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Abstract

Despite a half-century of advancements, global MRI accessibility remains limited and uneven,
hindering its full potential in healthcare. Initially, MRI development focused on low fields around
0.05 Tesla, but progress halted after the introduction of the 1.5 Tesla whole-body superconducting
scanner in 1983. Using a permanent 0.05 Tesla magnet and deep learning for electromagnetic
interference elimination, we developed a whole-body scanner that operates using a standard AC
wall power outlet and without radiofrequency and magnetic shielding. We demonstrated its wide-
ranging applicability for imaging various anatomical structures. Furthermore, we developed 3D
deep learning reconstruction to boost image quality by harnessing extensive high-field MRI data.
These advances pave the way for affordable deep learning-powered ultra-low-field MRI scanners,

addressing unmet clinical needs in diverse healthcare settings worldwide.
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Introduction

The seminal development of magnetic resonance imaging (MRI) by Paul C. Lauterbur and Sir Peter
Manstfield five decades ago revolutionized modern medicine (/, 2). MRI is now widely regarded
as one of the most important inventions for healthcare (3). Over 150 million MRI examinations are
performed worldwide each year (4), with applications ranging from diagnosing and prognosing
diseases such as tumors and strokes, to evaluating injuries in the nervous, hepatobiliary, pancreatic,
and musculoskeletal systems, and to guidance of interventional procedures. MRI holds inherent
advantages over other imaging modalities, specifically, it is non-ionizing, non-invasive, inherently
three-dimensional, quantitative, and multi-parametric (5). These qualities not only make MRI
superior to other imaging modalities but also position it as a promising platform for future artificial
intelligence-driven medical diagnoses.

Nonetheless, MRI accessibility remains low and highly uneven worldwide. As per the 2022
Organisation for Economic Co-operation and Development (OECD) statistics, there are around
70,000 MRI scanner installations across the globe (6). The distribution of these scanners is
primarily concentrated in developed nations, with limited availability in low and middle-income
countries. For instance, Africa has a mere 0.7 MRI scanners per million residents (7), in stark
contrast to the United States and Japan, which have 40 and 55 scanners per million inhabitants,
respectively, presenting an exemplary case of ever-expanding global healthcare disparity (§). This
scenario primarily stems from the considerable costs associated with the procurement, installation,
maintenance, and operation of existing standard high-field superconducting MRI scanners (1.5 T
and 3 T). These clinical MRI scanners are predominantly located in highly specialized radiology
departments, large centralized imaging centers, and often situated on the ground floors of hospitals
and clinics and with magnetic shielding. As aresult, MRI scanners are mostly unavailable in trauma
centers, acute care facilities, surgery suites, pediatric clinics, and community clinics even in
developed countries. Moreover, these scanners prevent external electromagnetic interference

(EMI) through the passive use of bulky and fully enclosed radiofrequency (RF) shielded rooms,
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thus posing further hardware costs and compromising their mobility and patient-friendliness.

Recently, there have been intensive efforts to develop low-cost MRI scanners for brain
imaging at ultra-low-field (ULF) strengths (<0.1 T) (9-14). Studies have shown that key
neuroimaging protocols can be successfully implemented on ULF scanners, providing valuable
information for diagnosing brain lesions like tumor and stroke (/2, 15, 16). The need for RF
shielded rooms is also being challenged by active detection and retrospective removal of
environmental EMI signals using analytical and deep learning approaches (12, 17, 18), offering the
promise of shielding-free, thus portable and more patient-friendly MRI. Recent studies have
highlighted the potential of such brain ULF scanners for point-of-care applications in intensive care
units and COVID-19 wards (15, 16, 19). Concurrently, deep learning advances offer exceptional
capabilities for multi-dimensional feature extraction (20, 21), presenting approaches to address the
low magnetic resonance (MR) signal-to-noise ratio (SNR) inherent to ULF. For example, deep
learning superresolution strategies have been recently pursued for brain ULF MRI to suppress
image noise and boost resolution by leveraging the homogeneous brain structures and image
contrasts available in human brain high-field MRI data (22, 23). However, these developments
have been confined to the imaging of the brain (9-/4) and extremities (24). To fully harness the
potential of ULF MRI for accessible healthcare, it is imperative to develop ULF MRI technologies,
including deep learning techniques, for imaging all organs at the whole-body level.

In this study, we present the development of a low-cost, low-power, and computing-driven
shielding-free ULF MRI scanner for whole-body imaging. It features a homogeneous 0.05 T
permanent magnet and linear imaging gradients, enabling us to implement ULF MRI protocols by
building upon the methodologies developed for high-field MRI over the past five decades. To
achieve robust EMI elimination for shielding-free scanning, we deployed a method to directly
predict EMI-free MR signals via deep learning (25). We demonstrated the wide-ranging
applicability of this scanner for imaging various anatomical structures, including brain, spine,

abdomen, lung, extremity, and heart. Furthermore, we demonstrated the promise of deep learning



97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

3D image formation on this whole-body ULF MRI platform by learning from large-scale high-field

MRI data, using a method we developed (26).

Results

Shielding-free 0.05 Tesla whole-body MRI scanner design

We demonstrated the feasibility of a cost-effective MRI technology by designing and prototyping
a whole-body MRI scanner that operates on a standard AC wall power outlet (single-phase 220V
20A) without any RF or magnetic shielding cages (Fig. 1). The system utilized a compact 0.05 T
permanent neodymium ferrite boron (NdFeB) magnet with a double-plate structure (Fig. 1A). Key
magnet components included yokes, NdFeB plates, poles, anti-eddy current plates, and shimming
rings (Fig. 1B). It generated a 0.05 T field with inhomogeneity <10,000 ppm peak-to-peak over an
oblate ellipsoid volume of diameter 40 cm and height 38 cm. After passive shimming, this
inhomogeneity was reduced to <200 ppm peak-to-peak. The 5 Gauss fringe field was small, within
104 cm, 114 cm, and 104 cm in X, Y, and Z directions from magnet center. Here, we used standard
and low-cost off-the-shelf electronics for simplicity, including console and gradient amplifier. For
quantity production, we estimate its hardware material costs to be ~USD 22K mainly for the
magnet, gradient and RF, and console subsystems (Table S1).

The scanner required no RF shielding cages. To robustly address the EMI from both
external environments and internal low-cost electronics during scanning, we deployed active
sensing and deep learning to directly predict EMI-free MR signals. Ten small EMI sensing coils
were positioned around the scanner and inside the electronic cabinet to simultaneously acquire
radiative EMI signals during scanning (Fig. 1A). We developed and implemented a method termed
deep learning direct signal prediction (Deep-DSP) (25) (Fig. 1C and Fig. S1). In brief, both the
MRI receive coil and EMI sensing coils sampled data within two windows - one for MR signal

acquisition and the other for EMI signal characterization data acquisition. No MR signal was
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present during EMI signal characterization window. Using the synthetic EMI-contaminated MRI
data and EMI sensing coil data acquired during the EMI signal characterization window, a residual
U-Net model was trained to predict EMI-free MR signal from signals acquired by both types of
coils. The trained model was then used to predict EMI-free MR signal from data acquired during
the MR signal acquisition window. This Deep-DSP strategy has been shown to yield superior
performance (25) compared to all existing EMI reduction methods recently developed for brain
ULF MRI (12, 17, 18). 1t is worth noting that, in practice, the EMI signal characterization window

is not an absolute requirement for Deep-DSP (25).

Whole-body imaging at 0.05 Tesla

Over the past few decades, extensive research in high-field superconducting MRI has
resulted in the development of a wide range of MRI contrasts and clinical protocols that enable the
investigation of various organ structures and physiological abnormalities associated with different
pathologies (27). The commonly used MRI protocols are predominately based on the T1-weighted
(T1W), T2-weighted (T2W), and diffusion-weighted (DW) contrasts. They are often acquired with
gradient-recalled-echo (GRE), fast-spin-echo (FSE), balanced steady-state free procession
(bSSFP), or echo-planar-imaging (EPI) pulse sequences. We implemented these imaging
sequences, as well as the 3D stack-of-star (SoS) (28) radial sampling that is less sensitive to
respiratory body motions, by careful calibration of hardware imperfections, such as field
inhomogeneity and gradient eddy currents/delays. We optimized their contrasts for brain, spine,
abdomen, lung, extremity, and heart using phantoms and volunteers. For each protocol, scan time
was kept at 8 min or less. In general, image resolution was set to be ~2x2x8 mm?® (~2 mm in-plane
resolution and 8 mm slice thickness) by acquisition and 1x1x4 mm?® by reconstruction for display,
unless stated otherwise. Image reconstruction was performed here using traditional Fourier
transform based methods, including filtered backprojection reconstruction. All protocol details for

various anatomical structures and contrasts are summarized in Table S2. The total AC power
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consumption was under 1800W while scanning for all protocols and around 300W when not
scanning.

We performed 0.05 T imaging in 30 healthy volunteers (23 to 77 years old). Typical brain
axial TIW, T2W, and FLAIR-like images are shown in Fig. 2A, delineating various brain tissues
such as grey matter, white matter, and cerebrospinal fluid (CSF). They were acquired with cartesian
3D GRE, long-TR 3D FSE, and short-TR 3D FSE sequences, respectively. Figs. 2B and 2C show
the typical TIW and T2W C-spine and L-spine results. They were all acquired with cartesian 3D
FSE sequences. Intervertebral disk and body, together with spinal cord and CSF inside spinal canal,
can be identified. Fig. S2 displays the brain and spine images from Fig. 2 with and without EMI
elimination. Deep-DSP fully removed EMI signals. Without Deep-DSP, image contents were
completely obscured by EMI signals. Moreover, recently developed EMI removal methods, deep
learning CNN (/2, 18) and analytical external dynamic interference estimation and removal or
EDITER (17), failed to effectively remove these intense EMI signals. These results demonstrated
the robust ability of Deep-DSP in suppressing very strong EMI signals and enabling shielding-free
0.05 T whole-body imaging.

Figs. 3A and 3B display the typical abdominal TIW, T2W, and DWI images. They were
acquired using free-breathing 3D SoS GRE, 3D SoS FSE, and cartesian 2D EPI DWI sequences,
respectively. Major abdominal structures such as the liver, large hepatic vessels, kidneys, spleen,
pancreas, stomach, spine, and muscle as well as subcutaneous and visceral fat can be readily seen
in these images. Fig. 3C shows the abdominal 3D bSSFP images. The contrast of these bSSFP
images varied greatly with the flip angle, as expected, and image SNR was relatively high because
the intrinsic bSSFP signal is mainly related to T2/T1 while tissue T1 relaxation times are generally
much shorter at ULF (72, 29, 30). Fig. 3D displays the typical pelvis coronal TIW and T2W images
from a young male volunteer, in which normal prostate substructures can be distinguished.

Fig. 4A displays the lung images. Axial bSSFP images were acquired during free breathing

using 3D bSSFP sequence (with T2/T1 weighting). Free-breathing axial T2W images were
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obtained with 3D SoS FSE sequence. Maximum intensity projection (MIP) images are also
presented. Pulmonary vessels can be observed in the bSSFP images, while the parenchyma signal
is visible in the T2W images. To demonstrate musculoskeletal imaging, the knee was scanned.
Fig. 4B. shows the sagittal knee TIW and T2W images acquired using cartesian 3D GRE and FSE
sequences. Various knee structures, such as the patella, femoral and tibial articular cartilage, and
lateral and medial meniscus of the posterior horn, can be identified in these images.

Fig. 5 presents the free-breathing cardiac cine images and time-of-flight (TOF) magnetic
resonance angiography (MRA) from healthy volunteers. Short-axis bright-blood cine was acquired
using ECG-triggered 3D segmented bSSFP sequence from a healthy young volunteer (Fig. SA).
Left ventricle and myocardium can be delineated, and papillary muscle is also visible. As shown
in Movie S1, the left and right ventricular volumes changed periodically during the cardiac cycle.
The estimated volumes were derived from the middle 3 consecutive slices (Movie S2). The left
ventricle (LV) ejection fraction was estimated to be ~60% from the L'V blood cross-sectional areas,
which was largely consistent with literature value (37). Fig. SB and Movies S3 to S5 present the
neck TOF MRA acquired using a 2D flow-compensated GRE sequence. A total of 34 slices with 4
mm thickness were obtained, covering 136 mm in the head/foot direction. With venous blood
saturation, major carotid arteries can be clearly observable, including the left and right common
carotid arteries, external and internal carotid arteries, as well as their bifurcations. With arterial

blood saturation, major veins such as jugular veins can be readily seen.

Utilizing deep learning for enhanced image formation at 0.05 Tesla

MR signal at 0.05 T is several orders of magnitude weaker than at 3 T, the standard high-field
strength, due to its proportionality to field strength squared (Bo?) (32), causing high image noise
and poor resolution in ULF MRI. To overcome this challenge, we turned to computing and devised
deep learning-based reconstruction methods for ULF MRI image formation that are driven by the

large-scale high-field MRI data (23, 26). We designed a partial Fourier super-resolution (PF-SR)
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method that integrates image reconstruction and super-resolution (Fig. S3) (26). PF-SR model,
consisting of multi-scale feature extraction, spatial attention, and reconstruction functions, was
experimentally validated by comparing 0.055 T brain images to 3 T images from the same subjects
(26). In this study, we demonstrated PF-SR reconstruction for whole-body MRI at 0.05 T. The data
acquisitions typically involved 3D encoding with k-space partial Fourier sampling. See Tables S3
to S5 for the data acquisition, model training, and image reconstruction details. By learning the
relatively homogeneous human anatomical structures and contrasts readily available in the high-
field MRI datasets, PF-SR reconstruction approach advanced the whole-body 0.05 T image quality
by effectively suppressing artifacts and noise, and increasing spatial resolution.

Fig. 6A and Movies S6 and S7 show the brain TIW and T2W images reconstructed using
the conventional Fourier method (low resolution LR) and deep learning PF-SR method
(superresolution SR), alongside high-resolution 3 T images obtained from a healthy volunteer. 0.05
T T1W and T2W data were acquired with isotropic 3 mm resolution using 3DFSE sequence with
and without inversion recovery preparation, and scan time 5.0 and 6.2 mins, respectively. PF-SR
method produced isotropic 1 mm resolution, and led to substantially improved 0.05 T image quality
in terms of clarity. As confirmed by the 3 T results, numerous fine neuroanatomical structures were
restored in the PF-SR images. Moreover, various brain anatomical structures appeared
complementary in contrast between T1W and T2W images, as expected. Figs. 6B and 6C present
the typical TIW and T2W results for the C-spine and L-spine, respectively. Once again, PF-SR
method enhanced the image quality, allowing improved visualization of structural details
concerning the intervertebral body and disc, spinal cord, and CSF. These brain and spine results
were consistent with the testing results using synthetic datasets (Figs. S4 and S5, and Movies S8
and S9).

Fig. 7A presents the results for abdominal imaging. With PF-SR reconstruction, various
structural details, such as vessels within the liver, kidneys, stomach, pancreas, spleen, and spine,

could be easily identified and delineated. Again, these anatomical structures appeared



227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

complementary in contrast between T1W and T2W images, as expected. Fig. 7B and Movie S10
show the knee images from a healthy volunteer. PF-SR enabled clearer delineation of key knee
structures, including the patella, articular cartilage, and meniscus. Overall, these initial PF-SR
results indicate the potential and prowess of deep learning PF-SR image reconstruction in

advancing ULF MRI of various anatomical structures.

Discussion

We aim to address a critical resource challenge in healthcare - the limited and scarce access to MRI.
Despite over half a century of technology development since the seminal paper published by Paul
Lauterbur in 1973 (7), globally, clinical MRI procedures remain mostly unattainable for over two-
thirds of the world's population (6). Historically, the development of MRI technology started at
very low fields, with the earliest superconducting or resistive whole-body magnets operating at a
field strength of around 0.05 T (33, 34). The first commercial systems, introduced in the early
1980s, reached ~0.5 T. However, the progress in low-field MRI development was halted with the
introduction of the first whole-body 1.5 T superconducting scanner by General Electric in 1983
(/4). In this study, we revisited 0.05 T whole-body MRI by reducing traditional MRI hardware
requirements and harnessing computing power as well as extensive physics and engineering
expertise gained over several decades. We developed a low-cost, patient-centric whole-body MRI
scanner based on a permanent 0.05 T magnet that operates on a standard AC wall power outlet,
without the need for RF or magnetic shielding. This scanner is compact and potentially mobile. It
can be manufactured, maintained, and operated at a low cost. We experimentally demonstrated the
general utility of such a shielding-free ULF scanner for imaging various human anatomical
structures at whole-body level, with acceptable scan time (<8 min per protocol) even in the

presence of strong EMI. Moreover, we demonstrated the effectiveness of 3D deep learning image
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formation in advancing whole-body ULF image quality by leveraging extensive high-field whole-
body MRI datasets.

The whole-body ULF MRI scanner demonstrated in this study has the potential to
complement existing high-performance high-field clinical MRI, especially in a point-of-care
manner. By providing a more affordable and accessible option, whole-body ULF MRI can help
expand the availability of MRI scans. ULF MRI offer several distinct advantages that make it an
attractive option for patient comfort and safety (/2, 35-37). These include an open scanning
environment for reduced claustrophobic effect (38, 39), less acoustic noise during scanning for
minimizing its potentially adverse effect (12, 40, 41), low sensitivity to metallic implants, less
image susceptibility artifacts at air/tissue interfaces, and an extremely low RF specific absorption
rate (SAR) (12, 35-37). Moreover, imaging at ULF is attractive because tissues typically exhibit
dramatically shorter T1 and longer T2 and T2* at ULF (/2, 29, 30). This enables more time-
efficient data acquisition protocols due to faster longitudinal magnetization recovery and slower
transverse magnetization decay, allowing for easy adaptation of SNR efficient 3D acquisitions, as
shown in most protocols in this study.

Additional studies will be essential not only for advancing ULF MRI technology but also
for evaluating its clinical efficacy. Recent studies by our group and others, utilizing dedicated 0.055
T and 0.064 T brain ULF MRI scanners, have demonstrated their point-of-care potential in
assessing conditions such as ischemic stroke, hemorrhage, brain tumors, brain injuries, and
multiple sclerosis (12, 15, 16, 19, 42). The present study further highlights the feasibility of imaging
the C- and L-spine, another crucial central nervous system (CNS) component. Since MRI is
regarded as the preferred imaging modality for the CNS due to its exceptional soft tissue contrasts
(5), we foresee the potential application of whole-body ULF MRI in neurology clinics, trauma
centers, neurosurgical suites, and neonatal/pediatric centers.

Whole-Body MRI is valuable in diagnosing and characterizing various types of cancers,

such as liver, prostate, pancreatic, breast, and colorectal cancer (43-48). Liver cancer, for instance,
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is one of the most common malignancies worldwide, with 900,000 new cases and 830,000 deaths
reported in 2020 alone®. Hepatocellular carcinoma (HCC) is the most prevalent primary liver
cancer, often diagnosed at advanced stages, resulting in poor prognosis (49). Recent studies have
demonstrated the effectiveness of simplified MRI protocols (T1W, T2W, and DWI) for HCC
screening (50, 51). Moreover, MRI techniques like magnetic resonance elastography and liver fat
quantification have shown their efficacy in evaluating liver stiffness and steatosis, respectively, for
HCC prognostication (45, 52, 53). In fact, these two MRI techniques can be potentially realized on
our whole-body ULF MRI scanner to characterize diffuse liver diseases, despite the low SNR at
ULF (54, 55). In addition to the CNS and abdomen, whole-body ULF MRI is valuable in assessing
joints such as knee and shoulder. Additionally, cardiac late gadolinium enhancement, T1- and T2-
mapping protocols are particularly effective in assessing myocardial viability and myocarditis (56,
57). We anticipate that that future technical development and clinical evaluation of these ULF MRI
protocols will address numerous clinical needs in a point-of-care manner.

Over the past half-century, MRI has evolved from a basic concept (/) to an indispensable
non-ionizing medical imaging modality with wide-ranging applications in diagnosing and
prognosing abnormalities in the CNS, abdomen, musculoskeletal, and cardiovascular systems (/4,
27). Owing to its soft tissue contrasts and multi-parametric nature, MRI is often preferred over
other imaging modalities. Despite being regarded as one of the most notable technological
advancements in modern healthcare (3), the overall usage of MRI ranks below CT, partly due to
the greater accessibility of CT scans. Nevertheless, we argue that MRI offers the ultimate advantage
of not using ionizing radiation, making it a safer option for patients. In particular, MRI is a preferred
modality for repeated imaging or for vulnerable populations such as children and pregnant women.
We also envision that ULF MRI can potentially play a role in image-guided biopsy or structure-

sensitive treatment procedures (58-62), where continuous or repeated imaging is necessary.
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However, advancing image quality and scan speed remains a major technical challenge for
ULF MRI. The ability of ULF MRI to differentiate various soft tissues and characterize pathologies
under clinical conditions is determined by the image quality and scan speed. It is crucial for ULF
MRI to have adequate spatial resolution and contrast while maintaining a reasonable scan time,
even in the presence of physiological motions. This is particularly important considering the
availability of other imaging modalities such as ultrasound and x-ray, which are cheaper and faster.
Therefore, future ULF MRI developments should encompass data acquisition;-and image formation,
hardware components, and eventual clinical optimization and utilization.

Deep learning presently powers numerous advances in computational science and
engineering (20, 21), including imaging (63). Deep learning will likely fuel future ULF MRI
development through data-driven image reconstruction to tackle the SNR challenge. Traditional
MRI data acquisition and image reconstruction methods do not rely on any prior knowledge on
human anatomy, despite the relatively homogeneous and genetically predefined anatomical
structures and tissue contrasts exhibited through various imaging protocols. By using such prior
information through deep learning, it is plausible to boost ULF MRI quality and speed, allowing
for more intelligent image formation beyond traditional Fourier or compressed sensing
reconstruction. Recent studies from our group (23, 26) and others (22) have demonstrated the
possibility of deep learning MRI reconstruction and super-resolution approach for brain ULF MRI
by exploiting large-scale high-field brain MRI data. In this study, we have implemented and
demonstrated such an image formation method, PF-SR (26), applied to brain, spine, liver, and knee
imaging, illustrating the ability of such data-driven image formation in enhancing image resolution
while suppressing noise and artifacts. Our previous studies (23, 26) and the preliminary brain and
spine tests using synthetic datasets in this study have also shown the potential of applying this
approach to datasets that contain brain and spine lesions.

However, the fidelity of the PF-SR method in restoring 3D image details remains to be

carefully evaluated and optimized for each anatomical structure and contrast. As an end-to-end
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supervised superresolution approach, the PF-SR image formation is prone to both blurring and
structural hallucinations to a certain extent, especially in regions with fine details but low SNR and
contrast (23, 26, 64). In fact, hallucinations can be seen among some sulci and gyri near the brain
edge in the TIW PF-SR results shown in Fig. 6A. These hallucinations likely arose from the low
SNR and poor contrast in the raw 3D ULF data. Hallucination level can increase with decreasing
SNR and contrast in the input data. The effectiveness of the PF-SR method in restoring image
details is limited by the interplay between noise (and unseen artifacts not accounted for during
training) and predicting 3D image details using prior knowledge of specific anatomical MRI data.
This prior knowledge is deeply ingrained within the PF-SR models, which are trained to learn the
structural and contrast 3D multi-scale features from a large collection of standard human MR
images specific to a particular organ and MRI contrast. Future research should also optimize and
evaluate the capabilities of PF-SR in detecting various pathologies. To augment the PF-SR model
training, we can include a diverse range of synthetic datasets that include lesions of different types,
extents, and locations. This will help ensure its robustness in clinical diagnostic applications.
Additionally, it may be necessary to acquire and compare both experimental ULF and high-field
MRI data from the same patients to directly validate the sensitivity and specificity of the PF-SR
method in detecting specific lesions. Ultimately, it is imperative to find a balance between clinical
value, PF-SR output resolution and fidelity, and quality of input image data.

The extremely low SNR of MR signal at ULF continues to be a major challenge. MR signal
is proportional to Bo?, while the SNR scales approximately with Bo”* at low field (32, 37, 65).
Consequently, SNR at 0.05 T is about three orders of magnitude lower compared to 3 T. Future
ULF MRI hardware development may focus on more sensitive MRI receive coils and/or more
intelligent signal reception approaches at RF megahertz range via design and/or material innovation,
which is a topic largely unexplored in the past development of high-field MRI. For human imaging
at ULF, noise in MR signals is primarily dominated by the RF receive coil noise. Therefore, SNR

can be substantially increased by cooling the RF receive coil and preamplifier, potentially through
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cryogenic cooling or cryogen-free conduction cooling using cryocoolers (66, 67). Notably, such an
approach substantially increases the coil Q factor, thus reducing the effective coil signal detection
bandwidth and potentially limiting high acquisition bandwidth sequences like EPI DWI at ULF.
As a low-cost, point-of-care, and patient-friendly device, whole-body ULF MRI should
operate without any enclosed RF shielding. In this study, we have successfully developed and
deployed the Deep-DSP approach (25) that directly predicts EMI-free MR signals even in the
presence of very strong EMI signals from external environments and internal electronics. Deep-
DSP strategy (25) functions with or without dedicated EMI characterization data, considerably
outperforming all existing analytical or deep learning methods that have been recently developed
by our group (/2, 18) and others (/7). The Deep-DSP method, as illustrated in Fig. S1, eliminates
the need for the EMI subtracting procedure utilized in CNN (/2, /8) and EDITER (/7) methods.
This removal of the subtraction procedure mitigates the potential error propagation associated with
it. The residual U-Net architecture of the Deep-DSP method is deeper and more adaptable
compared to a simple CNN (/2, 18), enabling better learning of the complex relationships between
EMI signals among coils. Moreover, the Deep-DSP model, trained on synthetic data, can capture
the characteristic differences between EMI signals and MR k-space signals, unlike the CNN and
EDITER methods. Collectively, these factors contribute to the enhanced performance of EMI
elimination achieved by the Deep-DSP method. Nonetheless, it remains imperative to continuously
develop more effective methods to address complex EMI signals. Several factors contribute to this
need. First, EMI signals can originate from multiple and diverse sources. Second, both MRI receive
and sensing coils are unavoidably subject to baseline electronic noise, which interferes with reliably
probing the electromagnetic coupling between the MRI receive coil and EMI sensing coils. Third,
EMI signal propagation chain may exhibit nonlinear responses. Last, EMI source locations and/or
surrounding environments may change dynamically during scanning. These largely intractable

issues require further development of robust EMI elimination strategies using data-driven
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approaches, especially for extremely strong and diverse EMI sources that may be encountered in
unshielded whole-body imaging scenarios or in proximity to other electrical devices.

An ideal whole-body ULF MRI scanner should be lightweight and with small fringe
magnetic field. Our current prototype scanner was designed primarily for conceptual demonstration
without extensive hardware optimization, resulting in a relatively heavy magnet (~1300 kg) though
the scanner could still be potentially mobile if equipped with a battery-operated motor system,
similar to a clinical mobile CT scanner. A recent 0.2 T magnet design for brain MRI has
demonstrated the possibility of reducing the double-plate magnet weight by omitting the horizontal
iron poles while adding side vertical magnetic poles (68). With this concept and implementation
of non-iron yokes, we estimate that our whole-body 0.05 T magnet weight could be substantially
reduced to ~600 kg, rendering the entire scanner mobile. Future whole-body magnet development
may also explore the use of low-weight homogenous cylindrical Halbach magnet designs (9, 11),
while prioritizing a relatively large inner magnet diameter and small fringe field to ensure openness
and patient comfort. Implementing such Halbach approach can greatly reduce the magnet weight
and size, but it may be necessary to address the magnet thermal and structural stability issues.

In conclusion, we addressed the challenge of limited MRI accessibility by developing an
affordable, simple, and computing-powered whole-body 0.05 T MRI scanner. Our low-power,
compact scanner was designed to operate from a standard AC wall power outlet, without the need
for RF or magnetic shielding. We demonstrated the versatility of the ULF MRI for imaging various
human anatomical structures. Moreover, we demonstrated the potential of 3D deep learning
reconstruction to substantially augment ULF image quality by exploiting computing power and
extensive high-field MRI data. These advancements will pave the way for affordable, patient-
centric, and site-agnostic MRI scanners, addressing unmet clinical needs in various healthcare

settings globally.
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Materials and Methods

Shielding-free whole-body MRI hardware design

The magnet design features two plates connected by four vertical pillars to optimize
openness and patient comfort (Fig. 1A). Essential components such as the NdFeB magnet (N50),
iron yoke (Q235A), pole (pure iron DT4C), silicon steel anti-eddy current plate (30ZH105), and
passive shimming ring (pure iron DT4C) were developed using electromagnetic field modelling to
create a uniform 0.05 T field suitable for whole-body imaging while maintaining shoulder and
chest accessibility. The magnet assembly weighted ~1300 kg. While a cylindrical Halbach magnet
could offer a lighter weight and smaller fringe field (9, 17), we chose this open double-plate design
for its structural openness and patient comfort. Note that the basic structural design of this 0.05 T
magnet was conceptually similar to our earlier 0.055 T magnet for brain MRI except for the iron
support structure (/2). To achieve a homogeneous field, pole pieces and shimming rings were used,
along with additional passive shimming by incorporating small iron and/or NdFeB pieces, via
iterative 3D field mapping and compensation. The final exterior dimensions of the magnet were
114.0 cm x 102.6 cm x 69.8 cm (width x length x height), featuring a 40 cm clear vertical gap and
92 cm width for patient entry. The final magnetic field was 0.048 T at a room temperature of 25°C,
corresponding to a 2.045 MHz proton resonance frequency. The field exhibited an inhomogeneity
of less than 200 ppm peak-to-peak across an oblate ellipsoid volume with a diameter of 40 cm and
a height of 38 cm. The anti-eddy current plate effectively reduced overall eddy currents to below
1% in all three directions before applying any pre-emphasis compensation. The reduction made it
possible to implement enabled the implement more advanced and hardware-demanding imaging
sequences, such as EPI and bSSFP. The 5 Gauss fringe field was contained within 104 cm, 114 cm,
and 104 cm from the magnet center in the width, length, and height directions, respectively (Fig.
1B). The total physical footprint of the scanner, including both the magnet assembly and electronic

cabinet but excluding the detachable patient bed, was ~1.3 m?. Note that the basic structural design
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of this 0.05 T magnet was conceptually similar to our earlier 0.055 T magnet for brain MRI except
for the iron support structure (/2).

Note that the most commonly used rare earth magnet material NdFeB was chosen here over
the samarium cobalt (used in recent brain ULF MRI magnet designs by our group (/2) and
commercial company Hyperfine) because it offers a higher BHmax of 35-50 MGOe compared to
22 MGOe for SmCo and it costs less. Despite its relatively poor temperature stability of -
0.125%/°C compared to 0.015%/°C for SmCo (69, 70), the main magnetic field and homogeneity
remained adequately stable in a standard 25°C laboratory environment (without special air
conditioning) and during scanning.

Planar gradient coils, made from rectangular wire, were secured to epoxy resin boards to
preserve their winding patterns. While Gx and Gy gradient coils were unshielded, Gz coil was
actively shielded. Gx, Gy, and Gz coils had resistances of 83.2 mQ, 84.5 mQ, and 130.8 mQ, and
inductances of 280.3 uH, 254.8 pH, and 232.2 pH, respectively. Their sensitivities were 12.5
mT/m/100A, 13.0 mT/m/100A, and 6.3 mT/m/100A, respectively. A PCI GA150 switching
amplifier (Performance Control Inc.), with a peak current of 150 A and a peak voltage of 150V,
was used to drive the gradient coils.

Planar RF coil served as a separate transmit coil with Q factor of ~13 and ~14 when loaded
and unloaded, respectively. A number of RF receive coils were constructed using the standard
solenoid design (65, 71), including three single-channel solenoid coils for brain imaging (/2) (200
mm by 229 mm; 8 winding turns with loaded Q of ~38), c-spine imaging (204 mm by 220 mm; 8
winding turns with loaded Q of ~49), chest and abdominal imaging (280 mm by 350 mm; 10
winding turns with loaded Q of ~37). A decoupling circuit was also implemented to detune the
receive coil during RF transmission. MR signal was passed through a two-stage preamplifier
module (~20 dB each). Note that, at 0.05 T, RF transmit coil was typically driven by very low RF
power. For example, the non-selective 1 ms 90° block pulse only required ~100 W peak RF power,

incurring negligible SAR as expected (/2, 35-37). Gradient/RF subsystems and data acquisition
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were controlled by a PC-based multi-channel NMR spectrometer console (EVO Spectrometer;

www.mrsolutions.com).

Deep learning EMI Elimination by Deep-DSP

We utilized a deep learning method, Deep-DSP, developed by our group for mobile brain MRI
scanners (25). Ten small EMI sensing coils (LC-resonant loops with 5 cm diameter) were placed
near the patient bed and magnet and inside the electronic cabinet close to the gradient amplifier
and console.

Deep-DSP was designed to predict EMI-free MR signals directly from the signals
simultaneously detected by the MRI receive coil and EMI sensing coils (Fig. 1C and Fig. S1).
During scanning, the MRI receive coil and EMI sensing coils simultaneously sampled data within
two windows: one for MR signal acquisition and the other for EMI signal characterization
acquisition. A residual U-Net model was then trained using synthetic MRI receive coil data and
EMI sensing coil data obtained during the EMI signal characterization window (25). Note that the
synthetic MRI receive coil data here were formed by adding the experimental EMI signals (from
MRI receive coil during EMI characterization window) to a set of EMI-free brain 3 T k-space data
that were arbitrarily chosen (25) (Fig. S1). Once trained, the model was used to directly predict
EMI-free MR signals from the signals simultaneously collected by the MRI receive and sensing
coils during the MR signal acquisition window. The U-Net model, trained using the Adam
optimizer (72), minimized L1 loss with parameters such as batch size 64, learning rate 0.0002, B1
0.9, and B2 0.999 for 40 epochs. The average training time was ~3 min per imaging protocol on an
Nvidia A100 GPU with PyTorch 2.0.1 and CUDA 11.8 on Ubuntu 22.04, which could be further
shortened through both training and code optimization.

Note that, in Deep-DSP, the EMI signal characterization window was not strictly necessary.
In this study, the EMI signal characterization window was specifically implemented for the 3D

FSE and 2D EPI DWI sequences. To maintain the minimal TR, the EMI signal characterization

19


http://www.mrsolutions.com/

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

window was not implemented for all other sequences. Instead, the outer 50% k-space data collected
during the MR signal acquisition window served as an alternative EMI characterization data for

training the model, exhibiting no noticeable performance degradation.

ULF MRI scan protocols and optimization

Several most commonly used imaging sequences were implemented and optimized, including
cartesian 3D FSE/GRE/bSSFP, cartesian 2D EPI-based DWI, and 3D SoS FSE and GRE with
golden-angle radial sampling. All protocols were free-breathing. For cardiac imaging, cartesian 3D
bSSFP sequence was ECG-triggered using a peripheral finger pulse oximeter. We implemented
T1-weighted, T2-weighted, FLAIR-like (/2), and DW contrasts that are most common for clinical
high-field MRI. For brain and abdominal DWI, both EPI Nyquist ghosts and field inhomogeneity
related geometric distortions were corrected when reconstructing b0 (b = 0) and b1 images (with b
# 0 in s/mm?) (12). Non-contrast Neck TOF MRA used a 2D GRE sequence with 1%-order flow
compensation in both slice selection and frequency encoding directions, with or without venous or
arterial saturation. All images were reconstructed to higher display resolution by zero padding in
k-space. Reconstruction was performed with standard Fourier transform together with iterative
projection onto convex sets (POCSs) (26, 73) for partial Fourier sampling whenever applicable,
except for 3D SoS radial sampling where filtered backprojection reconstruction was used. Image
denoising was typically performed after image reconstruction using the standard block matching
with 4D filtering (BM4D) (74). For cardiac cine analysis, left and right ventricles were segmented

in a semi-automatic manner using Segment CMR software (https://medviso.com/cmr/). The left

ventricle ejection fraction was computed by (ESV/EDV)x100%, where ESV and EDV refer to the
left ventricular volume at end-systole and end-diastole, respectively, which were estimated from
the middle three consecutive short-axis slices. The data acquisition and image reconstruction
details for various anatomical regions (brain, C-spine, L-spine, abdomen, pelvis, lung, knee, heart,

and neck MRA) can be found in Table S2.
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Deep learning 3D PF-SR image reconstruction

PF-SR, a deep learning reconstruction method developed by us (26), was applied to imaging of the
brain, spine, abdomen, and knee on the 0.05 T whole-body MRI scanner. PF-SR method first
acquired a 3D k-space dataset using incomplete or partial Fourier sampling in k-space, then a low-
resolution 3D image dataset (as input dataset) was formed by simple 3D Fourier transform.
Following this, a high-resolution 3D image dataset was reconstructed using a fully 3D, end-to-end,
image-domain deep learning model. This PF-SR model was specifically optimized, trained and
validated for specific anatomical structure and image contrast, utilizing synthetic 3D ULF data that
were simulated from the corresponding large-scale high-resolution high-field (1.5 T or 3 T) MRI
data.

The overall PF-SR model architecture is illustrated in Fig. S3 In brief, the model applied
multi-scale feature extraction with a residual group (RG) inspired by the residual channel attention
network (75) and a modified residual channel attention block for extracting multi-scale high-level
features (23). Small kernel sizes at the top scale level enabled local image feature extraction, while
an increased receptive field of 3D convolution layers at middle to bottom scale levels facilitated
semi-global image feature learning (76-78). Channel and spatial attentions were utilized to
modulate high-level features based on their inter-channel and inter-spatial relationships (79). The
modulated features were then fed into a cascade of RGs, up-sampled to a high-resolution feature
space using a 3D sub-pixel convolution layer, and transformed into a high-resolution 3D image
residue using a 3D convolution layer (23). The final high-resolution 3D image output was
generated by combining the image residue and trilinearly up-sampled model input. The PF-sampled
low-resolution noisy 3D T1W and T2W ULF data were synthesized as described in the recent PF-
SR study (26) from the corresponding high-resolution high-field data (§0-82) (see details in Tables

S3 and S4). They were used for model training, validation, and testing. Each model typically
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contained approximately 30 million learnable parameters, and took 2 to 8 h to train using four
Nvidia A100 GPUs.

This 3D superresolution strategy, initially demonstrated for a factor of x2 with isotropic
resolution in both model input and output (23, 26), is also applicable to non-isotropic resolution
and superresolution factors at x2 or x3. In this study, T1W and T2W models were trained for brain,
C-spine, L-spine, abdomen, and knee imaging and applied to corresponding datasets acquired
experimentally on the 0.05 T whole-body scanner. The PF-SR models were obtained using the
same model architecture and training procedure. The learning rate was adjusted based on the size
of the training data. To evaluate the models, we tested them using synthetic ULF data generated
from high-resolution high-field MRI data. Additionally, we compared our PF-SF method to a
traditional non-deep learning method (non-DL), which involved using 2D iterative projection onto
convex sets (POCS) (83) for PF reconstruction, followed by BM4D denoising (74) and tricubic
interpolation. We conducted a quantitative evaluation by calculating the 3D structural similarity
index measure (SSIM) (84) and the normalized root mean square error (NRMSE). Tables S3 and
S4 summarize the raw data acquisition parameters, sources, and sizes of large-scale high-field MRI
data used for model training, training times, and superresolution parameters. Note that only 0.05 T
brain T1W and T2W data were acquired with 3 mm x 3 mm x 3 mm isotropic acquisition resolution
to produce 1 mm? isotropic synthetic image resolution with x3 superresolution factor. All other
data acquisitions remained the same as described in Table S2. The acquisition parameters for high-

field MRI datasets (for synthesizing PF-SR training data) are summarized in Table S4.

Study participants

A total of 30 healthy volunteers (23 to 77 years old) were recruited for 0.05 T MRI scanning of
various anatomical structures with different contrasts. Some of these volunteers were also involved
during the initial protocol optimization tasks. Written informed consent was obtained from all

participants before each scan, with approval from Institutional Review Board of the University of
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Hong Kong/Hospital Authority Hong Kong West Cluster. To directly evaluate brain T1W and T2W
PF-SR results from 0.05 T, some volunteers were also scanned using a clinical GE 3 T MRI scanner
(Signa Premier) with protocol details listed in Table S5. A simple rigid 3D co-registration (FSL
version 6.0.4) with 3D translations and rotations was performed on the 3 T brain image data to
match the orientations of the 0.05 T brain image data, allowing for convenient visual comparison
in Fig. 6A. Note the image distortions due to imaging gradient nonlinearities were not calibrated

and corrected on our 0.05 T whole-body scanner.
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Figure legends

Figure 1 Prototype of a low-cost, low-power and shielding-free whole-body ULF MRI scanner
with homogeneous 0.05 Tesla NdFeB magnet and small 5 Gauss fringe field. (A) The scanner
is designed to operate solely on a standard AC wall power outlet. It incorporates 10 small EMI
sensing coils to actively detect EMI signal during scanning, has a compact footprint of ~1.3 m?
(excluding the detachable patient bed), and requires neither magnetic nor RF shielding cages. (B)
The magnet assembly includes iron yokes, pillars, NdFeB plates, poles, anti-eddy current plates,
and shimming rings, with a vertical gap of 40 cm and a width of 92 cm. It has a homogeneity of
<200 ppm peak-to-peak over a 40 cm diameter and 38 cm height oblate ellipsoid volume, and
weights ~1300 kg. (C) The scanner uses active EMI sensing and a deep learning Deep-DSP method
to retrospectively eliminate EMI in MR k-space data by directly predicting EMI-free MR signals.
A 3D FSE sequence is illustrated with MR signal collection and EMI signal characterization
windows. Following each scan, data collected during EMI characterization window, along with
synthetic EMI-contaminated MR receive coil data, were used to train a Deep-DSP model. This
model was subsequently applied to predict EMI-free MR data using data acquired during the MR
signal acquisition window. Note that EMI signal characterization window is not always necessary
because the outer k-space data collected during MR signal acquisition window may be used for
training.

Figure 2 Typical brain and spine images from healthy adults produced by the shielding-free
whole-body 0.05 T MRI scanner. (A) Axial brain TIW, T2W, FLAIR and DWI images from a
healthy volunteer (23 years old; male) using 3D GRE (TR/TE/a° = 48 ms/6.6 ms/40°; resolution
2x2x8 mm?), long-TR 3D FSE (TR/TE/ETL = 1500 ms/200 ms/21), short-TR 3D FSE
(TR/TE/ETL = 500 ms/127 ms/13), and 2D EPI DWI (TR/TE = 1400 ms/104 ms), respectively.
(B) Sagittal C-spine T1W and T2W images from a healthy volunteer (28 years old; male) using 3D
FSE with TR/TE/ETL = 210 ms/76 ms/9 and 2300 ms/136 ms/25, respectively. (C) Coronal and
sagittal L-spine images acquired using 3D FSE sequences (27 years old; male). Coronal TIW and
T2W images were acquired with TR/TE/ETL = 190 ms/57 ms/7 and 1800 ms/170 ms/27,
respectively. Sagittal TIW and T2W images were acquired with TR/TE/ETL = 190 ms/63 ms/7
and 1800 ms/172 ms/31, respectively. For each imaging protocol, scan time was 8§ min or less.
Image resolution was ~2x2x8 mm® by acquisition and 1x1x4 mm?® by reconstruction for display.
See Table S2 for protocol details.

Figure 3 Typical abdominal and pelvic images from healthy adults produced by the shielding-
free whole-body 0.05 T MRI scanner. (A) Axial abdominal T1W and T2W images from a healthy
volunteer (28 years old; male) using 3D stack-of-star (SoS) GRE (TR/TE/a° = 35 ms/5 ms/70°),
and 3D SoS FSE (TR/TE/ETL =700 ms/111 ms/18), respectively. (B) Axial abdominal DWI image
set from a healthy volunteer (27 years old; male) using 2D EPI DWI (TR/TE = 1250 ms/84 ms).
Images with b = 0 and 300 s/mm?” are shown, together with computed apparent diffusivity
coefficient (ADC) map. (C) Axial abdominal 3D bSSFP images with varying tissue contrasts from
the same volunteer as in B using different flip angles (o = 50°, 80°, 120° with TR = 8 ms). (D)
Coronal pelvis TIW and T2W images from a healthy volunteer (28 years old; male) acquired using
3D FSE with TR/TE/ETL = 450 ms/55 ms/7 and 1500 ms/146 ms/23, respectively. For each
imaging protocol, scan time was 8 min or less. Image resolution was ~2.3x2.3x8.0 mm?® (~2.3 mm
in-plane resolution and 8.0 mm slice thickness) for TIW, T2W, and bSSFP images, ~5.0x5.0x8.0
mm?® for DWI images by acquisition. All images are displayed at reconstruction resolution 1x1x4

1’1’11’1’13 .
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Figure 4 Typical 0.05 T lung and knee images from healthy adults. (A) Axial lung bSSFP and
T2W images from a healthy volunteer (25 years old; male) using 3D bSSFP (TR/a° = 8ms/50°;
resolution 2.5x2.5x8.0 mm?®) and 3D SoS FSE (TR/TE/ETL = 1000ms/90ms/13; resolution
2.4x2.4x8.0 mm?), respectively. The corresponding maximum intensity projection (MIP) images
from 5 consecutive slices are also shown. (B) Sagittal knee TIW and T2W images from a healthy
volunteer (34 years old; male) using 3D GRE (TR/TE = 60 ms/6 ms/70°; resolution 1.4x1.9x7.0
mm?) and 3D FSE (TR/TE/ETL =420 ms/45 ms/7 and 1500 ms/106 ms/17; resolution 1.9x2.0x7.0
mm?). Scan time was 8 min or less for each protocol.

Figure 5 Typical 0.05 T heart cine images and neck magnetic resonance angiography (MRA)
images from healthy adults. (A) Short-axis bright-blood images from a healthy volunteer (21
years old; male) using ECG-triggered 3D bSSFP (TR/a° = 8 ms/70°; resolution 2.5x2.5x8.0 mm?®).
Central 7 consecutive slices (with 8 mm thickness) are shown (see Movie S1 for cine). The most
central slice at 12 cardiac phases (out of the total 30) is displayed. Left ventricle (LV) and right
ventricle (RV) volumes during cardiac cycle were segmented (see Movie S2 for segmentation) and
their changes were plotted. They were estimated from the blood cross-sectional areas within the
middle 3 consecutive slices. (B) Neck TOF MRA MIP images acquired from a healthy volunteer
(34 years old; male) with 2D TOF flow-compensated GRE (TR/TE/o° = 40 ms/10 ms/90°;
resolution 2.0x2.0x4.0 mm?) with no saturation, venous saturation, or arterial saturation,
respectively. For each protocol, scan time was 8 min or less.

Figure 6 Demonstration of deep learning partial Fourier superresolution (PF-SR)
reconstruction for 0.05 T brain and spine imaging. (A) Axial brain TIW and T2W images were
reconstructed using both conventional 3D Fourier method and 3D deep learning partial Fourier
superresolution (PF-SR) method from a healthy volunteer (34 years old; male). PF-SR
reconstruction extended the original low resolution (LR) 3x3x3 mm® to synthetic superresolution
(SR) Ix1x1 mm?. 3 T MRI images from the same volunteer are also shown for comparison. Note
that, to facilitate visual comparison, 3T dataset was co-registered to 0.05 T dataset using rigid 3D
translations and rotations. (B) Sagittal C-spine TIW and T2W images were reconstructed using
Fourier method (LR) vs. PF-SR method (SR) from the healthy volunteer shown in Fig. 2B, with
respective resolution 2.1x2.1x8.0 mm?® and 1.0x1.0x4.0 mm?. (C) Sagittal L-spine TIW and T2W
images were reconstructed using Fourier method (LR) vs. PF-SR method (SR) from the healthy
volunteer shown in Fig. 2C, with respective resolution 2.2x2.3x8.0 mm® and 1.1x1.1x4.0 mm?®.
Please see Table S3 for details on data acquisition, PF-SR model training, and reconstruction. 0.05
T brain TIW and T2W data were acquired using 3D FSE sequence with and without inversion
recovery, and scan time 5.0 and 6.4 min, respectively. Scan time for each C- and L-spine protocol
was 8 min or less.

Figure 7 Demonstration of deep learning PF-SR reconstruction for 0.05 T abdominal and
knee imaging. (A) Axial abdominal TIW and T2W images reconstructed using both conventional
3D Fourier method (LR) vs. 3D PF-SR method (SR) from the healthy volunteer shown in Fig. 3A.
PF-SR method extended the original low resolution 2.2x2.2x8.0 mm? to synthetic superresolution
1.1x1.1x4 mm?. (B) Sagittal knee T2W images reconstructed using Fourier method (LR) vs. PF-
SR method (SR) from the healthy volunteer in Fig. 4B with resolution 1.9x2.0x7.0 mm?® and
1.0x1.0x3.5 mm?, respectively. See Table S3 for data acquisition, PF-SR model training, and
reconstruction details. Scan time for each protocol was 8 min or less.
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A 0.05 Tesla Shielding-free Whole-body MRI System
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