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Abstract 31 

Despite a half-century of advancements, global MRI accessibility remains limited and uneven, 32 

hindering its full potential in healthcare. Initially, MRI development focused on low fields around 33 

0.05 Tesla, but progress halted after the introduction of the 1.5 Tesla whole-body superconducting 34 

scanner in 1983. Using a permanent 0.05 Tesla magnet and deep learning for electromagnetic 35 

interference elimination, we developed a whole-body scanner that operates using a standard AC 36 

wall power outlet and without radiofrequency and magnetic shielding. We demonstrated its wide-37 

ranging applicability for imaging various anatomical structures. Furthermore, we developed 3D 38 

deep learning reconstruction to boost image quality by harnessing extensive high-field MRI data. 39 

These advances pave the way for affordable deep learning-powered ultra-low-field MRI scanners, 40 

addressing unmet clinical needs in diverse healthcare settings worldwide. 41 

 42 

 43 

  44 
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Introduction 45 

The seminal development of magnetic resonance imaging (MRI) by Paul C. Lauterbur and Sir Peter 46 

Mansfield five decades ago revolutionized modern medicine (1, 2).  MRI is now widely regarded 47 

as one of the most important inventions for healthcare (3). Over 150 million MRI examinations are 48 

performed worldwide each year (4), with applications ranging from diagnosing and prognosing 49 

diseases such as tumors and strokes, to evaluating injuries in the nervous, hepatobiliary, pancreatic, 50 

and musculoskeletal systems, and to guidance of interventional procedures. MRI holds inherent 51 

advantages over other imaging modalities, specifically, it is non-ionizing, non-invasive, inherently 52 

three-dimensional, quantitative, and multi-parametric (5). These qualities not only make MRI 53 

superior to other imaging modalities but also position it as a promising platform for future artificial 54 

intelligence-driven medical diagnoses.  55 

Nonetheless, MRI accessibility remains low and highly uneven worldwide. As per the 2022 56 

Organisation for Economic Co-operation and Development (OECD) statistics, there are around 57 

70,000 MRI scanner installations across the globe (6). The distribution of these scanners is 58 

primarily concentrated in developed nations, with limited availability in low and middle-income 59 

countries. For instance, Africa has a mere 0.7 MRI scanners per million residents (7), in stark 60 

contrast to the United States and Japan, which have 40 and 55 scanners per million inhabitants, 61 

respectively, presenting an exemplary case of ever-expanding global healthcare disparity (8). This 62 

scenario primarily stems from the considerable costs associated with the procurement, installation, 63 

maintenance, and operation of existing standard high-field superconducting MRI scanners (1.5 T 64 

and 3 T). These clinical MRI scanners are predominantly located in highly specialized radiology 65 

departments, large centralized imaging centers, and often situated on the ground floors of hospitals 66 

and clinics and with magnetic shielding. As a result, MRI scanners are mostly unavailable in trauma 67 

centers, acute care facilities, surgery suites, pediatric clinics, and community clinics even in 68 

developed countries. Moreover, these scanners prevent external electromagnetic interference 69 

(EMI) through the passive use of bulky and fully enclosed radiofrequency (RF) shielded rooms, 70 
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thus posing further hardware costs and compromising their mobility and patient-friendliness.  71 

Recently, there have been intensive efforts to develop low-cost MRI scanners for brain 72 

imaging at ultra-low-field (ULF) strengths (<0.1 T) (9-14). Studies have shown that key 73 

neuroimaging protocols can be successfully implemented on ULF scanners, providing valuable 74 

information for diagnosing brain lesions like tumor and stroke (12, 15, 16). The need for RF 75 

shielded rooms is also being challenged by active detection and retrospective removal of 76 

environmental EMI signals using analytical and deep learning approaches (12, 17, 18), offering the 77 

promise of shielding-free, thus portable and more patient-friendly MRI. Recent studies have 78 

highlighted the potential of such brain ULF scanners for point-of-care applications in intensive care 79 

units and COVID-19 wards (15, 16, 19). Concurrently, deep learning advances offer exceptional 80 

capabilities for multi-dimensional feature extraction (20, 21), presenting approaches to address the 81 

low magnetic resonance (MR) signal-to-noise ratio (SNR) inherent to ULF. For example, deep 82 

learning superresolution strategies have been recently pursued for brain ULF MRI to suppress 83 

image noise and boost resolution by leveraging the homogeneous brain structures and image 84 

contrasts available in human brain high-field MRI data (22, 23). However, these developments 85 

have been confined to the imaging of the brain (9-14) and extremities (24). To fully harness the 86 

potential of ULF MRI for accessible healthcare, it is imperative to develop ULF MRI technologies, 87 

including deep learning techniques, for imaging all organs at the whole-body level.  88 

In this study, we present the development of a low-cost, low-power, and computing-driven 89 

shielding-free ULF MRI scanner for whole-body imaging. It features a homogeneous 0.05 T 90 

permanent magnet and linear imaging gradients, enabling us to implement ULF MRI protocols by 91 

building upon the methodologies developed for high-field MRI over the past five decades. To 92 

achieve robust EMI elimination for shielding-free scanning, we deployed a method to directly 93 

predict EMI-free MR signals via deep learning (25). We demonstrated the wide-ranging 94 

applicability of this scanner for imaging various anatomical structures, including brain, spine, 95 

abdomen, lung, extremity, and heart. Furthermore, we demonstrated the promise of deep learning 96 
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3D image formation on this whole-body ULF MRI platform by learning from large-scale high-field 97 

MRI data, using a method we developed (26). 98 

 99 

 100 

Results 101 

Shielding-free 0.05 Tesla whole-body MRI scanner design 102 

We demonstrated the feasibility of a cost-effective MRI technology by designing and prototyping 103 

a whole-body MRI scanner that operates on a standard AC wall power outlet (single-phase 220V 104 

20A) without any RF or magnetic shielding cages (Fig. 1). The system utilized a compact 0.05 T 105 

permanent neodymium ferrite boron (NdFeB) magnet with a double-plate structure (Fig. 1A). Key 106 

magnet components included yokes, NdFeB plates, poles, anti-eddy current plates, and shimming 107 

rings (Fig. 1B). It generated a 0.05 T field with inhomogeneity <10,000 ppm peak-to-peak over an 108 

oblate ellipsoid volume of diameter 40 cm and height 38 cm. After passive shimming, this 109 

inhomogeneity was reduced to <200 ppm peak-to-peak. The 5 Gauss fringe field was small, within 110 

104 cm, 114 cm, and 104 cm in X, Y, and Z directions from magnet center. Here, we used standard 111 

and low-cost off-the-shelf electronics for simplicity, including console and gradient amplifier. For 112 

quantity production, we estimate its hardware material costs to be ~USD 22K mainly for the 113 

magnet, gradient and RF, and console subsystems (Table S1). 114 

The scanner required no RF shielding cages. To robustly address the EMI from both 115 

external environments and internal low-cost electronics during scanning, we deployed active 116 

sensing and deep learning to directly predict EMI-free MR signals. Ten small EMI sensing coils 117 

were positioned around the scanner and inside the electronic cabinet to simultaneously acquire 118 

radiative EMI signals during scanning (Fig. 1A). We developed and implemented a method termed 119 

deep learning direct signal prediction (Deep-DSP) (25) (Fig. 1C and Fig. S1).  In brief, both the 120 

MRI receive coil and EMI sensing coils sampled data within two windows - one for MR signal 121 

acquisition and the other for EMI signal characterization data acquisition. No MR signal was 122 
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present during EMI signal characterization window. Using the synthetic EMI-contaminated MRI 123 

data and EMI sensing coil data acquired during the EMI signal characterization window, a residual 124 

U-Net model was trained to predict EMI-free MR signal from signals acquired by both types of 125 

coils. The trained model was then used to predict EMI-free MR signal from data acquired during 126 

the MR signal acquisition window. This Deep-DSP strategy has been shown to yield superior 127 

performance (25) compared to all existing EMI reduction methods recently developed for brain 128 

ULF MRI (12, 17, 18).  It is worth noting that, in practice, the EMI signal characterization window 129 

is not an absolute requirement for Deep-DSP (25). 130 

 131 

Whole-body imaging at 0.05 Tesla 132 

Over the past few decades, extensive research in high-field superconducting MRI has 133 

resulted in the development of a wide range of MRI contrasts and clinical protocols that enable the 134 

investigation of various organ structures and physiological abnormalities associated with different 135 

pathologies (27).  The commonly used MRI protocols are predominately based on the T1-weighted 136 

(T1W), T2-weighted (T2W), and diffusion-weighted (DW) contrasts. They are often acquired with 137 

gradient-recalled-echo (GRE), fast-spin-echo (FSE), balanced steady-state free procession 138 

(bSSFP), or echo-planar-imaging (EPI) pulse sequences. We implemented these imaging 139 

sequences, as well as the 3D stack-of-star (SoS) (28) radial sampling that is less sensitive to 140 

respiratory body motions, by careful calibration of hardware imperfections, such as field 141 

inhomogeneity and gradient eddy currents/delays. We optimized their contrasts for brain, spine, 142 

abdomen, lung, extremity, and heart using phantoms and volunteers. For each protocol, scan time 143 

was kept at 8 min or less. In general, image resolution was set to be ~2x2x8 mm3 (~2 mm in-plane 144 

resolution and 8 mm slice thickness) by acquisition and 1x1x4 mm3 by reconstruction for display, 145 

unless stated otherwise. Image reconstruction was performed here using traditional Fourier 146 

transform based methods, including filtered backprojection reconstruction.  All protocol details for 147 

various anatomical structures and contrasts are summarized in Table S2. The total AC power 148 
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consumption was under 1800W while scanning for all protocols and around 300W when not 149 

scanning.  150 

We performed 0.05 T imaging in 30 healthy volunteers (23 to 77 years old). Typical brain 151 

axial T1W, T2W, and FLAIR-like images are shown in Fig. 2A, delineating various brain tissues 152 

such as grey matter, white matter, and cerebrospinal fluid (CSF). They were acquired with cartesian 153 

3D GRE, long-TR 3D FSE, and short-TR 3D FSE sequences, respectively. Figs.  2B and 2C show 154 

the typical T1W and T2W C-spine and L-spine results. They were all acquired with cartesian 3D 155 

FSE sequences.  Intervertebral disk and body, together with spinal cord and CSF inside spinal canal, 156 

can be identified. Fig. S2 displays the brain and spine images from Fig. 2 with and without EMI 157 

elimination. Deep-DSP fully removed EMI signals. Without Deep-DSP, image contents were 158 

completely obscured by EMI signals. Moreover, recently developed EMI removal methods, deep 159 

learning CNN (12, 18) and analytical external dynamic interference estimation and removal or 160 

EDITER (17), failed to effectively remove these intense EMI signals. These results demonstrated 161 

the robust ability of Deep-DSP in suppressing very strong EMI signals and enabling shielding-free 162 

0.05 T whole-body imaging.  163 

Figs. 3A and 3B display the typical abdominal T1W, T2W, and DWI images. They were 164 

acquired using free-breathing 3D SoS GRE, 3D SoS FSE, and cartesian 2D EPI DWI sequences, 165 

respectively. Major abdominal structures such as the liver, large hepatic vessels, kidneys, spleen, 166 

pancreas, stomach, spine, and muscle as well as subcutaneous and visceral fat can be readily seen 167 

in these images. Fig. 3C shows the abdominal 3D bSSFP images. The contrast of these bSSFP 168 

images varied greatly with the flip angle, as expected, and image SNR was relatively high because 169 

the intrinsic bSSFP signal is mainly related to T2/T1 while tissue T1 relaxation times are generally 170 

much shorter at ULF (12, 29, 30). Fig. 3D displays the typical pelvis coronal T1W and T2W images 171 

from a young male volunteer, in which normal prostate substructures can be distinguished.  172 

Fig. 4A displays the lung images. Axial bSSFP images were acquired during free breathing 173 

using 3D bSSFP sequence (with T2/T1 weighting). Free-breathing axial T2W images were 174 
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obtained with 3D SoS FSE sequence. Maximum intensity projection (MIP) images are also 175 

presented. Pulmonary vessels can be observed in the bSSFP images, while the parenchyma signal 176 

is visible in the T2W images.  To demonstrate musculoskeletal imaging, the knee was scanned. 177 

Fig. 4B. shows the sagittal knee T1W and T2W images acquired using cartesian 3D GRE and FSE 178 

sequences. Various knee structures, such as the patella, femoral and tibial articular cartilage, and 179 

lateral and medial meniscus of the posterior horn, can be identified in these images.  180 

Fig. 5 presents the free-breathing cardiac cine images and time-of-flight (TOF) magnetic 181 

resonance angiography (MRA) from healthy volunteers. Short-axis bright-blood cine was acquired 182 

using ECG-triggered 3D segmented bSSFP sequence from a healthy young volunteer (Fig. 5A). 183 

Left ventricle and myocardium can be delineated, and papillary muscle is also visible. As shown 184 

in Movie S1, the left and right ventricular volumes changed periodically during the cardiac cycle. 185 

The estimated volumes were derived from the middle 3 consecutive slices (Movie S2). The left 186 

ventricle (LV) ejection fraction was estimated to be ~60% from the LV blood cross-sectional areas, 187 

which was largely consistent with literature value (31).  Fig. 5B and Movies S3 to S5 present the 188 

neck TOF MRA acquired using a 2D flow-compensated GRE sequence. A total of 34 slices with 4 189 

mm thickness were obtained, covering 136 mm in the head/foot direction. With venous blood 190 

saturation, major carotid arteries can be clearly observable, including the left and right common 191 

carotid arteries, external and internal carotid arteries, as well as their bifurcations. With arterial 192 

blood saturation, major veins such as jugular veins can be readily seen.   193 

 194 

Utilizing deep learning for enhanced image formation at 0.05 Tesla 195 

MR signal at 0.05 T is several orders of magnitude weaker than at 3 T, the standard high-field 196 

strength, due to its proportionality to field strength squared (B0
2) (32), causing high image noise 197 

and poor resolution in ULF MRI.  To overcome this challenge, we turned to computing and devised 198 

deep learning-based reconstruction methods for ULF MRI image formation that are driven by the 199 

large-scale high-field MRI data (23, 26). We designed a partial Fourier super-resolution (PF-SR) 200 
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method that integrates image reconstruction and super-resolution (Fig. S3) (26). PF-SR model, 201 

consisting of multi-scale feature extraction, spatial attention, and reconstruction functions, was 202 

experimentally validated by comparing 0.055 T brain images to 3 T images from the same subjects 203 

(26). In this study, we demonstrated PF-SR reconstruction for whole-body MRI at 0.05 T. The data 204 

acquisitions typically involved 3D encoding with k-space partial Fourier sampling. See Tables S3 205 

to S5 for the data acquisition, model training, and image reconstruction details. By learning the 206 

relatively homogeneous human anatomical structures and contrasts readily available in the high-207 

field MRI datasets, PF-SR reconstruction approach advanced the whole-body 0.05 T image quality 208 

by effectively suppressing artifacts and noise, and increasing spatial resolution.  209 

 Fig. 6A and Movies S6 and S7 show the brain T1W and T2W images reconstructed using 210 

the conventional Fourier method (low resolution LR) and deep learning PF-SR method 211 

(superresolution SR), alongside high-resolution 3 T images obtained from a healthy volunteer. 0.05 212 

T T1W and T2W data were acquired with isotropic 3 mm resolution using 3DFSE sequence with 213 

and without inversion recovery preparation, and scan time 5.0 and 6.2 mins, respectively.  PF-SR 214 

method produced isotropic 1 mm resolution, and led to substantially improved 0.05 T image quality 215 

in terms of clarity. As confirmed by the 3 T results, numerous fine neuroanatomical structures were 216 

restored in the PF-SR images. Moreover, various brain anatomical structures appeared 217 

complementary in contrast between T1W and T2W images, as expected.  Figs. 6B and 6C present 218 

the typical T1W and T2W results for the C-spine and L-spine, respectively. Once again, PF-SR 219 

method enhanced the image quality, allowing improved visualization of structural details 220 

concerning the intervertebral body and disc, spinal cord, and CSF. These brain and spine results 221 

were consistent with the testing results using synthetic datasets (Figs. S4 and S5, and Movies S8 222 

and S9). 223 

 Fig. 7A presents the results for abdominal imaging. With PF-SR reconstruction, various 224 

structural details, such as vessels within the liver, kidneys, stomach, pancreas, spleen, and spine, 225 

could be easily identified and delineated. Again, these anatomical structures appeared 226 
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complementary in contrast between T1W and T2W images, as expected. Fig. 7B and Movie S10 227 

show the knee images from a healthy volunteer. PF-SR enabled clearer delineation of key knee 228 

structures, including the patella, articular cartilage, and meniscus. Overall, these initial PF-SR 229 

results indicate the potential and prowess of deep learning PF-SR image reconstruction in 230 

advancing ULF MRI of various anatomical structures.  231 

 232 

 233 

Discussion 234 

We aim to address a critical resource challenge in healthcare - the limited and scarce access to MRI. 235 

Despite over half a century of technology development since the seminal paper published by Paul 236 

Lauterbur in 1973 (1), globally, clinical MRI procedures remain mostly unattainable for over two-237 

thirds of the world's population (6). Historically, the development of MRI technology started at 238 

very low fields, with the earliest superconducting or resistive whole-body magnets operating at a 239 

field strength of around 0.05 T (33, 34). The first commercial systems, introduced in the early 240 

1980s, reached ~0.5 T. However, the progress in low-field MRI development was halted with the 241 

introduction of the first whole-body 1.5 T superconducting scanner by General Electric in 1983 242 

(14). In this study, we revisited 0.05 T whole-body MRI by reducing traditional MRI hardware 243 

requirements and harnessing computing power as well as extensive physics and engineering 244 

expertise gained over several decades. We developed a low-cost, patient-centric whole-body MRI 245 

scanner based on a permanent 0.05 T magnet that operates on a standard AC wall power outlet, 246 

without the need for RF or magnetic shielding. This scanner is compact and potentially mobile. It 247 

can be manufactured, maintained, and operated at a low cost. We experimentally demonstrated the 248 

general utility of such a shielding-free ULF scanner for imaging various human anatomical 249 

structures at whole-body level, with acceptable scan time (≤8 min per protocol) even in the 250 

presence of strong EMI. Moreover, we demonstrated the effectiveness of 3D deep learning image 251 
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formation in advancing whole-body ULF image quality by leveraging extensive high-field whole-252 

body MRI datasets. 253 

The whole-body ULF MRI scanner demonstrated in this study has the potential to 254 

complement existing high-performance high-field clinical MRI, especially in a point-of-care 255 

manner. By providing a more affordable and accessible option, whole-body ULF MRI can help 256 

expand the availability of MRI scans. ULF MRI offer several distinct advantages that make it an 257 

attractive option for patient comfort and safety (12, 35-37). These include an open scanning 258 

environment for reduced claustrophobic effect (38, 39), less acoustic noise during scanning for 259 

minimizing its potentially adverse effect (12, 40, 41), low sensitivity to metallic implants, less 260 

image susceptibility artifacts at air/tissue interfaces, and an extremely low RF specific absorption 261 

rate (SAR) (12, 35-37). Moreover, imaging at ULF is attractive because tissues typically exhibit 262 

dramatically shorter T1 and longer T2 and T2* at ULF (12, 29, 30). This enables more time-263 

efficient data acquisition protocols due to faster longitudinal magnetization recovery and slower 264 

transverse magnetization decay, allowing for easy adaptation of SNR efficient 3D acquisitions, as 265 

shown in most protocols in this study. 266 

Additional studies will be essential not only for advancing ULF MRI technology but also 267 

for evaluating its clinical efficacy. Recent studies by our group and others, utilizing dedicated 0.055 268 

T and 0.064 T brain ULF MRI scanners, have demonstrated their point-of-care potential in 269 

assessing conditions such as ischemic stroke, hemorrhage, brain tumors, brain injuries, and 270 

multiple sclerosis (12, 15, 16, 19, 42). The present study further highlights the feasibility of imaging 271 

the C- and L-spine, another crucial central nervous system (CNS) component. Since MRI is 272 

regarded as the preferred imaging modality for the CNS due to its exceptional soft tissue contrasts 273 

(5), we foresee the potential application of whole-body ULF MRI in neurology clinics, trauma 274 

centers, neurosurgical suites, and neonatal/pediatric centers. 275 

Whole-Body MRI is valuable in diagnosing and characterizing various types of cancers, 276 

such as liver, prostate, pancreatic, breast, and colorectal cancer (43-48). Liver cancer, for instance, 277 
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is one of the most common malignancies worldwide, with 900,000 new cases and 830,000 deaths 278 

reported in 2020 alone55. Hepatocellular carcinoma (HCC) is the most prevalent primary liver 279 

cancer, often diagnosed at advanced stages, resulting in poor prognosis (49). Recent studies have 280 

demonstrated the effectiveness of simplified MRI protocols (T1W, T2W, and DWI) for HCC 281 

screening (50, 51). Moreover, MRI techniques like magnetic resonance elastography and liver fat 282 

quantification have shown their efficacy in evaluating liver stiffness and steatosis, respectively, for 283 

HCC prognostication (45, 52, 53). In fact, these two MRI techniques can be potentially realized on 284 

our whole-body ULF MRI scanner to characterize diffuse liver diseases, despite the low SNR at 285 

ULF (54, 55).  In addition to the CNS and abdomen, whole-body ULF MRI is valuable in assessing 286 

joints such as knee and shoulder. Additionally, cardiac late gadolinium enhancement, T1- and T2-287 

mapping protocols are particularly effective in assessing myocardial viability and myocarditis (56, 288 

57). We anticipate that that future technical development and clinical evaluation of these ULF MRI 289 

protocols will address numerous clinical needs in a point-of-care manner. 290 

Over the past half-century, MRI has evolved from a basic concept (1) to an indispensable 291 

non-ionizing medical imaging modality with wide-ranging applications in diagnosing and 292 

prognosing abnormalities in the CNS, abdomen, musculoskeletal, and cardiovascular systems (14, 293 

27). Owing to its soft tissue contrasts and multi-parametric nature, MRI is often preferred over 294 

other imaging modalities. Despite being regarded as one of the most notable technological 295 

advancements in modern healthcare (3), the overall usage of MRI ranks below CT, partly due to 296 

the greater accessibility of CT scans. Nevertheless, we argue that MRI offers the ultimate advantage 297 

of not using ionizing radiation, making it a safer option for patients. In particular, MRI is a preferred 298 

modality for repeated imaging or for vulnerable populations such as children and pregnant women. 299 

We also envision that ULF MRI can potentially play a role in image-guided biopsy or structure-300 

sensitive treatment procedures (58-62), where continuous or repeated imaging is necessary.  301 

 302 
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However, advancing image quality and scan speed remains a major technical challenge for 303 

ULF MRI. The ability of ULF MRI to differentiate various soft tissues and characterize pathologies 304 

under clinical conditions is determined by the image quality and scan speed. It is crucial for ULF 305 

MRI to have adequate spatial resolution and contrast while maintaining a reasonable scan time, 306 

even in the presence of physiological motions. This is particularly important considering the 307 

availability of other imaging modalities such as ultrasound and x-ray, which are cheaper and faster. 308 

Therefore, future ULF MRI developments should encompass data acquisition, and image formation, 309 

hardware components, and eventual clinical optimization and utilization. 310 

Deep learning presently powers numerous advances in computational science and 311 

engineering (20, 21), including imaging (63). Deep learning will likely fuel future ULF MRI 312 

development through data-driven image reconstruction to tackle the SNR challenge. Traditional 313 

MRI data acquisition and image reconstruction methods do not rely on any prior knowledge on 314 

human anatomy, despite the relatively homogeneous and genetically predefined anatomical 315 

structures and tissue contrasts exhibited through various imaging protocols. By using such prior 316 

information through deep learning, it is plausible to boost ULF MRI quality and speed, allowing 317 

for more intelligent image formation beyond traditional Fourier or compressed sensing 318 

reconstruction. Recent studies from our group (23, 26) and others (22) have demonstrated the 319 

possibility of deep learning MRI reconstruction and super-resolution approach for brain ULF MRI 320 

by exploiting large-scale high-field brain MRI data. In this study, we have implemented and 321 

demonstrated such an image formation method, PF-SR (26), applied to brain, spine, liver, and knee 322 

imaging, illustrating the ability of such data-driven image formation in enhancing image resolution 323 

while suppressing noise and artifacts. Our previous studies (23, 26) and the preliminary brain and 324 

spine tests using synthetic datasets in this study have also shown the potential of applying this 325 

approach to datasets that contain brain and spine lesions.  326 

However, the fidelity of the PF-SR method in restoring 3D image details remains to be 327 

carefully evaluated and optimized for each anatomical structure and contrast. As an end-to-end 328 
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supervised superresolution approach, the PF-SR image formation is prone to both blurring and 329 

structural hallucinations to a certain extent, especially in regions with fine details but low SNR and 330 

contrast (23, 26, 64). In fact, hallucinations can be seen among some sulci and gyri near the brain 331 

edge in the T1W PF-SR results shown in Fig. 6A. These hallucinations likely arose from the low 332 

SNR and poor contrast in the raw 3D ULF data. Hallucination level can increase with decreasing 333 

SNR and contrast in the input data. The effectiveness of the PF-SR method in restoring image 334 

details is limited by the interplay between noise (and unseen artifacts not accounted for during 335 

training) and predicting 3D image details using prior knowledge of specific anatomical MRI data. 336 

This prior knowledge is deeply ingrained within the PF-SR models, which are trained to learn the 337 

structural and contrast 3D multi-scale features from a large collection of standard human MR 338 

images specific to a particular organ and MRI contrast. Future research should also optimize and 339 

evaluate the capabilities of PF-SR in detecting various pathologies. To augment the PF-SR model 340 

training, we can include a diverse range of synthetic datasets that include lesions of different types, 341 

extents, and locations. This will help ensure its robustness in clinical diagnostic applications. 342 

Additionally, it may be necessary to acquire and compare both experimental ULF and high-field 343 

MRI data from the same patients to directly validate the sensitivity and specificity of the PF-SR 344 

method in detecting specific lesions. Ultimately, it is imperative to find a balance between clinical 345 

value, PF-SR output resolution and fidelity, and quality of input image data.  346 

The extremely low SNR of MR signal at ULF continues to be a major challenge. MR signal 347 

is proportional to B0
2, while the SNR scales approximately with B0

7/4 at low field (32, 37, 65). 348 

Consequently, SNR at 0.05 T is about three orders of magnitude lower compared to 3 T. Future 349 

ULF MRI hardware development may focus on more sensitive MRI receive coils and/or more 350 

intelligent signal reception approaches at RF megahertz range via design and/or material innovation, 351 

which is a topic largely unexplored in the past development of high-field MRI. For human imaging 352 

at ULF, noise in MR signals is primarily dominated by the RF receive coil noise. Therefore, SNR 353 

can be substantially increased by cooling the RF receive coil and preamplifier, potentially through 354 
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cryogenic cooling or cryogen-free conduction cooling using cryocoolers (66, 67). Notably, such an 355 

approach substantially increases the coil Q factor, thus reducing the effective coil signal detection 356 

bandwidth and potentially limiting high acquisition bandwidth sequences like EPI DWI at ULF. 357 

As a low-cost, point-of-care, and patient-friendly device, whole-body ULF MRI should 358 

operate without any enclosed RF shielding. In this study, we have successfully developed and 359 

deployed the Deep-DSP approach (25) that directly predicts EMI-free MR signals even in the 360 

presence of very strong EMI signals from external environments and internal electronics. Deep-361 

DSP strategy (25) functions with or without dedicated EMI characterization data, considerably 362 

outperforming all existing analytical or deep learning methods that have been recently developed 363 

by our group (12, 18) and others (17). The Deep-DSP method, as illustrated in Fig. S1, eliminates 364 

the need for the EMI subtracting procedure utilized in CNN (12, 18) and EDITER (17) methods. 365 

This removal of the subtraction procedure mitigates the potential error propagation associated with 366 

it. The residual U-Net architecture of the Deep-DSP method is deeper and more adaptable 367 

compared to a simple CNN (12, 18), enabling better learning of the complex relationships between 368 

EMI signals among coils. Moreover, the Deep-DSP model, trained on synthetic data, can capture 369 

the characteristic differences between EMI signals and MR k-space signals, unlike the CNN and 370 

EDITER methods. Collectively, these factors contribute to the enhanced performance of EMI 371 

elimination achieved by the Deep-DSP method. Nonetheless, it remains imperative to continuously 372 

develop more effective methods to address complex EMI signals. Several factors contribute to this 373 

need. First, EMI signals can originate from multiple and diverse sources. Second, both MRI receive 374 

and sensing coils are unavoidably subject to baseline electronic noise, which interferes with reliably 375 

probing the electromagnetic coupling between the MRI receive coil and EMI sensing coils. Third, 376 

EMI signal propagation chain may exhibit nonlinear responses. Last, EMI source locations and/or 377 

surrounding environments may change dynamically during scanning. These largely intractable 378 

issues require further development of robust EMI elimination strategies using data-driven 379 
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approaches, especially for extremely strong and diverse EMI sources that may be encountered in 380 

unshielded whole-body imaging scenarios or in proximity to other electrical devices.  381 

An ideal whole-body ULF MRI scanner should be lightweight and with small fringe 382 

magnetic field. Our current prototype scanner was designed primarily for conceptual demonstration 383 

without extensive hardware optimization, resulting in a relatively heavy magnet (~1300 kg) though 384 

the scanner could still be potentially mobile if equipped with a battery-operated motor system, 385 

similar to a clinical mobile CT scanner. A recent 0.2 T magnet design for brain MRI has 386 

demonstrated the possibility of reducing the double-plate magnet weight by omitting the horizontal 387 

iron poles while adding side vertical magnetic poles (68). With this concept and implementation 388 

of non-iron yokes, we estimate that our whole-body 0.05 T magnet weight could be substantially 389 

reduced to ~600 kg, rendering the entire scanner mobile. Future whole-body magnet development 390 

may also explore the use of low-weight homogenous cylindrical Halbach magnet designs (9, 11), 391 

while prioritizing a relatively large inner magnet diameter and small fringe field to ensure openness 392 

and patient comfort. Implementing such Halbach approach can greatly reduce the magnet weight 393 

and size, but it may be necessary to address the magnet thermal and structural stability issues.  394 

In conclusion, we addressed the challenge of limited MRI accessibility by developing an 395 

affordable, simple, and computing-powered whole-body 0.05 T MRI scanner. Our low-power, 396 

compact scanner was designed to operate from a standard AC wall power outlet, without the need 397 

for RF or magnetic shielding. We demonstrated the versatility of the ULF MRI for imaging various 398 

human anatomical structures. Moreover, we demonstrated the potential of 3D deep learning 399 

reconstruction to substantially augment ULF image quality by exploiting computing power and 400 

extensive high-field MRI data. These advancements will pave the way for affordable, patient-401 

centric, and site-agnostic MRI scanners, addressing unmet clinical needs in various healthcare 402 

settings globally. 403 

 404 

 405 
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Materials and Methods  406 

Shielding-free whole-body MRI hardware design  407 

The magnet design features two plates connected by four vertical pillars to optimize 408 

openness and patient comfort (Fig. 1A). Essential components such as the NdFeB magnet (N50), 409 

iron yoke (Q235A), pole (pure iron DT4C), silicon steel anti-eddy current plate (30ZH105), and 410 

passive shimming ring (pure iron DT4C) were developed using electromagnetic field modelling to 411 

create a uniform 0.05 T field suitable for whole-body imaging while maintaining shoulder and 412 

chest accessibility. The magnet assembly weighted ~1300 kg. While a cylindrical Halbach magnet 413 

could offer a lighter weight and smaller fringe field (9, 11), we chose this open double-plate design 414 

for its structural openness and patient comfort. Note that the basic structural design of this 0.05 T 415 

magnet was conceptually similar to our earlier 0.055 T magnet for brain MRI except for the iron 416 

support structure (12). To achieve a homogeneous field, pole pieces and shimming rings were used, 417 

along with additional passive shimming by incorporating small iron and/or NdFeB pieces, via 418 

iterative 3D field mapping and compensation. The final exterior dimensions of the magnet were 419 

114.0 cm x 102.6 cm x 69.8 cm (width x length x height), featuring a 40 cm clear vertical gap and 420 

92 cm width for patient entry. The final magnetic field was 0.048 T at a room temperature of 25°C, 421 

corresponding to a 2.045 MHz proton resonance frequency. The field exhibited an inhomogeneity 422 

of less than 200 ppm peak-to-peak across an oblate ellipsoid volume with a diameter of 40 cm and 423 

a height of 38 cm. The anti-eddy current plate effectively reduced overall eddy currents to below 424 

1% in all three directions before applying any pre-emphasis compensation. The reduction made it 425 

possible to implement enabled the implement more advanced and hardware-demanding imaging 426 

sequences, such as EPI and bSSFP. The 5 Gauss fringe field was contained within 104 cm, 114 cm, 427 

and 104 cm from the magnet center in the width, length, and height directions, respectively (Fig. 428 

1B). The total physical footprint of the scanner, including both the magnet assembly and electronic 429 

cabinet but excluding the detachable patient bed, was ~1.3 m².  Note that the basic structural design 430 



 18 

of this 0.05 T magnet was conceptually similar to our earlier 0.055 T magnet for brain MRI except 431 

for the iron support structure (12). 432 

Note that the most commonly used rare earth magnet material NdFeB was chosen here over 433 

the samarium cobalt (used in recent brain ULF MRI magnet designs by our group (12) and 434 

commercial company Hyperfine)  because it offers a higher BHmax of 35-50 MGOe compared to 435 

22 MGOe for SmCo and it costs less. Despite its relatively poor temperature stability of -436 

0.125%/°C compared to 0.015%/°C for SmCo (69, 70), the main magnetic field and homogeneity 437 

remained adequately stable in a standard 25°C laboratory environment (without special air 438 

conditioning) and during scanning. 439 

Planar gradient coils, made from rectangular wire, were secured to epoxy resin boards to 440 

preserve their winding patterns. While Gx and Gy gradient coils were unshielded, Gz coil was 441 

actively shielded. Gx, Gy, and Gz coils had resistances of 83.2 mΩ, 84.5 mΩ, and 130.8 mΩ, and 442 

inductances of 280.3 µH, 254.8 µH, and 232.2 µH, respectively. Their sensitivities were 12.5 443 

mT/m/100A, 13.0 mT/m/100A, and 6.3 mT/m/100A, respectively. A PCI GA150 switching 444 

amplifier (Performance Control Inc.), with a peak current of 150 A and a peak voltage of 150V, 445 

was used to drive the gradient coils.   446 

Planar RF coil served as a separate transmit coil with Q factor of ~13 and ~14 when loaded 447 

and unloaded, respectively. A number of RF receive coils were constructed using the standard 448 

solenoid design (65, 71), including three single-channel solenoid coils for brain imaging (12) (200 449 

mm by 229 mm; 8 winding turns with loaded Q of ~38), c-spine imaging (204 mm by 220 mm; 8 450 

winding turns with loaded Q of ~49), chest and abdominal imaging (280 mm by 350 mm; 10 451 

winding turns with loaded Q of ~37). A decoupling circuit was also implemented to detune the 452 

receive coil during RF transmission. MR signal was passed through a two-stage preamplifier 453 

module (~20 dB each). Note that, at 0.05 T, RF transmit coil was typically driven by very low RF 454 

power.  For example, the non-selective 1 ms 90° block pulse only required ~100 W peak RF power, 455 

incurring negligible SAR as expected (12, 35-37). Gradient/RF subsystems and data acquisition 456 
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were controlled by a PC-based multi-channel NMR spectrometer console (EVO Spectrometer; 457 

www.mrsolutions.com). 458 

 459 

Deep learning EMI Elimination by Deep-DSP  460 

We utilized a deep learning method, Deep-DSP, developed by our group for mobile brain MRI 461 

scanners (25). Ten small EMI sensing coils (LC-resonant loops with 5 cm diameter) were placed 462 

near the patient bed and magnet and inside the electronic cabinet close to the gradient amplifier 463 

and console. 464 

Deep-DSP was designed to predict EMI-free MR signals directly from the signals 465 

simultaneously detected by the MRI receive coil and EMI sensing coils (Fig. 1C and Fig. S1). 466 

During scanning, the MRI receive coil and EMI sensing coils simultaneously sampled data within 467 

two windows: one for MR signal acquisition and the other for EMI signal characterization 468 

acquisition. A residual U-Net model was then trained using synthetic MRI receive coil data and 469 

EMI sensing coil data obtained during the EMI signal characterization window (25). Note that the 470 

synthetic MRI receive coil data here were formed by adding the experimental EMI signals (from 471 

MRI receive coil during EMI characterization window) to a set of EMI-free brain 3 T k-space data 472 

that were arbitrarily chosen (25) (Fig. S1). Once trained, the model was used to directly predict 473 

EMI-free MR signals from the signals simultaneously collected by the MRI receive and sensing 474 

coils during the MR signal acquisition window. The U-Net model, trained using the Adam 475 

optimizer (72), minimized L1 loss with parameters such as batch size 64, learning rate 0.0002, β1 476 

0.9, and β2 0.999 for 40 epochs. The average training time was ~3 min per imaging protocol on an 477 

Nvidia A100 GPU with PyTorch 2.0.1 and CUDA 11.8 on Ubuntu 22.04, which could be further 478 

shortened through both training and code optimization. 479 

Note that, in Deep-DSP, the EMI signal characterization window was not strictly necessary. 480 

In this study, the EMI signal characterization window was specifically implemented for the 3D 481 

FSE and 2D EPI DWI sequences. To maintain the minimal TR, the EMI signal characterization 482 

http://www.mrsolutions.com/


 20 

window was not implemented for all other sequences. Instead, the outer 50% k-space data collected 483 

during the MR signal acquisition window served as an alternative EMI characterization data for 484 

training the model, exhibiting no noticeable performance degradation. 485 

 486 

ULF MRI scan protocols and optimization 487 

Several most commonly used imaging sequences were implemented and optimized, including 488 

cartesian 3D FSE/GRE/bSSFP, cartesian 2D EPI-based DWI, and 3D SoS FSE and GRE with 489 

golden-angle radial sampling. All protocols were free-breathing. For cardiac imaging, cartesian 3D 490 

bSSFP sequence was ECG-triggered using a peripheral finger pulse oximeter. We implemented 491 

T1-weighted, T2-weighted, FLAIR-like (12), and DW contrasts that are most common for clinical 492 

high-field MRI.  For brain and abdominal DWI, both EPI Nyquist ghosts and field inhomogeneity 493 

related geometric distortions were corrected when reconstructing b0 (b = 0) and b1 images (with b 494 

≠ 0 in s/mm2) (12). Non-contrast Neck TOF MRA used a 2D GRE sequence with 1st-order flow 495 

compensation in both slice selection and frequency encoding directions, with or without venous or 496 

arterial saturation. All images were reconstructed to higher display resolution by zero padding in 497 

k-space. Reconstruction was performed with standard Fourier transform together with iterative 498 

projection onto convex sets (POCSs) (26, 73) for partial Fourier sampling whenever applicable, 499 

except for 3D SoS radial sampling where filtered backprojection reconstruction was used. Image 500 

denoising was typically performed after image reconstruction using the standard block matching 501 

with 4D filtering (BM4D) (74). For cardiac cine analysis, left and right ventricles were segmented 502 

in a semi-automatic manner using Segment CMR software (https://medviso.com/cmr/). The left 503 

ventricle ejection fraction was computed by (ESV/EDV)x100%, where ESV and EDV refer to the 504 

left ventricular volume at end-systole and end-diastole, respectively, which were estimated from 505 

the middle three consecutive short-axis slices. The data acquisition and image reconstruction 506 

details for various anatomical regions (brain, C-spine, L-spine, abdomen, pelvis, lung, knee, heart, 507 

and neck MRA) can be found in Table S2. 508 

https://medviso.com/cmr/
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 509 

Deep learning 3D PF-SR image reconstruction  510 

PF-SR, a deep learning reconstruction method developed by us (26), was applied to imaging of the 511 

brain, spine, abdomen, and knee on the 0.05 T whole-body MRI scanner. PF-SR method first 512 

acquired a 3D k-space dataset using incomplete or partial Fourier sampling in k-space, then a low-513 

resolution 3D image dataset (as input dataset) was formed by simple 3D Fourier transform.  514 

Following this, a high-resolution 3D image dataset was reconstructed using a fully 3D, end-to-end, 515 

image-domain deep learning model. This PF-SR model was specifically optimized, trained and 516 

validated for specific anatomical structure and image contrast, utilizing synthetic 3D ULF data that 517 

were simulated from the corresponding large-scale high-resolution high-field (1.5 T or 3 T) MRI 518 

data.  519 

The overall PF-SR model architecture is illustrated in Fig. S3 In brief, the model applied 520 

multi-scale feature extraction with a residual group (RG) inspired by the residual channel attention 521 

network (75) and a modified residual channel attention block for extracting multi-scale high-level 522 

features (23). Small kernel sizes at the top scale level enabled local image feature extraction, while 523 

an increased receptive field of 3D convolution layers at middle to bottom scale levels facilitated 524 

semi-global image feature learning (76-78). Channel and spatial attentions were utilized to 525 

modulate high-level features based on their inter-channel and inter-spatial relationships (79). The 526 

modulated features were then fed into a cascade of RGs, up-sampled to a high-resolution feature 527 

space using a 3D sub-pixel convolution layer, and transformed into a high-resolution 3D image 528 

residue using a 3D convolution layer (23). The final high-resolution 3D image output was 529 

generated by combining the image residue and trilinearly up-sampled model input. The PF-sampled 530 

low-resolution noisy 3D T1W and T2W ULF data were synthesized as described in the recent PF-531 

SR study (26) from the corresponding high-resolution high-field data (80-82) (see details in Tables 532 

S3 and S4). They were used for model training, validation, and testing. Each model typically 533 
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contained approximately 30 million learnable parameters, and took 2 to 8 h to train using four 534 

Nvidia A100 GPUs. 535 

This 3D superresolution strategy, initially demonstrated for a factor of x2 with isotropic 536 

resolution in both model input and output (23, 26), is also applicable to non-isotropic resolution 537 

and superresolution factors at x2 or x3. In this study, T1W and T2W models were trained for brain, 538 

C-spine, L-spine, abdomen, and knee imaging and applied to corresponding datasets acquired 539 

experimentally on the 0.05 T whole-body scanner. The PF-SR models were obtained using the 540 

same model architecture and training procedure. The learning rate was adjusted based on the size 541 

of the training data. To evaluate the models, we tested them using synthetic ULF data generated 542 

from high-resolution high-field MRI data. Additionally, we compared our PF-SF method to a 543 

traditional non-deep learning method (non-DL), which involved using 2D iterative projection onto 544 

convex sets (POCS) (83) for PF reconstruction, followed by BM4D denoising (74) and tricubic 545 

interpolation. We conducted a quantitative evaluation by calculating the 3D structural similarity 546 

index measure (SSIM) (84) and the normalized root mean square error (NRMSE). Tables S3 and 547 

S4 summarize the raw data acquisition parameters, sources, and sizes of large-scale high-field MRI 548 

data used for model training, training times, and superresolution parameters. Note that only 0.05 T 549 

brain T1W and T2W data were acquired with 3 mm x 3 mm x 3 mm isotropic acquisition resolution 550 

to produce 1 mm3 isotropic synthetic image resolution with x3 superresolution factor. All other 551 

data acquisitions remained the same as described in Table S2. The acquisition parameters for high-552 

field MRI datasets (for synthesizing PF-SR training data) are summarized in Table S4.  553 

 554 

Study participants  555 

A total of 30 healthy volunteers (23 to 77 years old) were recruited for 0.05 T MRI scanning of 556 

various anatomical structures with different contrasts. Some of these volunteers were also involved 557 

during the initial protocol optimization tasks. Written informed consent was obtained from all 558 

participants before each scan, with approval from Institutional Review Board of the University of 559 
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Hong Kong/Hospital Authority Hong Kong West Cluster. To directly evaluate brain T1W and T2W 560 

PF-SR results from 0.05 T, some volunteers were also scanned using a clinical GE 3 T MRI scanner 561 

(Signa Premier) with protocol details listed in Table S5. A simple rigid 3D co-registration (FSL 562 

version 6.0.4) with 3D translations and rotations was performed on the 3 T brain image data to 563 

match the orientations of the 0.05 T brain image data, allowing for convenient visual comparison 564 

in Fig. 6A. Note the image distortions due to imaging gradient nonlinearities were not calibrated 565 

and corrected on our 0.05 T whole-body scanner.  566 

  567 
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Figure legends 771 

Figure 1 Prototype of a low-cost, low-power and shielding-free whole-body ULF MRI scanner 772 
with homogeneous 0.05 Tesla NdFeB magnet and small 5 Gauss fringe field. (A) The scanner 773 
is designed to operate solely on a standard AC wall power outlet. It incorporates 10 small EMI 774 
sensing coils to actively detect EMI signal during scanning, has a compact footprint of ~1.3 m2 775 
(excluding the detachable patient bed), and requires neither magnetic nor RF shielding cages. (B)  776 
The magnet assembly includes iron yokes, pillars, NdFeB plates, poles, anti-eddy current plates, 777 
and shimming rings, with a vertical gap of 40 cm and a width of 92 cm. It has a homogeneity of 778 
<200 ppm peak-to-peak over a 40 cm diameter and 38 cm height oblate ellipsoid volume, and 779 
weights ~1300 kg. (C) The scanner uses active EMI sensing and a deep learning Deep-DSP method 780 
to retrospectively eliminate EMI in MR k-space data by directly predicting EMI-free MR signals. 781 
A 3D FSE sequence is illustrated with MR signal collection and EMI signal characterization 782 
windows. Following each scan, data collected during EMI characterization window, along with 783 
synthetic EMI-contaminated MR receive coil data, were used to train a Deep-DSP model. This 784 
model was subsequently applied to predict EMI-free MR data using data acquired during the MR 785 
signal acquisition window. Note that EMI signal characterization window is not always necessary 786 
because the outer k-space data collected during MR signal acquisition window may be used for 787 
training.  788 
 789 
Figure 2 Typical brain and spine images from healthy adults produced by the shielding-free 790 
whole-body 0.05 T MRI scanner.  (A) Axial brain T1W, T2W, FLAIR and DWI images from a 791 
healthy volunteer (23 years old; male) using 3D GRE (TR/TE/α° = 48 ms/6.6 ms/40°; resolution 792 
2x2x8 mm³), long-TR 3D FSE (TR/TE/ETL = 1500 ms/200 ms/21), short-TR 3D FSE 793 
(TR/TE/ETL = 500 ms/127 ms/13), and 2D EPI DWI (TR/TE = 1400 ms/104 ms), respectively. 794 
(B) Sagittal C-spine T1W and T2W images from a healthy volunteer (28 years old; male) using 3D 795 
FSE with TR/TE/ETL = 210 ms/76 ms/9 and 2300 ms/136 ms/25, respectively. (C) Coronal and 796 
sagittal L-spine images acquired using 3D FSE sequences (27 years old; male). Coronal T1W and 797 
T2W images were acquired with TR/TE/ETL = 190 ms/57 ms/7 and 1800 ms/170 ms/27, 798 
respectively.  Sagittal T1W and T2W images were acquired with TR/TE/ETL = 190 ms/63 ms/7 799 
and 1800 ms/172 ms/31, respectively. For each imaging protocol, scan time was 8 min or less.  800 
Image resolution was ~2x2x8 mm3 by acquisition and 1x1x4 mm3 by reconstruction for display. 801 
See Table S2 for protocol details.  802 
 803 
Figure 3 Typical abdominal and pelvic images from healthy adults produced by the shielding-804 
free whole-body 0.05 T MRI scanner. (A) Axial abdominal T1W and T2W images from a healthy 805 
volunteer (28 years old; male) using 3D stack-of-star (SoS) GRE (TR/TE/α° = 35 ms/5 ms/70°), 806 
and 3D SoS FSE (TR/TE/ETL = 700 ms/111 ms/18), respectively. (B) Axial abdominal DWI image 807 
set from a healthy volunteer (27 years old; male) using 2D EPI DWI (TR/TE = 1250 ms/84 ms). 808 
Images with b = 0 and 300 s/mm2 are shown, together with computed apparent diffusivity 809 
coefficient (ADC) map. (C)  Axial abdominal 3D bSSFP images with varying tissue contrasts from 810 
the same volunteer as in B using different flip angles (α = 50°, 80°, 120° with TR = 8 ms). (D) 811 
Coronal pelvis T1W and T2W images from a healthy volunteer (28 years old; male) acquired using 812 
3D FSE with TR/TE/ETL = 450 ms/55 ms/7 and 1500 ms/146 ms/23, respectively.  For each 813 
imaging protocol, scan time was 8 min or less.  Image resolution was ~2.3x2.3x8.0 mm3 (~2.3 mm 814 
in-plane resolution and 8.0 mm slice thickness) for T1W, T2W, and bSSFP images, ~5.0x5.0x8.0 815 
mm3 for DWI images by acquisition. All images are displayed at reconstruction resolution 1x1x4 816 
mm3.  817 
  818 
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Figure 4 Typical 0.05 T lung and knee images from healthy adults. (A) Axial lung bSSFP and 819 
T2W images from a healthy volunteer (25 years old; male) using 3D bSSFP (TR/α° = 8ms/50°; 820 
resolution 2.5x2.5x8.0 mm³) and 3D SoS FSE (TR/TE/ETL = 1000ms/90ms/13; resolution 821 
2.4x2.4x8.0 mm³), respectively. The corresponding maximum intensity projection (MIP) images 822 
from 5 consecutive slices are also shown. (B) Sagittal knee T1W and T2W images from a healthy 823 
volunteer (34 years old; male) using 3D GRE (TR/TE = 60 ms/6 ms/70°; resolution 1.4x1.9x7.0 824 
mm³) and 3D FSE (TR/TE/ETL = 420 ms/45 ms/7 and 1500 ms/106 ms/17; resolution 1.9x2.0x7.0 825 
mm³). Scan time was 8 min or less for each protocol. 826 
 827 
Figure 5 Typical 0.05 T heart cine images and neck magnetic resonance angiography (MRA) 828 
images from healthy adults. (A) Short-axis bright-blood images from a healthy volunteer (21 829 
years old; male) using ECG-triggered 3D bSSFP (TR/α° = 8 ms/70°; resolution 2.5x2.5x8.0 mm3). 830 
Central 7 consecutive slices (with 8 mm thickness) are shown (see Movie S1 for cine). The most 831 
central slice at 12 cardiac phases (out of the total 30) is displayed. Left ventricle (LV) and right 832 
ventricle (RV) volumes during cardiac cycle were segmented (see Movie S2 for segmentation) and 833 
their changes were plotted. They were estimated from the blood cross-sectional areas within the 834 
middle 3 consecutive slices.  (B) Neck TOF MRA MIP images acquired from a healthy volunteer 835 
(34 years old; male) with 2D TOF flow-compensated GRE (TR/TE/α° = 40 ms/10 ms/90°; 836 
resolution 2.0x2.0x4.0 mm3) with no saturation, venous saturation, or arterial saturation, 837 
respectively. For each protocol, scan time was 8 min or less. 838 
 839 
Figure 6 Demonstration of deep learning partial Fourier superresolution (PF-SR) 840 
reconstruction for 0.05 T brain and spine imaging. (A) Axial brain T1W and T2W images were 841 
reconstructed using both conventional 3D Fourier method and 3D deep learning partial Fourier 842 
superresolution (PF-SR) method from a healthy volunteer (34 years old; male). PF-SR 843 
reconstruction extended the original low resolution (LR) 3x3x3 mm3 to synthetic superresolution 844 
(SR) 1x1x1 mm³. 3 T MRI images from the same volunteer are also shown for comparison. Note 845 
that, to facilitate visual comparison, 3T dataset was co-registered to 0.05 T dataset using rigid 3D 846 
translations and rotations.  (B) Sagittal C-spine T1W and T2W images were reconstructed using 847 
Fourier method (LR) vs. PF-SR method (SR) from the healthy volunteer shown in Fig. 2B, with 848 
respective resolution 2.1x2.1x8.0 mm3 and 1.0x1.0x4.0 mm³. (C) Sagittal L-spine T1W and T2W 849 
images were reconstructed using Fourier method (LR) vs. PF-SR method (SR) from the healthy 850 
volunteer shown in Fig. 2C, with respective resolution 2.2x2.3x8.0 mm3 and 1.1x1.1x4.0 mm³. 851 
Please see Table S3 for details on data acquisition, PF-SR model training, and reconstruction.  0.05 852 
T brain T1W and T2W data were acquired using 3D FSE sequence with and without inversion 853 
recovery, and scan time 5.0 and 6.4 min, respectively.  Scan time for each C- and L-spine protocol 854 
was 8 min or less. 855 
 856 
Figure 7 Demonstration of deep learning PF-SR reconstruction for 0.05 T abdominal and 857 
knee imaging. (A) Axial abdominal T1W and T2W images reconstructed using both conventional 858 
3D Fourier method (LR) vs. 3D PF-SR method (SR) from the healthy volunteer shown in Fig. 3A. 859 
PF-SR method extended the original low resolution 2.2x2.2x8.0 mm³ to synthetic superresolution 860 
1.1x1.1x4 mm³. (B) Sagittal knee T2W images reconstructed using Fourier method (LR) vs. PF-861 
SR method (SR) from the healthy volunteer in Fig. 4B with resolution 1.9x2.0x7.0 mm³ and 862 
1.0x1.0x3.5 mm³, respectively. See Table S3 for data acquisition, PF-SR model training, and 863 
reconstruction details.  Scan time for each protocol was 8 min or less. 864 
 865 
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