1.1). We distinguish the coefficients ϵs and ϵd since the effect of NSI
at the source and detector may be different. In matrix form, we can write

[|νs
α⟩] = (N s)−1(I+ϵs)[|νγ⟩], (2.4)

[
∣∣∣νd

β

〉
] = (Nd)−1(I+ϵd†)[|νγ⟩], (2.5)

where [
∣∣∣νs/d

α

〉
] = (

∣∣∣νs/d
e

〉
,
∣∣∣νs/d

µ

〉
,
∣∣∣νs/d

τ

〉
)T ,

N s/d =


N

s/d
e 0 0
0 N

s/d
µ 0

0 0 N
s/d
τ

 , (2.6)

and

ϵs/d =


ϵ
s/d
ee ϵ

s/d
eµ ϵ

s/d
eτ

ϵ
s/d
µe ϵ

s/d
µµ ϵ

s/d
µτ

ϵ
s/d
τe ϵ

s/d
τµ ϵ

s/d
ττ

 . (2.7)

The matrix of the normalization factors is factored out for convenience. Connecting to
mass basis, we can define

U s ≡ (I+ϵs∗)U, and Ud ≡ (I+ϵdT )U. (2.8)

We note that the transformation matrix (N s)−1U s or (Nd)−1Ud becomes non-unitary, in
contrast to the standard PMNS matrix U . With NSI, the survival probability of the electron
antineutrinos becomes

P QM-NSI
ν̄s

e→ν̄d
e

= 1
|N s

e |
2 |Nd

e |
2
∑
j,k

U s
ejU s∗

ek Ud∗
ej Ud

ek exp
(
−i

∆m2
jkLν

2Eν

)
, (2.9)

where U s
ej =

∑
α(δeα+ϵs∗

eα)Uαj and Ud
ej =

∑
α(δeα+ϵd

αe)Uαj . Among the eighteen complex
parameters ϵs

αβ and ϵd
αβ of eq. (2.7), only the six associated with electrons, i.e., ϵs

eα and
ϵd
αe, are involved in this expression. In our analysis below, we decompose each complex NSI

parameter into its absolute value and phase as

ϵs
αβ =

∣∣∣ϵs
αβ

∣∣∣eiϕs
αβ and ϵd

αβ =
∣∣∣ϵd

αβ

∣∣∣eiϕd
αβ . (2.10)

The neutrino fluxes and cross sections are needed to determine the rate of inverse beta-
decay (IBD) events at the detector. With the presence of CC-NSI, they are modified by
Φν̄s

e
(E,ϵs)=|N s

e |
2 Φν̄e(Eν) and σν̄d

e
(Eν , ϵd) =

∣∣∣Nd
e

∣∣∣2 σν̄e(Eν) [36] where Φν̄e(Eν) and σν̄e(Eν)
are the neutrino fluxes and cross sections in the SM, respectively, while Φν̄s

e
(Eν , ϵs) and

σν̄d
e
(Eν , ϵd) denote the corresponding quantities with the presence of CC-NSI. We can define

an effective survival probability through the detected number of IBD events in the detector:

N ∝
∫

dEν
dΦν̄s

e
(Eν , ϵs)

dEν
P QM-NSI

ν̄s
e→ν̄d

e
(Eν ,Lν , ϵs, ϵd)σν̄d

e
(Eν , ϵd)

=
∫

dEν
dΦν̄e(Eν)

dEν
P QM-NSI-eff

ν̄s
e→ν̄d

e
(Eν ,Lν , ϵs, ϵd)σν̄e(Eν), (2.11)

– 4 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
4

where

P QM-NSI-eff
ν̄s

e→ν̄d
e

=
∑
j,k

U s
ejU s∗

ek Ud∗
ej Ud

ek exp
(
−i

∆m2
jkLν

2Eν

)
. (2.12)

We can see that the normalization factor 1/ |N s
e |

2
∣∣∣Nd

e

∣∣∣2 is cancelled out compared to eq. (2.9).
At reactor neutrino oscillation experiments, we can assume ϵs

eα = ϵd∗
αe since the primary

source of NSI is of the V ±A type [11]. We consider this special case first then extend our
discussion to the general case. With the assumption ϵs

eα = ϵd∗
αe ≡ ϵeα or U s

ej = Ud
ej ≡U sd

ej , we have

P QM-NSI-eff
ν̄s

e→ν̄d
e

=
∑
j,k

∣∣∣U sd
ej

∣∣∣2 ∣∣∣U sd
ek

∣∣∣2 exp
(
−i

∆m2
jkLν

2Eν

)
, (2.13)

where U sd
ej =

∑
α(δeα+ϵ∗eα)Uαj . The number of free complex parameters is reduced to three,

i.e., ϵeα for α = e,µ and τ . We accordingly use the decomposition ϵeα = |ϵeα|eiϕeα . The
analytical expressions eq. (2.12) and eq. (2.13) will be used in the fit to experimental data.

For the general case, ϵs
eα ̸= ϵd∗

αe [20], we discuss the effects of ϵs
eα and ϵd

αe separately. The
effective survival probability for these two cases P QM-NSI-eff

ν̄s
e→ν̄d

e
(ϵs

eα, ϵd
αe = 0) and P QM-NSI-eff

ν̄s
e→ν̄d

e
(ϵs

eα =
0, ϵd

αe) for CC-NSI present only in the antineutrino production and detection processes,
respectively, are connected by

P QM-NSI-eff
ν̄s

e→ν̄d
e

(ϵs
eα = 0, ϵd

αe)↔P QM-NSI-eff
ν̄s

e→ν̄d
e

(ϵs
eα, ϵd

αe = 0), (2.14)

under the transformation of Ud
ej ↔U s∗

ej and U ↔U∗ or

ϵd
αe ↔ ϵs

eα and δCP ↔π−δCP. (2.15)

We examine the effect of ϵs
eα first. The constraints on ϵd

αe can be deduced from those on
ϵs
eα by this transformation.

For the presence of NSI, the so-called zero-distance effect P QM-NSI-eff
ν̄s

e→ν̄d
e

(Lν = 0) ̸= 1 [11, 35]
occurs. Explicitly, we have

P QM-NSI-eff
ν̄s

e→ν̄d
e

(Lν = 0) =


(
1+2 |ϵee|cosϕee+|ϵee|2+|ϵeµ|2+|ϵeτ |2

)2
, when ϵs

eα = ϵd∗
αe ≡ ϵeα;

1+2
∣∣∣ϵs/d

ee

∣∣∣cosϕ
s/d
ee +

∣∣∣ϵs/d
ee

∣∣∣2 , when ϵs
eα ̸= ϵd∗

αe and ϵd
αe = 0 (or ϵs

eα = 0).
(2.16)

To illustrate the effect of QM-NSI on the shape of the survival probability, we first calculate
the ratio of the effective survival probability with NSI to the survival probability of the
standard case as a function of the distance, i.e., P QM-NSI-eff

ν̄s
e→ν̄d

e
/P std

ν̄e→ν̄e
. The ratio is not unity at

Lν = 0 because of the zero-distance effect. We then remove the zero-distance effect by shifting
the ratio by the amount 1−P QM-NSI-eff

ν̄s
e→ν̄d

e
(Lν = 0). An illustration of the ratio curves are shown

in figure 1 for a typical choice of the parameter values of Eν = 4 MeV, sin2 θ13 = 0.022 and
δCP = 0 with values of other oscillation parameters listed in table 1. The values of the QM-NSI
parameters are chosen to be |ϵeα|= 0.01 and ϕeα = 0 for α = e,µ,x (where ϵex ≡ ϵee = ϵeµ = ϵeτ ).
When the zero-distance effect is removed, the effective survival probability with ϵee non-zero
coincides with the standard survival probability and produces a ratio of unity. With the
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Parameters Central value±1σ Origin
sin2 2θ12 0.851±0.020 PDG [1]
sin2 θ23 0.546±0.021 PDG

∆m2
21 [10−5 eV2] 7.53±0.18 PDG

∆m2
32 [10−3 eV2] 2.45±0.07 T2K [37]

Table 1. Values of standard oscillation parameters in the case of the normal mass ordering.

|ϵee | = 0.01, ϕee = 0

|ϵeμ | = 0.01, ϕeμ = 0

|ϵex | = 0.01, ϕex = 0
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Figure 1. The ratio of the effective survival probability with NSI to the standard survival probability
as a function of the distance shows the effect of QM-NSI on the shape of the survival probability.
The different curves shown are for the effect of the respective QM-NSI parameter ϵee, ϵeµ and ϵex,
with their magnitudes equaling 0.01 and phases equaling zero. For the cases of ϵee and ϵeµ, other NSI
parameters are set to be zero. Each ratio curve is shifted by the amount 1−P QM-NSI-eff

ν̄s
e →ν̄d

e
(Lν = 0) to

remove the zero-distance effect on the curve. Eν = 4 MeV, sin2 θ13 = 0.022 and δCP = 0 are used for
this figure. Values of other oscillation parameters are listed in table 1. More details can be found in
the text of section 2.2.

choice of the parameter values here, the presence of non-zero |ϵeµ| or |ϵex| reduces the survival
probability, a role similar to an increased sinθ13 in the standard case. We thus expect an
anti-correlation between these QM-NSI parameters and sinθ13 in these cases and indeed
these relationships are manifest in our results below.

2.3 WEFT-NSI with parameters εX

From the perspective of the effective field theory (EFT), the new physics at a high scale ΛNP
demonstrates their effects at a low scale by adding a series of higher dimensional operators O

(d)
i

(with dimension d), which are suppressed by powers of the scale ΛNP, to the SM Lagrangian.
An example of the EFT is the Standard Model effective field theory (SMEFT) which reads

LSMEFT = LSM+ 1
ΛNP

n5∑
i=1

c
(5)
i O

(5)
i + 1

Λ2
NP

n6∑
i=1

c
(6)
i O

(6)
i +O

(
1

Λ3
NP

)
(2.17)
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for the scale being above the weak scale. The higher dimensional operators O
(d)
i consist of

SM fields only and the Lagrangian respects the SM gauge symmetries and/or baryon/lepton
number conservation [38, 39]. The dimensionless Wilson coefficients c

(d)
i [39] can be exper-

imentally determined. The dimension-5 operators are responsible for the neutrino mass
generation and mixing. Their effects on neutrino production and detection amplitudes can
be ignored. Among the dimension-6 operators, there are four-fermion operators involving
neutrinos which correspond to the neutrino NSI. The effect of the higher dimensional operators
are suppressed by higher powers of ΛNP and are ignored here. Analysis on CC-NSI based
on the SMEFT and the combination of the reactor neutrino experiments can be found in
refs. [13, 22]. Global analysis including solar neutrino experiment can also be found, see e.g.
ref. [40]. Since the reactor neutrino oscillation experiments are carried out at much lower
scales, new physics with scales lower than the weak scale may also affect such experiments.
The neutrino NSI in this case are better defined in the so called weak effective field theory
(WEFT) which is an EFT with the heavy particles W±, Z0, the Higgs boson, the top quark
and the possible new heavy particles at a scale less than MW integrated out. The effective
Lagrangian then takes the form [13]

LWEFT ⊃−2Vud

v2

{
(1+ϵL)αβ(uγµPLd)(lαγµPLνβ)+[ϵR]αβ(uγµPRd)(lαγµPLνβ)

+ 1
2[ϵS ]αβ(ud)(lαPLνβ)− 1

2[ϵP ]αβ(uγ5d)(lαPLνβ)

+ 1
4[ϵT ]αβ(uσµνPLd)(lασµνPLνβ)+h.c.

}
. (2.18)

The fields u, d and lα are in their mass basis, while the left-handed neutrino fields νβ are
in the flavor basis. The quantities Vud and v are the CKM matrix element and the vacuum
expectation value of the Higgs field, respectively. In addition to the SM-like V-A type
interactions (1+εL), the right-handed (εR), scalar (εS), pseudoscalar (εP ), and tensor (εT )
type CC interactions between leptons and quarks are all present. This Lagrangian can thus
be seen as a generalization of eq. (1.1). Note the NSI parameters εL, εR, εS , εP , and εT

are 3×3 matrices in the lepton flavor space. The analytical expression for the transition
probability P WEFT-NSI

να→νβ
was derived in the framework of quantum field theory in ref. [23].

The ν̄e → ν̄e survival probability can be written as

P WEFT-NSI
ν̄e→ν̄e

= N−1
ee

∑
k,l

exp
(
−i

∆m2
klL

2E

)

×

UekU∗
el+

∑
X

pXL(ϵXU)ekU∗
el+

∑
X

pXLUek(ϵXU)∗el+
∑
X,Y

pXY (ϵXU)ek(ϵY U)∗el


×

U∗
ekUel+

∑
X

dXL(ϵXU)∗ekUel+
∑
X

dXLU∗
ek(ϵXU)el+

∑
X,Y

dXY (ϵXU)∗ek(ϵY U)el

 ,

(2.19)
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where

Nee =

1+
∑
X

pXLεX +
∑
X

pXLε∗X +
∑
X,Y

pXY ϵ∗Y εT
X


ee1+

∑
X

dXLε∗X +
∑
X

dXLεX +
∑
X,Y

dXY ε∗XϵT
Y


ee

, (2.20)

and X,Y = L,R,S,T with the dependence on εP suppressed. The production (detection)
coefficient pXY (dXY ) depends on the neutrino production (detection) amplitude and their
values can be found in ref. [23] for nuclear beta decay and inverse beta decay. The flavor
diagonal Wilson coefficients [εX ]ee have no effect on the survival probability, i.e.,

P WEFT-NSI
ν̄e→ν̄e

([εX ]ee only) =
∑
k,l

|Uek|2 |Uel|2 exp
(
−i

∆m2
klLν

2Eν

)
, (2.21)

which is just the standard expression of eq. (2.1). As to their effects on neutrino production
and detection in reactor oscillation experiments, the effect of the coefficients [εL]ee and [εR]ee

is completely absorbed into the phenomenological values of Vud and gA which are used to
determine the event rate. The effects of the scalar and tensor coefficients [εS ]ee and [εT ]ee

are highly suppressed since these couplings are stringently bounded by nuclear beta decays
and their effects can be ignored in reactor oscillation experiments. The flavor nondiagonal
coefficients [εX ]eα with α ̸= e have no effect on the neutrino production rate and detection
cross section [13, 41] and only manifest their effects through the survival probability. We
thus use P WEFT-NSI

ν̄e→ν̄e
as the effective survival probability.

As for the case of QM-NSI, we examine the effect of the WEFT-NSI on the shape of
the survival probability through the ratio P WEFT-NSI

ν̄e→ν̄e
/P std

ν̄e→ν̄e
. The zero-distance effect in

the WEFT-NSI framework can be simplified as

P WEFT-NSI
ν̄e→ν̄e

(Lν = 0) = 1+2pXLdXL |[ϵX ]eα|2+pXXdXX |[ϵX ]eα|4

1+(pXX +dXX) |[ϵX ]eα|2+pXXdXX |[ϵX ]eα|4
(2.22)

if only one NSI parameter [εX ]eα (α ̸= e) is considered at a time. The quantity P WEFT-NSI
ν̄e→ν̄e

(
Lν = 0) is always less than unity for each nonvanishing parameter [εX ]eα except for [εL]eα

for which P WEFT-NSI
ν̄e→ν̄e

(Lν = 0) = 1. With the zero-distance effect removed, figure 2 shows the
ratios for the NSI parameters [εX ]eµ for X = L,R,S and T , respectively. As can be seen
from the figure, the effect of [εL]eµ or [εR]eµ is similar to that of ϵeα of QM-NSI. We thus
expect a similar anti-correlation between these parameters and sinθ13. For the cases of [εS ]eµ

and [εT ]eµ, |[εS ]eµ|= |[εT ]eµ|= 0.1 is taken to make the plot to show their effect on the shape
of the survival probability more clearly. The corresponding ratio curves deviate from the
unity line in just the opposite way as for the cases of [εL]eµ and [εR]eµ, and they will be
forced to increase with sinθ13 to fit the data appropriately. As in the QM-NSI approach,
each of the complex NSI parameters is decomposed as

[εX ]eα = |[εX ]eα|ei[ϕX ]eα , (2.23)

where [ϕX ]eα ∈ [0,2π) for α = µ,τ .
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|[ϵL]eμ | = 0.01, [ϕL]eμ = 0

|[ϵR]eμ | = 0.01, [ϕR]eμ = π/2

|[ϵS]eμ | = 0.1, [ϕS]eμ = 0

|[ϵT ]eμ | = 0.1, [ϕT ]eμ = 0
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Figure 2. Similarly to figure 1, these ratios as a function of the distance indicate the effect of
WEFT-NSI on the shape of the survival probability. The magnitude of [εS ]eµ and [εT ]eµ is taken to
be ten times larger than that of [εL]eµ and [εR]eµ to show their effect clearly. More details can be
found in the text of section 2.3.

3 Daya Bay reactor neutrino experiment

The main goal of the Daya Bay reactor neutrino experiment is detecting MeV-scale electron
antineutrinos produced in nuclear reactors to determine the mixing angle θ13 via the study of
νe disappearance. The νe’s are detected through the IBD reaction νe+p→ e++n and are
identified with the combination of a prompt-energy signal due to the positron kinetic energy
loss and annihiliation and a delayed-energy signal due to the subsequent neutron capture.

The electron antineutrinos are emitted from the three pairs of 2.9 GWth reactors at the
Daya Bay-Ling Ao nuclear power facility in Shenzhen, China, and are detected by up to eight
antineutrino detectors (ADs) which were installed in three underground experimental halls
(EH1, EH2 and EH3) with a flux-averaged baseline of about 500 m, 500 m, and 1650 m from
the reactors, respectively. Twenty tonnes of liquid scintillator doped with 0.1% gadolinium
by weight (GdLS) in each AD [42–44] were used to detect the IBD events. More information
about the experiment can be found in refs. [45, 46].

There were three different configurations of ADs in the three EHs in the operation of
the Daya Bay experiment (i.e., 6-AD, 8-AD and 7-AD operation periods). With a total of
3158 days of data acquisition, a final sample of 5.55×106 IBD candidates with the final-state
neutron captured on gadolinium were obtained [47]. Here we also probe the CC-NSI effect
with the same data sample. As mentioned in the Introduction, we only consider the NSI
effects on the measurement of the oscillation parameter θ13.
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The χ2 is constructed based on the binned maximum poisson likelihood method as

χ2 = 2
Nperiod∑

n

NADs∑
j

NEbins∑
i

[Npred
nji −Nobs

nji +Nobs
nji ln

Nobs
nji

Npred
nji

]

+
Nperiod×NEHs×NEbins∑

j

Nperiod×NEHs×NEbins∑
k

fjV −1
jk fk

+
Escale∑

l

η2
l

σ2
l

+
NADs∑

m

ζ2
m

σ2
m

+
NADs×bkg∑

n

b2
n

σ2
n

+
(

δcorr

σcorr

)2
+

Nosc∑
i

(
δosc

i

σosc
i

)2

, (3.1)

where the expected number of events Npred
nji ≡Npred

nji (θ13, ϵ⃗NSI|f⃗ , η⃗, ζ⃗, b⃗, δcorr, δ⃗osc) in the i-th
energy bin of the j-th AD of the n-th operation period is obtained from the prediction
of a model with the standard oscillation parameter θ13, the NSI parameters ϵ⃗NSI and the
estimation of the background. The effect of NSI on the measurement of the standard neutrino
oscillation parameters except θ13 are assumed to be negligible for the strong constraints from
other experiments alluded to in section 1. Nobs

nji is the corresponding observed number of
IBD candidate events. There are 26 bins of the reconstructed energy spectrum with the
first bin ranging from 0.7 MeV to 1.3 MeV, the last from 7.3 MeV to 12.0 MeV and the other
24 bins uniformly distributed from 1.3 to 7.3 MeV. The parameters f⃗ , η⃗, ζ⃗, b⃗ and δ⃗osc are
reactor related, energy nonlinearity response related, AD related, background related and
external oscillation parameter related systematic nuisance parameters, respectively. The
nuisance parameter δcorr represents the overall normalization which comes from the correlated
detector efficiency and the reactor flux model normalization. These nuisance parameters
are constrained by the corresponding uncertainties σj except for the parameter f⃗ for which
the covariance matrix V is used to reduce the number of the nuisance parameters for the
reactor flux model. More details about the nuisance parameters can be found in [48]. Central
values and uncertainties of oscillation parameters for the case of the normal mass ordering
are listed in table 1. The neutrino flux is evaluated using the Huber-Mueller model [49, 50]
where we have conservatively enlarged the overall uncertainty in the flux to σcorr = 5% given
the lack of detailed knowledge of the structure of the forbidden transitions [51, 52] and
uncertainties from other possible sources.

4 Constraints on NSI parameters

Since there are multiple parameters, we initially consider variations in a single CC-NSI
parameter at a time. We start with finding the allowed regions in the (sin2 θ13, |ϵ|) plane
for the corresponding CC-NSI phase ϕ and/or the CP-violating phase δCP to be set to zero
and vary freely, respectively. When necessary, we show the allowed regions when ϕ and/or
δCP take certain values, i.e., π/2,π and/or 3π/2 to help understand the formation of the
allowed regions when these phases vary freely. We also provide constraints in the (ϕ, |ϵ|)
plane with sin2 θ13 set to vary freely and δCP = 0, and in the (|ϵ1| , |ϵ2|) plane with sin2 θ13
set to vary freely and ϕ = δCP = 0.
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Figure 3. The first three panels 3(a), 3(b) and 3(c) shows the dependence of the allowed regions in the
(sin2 θ13, |ϵee|) plane on the values of the CC-NSI phase ϕee for ϕee = 0,π/2,π and 3π/2, respectively.
The allowed regions are the same for ϕee = π/2 and 3π/2. The lower right panel 3(d) is for ϕee being
marginalized over (ϕee =free). Details of the analysis are provided in section 4.1.1.

4.1 Constraints on QM-NSI parameters ϵeα for ϵs
eα = ϵd∗

αe ≡ ϵeα

The results below are for the allowed regions and constraints of the non-universal NSI
parameters ϵee, ϵeµ, ϵeτ and the universal NSI parameter ϵex ≡ ϵee = ϵeµ = ϵeτ , respectively.

4.1.1 Constraints on electron-NSI coupling ϵee

The parameter ϵee represents a kind of flavor-conserving non-universal NSI associated with
ν̄e present in both production and detection processes. We have U sd

ej = (1+ϵ∗ee)Uej . The

– 11 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
4

ϕee |ϵee|
0 |ϵee|< 0.0148

π/2,3π/2 |ϵee|< 0.172
π |ϵee|< 0.0371 or 1.97 < |ϵee|< 2.01

free |ϵee|< 2.01

Table 2. 90% C.L. constraints (1 d.o.f) on the QM-NSI parameter |ϵee| projected from the
(sin2 θ13, |ϵee|) plane for ϕee taking on values of 0,π/2,π, 3π/2 and being marginalized over (ϕee =free),
respectively.

effective survival probability is

P QM-NSI-eff
ν̄s

e→ν̄d
e

= (1+|ϵee|2+2 |ϵee|cosϕee)2P std
ν̄e→ν̄e

, (4.1)

which has no dependence on δCP and θ23 as in the standard case of eq. (2.1). This type of
NSI effectively changes the normalization of the number of events. And the approximate
symmetry of the standard survival probability is inherited, i.e., P QM-NSI-eff

ν̄s
e→ν̄d

e
is approximately

invariant under the exchange of θ13 ↔π/2−θ13. We thus provide the allowed regions in the
(sin2 θ13, |ϵee|) plane for θ13 being small only. Figures 3(a), 3(b) and 3(c) show the allowed
regions in the (sin2 θ13, |ϵee|) plane for ϕee = 0,π/2 (or 3π/2) and π, respectively. It is easy
to see from eq. (4.1) that the allowed regions for ϕee = π/2 and 3π/2 are the same. This is
a typical feature for the case of ϵs

eα = ϵd∗
αe and we will see it again in the cases with ϵeµ, ϵeτ

and ϵex below. For ϕee = 0, P eff
ν̄s

e→ν̄d
e

= (1+|ϵee|)4Pν̄e→ν̄e , the most stringent constraint is found
which reads |ϵee|< 0.0148 at 90% confidence level (C.L.) with one degree of freedom (d.o.f.).
For ϕee = π, we have P eff

ν̄s
e→ν̄d

e
= (1−|ϵee|)4Pν̄e→ν̄e . The allowed region is separated into two

subregions. One is consistent with |ϵee|= 0, the other with |ϵee|= 2. The allowed region of |ϵee|
becomes large if we marginalize over ϕee from 0 to 2π which leads to the constraint |ϵee|< 2.01.
All the allowed region plots show that the Daya Bay experimental data is consistent with the
standard oscillation framework (|ϵee|= 0) within 1σ C.L.. The numerical values of the 90%
C.L. constraints (1 d.o.f.) on |ϵee| under different conditions are listed in table 2.

The constraints on |ϵee| depend primarily on the normalization uncertainty σcorr when
the phase ϕee is fixed at some special values, as discussed in ref. [53]. This dependence can
be understood as shown in figure 1 or eq. (4.1). Both |ϵee| and the neutrino flux have the
same effect which is independent of Lν . In the future if the neutrino flux can be accurately
predicted, the constraints on |ϵee| can be further improved.

4.1.2 Constraints on muon-NSI and tau-NSI couplings ϵeµ and ϵeτ

The flavor-violating non-universal NSI parameter ϵeµ associates the electron (positron) with ν̄µ

in the production (detection) processes. When ϵeµ is non-zero, we have U sd
ej = Uej +ϵ∗eµUµj and∣∣∣U sd

ej

∣∣∣2 = |Uej |2+|ϵeµ|2 |Uµj |2+2Re(ϵeµUejU∗
µj). (4.2)

The 2nd term on the right hand side depends on δCP in the form of cos(δCP) for j = 1,2.
The 3rd term is dependent on δCP and ϕeµ in the form of cos(δCP−ϕeµ) and/or cos(ϕeµ).
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For this reason, the effective survival probability is the same for δCP = π/2 and 3π/2 when
ϕeµ = 0 or ϕeµ = π/2 and 3π/2 when δCP = 0. The roles played by δCP and ϕeµ are similar.
For the presence of NSI with the parameter ϵeµ, the effective mixing angle θ̃13 (what is
measured in the reactor oscillation experiment) might be different from the true mixing angle
θ13. We find that the effective survival probability in this case is approximately invariant
under the exchange of θ13 ↔π/2−2θ̃13+θ13 which reduces to θ13 ↔π/2−θ13 for the standard
survival probability for which θ̃13 → θ13, or of θ13 ↔π/2−θ13, depending on the values of
ϕeµ and δCP. We thus provide allowed regions in the (sin2 θ13, |ϵeµ|) plane around small θ13
only. Figures 4(a), 4(b) and 4(c) show such allowed regions for δCP = 0,π/2,π and 3π/2,
respectively, when setting ϕeµ = 0. The approximate expressions of the effective survival
probability is useful in explaining the behavior of the allowed regions. The reactor data can
be fitted with an approximation to the standard case using

sin2 θ̃13 ≈ sin2 θ13+2sinθ13 sinθ23 |ϵeµ|cos(δCP−ϕeµ), (4.3)

for θ13 and |ϵeµ| being small [34]. For the case that ϕeµ = δCP = 0, |ϵeµ| must decrease with
sin2 θ13 to maintain the good agreement with the experimental data. For ϕeµ = 0 and δCP = π,
|ϵeµ| increases with sin2 θ13. The case that ϕeµ = 0 and δCP = π/2 or 3π/2 indicates that |ϵeµ|
is independent of sin2 θ13 for a vanishing |ϵeµ|. The cases that setting δCP = 0 and ϕeµ = π/2,π

and 3π/2 are almost the same and thus are not shown. The allowed region for marginalizing
over δCP with ϕeµ = 0 is the combination of the allowed regions with δCP taking any special
value in the range [0,2π) when ϕeµ = 0. The situation for δCP = 0 and ϕeµ to vary freely is the
same, and so is the allowed region for both δCP and ϕeµ to vary freely as shown in figure 4(d).
As in the case of ϵee, the data is consistent with the standard oscillation framework (|ϵeµ|= 0)
less than 1σ C.L. For the NSI parameter ϵeτ being non-zero, we have U sd

ej = Uej +ϵ∗eτ Uτj .
And given that |Uµi| ≈ |Uτi| from measurements for i = 1,2 and 3 [54] , we see the role the
parameter ϵeτ plays is similar to that of the parameter ϵeµ. Thus the allowed regions on |ϵeµ|
and |ϵeτ | are close to one another. The constraints on |ϵeµ| and |ϵeτ | are listed in table 3.

Unlike the case for |ϵee| which is mostly affected by the reactor flux uncertainty, the
constraints on |ϵeµ| or |ϵeτ | depend on both the systematical and statistical uncertainties. As
shown in figure 1, the parameter |ϵeµ| or |ϵeτ | could be determined through the far/near relative
measurement at different baselines, which is quite similar to the θ13 oscillation measurement.
Thus, the parameter |ϵeµ| or |ϵeτ | is not sensitive to the neutrino flux uncertainty.

4.1.3 Constraints on flavor-universal NSI coupling ϵex

The universal NSI parameter ϵex ≡ ϵee = ϵeµ = ϵeτ associates the electron (or positron) with
all three flavors of neutrinos with the same strength in both production and detection
processes. We have U sd

ej = Uej +ϵ∗ex

∑
α Uαj which can be seen as a combination of the three

cases considered above for ϵee, ϵeµ and ϵeτ . Similar to the case with ϵeµ, the effective survival
probability depends on δCP and ϕex in the form of cos(ϕex), cos(δCP) and cos(δCP−ϕex) with
degeneracy when either ϕex or δCP is π/2 and 3π/2 and the other phase is zero. However,
the roles δCP and ϕeµ play are different as seen explicitly in the expression up to the first
order in |ϵex| [34]

sin2 θ̃13 ≈ sin2 θ13+2sinθ13(sinθ23+cosθ23) |ϵex|cos(δCP−ϕex)− |ϵex|cosϕex

sin2(∆m2
31Lν/(4Eν))

. (4.4)
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Figure 4. The first three panels 4(a), 4(b) and 4(c) shows the dependence of the allowed regions in
the (sin2 θ13, |ϵeµ|) plane on the values of the CC-NSI phase ϕeµ and the Dirac CP-violating phase δCP
for ϕeµ = 0 and δCP = 0,π/2,π and 3π/2, respectively. The corresponding allowed regions for δCP = 0
and ϕeµ = π/2,π and 3π/2, respectively, are similar. The lower right panel 4(d) is for both phases
being marginalized over (δCP =free, ϕeµ =free). Details of the analysis can be found in section 4.1.2.

The allowed regions in the (sin2 θ13, |ϵex|) plane are similar to those in the (sin2 θ13, |ϵeµ|)
plane, but with much stronger constraints on |ϵex| when either δCP or ϕex is zero. The
effective survival probability in this case is also approximately invariant under the exchange of
θ13 ↔π/2−2θ̃13+θ13 or θ13 ↔π/2−θ13, depending on the values of ϕex and δCP. We provide
allowed regions in the (sin2 θ13, |ϵex|) plane around small θ13 when possible. Figure 5(a) shows
the allowed region when both ϕex and δCP equal zero. The allowed region when δCP (ϕex)
varies freely with ϕex (δCP) set to zero is the combination of the allowed regions of the
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Figure 5. Allowed regions in the (sin2 θ13, |ϵex|) plane for ϕex = δCP = 0, marginalizing over δCP
(δCP =free) while ϕex = 0, over ϕex (ϕex =free) while δCP = 0 and over both phases (δCP =free, ϕex =free)
as indicated in the plots. Details of the analysis can be found in section 4.1.3.

corresponding phase being in the range [0,2π). The plots are shown in figures 5(b) and 5(c),
respectively. For the different dependence on the two phases δCP and ϕex, the two allowed
regions appear very different, in contrast to the case of ϵeµ. The constraint on |ϵex| is much
relaxed when both δCP and ϕex are marginalized over as can be seen in figure 5(d) where
the allowed regions in the small and large θ13 merge to a single one and appears symmetric
under θ13 ↔π/2−θ13. The numerical values of the constraints on |ϵex| are listed in table 3.
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Figure 6. Allowed region in the (ϕeα, |ϵeα|) plane marginalizing over sin2 θ13 (sin2 θ13 =free) for
ϵee (6(a)) and for δCP = 0 for ϵeµ (6(b)) and ϵex (6(c)), respectively. The allowed region for ϵeτ is
similar to that of ϵeµ. Details of the analysis can be found in section 4.1.4.

4.1.4 Allowed regions in (ϕeα, |ϵeα|) plane

We also determine the allowed regions in the (ϕeα, |ϵeα|) plane for δCP = 0 with sin2 θ13 left to
vary freely. The plots are shown in figures 6(a), 6(b) and 6(c) for ϵee, ϵeµ and ϵex, respectively.
The shapes of the allowed regions can be understood by referring to the corresponding plots
in the (sin2 θ13, |ϵeα|) plane. For example, consider the allowed regions for ϵee in figure 3. At
ϕee = 0, the upper limit at 3σ on |ϵee| is less than about 0.043. At ϕee = π/2 or 3π/2, the
upper limit is no larger than about 0.3. While for ϕee = π, it reaches its peak and is just less
than about 2.1. All these features can be read off directly from figures 3(a), 3(b) and 3(c). For
ϵeµ, the plots for δCP = 0 and ϕeµ = π/2,π or 3π/2 are almost the same as those for ϕeµ = 0
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(ϕeα, δCP) |ϵeµ| |ϵeτ | |ϵex|
(0,0) |ϵeµ|< 0.165 |ϵeτ |< 0.171 |ϵex|< 0.0145

(0, free) |ϵeµ|< 0.171 |ϵeτ |< 0.174 |ϵex|< 0.0146
(free,0) |ϵeµ|< 0.174 |ϵeτ |< 0.174 |ϵex|< 0.110

(free, free) |ϵeµ|< 0.174 |ϵeτ |< 0.174 |ϵex|< 0.678

Table 3. 90% C.L. constraints (1 d.o.f) on the QM-NSI parameters |ϵeµ|, |ϵeτ | and |ϵex| projected from
the (sin2 θ13, |ϵeα|) plane for the phases ϕeα and δCP taking on different values and being marginalized
over ((ϕeα, δCP)=(free, free)), respectively. Constraints on these NSI parameters for ϕeα = 0 and
δCP = π/2,3π/2 and π or the other way around are close to those for ϕeα = 0 and δCP = 0.

and δCP = π/2,π or 3π/2 which are shown in figure 4. The constraint on |ϵeµ| at δCP = 0 and
ϕeµ = 0 is a little weaker than those at around δCP = 0 and ϕeµ = π/2 or 3π/2. This is so
because at δCP = 0 and ϕeµ = 0 the constraint on |ϵeµ| is relaxed a little bit when sin2 θ13 ∼ 1.
The features for ϵex is understood in a similar way. We note that the allowed regions in the
(ϕeα, |ϵeα|) plane in figure 6 is symmetric under the exchange ϕeα ↔ 2π−ϕeα which arises
from the effective survival probability depending on the phases in the form of cos(ϕeα) when
δCP = 0. The constraints on the magnitude of the NSI parameter |ϵeα| obtained from the
plots in the (ϕeα, |ϵeα|) plane are the same as those from the plots in the (sin2 θ13, |ϵeα|) plane
with δCP = 0 and the corresponding phase marginalized over. As to the NSI phases ϕee, ϕeµ

and ϕex, we see from figure 6 that they are unconstrained for δCP = 0 and sin2 θ13 varying
freely. The allowed regions related to ϵeτ are similar to those of ϵeµ.

4.2 Constraints on QM-NSI parameter ϵs
eα for ϵs

eα ̸= ϵd∗
αe

In the general case, ϵs
eα ̸= ϵd∗

αe. We assume they are independent and discuss the effect
of ϵs

eα. The constraints on ϵd
αe can be obtained from eq. (2.15). The effective survival

probability is still approximately invariant under the exchange of θ13 ↔π/2−2θ̃13+θ13 or
θ13 ↔π/2−θ13, depending on the values of ϕs

eα and/or δCP. We focus on the allowed regions
in the (sin2 θ13, |ϵs

eα|) plane around small θ13 when possible. The dependence of the constraints
on the systematical and statistical uncertainties is similar to the case of ϵs

eα = ϵd∗
αe.

4.2.1 Constraints on electron-NSI coupling ϵs
ee

The non-universal NSI parameter ϵs
ee associates the electron with ν̄e in the production

processes and thus conserves lepton flavor. We find

P QM-NSI-eff
ν̄s

e→ν̄d
e

(ϵs
ee, ϵd

eα = 0) = (1+|ϵs
ee|

2+2 |ϵs
ee|cosϕs

ee)P std
ν̄e→ν̄e

. (4.5)

It can be seen that this effective survival probability is the same in form to that with ϵee

except that the power of the factor (1+|ϵs
ee|

2+2 |ϵs
ee|cosϕs

ee) is one, while it is two for ϵee as
can be seen from eq. (4.1). Two consequences follow. Firstly, the pattern of the allowed
regions is similar to that with ϵee. Secondly, the allowed ranges on |ϵs

ee| must be larger
than those with |ϵee|. These results can be seen from comparing figures 7(a) and 7(b) with
figures 3(a) and 3(d), respectively, or from comparing the numerical values in tables 2 and 4.
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Figure 7. Allowed regions in the (sin2 θ13, |ϵs
ee|) plane for ϕs

ee = 0 (left panel) and for it being
marginalized over (ϕs

ee =free, right panel). The situation is similar to the case with ϵee but with the
constraints less stringent. Details of the analysis can be found in section 4.2.1.

ϕs
ee |ϵs

ee|
0 |ϵs

ee|< 0.0298
π/2,3π/2 |ϵs

ee|< 0.246
π |ϵs

ee|< 0.0702 or 1.93 < |ϵee|< 2.02
free |ϵs

ee|< 2.02

Table 4. 90% C.L. constraints (1 d.o.f) on the QM-NSI parameter |ϵs
ee| projected from the

(sin2 θ13, |ϵs
ee|) plane for ϕs

ee taking on values of 0,π/2,π, 3π/2 and being marginalized over (ϕs
ee =

free), respectively.

As for the case of ϵee, the Daya Bay experimental data is consistent with the standard
oscillation framework (|ϵs

ee|= 0) within 1σ C.L..

4.2.2 Constraints on muon-NSI and tau-NSI couplings ϵs
eµ and ϵs

eτ

The neutrino NSI with parameter ϵs
eµ associates the electron with ν̄µ in the production

processes and thus is non-universal and violates the lepton family number conservation. The
effective survival probability valid to first order in

∣∣∣ϵs
eµ

∣∣∣ is helpful in interpreting the behavior
of the allowed regions. We have [34]

P QM-NSI-eff
ν̄s

e→ν̄d
e

(ϵs
eµ, ϵd

eα = 0)≈P std
ν̄e→ν̄e

+2sinθ13 sinθ23
∣∣∣ϵs

eµ

∣∣∣sin(δCP −ϕs
eµ)sin(∆m2

31Lν/(2Eν))

−4sinθ13 sinθ23
∣∣∣ϵs

eµ

∣∣∣cos(δCP −ϕs
eµ)sin2(∆m2

31Lν/(4Eν)). (4.6)

For ϕs
eµ = 0 and δCP = 0 or π, we can write

sin2 θ̃13 ≈ sin2 θ13±sinθ13 sinθ23
∣∣∣ϵs

eµ

∣∣∣ , (4.7)
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where the +(−) sign corresponds to δCP = 0 (π). Comparing to eq. (4.3) for the corresponding
cases, we see

∣∣∣ϵs
eµ

∣∣∣ plays the same role as 2 |ϵeµ| if both are small. It turns out that the upper

limit on
∣∣∣ϵs

eµ

∣∣∣ is indeed much larger than that on |ϵeµ| for δCP = 0. For δCP = π, the upper

limit on
∣∣∣ϵs

eµ

∣∣∣ increases with sin2 θ13 and reaches infinity at sin2 θ13 = 1. Thus no bound can
be set in this case. The upper limits exist for ϕs

eµ = 0 and δCP = π/2 or 3π/2. But compared
to the case of ϵeµ, the degeneracy of the effective survival probability for either phase to take
the values of π/2 and 3π/2 when the other is set to zero is broken due to the dependence
on the phases in the forms of sinϕs

eµ and sinδCP as well as cosϕs
eµ and cosδCP. This can

also be seen from eq. (4.6) which reduces to

sin2 θ̃13 ≈ sin2 θ13∓sinθ13 sinθ23
∣∣∣ϵs

eµ

∣∣∣cot(∆m2
31Lν/(4Eν)), (4.8)

with the sign −(+) corresponding to δCP = π/2 (3π/2). Whether or not the NSI parameter∣∣∣ϵs
eµ

∣∣∣ increases (or decreases) with sin2 θ13 for δCP = π/2 (or 3π/2) depends on the value of

Lν/Eν through cot(∆m2
31Lν/(4Eν)). It turns out that

∣∣∣ϵs
eµ

∣∣∣ increases with sin2 θ13 for δCP
or ϕs

eµ = π/2, and decreases with it for δCP or ϕs
eµ = 3π/2, with the other phase set to zero.

See figure 8 for the allowed regions for these three cases.
∣∣∣ϵs

eµ

∣∣∣ is unconstrained when either
or both phases are left to vary freely. The situation for the NSI parameter ϵs

eτ is similar.
The constraints are given in table 5.

4.2.3 Constraints on flavor-universal NSI coupling ϵs
ex

The same reasoning above for ϵs
eµ applies to the universal NSI parameter ϵs

ex ≡ ϵs
ee = ϵs

eµ = ϵs
eτ .

Thus the allowed regions in the (sin2 θ13, |ϵs
ex|) plane look similar to those in the (sin2 θ13, |ϵex|)

plane for both |ϵex| and |ϵs
ex| being small. And degeneracy of one of the phase equaling π/2

and 3π/2 with the other one set to zero is broken also. The effective survival probability
to first order in |ϵs

ex| can be found in ref. [34]:

P QM-NSI-eff
ν̄s

e→ν̄d
e

(ϵs
eµ, ϵd

eα = 0)≈Pν̄e→ν̄e +2 |ϵs
ex|cos(ϕs

ex)

+2sinθ13(sinθ23+cosθ23) |ϵs
ex|sin(δCP −ϕs

ex)sin(∆m2
31Lν/(2Eν))

−4sinθ13(sinθ23+cosθ23) |ϵs
ex|cos(δCP −ϕs

ex)sin2(∆m2
31Lν/(4Eν)),

(4.9)

which leads to

sin2 θ̃13 ≈ sin2 θ13±|ϵs
ex|
[
sinθ13(sinθ23+cosθ23)∓ 1

2sin2(∆m2
31Lν/(4Eν))

]
, (4.10)

for the cases ϕs
ex = 0 and δCP = 0 and π, respectively. Similarly to the case of ϵs

eµ, |ϵs
ex| plays the

role of 2 |ϵex|, if we compare this condition to the condition of eq. (4.4) for the corresponding
cases. Thus the upper limits on |ϵs

ex| are expected to be larger than those on |ϵex| also. For
the case of ϕs

ex or δCP taking on the values of π/2 or 3π/2 while the other phase set to zero,
the situation depends on the value of Lν/Eν through cot(∆m2

31Lν/(4Eν)), as in the case of
ϵs
eµ. The results show that the bounds get stronger than those for the corresponding cases of
|ϵex|. These strong bounds are present as the dips in the allowed regions for ϕs

ex = 0 and δCP
varying freely or δCP = 0 and ϕs

ex varying freely, as shown in figures 9(b) and 9(c) with the
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Figure 8. The dependence of the allowed regions in the (sin2 θ13,
∣∣ϵs

eµ

∣∣) plane on the values of
the phases ϕs

eµ and δCP for ϕs
eµ = 0 and δCP = 0,π/2 and 3π/2, respectively. The degeneracy for

δCP = π/2 and 3π/2 is broken. The corresponding allowed regions for δCP = 0 and ϕs
eµ = π/2 and 3π/2,

respectively, are similar. The parameter
∣∣ϵs

eµ

∣∣ is not constrained for the case of ϕs
eµ = 0 and δCP = π

or ϕs
eµ = π and δCP = 0 and thus not constrained when either or both phases are marginalized over.

Details of the analysis can be found in section 4.2.2.
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Figure 9. Allowed regions in the (sin2 θ13, |ϵs
ex|) plane for ϕs

ex = δCP = 0, marginalizing over δCP
(δCP =free) while ϕs

ex = 0, over ϕs
ex (ϕs

ex =free) while δCP = 0 and over both phases (δCP = free, ϕs
ex =

free) as indicated in the plots. Details of the analysis can be found in section 4.2.3.

difference arises from the different dependence on the two phases δCP and ϕs
ex as before. If

both phases are marginalized over, the allowed region is enormously enlarged, as can be seen
in figure 9(d). Although not very clear in figure 9(d), the data is consistent less than 1σ C.L.
with the standard oscillation framework (|ϵs

ex|= 0) in all the cases considered here.

4.2.4 Allowed regions in (ϕs
eα,

∣∣ϵs
eα

∣∣) and (
∣∣ϵs

eα

∣∣ , ∣∣∣ϵd
αe

∣∣∣) planes

We similarly determine the allowed regions in the (ϕs
eα, |ϵs

eα|) plane for δCP = 0 with sin2 θ13
left to vary freely for α = e and x in figures 10(a) and 10(b), respectively. These allowed
regions can be understood in the same way as for the case of ϵs

eα = ϵd∗
αe. The bound on

∣∣∣ϵs
eµ

∣∣∣
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(ϕs
eα, δCP)

∣∣∣ϵs
eµ

∣∣∣ |ϵs
eτ | |ϵs

ex|

(0,0)
∣∣∣ϵs

eµ

∣∣∣< 5.38 |ϵs
eτ |< 2.14 |ϵs

ex|< 0.0296
(0,π/2)

∣∣∣ϵs
eµ

∣∣∣< 0.0337 |ϵs
eτ |< 0.0363 |ϵs

ex|< 0.0142
(0,π) no limit no limit |ϵs

ex|< 0.0296
(0,3π/2)

∣∣∣ϵs
eµ

∣∣∣< 0.0309 |ϵs
eτ |< 0.0345 |ϵs

ex|< 0.0130
(0,free) no limit no limit |ϵs

ex|< 0.0299
(free,0) no limit no limit |ϵs

ex|< 0.0696
(free,free) no limit no limit |ϵs

ex|< 2.02

Table 5. 90% C.L. constraints (1 d.o.f) on the QM-NSI parameters
∣∣ϵs

eµ

∣∣, |ϵs
eτ | and |ϵs

ex| projected from
the (sin2 θ13, |ϵs

eα|) plane for the phases ϕs
eα and δCP taking on different values and being marginalized

over ((ϕs
eα, δCP)=(free, free)), respectively.
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Figure 10. Allowed region in the (ϕs
eα, |ϵs

eα|) plane marginalizing over sin2 θ13 for δCP = 0. The left
panel is for ϵs

ee, and the right for ϵs
ex. The corresponding allowed regions for the magnitude of ϵs

eµ and
ϵs

eτ are not bound. Details of the analysis can be found in section 4.2.4.

can not be set at δCP = 0 and ϕs
eµ = π as described above. The NSI phases ϕs

ee and ϕs
ex are not

constrained either as can be seen in figure 10. We show in figure 11 the allowed regions in the
(|ϵs

eα| ,
∣∣∣ϵd

αe

∣∣∣) plane for sin2 θ13 varying freely and all phases fixed to zero. Again, the behavior
can be understood in a similar way as for those in the (ϕeα, |ϵeα|) plane and the corresponding
constraints (1 d.o.f) at 90% C.L. are the same as those listed in table 5 for the case of all
phases set to zero. It can be seen from figure 11 that the allowed regions are symmetric about
the line

∣∣∣ϵd
∣∣∣= |ϵs|, i.e., |ϵs| and

∣∣∣ϵd
∣∣∣ play the same role in affecting the effective probability

which is implied by the transformation of eq. (2.15) when all phases are taken to be zero.

– 22 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
4

**
0.00 0.02 0.04 0.06 0.08 0.10

0.00

0.02

0.04

0.06

0.08

0.10

|ϵee
s |

|ϵ
e
e
d
|

*

1σ

2σ

3σ

Best fit

sin
2
θ13 = free

(a) (b)

Figure 11. Allowed region in the (|ϵs
eα| ,

∣∣ϵd
αe

∣∣) plane marginalizing over sin2 θ13 with all phases fixed
to zero. The left panel is for α = e , and the right for α = µ. The plot for α = τ is similar to that of
α = µ. Details of the analysis can be found in section 4.2.4.

4.3 Constraints on WEFT-NSI parameters [εX ]eα

We consider in this section the NSI parameters [εX ]eα for X = L,R,S,T and α = µ,τ , and
again, one parameter at a time. The effective survival probability under the WEFT framework
of eq. (2.19) is still approximately invariant under the exchange of θ13 ↔π/2−2θ̃13+θ13 or
θ13 ↔π/2−θ13 depending on the values of [ϕX ]eα and δCP if the magnitude of the WEFT-NSI
parameters |[εX ]eα| are small. We first focus on the allowed region in the (sin2 θ13, |[εX ]eµ|)
plane around small θ13 for the corresponding WEFT-NSI phase [ϕX ]eµ and δCP set to zero
and vary freely, respectively. The allowed regions for [ϕX ]eµ = π and δCP = 0 are also shown if
necessary. We also provide allowed regions in the ([ϕX ]eµ, |[ϵX ]eµ|) plane with sin2 θ13 set to
vary freely and δCP = 0. The numerical values of the constraints on the parameters |[εX ]eα|
under different conditions are listed in table 6. The difference between the constraints on
|[εX ]eτ | and |[εX ]eµ| are expected to be small since the only difference between the two cases is
from the lower two rows of the PMNS mixing matrix Uµk and Uτk which are close in numerical
values [54]. For this reason, we will show our results for [εX ]eµ only. To help understand
the behavior of the WEFT-NSI parameters [εX ]eµ, we refer to the survival probability valid
to first order in [εX ]eµ [13] in the discussion below.

4.3.1 Constraints on left-handed NSI coupling [εL]eµ

We first consider the effect of the new physics represented by the term [εL]eµ which describes
interactions of the structure of V −A as in the SM CC weak interactions. But differing
from that in the SM, it couples two leptons of e and ν̄µ instead of e and ν̄e. To first order
in [εL]eµ [13], the survival probability has the standard form of eq. (2.1) when the small
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Figure 12. Allowed region in the (sin2 θ13, |[εL]eµ|) plane for [ϕL]eµ = δCP = 0. Details of the analysis
can be found in section 4.3.1.

contribution from the term depending on ∆m2
21Lν/Eν is ignored:

P WEFT-NSI
ν̄e→ν̄e

= 1−sin2
(

∆m2
31Lν

4Eν

)
sin2

(
2θ̃13

)
+O(ε2

L), (4.11)

with the effective mixing angle

θ̃13 = θ13+sinθ23 |[εL]eµ|cos([ϕL]eµ+δCP). (4.12)

For [ϕL]eµ = δCP = 0, θ̃13 = θ13+sinθ23 |[εL]eµ|. The effect of the mixing angle θ13 is compen-
sated by the effect of |[εL]eµ|. Such a behavior remains when the higher order effects are
included, see figure 2 for the example of |[εL]eµ|= 0.01. The allowed region is shown in figure 12.
As for the case of ϵs/d, the Daya Bay experimental data is still consistent with the standard
oscillation framework (i.e., |[εL]eµ|= 0) at 1σ C.L. for the presence of the new V −A type
interaction. In the case of δCP = 0 and [ϕL]eµ = π, however, the allowed NSI parameter |[εL]eµ|
increases with θ13 as can be seen from the first order relation θ̃13 = θ13−sinθ23 |[εL]eµ|. Higher
order contributions do not change the trend and the allowed value of |[εL]eµ| tends to become
infinite at sin2 θ13 ≈ 0.96. No bound can be put on |[εL]eµ| in this case nor in the case that
[ϕL]eµ and δCP are allowed to vary freely from the reactor neutrino oscillation experiments.

We note at this point that the identification of the allowed regions in the (sin2 θ13, |[εL]eµ|)
plane and the (sin2 θ13, |ϵeµ|) plane in figures 4(a) and 12 for ϕ = δCP = 0. Such an identification
is expected from the relationship between the WEFT-NSI and QM-NSI parameters [13, 23]
which leads to [εL]eµ = ϵ∗eµ at first order in these NSI parameters. We also note that an
improvement on the uncertainty of the reactor flux normalization has little effect on the
constraint on |[εL]eµ| for [ϕL]eµ = δCP = 0. This is similar to the case of ϵeµ as discussed
in section 4.1.2.
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4.3.2 Constraints on right-handed NSI coupling [εR]eµ

The new interaction represented by the term of [εR]eµ is of the V +A type for the coupling
of u and d quarks. The first order survival probability reads

P WEFT-NSI
ν̄e→ν̄e

= 1−sin2
(

∆m2
31Lν

4Eν

)
sin2

(
2θ̃13

)
−
(

2
3g2

A+1
sinθ23 |[ϵR]eµ|sin([ϕR]eµ+δCP )

)
sin
(

∆m2
31Lν

2Eν

)
sin(2θ̃13)+O(ϵ2

R),

(4.13)

where θ̃13 = θ13−(3g2
A/(3g2

A+1))sinθ23 |[εR]eµ| cos([ϕR]eµ+δCP). This expression reduces to
the standard form

P WEFT-NSI
ν̄e→ν̄e

= 1−sin2
(

∆m2
31Lν

4Eν

)
sin2

(
2θ̃13

)
+O(ε2

R), (4.14)

when sin([ϕR]eµ+δCP) = 0. The situation now becomes the same to that of [εL]eµ except
for the minus sign before cos([ϕR]eµ+δCP). For [ϕR]eµ = δCP = 0, θ̃13 = θ13−(3g2

A/(3g2
A+

1))sinθ23 |[εR]eµ|, corresponding to the case of δCP = 0 and [ϕL]eµ = π for [εL]eµ. For the
same reason, the constraint on |[εR]eµ| is not possible for [ϕR]eµ = δCP = 0 and thus for the
case that both phases are marginalized over. Constraints may exist for other choices of the
phases. For instance, when δCP = 0 and [ϕR]eµ = π, θ̃13 = θ13+(3g2

A/(3g2
A+1))sinθ23 |[εR]eµ|.

The situation is similar to that of [εL]eµ when [ϕL]eµ = δCP = 0. The bound on [εR]eµ in this
case is thus a factor of ((3g2

A+1)/(3g2
A)≈ 1.21 larger than that on [εL]eµ, as can be seen from

figure 13. As to the effect of an improvement on the uncertainty of the normalization, the
situation is the same as to the case of |[εL]eµ|. The correspondence between [εL]eµ and [εR]eµ

discussed here originates from their opposite effects on the effective mixing angle as can be
seen from the relation θ̃13 = θ13+Re[L]−3g2

ARe[R]/(3g2
A+1) when sin([ϕR]eµ+δCP) = 0. The

parameter [X] is defined as [X]≡ eiδCP (sinθ23[εX ]eµ+ cosθ23[εX ]eτ ) in ref. [13].

4.3.3 Constraints on scalar NSI coupling [εS]eµ

If the effect of the new physics is of the scalar type, only [εS ]eµ term is present. The first
order survival probability can be written as

P WEFT-NSI
ν̄e→ν̄e

= 1−sin2
(

∆m2
31Lν

4Eν

)
sin2

(
2θ13−αD

me

Eν−∆

)

+sin
(

∆m2
31Lν

2Eν

)
sin(2θ13)

(
βD

me

Eν−∆

)
+O(ε2

S), (4.15)

where me is the electron mass, αD = (gS/(3g2
A+1))sinθ23 |[εS ]eµ|cos([ϕS ]eµ+δCP), βD =

(gS/(3g2
A+1)) sinθ23 |[εS ]eµ|sin([ϕS ]eµ+δCP) and ∆≡mn−mp is the neutron and proton

mass difference. For δCP = 0 and [ϕS ]eµ = 0 or π, sin([ϕS ]eµ+δCP) = 0. The survival prob-
ability reduces to

P WEFT-NSI
ν̄e→ν̄e

= 1−sin2
(

∆m2
31Lν

4Eν

)
sin2

(
2θ13−αD

me

Eν−∆

)
+O(ε2

S). (4.16)
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Figure 13. The allowed region in the (sin2 θ13, |[εR]eµ|) plane for, e.g., δCP = 0 and [ϕR]eµ = π. Details
of the analysis can be found in section 4.3.2.

Thus
θ̃13 ≈ θ13∓

gS/2
3g2

A+1
sinθ23 |[εS ]eµ|

me

Eν−∆ , (4.17)

where the − sign is for [ϕS ]eµ = δCP = 0 and the + sign for [ϕS ]eµ = π and δCP = 0. We see that
|[εS ]eµ| has to increase and decrease with θ13 in these two cases, respectively. When the two
phases are marginalized over in the analysis, the allowed regions of these two cases extend to
the left and right wings of the final allowed region as shown in figure 14(b). These constraints
are not sensitive to the neutrino flux uncertainty as for the cases of |[εL]eµ| and |[εR]eµ|.

4.3.4 Constraints on tensor NSI coupling [εT ]eµ

The situation with the tensor type interaction is similar to that with the scalar type interaction,
but the expressions are more complicated with all four coefficients αD, αP , βD and βP and
the energy dependence of me/(Eν−∆) and me/fT (Eν) all present. The form factor fT (Eν) is
from the production coefficients pT L and pT R and its explicit expression can be found in [13].
A simple analysis is not possible even for the case of [ϕT ]eµ = δCP = 0. We show in figure 2
the effect of [εT ]eµ on the shape of the survival probability for the case of [ϕT ]eµ = δCP = 0
for a typical choice of Eν = 4 MeV and |[εT ]eµ|= 0.1. The behavior of |[εT ]eµ| increasing with
sin2 θ13 is implied. The allowed regions determined by Daya Bay data are shown in figure 15
for [ϕT ]eµ = δCP = 0 and for both phases to vary freely.

4.3.5 Constraints in ([ϕX ]eµ, |[εX ]eµ|) plane

As for QM-NSI, we show in figure 16 the allowed region plots in the ([ϕX ]eµ, |[εX ]eµ|) plane
for X = S and T . As before, we take δCP = 0 and let sin2 θ13 vary freely. The corresponding
allowed regions can not be set properly for |[εL]eµ| and |[εR]eµ|. These plots can be understood
in the same way as in QM-NSI with the help of the discussion in, e.g., the subsection 4.3.3.
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Figure 14. Allowed region in the (sin2 θ13, |[εS ]eµ|) plane for [ϕS ]eµ = δCP = 0 (left) and for them
being marginalized over ([ϕS ]eµ =free and δCP =free, right). Details of the analysis can be found in
section 4.3.3.
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Figure 15. Allowed region in the (sin2 θ13, |[εT ]eµ|) plane for [ϕT ]eµ = δCP = 0 (left) and for it
being marginalized over ([ϕT ]eµ =free and δCP =free, right). Details of the analysis can be found in
section 4.3.4.
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Figure 16. Allowed region in the ([ϕX ]eµ, |[εX ]eµ|) plane marginalizing over sin2 θ13 for δCP = 0 for
X = S (left) and T (right), respectively. Details of the analysis can be found in section 4.3.5.

([ϕX ]eµ, δCP) |[εL]eµ| |[εR]eµ| |[εS ]eµ| |[εT ]eµ|
(0,0) |[εL]eµ|< 0.214 no limit |[εS ]eµ|< 0.783 |[εT ]eµ|< 0.306

(free, free) no limit no limit |[εS ]eµ|< 0.911 |[εT ]eµ|< 0.341

Table 6. 90% C.L. constraints (1 d.o.f) on the WEFT-NSI parameters |[εX ]eµ| projected from the
(sin2 θ13, |[εX ]eµ|) planes for the phases δCP = [ϕX ]eµ = 0 and being marginalized over ((δCP, [ϕX ]eµ)=
(free, free)) for X = L,R,S and T , respectively.

Also as for QM-NSI, the phases [ϕS ]eµ and [ϕT ]eµ are not constrained by the Daya Bay data
and can take values in the full range of [0,2π).

5 Summary

In this paper, we have investigated charged current non-standard neutrino interactions with
two different approaches, QM-NSI and WEFT-NSI, using the full IBD data set of Daya Bay.
The Huber-Mueller reactor neutrino flux model has been used with an enlarged 5% rate
uncertainty. The effects of CC-NSI are introduced at the quantum state level in QM-NSI,
as can be seen from eqs. (2.2) and (2.3), while for WEFT-NSI, they are encoded at the
Lagrangian level as in eq. (2.18). It turns out that the effect of the CC-NSI on the reactor
neutrino oscillation experiments depends on both the magnitude and the phase of each
CC-NSI parameter, as well as on the standard oscillation parameters. For a large number
of NSI parameters, we have first considered the effect of one NSI parameter at a time for
each approach. In the case of QM-NSI, the two situations, ϵs

eα = ϵd∗
αe and ϵs

eα ̸= ϵd∗
αe, have

been studied. For both QM-NSI and WEFT-NSI approaches, the analytical expressions of
eq. (2.12) and eq. (2.19) for the effective survival probability are used in analyses. Both
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of the effective survival probability expressiones are approximately symmetric under the
exchange of θ13 ↔π/2−2θ̃13+θ13 or θ13 ↔π/2−θ13 depending on the values of the Dirac
CP-violating phase and the NSI phases if the magnitude of the NSI parameters are small.
We focus our discussion in the small θ13 region when we explore the allowed regions in
the (sin2 θ13, |ϵ|) plane.

There is no evidence of CC-NSI found in either approach. Bounds on the magnitude of
each CC-NSI parameter have been extracted under different assumptions on the corresponding
CC-NSI phase and/or the Dirac CP-violating phase, especially for the case that these phases
are marginalized over. No bounds can be placed on the NSI phases themselves, as shown
in figures 6, 10 and 16. The CC-NSI parameters associated with the tau neutrino (e.g., ϵeτ )
play similar roles as the corresponding CC-NSI parameters with the muon neutrino (e.g.,
ϵeµ) in both approaches, thus the constraints on these parameters are similar. For ϵs

eα ̸= ϵd∗
αe

in QM-NSI, the constraints on |ϵs
eα| and

∣∣∣ϵd
αe

∣∣∣ are closely related through eq. (2.15) since
we consider one NSI parameter at a time.

For the constraints under different assumptions on the phases, better constraints have
been obtained when the phases are fixed to zero or other special values, e.g., π/2,π and/or
3π/2. We have found |ϵs

ex|< 0.013 (90% C.L.) for ϕs
ex = 3π/2, for example. In other cases,

the bounds cannot be set by the Daya Bay experiment when the phase takes such values.
For instance, |[εL]eµ| is unconstrained in the case [ϕL]eµ = π and δCP = 0. The upper bounds
usually grow enormously when the phases are treated as free parameters. Taking |ϵs

ex| as an
example, the allowed range of |ϵs

ex| increases to |ϵs
ex|< 2.02 for both ϕs

ex and δCP being allowed
to vary freely. While a much stringent constraint |ϵs

ex|< 0.0296 is found for ϕs
ex = δCP = 0. Our

constraints on the CC-NSI parameters |ϵeα| are consistent with those obtained in ref. [34] where
the special case of ϵs

eα = ϵd∗
αe and ϕeα = δCP = 0 for QM-NSI with the 5% total normalization

error included is studied with the effective survival probality valid up to second order in ϵeα.
For Daya Bay experiment, the effect of ϵee or ϵs

ee is directly related to the reactor
flux normalization. The constraints on |ϵee| or |ϵs

ee| are thus sensitive to the normalization
uncertainty when the phases are fixed at some special values. If the neutrino flux can
be accurately predicted in the future, the constraints on these parameters can be further
improved in these cases. Unlike for the case of ϵee or ϵs

ee, the non-zero parameter ϵeα or ϵ
s/d
eα

with α ̸= e usually gives rise to an effective mixing angle θ̃13 and affect the measurement of
the true value of θ13. The constraints on these parameters depend on both the systematical
and statistical uncertainties, and are not so sensitive to the normalization uncertainty. The
constraints on the WEFT-NSI parameters |[εX ]eα| with α ̸= e are not so sensitive to the
normalization uncertainty either.

In summary, the constraints on the magnitude of the QM-NSI parameters ϵee, ϵex, ϵs
ee

and ϵs
ex can reach O(0.01) with the phases set to zero or other special values, while they get

relaxed to O(1) for the phases being allowed to vary freely. For |ϵeµ| or |ϵeτ |, the constraints
can reach O(0.1) in both cases. The constraints on

∣∣∣ϵs
eµ

∣∣∣ or |ϵs
eτ | cannot be set by the Daya

Bay experiment alone when the phases are allowed to vary freely. The WEFT-NSI parameters
[ϵL]eα and [ϵR]eα are unconstrained when the phases are free, but constraints of O(0.1) can
be set for certain value of the phases. For |[εS ]eα| and |[εT ]eα| for α = µ,τ , the constraints
can reach O(0.1) whether or not the phases are fixed.
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