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a b s t r a c t 

Combinatorial drug therapies are generally more effective than monotherapies in treating viral infections. How- 

ever, it is critical for dose optimization to maximize the efficacy and minimize side effects. Although various 

strategies have been devised to accelerate the optimization process, their efficiencies were limited by the high 

noises and suboptimal reproducibility of biological assays. With conventional methods, variances among the 

replications are used to evaluate the errors of the readouts alone rather than actively participating in the opti- 

mization. Herein, we present the Regression Modeling Enabled by Monte Carlo Method (ReMEMC) algorithm 

for rapid identification of effective combinational therapies. ReMEMC transforms the sample variations into 

probability distributions of the regression coefficients and predictions. In silico simulations revealed that Re- 

MEMC outperformed conventional regression methods in benchmark problems, and demonstrated its superior 

robustness against experimental noises. Using COVID-19 as a model disease, ReMEMC successfully identified 

an optimal 3-drug combination among 10 anti-SARS-CoV-2 drug compounds within two rounds of experiments. 

The optimal combination showed 2-log and 3-log higher load reduction than non-optimized combinations and 

monotherapy, respectively. Further workflow refinement allowed identification of personalized drug combina- 

tional therapies within 5 days. The strategy may serve as an efficient and universal tool for dose combination 

optimization. 
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. Introduction 

Combinatorial drug therapy, also known as cocktail therapy, has

een widely used in the treatment of different diseases including cancers

nd infections. To maximize the efficacy and minimize potential toxic-

ty of combinatorial drug therapies, precise optimization of the dose

egimen is essential [1–4] . Various methodologies have been devised

o achieve rapid and reliable dose optimization of drug combinations

nd to expedite new drug development and repositioning [5–7] . Among

hese methods, artificial intelligence (AI) featuring model regression has

een increasingly used due to its high adaptability and requirement

f relatively little data from experiments [ 8 , 9 ]. Polynomial regression-
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ased AI methods, such as the Phenotypic Response Surface (PRS) plat-

orm, have been applied to optimize combinatorial drug therapies for

ancers [10] , infections [ 11 , 12 ], and transplant rejections [13] . Never-

heless, the efficiency of these methods is limited by the high noises and

oor reproducibility of the biological assays involved in the optimiza-

ion process, either in vitro or in vivo [14] . Conventional methods are

rone to model bias caused by such uncertainties, which may limit fur-

her translational applications. To cancel the influence of noises on the

odeling accuracy of conventional methods, it requires multiples times

ore experimental efforts. In the previous study [15] , we introduced

 projection distance-based scoring method named STRICT for eval-

ating drug efficacies and drug interactions, which showed excellent
han) . 
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obustness against experimental noises. However, the scoring algorithm

ould not be straightforwardly used to predict the optimal combinations.

To overcome these limitations, we introduced the Monte Carlo (MC)

ethod, a simulation approach via random sampling [ 16 , 17 ], into the

egression modeling process (ReMEMC). Conventional modeling meth-

ds commonly adopt the mean values of repeated measurements as the

nly information for modeling, while the errors, which represent the

ncertainties of the information, are generally not utilized. To make

aximal use of all available information generated in the experiments,

eMEMC uses both the mean values and sample standard deviations

SSDs) for modeling. The method features multiple parallel modeling

alculations. Briefly, in each calculation, a normally distributed estima-

ion of the true experimental outcome is generated to conduct dose-

esponse modeling, replacing the commonly used mean value. With nu-

erous simulations performed, the MC method provides the probabil-

ty distribution, namely the confidence interval (CI), of every coeffi-

ient in the model and every prediction of efficacy. In this way, rather

han generating a definite fixed model which real biological studies usu-

lly lack, ReMEMC maximally considers variances acquired from exper-

ments and generates a dynamic model involving such uncertainties.

n silico simulations suggested that the more informative and efficient

eMEMC outperforms conventional methods in optimizing benchmark

roblems. 

To demonstrate the usefulness of ReMEMC in optimizing combinato-

ial drug therapy for major health threats, we exploited this novel mod-

ling method to optimize combinational therapy for coronavirus disease

019 (COVID-19) caused by severe acute respiratory syndrome coro-

avirus 2 (SARS-CoV-2). To mimic the scenario of applying ReMEMC

o quickly optimize drug compounds that were available in the early

hase of an emerging disease outbreak, we purposely selected drug com-

ounds that were identified in a previous study published during the

rst year of the pandemic in which we evaluated 22 potential antiviral

rug compounds against SARS-CoV-2, including 17 small molecule drug

ompounds and 5 recombinant IFNs [18] . In addition to remdesivir,

opinavir, and chloroquine, we identified the in vitro anti-SARS-CoV-

 activity of types I and II recombinant IFNs, 25-hydroxycholesterol,

nd the sterol regulatory element-binding protein (SREBP) modula-

or AM580 [19] . Based on these findings, in this study, we selected

 small molecule drug compounds and 5 recombinant IFNs for fur-

her optimization of combinational therapy using our novel ReMEMC

lgorithm. 

. Material and methods/experiment 

.1. Virus, cell lines, and drug compounds 

SARS-CoV-2 strain HKU-001a (GenBank accession number:

T230904) was prepared as we described previously [ 18 , 20 ]. VeroE6

ATCC® CRL-1586TM ) cells were cultured in Dulbecco’s modified

agle medium (DMEM, Gibco, CA, USA) with 10% fetal bovine serum,

0 U/mL penicillin, and 50 μg/mL streptomycin. All the experiments

nvolving live SARS-CoV-2 were conducted in the Biosafety Level 3

acility at the Department of Microbiology, the University of Hong

ong, following the approved standard operating procedures as pre-

iously described [ 21 , 22 ]. The recombinant IFNs were obtained from

he following sources: Pegasys (Roche, Basel, Switzerland), Avonex

UCB, Brussels, Belgium), Rebif (EMD Serono, Inc. Rockland, MA, UA),

etaferon (Bayer Schering Pharma, Berlin, Germany), and Immukin

Boehringer Ingelheim, Ingelheim am Rhein, Germany). All other

rug compounds were purchased from MedChemExpress (Monmouth

unction, NJ, USA). 

.2. 5SARS-CoV-2 viral load reduction assay 

Viral load reduction assay was performed as described previously

ith modifications [ 18 , 23 ]. Briefly, VeroE6 cells were seeded at the
2

ensity of 2 × 104 cells/well in 96-well plates 24 h before the exper-

ment. On the following day, SARS-CoV-2 was used to infect VeroE6

ells at the MOI 0.01, then incubated at 37 °C / 5% CO2 for one

our. The infected cells were washed with PBS once and replaced

ith DMEM medium containing compound cocktails, and then incu-

ated at 37 °C / 5% CO2 for 48 h. Supernatant viral copies were

etermined by qRT-PCR. A total of 40 𝜇l of culture supernatant was

ysed with 160 𝜇l of AVL buffer. The viral RNA was subsequently ex-

racted from the mixture with the QIAamp viral RNA mini kit (Qi-

gen, Hilden, Germany). qRT-PCR was performed using the Quanti-

ova Probe RT-PCR kit (Qiagen) with a LightCycler 480 Real-Time PCR

ystem (Roche). The primers and probe sequences were targeting the

NA-dependent RNA polymerase/Helicase (RdRP/Hel) gene region of

ARS-CoV-2: Forward primer: 5 ′ CGCATACAGTCTTRCAGGCT-3 ′ ; Re-

erse primer: 5 ′ -GTGTGATGTTGAWATGACATGGTC-3 ′ ; specific probe:

 ′ -FAM TTAAGATGTGGTGCTTGCATACGTAGAC-IABkFQ-3 ′ . 

.3. Algorithms and benchmarks 

Data analysis and the algorithms of ReMEMC was realized with the

uilt-in function “lasso ” and self-written code in MATLAB©. In each in-

ependent modeling process, Lasso regression was conducted with the

andomly sampled input and output to fit a quadratic polynomial model.

he model was then used to predict the efficacy of every possible dose

ombination. For every ReMEMC model, the modeling process was re-

eated 10,000 times in parallel. For the data of the ten-drug anti-SARS-

oV-2 combinations, the whole modeling process took about 2.5 h with

 hexa-core processer. By integrating the results in all the 10,000 inde-

endent calculation, the MC method provided the probability distribu-

ion of efficacy prediction of every possible combination. The design of

xperiment (DOE) for the first round of experiment was generated ac-

ording to uniform design. Then the DOEs of subsequent rounds were

enerated by ReMEMC. 

The benchmarks were also conducted with self-written codes in

ATLAB©. The stepwise regression and Lasso regression were per-

ormed with the built-in function “stepwiselm ” and “lasso ” in MAT-

AB©. For each set of the method and benchmark condition, the op-

imization process was repeated 50 times with randomized starting

OEs to cancel the randomness of optimization results. The DOEs of

he subsequent rounds were generated by the tested algorithm as part

f the output. Each iteration contained 48 combinations. The curves in

he figures were smoothed using the built-in “smoothdata ” function in

ATLAB©. 

.4. Code and data availability 

The ReMEMC algorithm with MATLAB© implementation as well as

he SARS-CoV-2 dataset and benchmark functions is available at Github

epository https://github.com/JackW-SJTU/ReMEMC. 

. Results and discussion 

.1. Adopting Monte Carlo method in regression modeling 

When modeling drug responses for dose optimization for combina-

ional therapies, there are two critical factors that determine the effi-

iency and accuracy of the outcomes. The first factor is a proper model

hat fits the drug response curves well and the other is the cancela-

ion of model bias to the greatest extent. Previous studies have revealed

hat polynomial models, especially quadratic model integrated with an

terative feedback scheme, could be an ideal solution for mechanism-

ree modeling in optimizing combinations of 5 to 15 drugs. However,

 satisfying solution to the problem of model bias is still lacking. As

he model bias is mainly caused by the high noise rate and poor repro-

ucibility of biological experiment outcomes, a straightforward solution

s to increase the number of experiments, either by repeating the same
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xperiments to cancel the errors in experiments, or by adding more data

oints to cancel the errors in modeling. Nevertheless, this is usually not

 feasible option as it greatly increases the cost and labor-intensiveness

f the study. Particularly, the improvement in model accuracy is not

inear to the increase of the number of experiments. 

Another strategy is to increase the utility of the available data. Bi-

logical experiments, in vitro or in vivo , are usually repeated multiple

imes to reduce randomness. However, conventional regression methods

se only the mean values of the replicates for modeling. The information

nderlying the distribution of the replicates is not fully utilized. Consid-

ring an experiment with 𝑛 replicates, in most cases, the outcome 𝑌 fol-

ows a Gaussian distribution 𝑁(𝑌 , 𝜎2 ) , where 𝑌 is the ideally unbiased

utcome of the experiment. Therefore, the mean 𝑌 of the 𝑛 replicates

lso follow a Gaussian distribution of 

 ∼ 𝑁

( 

𝑌 ,
𝜎2 

𝑛 

) 

(1) 

Reversely, when 𝑌 and 𝜎2 are unknown, they can be estimated

y the sample mean 𝑌 and the sample variance 𝑠2 , as the probability
ig. 1. The Monte Carlo (MC) regression and in silico validation. (a) The schemat

enerated with the sample means and sample variances. Each set of estimations go t

onducted in parallel. Predictions from all the models jointly form the probability di

ith Lasso regression (orange) and stepwise regression (yellow) in optimizing three

enchmarks functions was set as 10. The solid lines and the translucent areas respectiv

rocesses with random initial DOE. 

3

istribution: 

𝑌 ∼ 𝑁

(
𝑌 ,

𝑠2 

𝑛 

)
(2) 

The probability distribution represents the uncertainty of estimation

f 𝑌 , which is often neglected by conventional modeling methods. In

ontrast, ReMEMC utilizes such information of the uncertainties in the

odeling process. Considering the fact that it is difficult to directly eval-

ate the effect of the uncertainties on the model and prediction, Monte

arlo simulation is adopted to solve the problem through repeated ran-

om sampling. In each simulation, a random estimation of 𝑌 is gener-

ted for every combination with the distribution of Eq. 2 , composing the

ependent variable in modeling. The drug doses as the independent vari-

bles are also added with normally distributed noises, representing the

rrors in performing the experiments. Then, the regression is performed

ith these randomly sampled values, resulting in a set of coefficients of

he variables in the model. By repeating the random sampling and re-

ression process numerous times, results from all the simulations jointly

ake up the probability distributions of the coefficients and predictions

 Fig. 1 a). 
ic of the MC regression. Normally distributed estimations of the true values are 

hrough an independent regression process, with tens of thousands regressions 

stribution at every input value. (b) The ReMEMC method (blue) was compared 

 benchmark functions at different levels of synthetic noise. Dimension of the 

ely indicate the median performance and the 50% CI of 50 parallel optimization 
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Of note, conventional methods are also able to calculate CIs for coef-

cients and predictions. However, the implications of CIs are different

etween conventional methods and ReMEMC. As conventional meth-

ds use definite values (the averages of replicates) for modeling, CIs

epresent only the magnitude of the model bias. For ReMEMC, CIs are

etermined not only by the biases in modeling but also the variance

f every input, therefore making it more practical and reliable for pre-

iction. Therefore, as a modeling algorithm, our method does not re-

uire any given function of dose-effect relationship. It generated a se-

ies of polynomial functions as “sampling ” to depict the potential dose-

ffect relationships, based on a very limited available experimental data

et. 

Conventional methods simply select the best predicted combinations

ithout further interrogating CIs. With the additional information of

Is, there are two distinct strategies to select combinations for the next

teration of experiments. The first strategy is called “exploitation ” which

s to choose the ascertained best predictions (minimal CI). The second

trategy is called “exploration ” which is to choose combinations with

reat potentials yet also with higher uncertainties (large CIs). Explo-

ation may result in more effective combinations, but also could possi-

ly end up with waste of efforts. Therefore, an upper confidence bound

UCB) acquisition function is adopted to balance the weights of the me-

ian and the CI for maximal optimization efficiency, denoted as (assum-

ng the optimal efficacy refers to the maximal prediction) 

𝑈𝐶 𝐵 = 𝑀( 𝑥) − 𝑘𝐶 𝐼50 ( 𝑥) = 𝑀( 𝑥) − 𝑘||𝑃75 ( 𝑥) − 𝑃25 ( 𝑥) || (3) 

here 𝑀 , 𝑃25 , 𝑃75 are respectively the median, 25th percentile and 75th

ercentile of the MC predictions; k is an adjustable parameter to adjust

he weights. In this study, k was set 1 to give the median and the CI

qual weight. Combinations with the highest UCB are selected as the

OE for the next iteration. The iteration terminated when no combina-

ion was predicted to have larger UCB value than the current largest one.

lthough this criterion design does not guarantee the optimal combina-

ion identified is the global optimum, it maximizes the cost-effectiveness

y quickly identifying an effective drug combination with minimal al-

owed experimental materials. As a matter of fact, one cannot justify

hether the optimal combination identified is the real global optimum

nless all possibilities are enumeratively tested. 

.2. In silico validation of the Monte Carlo regression 

To testify the performance of ReMEMC in drug combination opti-

ization, we adopted three benchmark functions to compare its opti-

ization efficiency in silico with two most commonly used regression

ethods, stepwise regression [24] and Lasso regression [25] . The Ack-

ey function [26] and Rosenbrock function [27] are two classic evalu-

tion functions for optimization algorithms, representing mono-modal

nd multi-modal problems, respectively. The Hill function is adapted

rom the Hill equation that characterizes the combinatorial drug re-

ponse curves, which is expected to be more comparable to real-world

roblems of combinatorial drug optimization [28] . The details of these

enchmark functions are listed in Table S1. 

Of note, to maximally simulate real-world dose optimization prob-

ems, we designed the benchmark process different from regular bench-

arks. Since the typical application of optimization algorithms is in sil-

co , for example identifying the maximum of a function which cannot

e directly obtained with derivative, the benchmarks usually run the al-

orithms for thousands of iterations, with only one combination tested

n each iteration. We herein reduced the number of iterations to 5, and

ncluded 48 combinations in each iteration, which are about the mag-

itude of typical biological experiments. 

The results of the in silico simulations showed that ReMEMC outper-

ormed stepwise regression and Lasso regression on the three benchmark

unctions in most scenarios of dimensions and noise levels ( Figs. 1 b, S1,

2). Notably, the optimization performance of ReMEMC was robust de-

pite the increase of synthetic noises level, while stepwise regression and
4

asso regression were both negatively affected. These results highlighted

eMEMC as a promising method for dose optimization of combinatorial

rug therapies. 

.3. Optimization of combinations against SARS-CoV-2 from a ten-drug 

ibrary 

To further demonstrate its ability to solve practical problems, Re-

EMC was exploited for optimizing a ten-drug combination against

ARS-CoV-2. In our previous study, the ten compounds identified to

xhibit potent anti-SARS-CoV-2 activity were individually tested, but

heir interactions and optimal dose ratios in combinational therapies re-

ained unknown. If the dose of every drug was chosen from 3 levels (0,

ow, and high), there are about 59,000 possible combinations, which is

eyond the capability of most research laboratories using conventional

rial-and-error methods, and with one more dose level added, the num-

er will dramatically increase to over 1000,000. Moreover, when the

iral load was inhibited to about 107 copies/ml, the data became highly

oised. The standard deviations of repeated experiments reached about

0% on average. These characteristics made the optimization of anti-

ARS-CoV-2 drug combinations a perfect scenario to apply our novel

eMEMC algorithm. 

In the first iteration, three doses were selected for each drug (0, low,

nd median, see Table S2). For non-IFN compounds, high doses were de-

ermined as 1/20 of their corresponding CC50 concentrations, and low

oses were equivalent to 1/5 of the high doses. For IFN compounds,

igh doses were determined based on the observed 100-fold viral load

eduction concentration compared to PBS control, and low doses were

quivalent to 1/10 of the high doses. The DOE containing 36 experi-

ents for the first iteration was generated according to uniform design

o as to ensure that the combinations were evenly distributed in the

ombinatorial space. The concept of accumulative dose was induced to

ompare the doses of the drug combinations, which is directly related

o toxicity. Since the therapeutic potencies of the drugs are different,

oses within a combination cannot be simply summed up to compare

he accumulative dose. We therefore normalized the dose of each drug

n a logarithmic way, where the low dose of each drug was set as 1,

nd for each dilution fold increased, the normalized dose + 1. The dilu-

ion folds were determined by single-drug response curves, which were

etermined in the previous study [20] . Though this accumulative dose

ight not be a perfect evaluation of combinatorial drug toxicity, it pro-

ided an objective and logical solution to conduct the optimization. Of

ote, the algorithm is compatible with any quantification of toxicity as

ne of the optimization targets. 

The 36 combinations were tested on VeroE6 cells against SARS-CoV-

. The results were measured by qRT-PCR with a specific probe rec-

gnizing viral RNA. The viral loads of the 36 combinations varied from

.2 × 105 to 8.2 × 106 copies/ml ( Fig. 2 a), corresponding to about 30,00-

o 30,000-fold viral load reduction. ReMEMC was then used to build an

C model with these results. In each simulation of the MC method, an

nteraction model (linear terms + interaction terms) was regressed. To-

ally 10,000 independent simulations were conducted to generate the

robability distribution of the coefficients (Fig. S3). The prediction of

he optimal combinations was made afterward, and combinations to be

ested in the next iteration were selected using the previously introduced

CB function. Additional criteria applied to the selection included (1)

he number of drugs in the combination was limited to no more than 4

n consideration of clinical practice to avoid side effects and/or antag-

nisms, and (2) no more than one IFN drug should be included in each

ombination to avoid over-activation of the host immune response [29] .

s a result, eight drugs (AM580, Intron A, Avonex, Rebif, Betaferon, Im-

unkin, chloroquine, and remdesivir) were selected to compose totally

6 ternary and quaternary combinations for the next iterations. More-

ver, as the number of drugs reduced in the combinations, a higher dose

ption was added for every drug. 
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Fig. 2. The efficacy and accumulative doses of the tested combinations. (a) The 36 combinations in the 1st iteration. (b) The 36 combinations in the 2nd 

iteration. The bar plots refer to the logarithm transformed viral loads. The red lines refer to the sum of the logarithm transformed doses of all the drugs in every 

combination. The sequences of the combinations were rearranged by the efficacy from high to low. The optimal combination was identified in the 2nd iteration, 

marked as #1 in (b), which was composed of AM580, Betaferon, and chloroquine. 
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These combinations were tested with the same assays. The viral loads

aried from 1.3 × 105 to 6.4 × 108 copies/ml, corresponding to about 24-

o 110,000-fold viral load reduction ( Fig. 2 b). The results were then used

o regress a new MC model ( Fig. 3 ). Prediction of optimal combinations

as performed as before with the same criterions. However, none of the

op combinations selected by the UCB function was predicted to have

etter efficacy (median prediction) than the best combination tested in

nd iteration. This indicated the endpoint of the optimization process

s there was no combination requiring further exploration. Therefore,

he best combination in the 2nd iteration was the optimal combination

dentified by ReMEMC, which was composed of 5.1 μM AM580, 300

I/mL Betaferon, and 10 μM chloroquine. 

.4. Response curves of the optimal ternary combination 

Apart from prediction of discrete doses for combinational therapies,

esponse surfaces can also be generated from the MC model, which helps

o take an intuitive look of the interactions in the combinations. Thus,

 series of response surfaces of the optimal ternary combination have
ig. 3. The probability distributions of the coefficients in the ReMEMC model. 

ively indicate the median, 50% CI, and 90% CI of the probability distribution. The sm

odeling was also conducted with Lasso regression. The colored dots indicate the coeffi

odel (red) was built. 

5

een plotted ( Fig. 4 a-c). Different from regular response surfaces, the

C model additionally provided the CI for each point on the surfaces to

how the uncertainty of prediction. 

Some clues of the interaction profiles can be found from the response

urfaces. The anti-SARS-CoV-2 activity of AM580 alone is not obvious.

hen Betaferon is absent or at low concentration, AM580 showed lit-

le anti-SARS-CoV-2 effect ( Fig. 4 a). This is consistent with our previ-

us finding that AM580 did not show efficacy until its dose was at or

bove 20 μM, [18] . In the present study, the maximal concentration was

nly 10 μM. However, strong synergy between Betaferon and AM580

ould be observed ( Fig. 4 a). When Betaferon was absent, AM580 itself

id not show obvious anti-viral effect, and neither did Betaferon with-

ut AM580. However, when treated with Betaferon and AM580 jointly,

he viral load decreased dramatically. Additivity was observed between

M580 and chloroquine ( Fig. 4 a and 4 b), as the surfaces were close

o planes. In addition, the dose of AM580 unexpectedly changed the

hape of the response surface of Betaferon and chloroquine, suggesting

hat AM580 might be able to induce the synergy of the other two drugs

n the ternary combination ( Fig. 4 c). This explained why AM580 was
For each coefficient, the red horizontal line, blue box, and the whiskers respec- 

all light gray scatters are considered as outliers. For comparison, conventional 

cient values when a linear (green), interaction (blue), or quadratic polynomial 
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Fig. 4. Response surfaces of the optimal ternary combination. For visualization, the dose of one drug in the combination was fixed in each row of subplots: (a) 

Chloroquine; (b) Betaferon; (c) AM580. Three different fix doses were taken for each drug (low, median, and high, details shown in Table S2). The curved surfaces 

indicate the change in viral load under the change of the other two drugs. The medians of the MC predictions are shown as the colored surfaces, while the light gray 

translucent surfaces indicate the 50% CIs. 

s  

v  

b  

n  

a  

i

3

t

 

a  

a  

h  

r  

c  

m  

p

 

f  

t  

a  

m  

u  

c  

w  

(  

a  

m  

C  

t  

o  

c  

o  

d  

i  

t  

x

 

r  
elected in the optimal combination. These response surfaces also re-

ealed that increasing the dose of the three drugs in the optimal com-

ination would likely further enhance its antiviral effects. If the combi-

ation was applied in clinical trials, these findings might indicate that

n increased dosage could be an option for treating patients with severe

nfection as long as side effects were tolerable. 

.5. Proposed workflow for rapid identification of combinatorial drug 

herapies in personalized precision medicine 

Through the in silico simulations and in vitro optimization of the

nti-SARS-CoV-2 combination, ReMEMC has demonstrated its efficiency

nd reliability in optimizing drug combinations. However, because of

eterogeneity of individual patients and pathogens, drug combination

equires personalized optimization to achieve maximal treatment effi-

iency. Even for the same disease, the optimal treatment of one patient

ay be less effective or more toxic to another due to the mutation of

athogens and differences in physical conditions. 

The efficiency in screening and optimizing combinational therapies

or individualized patients quickly is the key to its successful applica-
6

ion in personalized medicine. In this study, the whole experimental

nd data analysis process of every iteration took about 78 h at mini-

um with regular scheduling, as it was the first time the strategy was

sed for optimizing combinational therapy with a large number of drug

ompounds ( Fig. 5 a). However, by simply rescheduling the processes

ith multi-tasking, the time for each iteration can be shortened to 54 h

 Fig. 5 b). Considering that it generally takes 2 ∼ 3 iteration on aver-

ge, the total time required could be less than 5 days. Thus, the opti-

ized drug choices and dosages could become available after 5 days for

OVID-19 patients who fail to improve with standard treatment pro-

ocols initially which would be shorter than the median duration from

nset of symptoms to ICU admission (9.5 days) [30] . The time window

ould be further shortened if the incubation time could be reduced with-

ut affecting the drug reactions. The schedule may also vary for treating

ifferent diseases and using different disease models. For example, the

ncubation time of bacterial infections can be as short as 12 h [15] ; 24

o 48 h for cancer cells [31] ; and 5 to 7 days for mini patient-derived

enograft (miniPDX) [32] . 

Therefore, the implementation of the novel MC regression algo-

ithm, along with advances in drug screening technologies, signifies the
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Fig. 5. The timeline of the optimization strategy for anti-SARS-CoV-2 combinatorial drugs. (a) Regular scheduling takes about 78 h for each iteration of 

experiments and data analysis, which requires about 1 ∼ 2 skilled technicians and 1 data analyst. (b) An optimized multi-task scheduling reduces the time of each 

iteration to 54 h, with just 1 ∼ 2 more technicians required. Ideally the optimization process finishes within 2 ∼ 3 iterations, which takes 5 ∼ 7 days immediately 

after the separation of viral sample. 
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ealization of individualized combinatorial drug therapy, with

ynamically-optimized drug repurposing and novel combination

herapy development. 

. Conclusion 

In this study, we exploited our novel ReMEMC algorithm to rapidly

ptimize combinational therapy for COVID-19. The aim of optimization

as set to minimize the SARS-CoV-2 viral load while controlling the ac-

umulative dose of the combination in a reasonable range that would

ot cause major adverse effects. Within just two rounds of experiments

nd a total of 72 combinations tested, the ReMEMC algorithm identi-

ed the optimal combination. The ternary combination managed to re-

uce the viral load to 1.3 ± 0.8 × 105 , which is about 100,000-fold less

han the control group. The novel ternary drug combination was com-

osed of Betaferon (recombinant IFN- 𝛽1b), AM580, and chloroquine.

e have previously identified Betaferon as the most potent recombi-

ant IFN against SARS-CoV-2 and MERS-CoV in vitro [ 18 , 33 ]. Treat-

ent of MERS-CoV-infected common marmosets with Betaferon signif-

cantly improved the clinical, virological, and histopathological param-

ters [ 33 , 34 ]. AM580 is a selective retinoic acid receptor- 𝛼 agonist that

e recently found to exhibit broad-spectrum antiviral activities against

oronaviruses and other emerging and circulating viruses via inhibition

f SREBP [ 19 , 35 ]. Our data predicted that the combination of these

hree drugs which target different steps in the viral replication cycle

hould provide synergistic or additive effects against SARS-CoV-2. 

The optimization of the anti-SARS-CoV-2 drug combination demon-

trated the capability of the ReMEMC algorithm dealing with highly

oised data. The modeling process of ReMEMC is phenotype-based and

echanism-free, designed for maximal optimization efficiency of drug

ombinations in an iterative way. Compared with conventional model-

ng and other artificial intelligence approaches, ReMEMC requires min-

mal experimental efforts, and maximally exploits the information from

iological experiments. 

Our novel optimization strategy could potentially serve as a univer-

al and tool for rapid and reliable optimization of drug doses in combi-

ational therapies, and help to realize personalized precision medicine.
7

ur proposed workflow of the strategy allows individualized optimiza-

ion of combinational therapies within 5 days. This would be clinically

elevant even for acute infections like COVID-19 and more so for chronic

nfections like tuberculosis and HIV infection which require prolonged

se of multi-drug regimens. 
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