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Abstract—Epilepsy is a common condition that causes frequent
seizures, significantly impacting patients’ daily lives. Non-invasive
EEG is an effective tool for detecting seizure onset. Wearable
EEG devices enable real-time monitoring and timely intervention
but pose new algorithmic challenges on small model weight
sizes and limited training data. Brain-inspired hyperdimensional
computing (HDC) presents a potential solution for its small
weight size and quick learning ability. Combining local binary
pattern (LBP) codes with HDC can capture dynamic features
in EEG time series. However, traditional LBP features may
not offer sufficient robustness for trend modeling due to their
high localization on individual samples, particularly on low-
amplitude and non-stationary scalp EEG signals. To address
the above challenges, this paper proposes a multi-scale LBP-
based HDC (MSLBP-HDC) approach for scalp EEG analysis.
Unlike traditional LBP-based HDC focusing only on the local
change trend, the designed MSLBP-HDC extracts dynamic fea-
tures at different time resolutions to detect abnormal cortical
oscillations. The lengths of multiple temporal scales in MSLBP-
HDC are determined based on the duration of spikes. Our results
demonstrate that MSLBP-HDC has the highest specificity for
all test seizure types and achieves competitive macroaveraging
accuracy with the smallest model weight size in detection,
compared to advanced deep learning, support vector machine,
and HDC methods. Regarding few-shot learning performance,
MSLBP-HDC outperforms existing approaches and achieves high
accuracy using only 1% of the training data. Moreover, feature
interpretability analysis from space and time domains highlights
that MSLBP-HDC successfully extracts seizure-relevant features
rather than noise or artifacts, ensuring the algorithm’s reliability.

Index Terms—Hyperdimensional computing, scalp EEG,
seizure detection, wearable devices, local binary pattern, feature
interpretability analysis.

I. INTRODUCTION

Epilepsy is a chronic brain disorder caused by abnormal
firing of neurons [1], which occurs when the balance between
excitation and inhibition of patients’ neurons is disrupted
[2]. As one of the most common neurological diseases,
approximately 1% of the world’s population is diagnosed
with epilepsy [3]. Rapid and accurate detection of seizures is
critical for treatment, dose control, and prognosis assessment
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[4]. Non-invasive Electroencephalogram (EEG) can reveal
obvious abnormal activities in patients with seizures through
electrodes attached to the scalp surface [5]. Given the inherent
uncertainty of epilepsy, the combination of wearable EEG
devices and Internet-of-Things (IoT) technology can provide
real-time monitoring and timely interventions [6], [7]. Thus,
developing a scalp EEG-based automatic epilepsy detection
system on portable devices will significantly reduce the risk
of patient injury and improve the overall quality of life [8].

Epilepsy detection tasks on wearable EEG devices pose new
challenges to the algorithm design. The non-stationary and
low-amplitude characteristics of scalp EEG signals make them
susceptible to noise and artifacts during real-time monitoring
on portable devices, resulting in reduced detection accuracy.
In actual scenarios, different patients have various types of
seizures with different features, such as the duration of spikes
[9]. The algorithms must be robust enough to handle feature
extraction modes for different seizure types. The models
should also have a small weight size to minimize computation
overhead and improve detection speed in embedded systems.
Few-shot learning is essential for the algorithms considering
the difficulty of epileptic EEG acquisition. The models should
be able to generalize and detect new seizures using only a
small amount of annotated data. Additionally, the algorithms
need high reliability to ensure that epilepsy-related features are
extracted rather than noise or artifacts for accurate detection,
which is critical for medical applications. Therefore, designing
a reliable algorithm is crucial for scalp EEG-based seizure
detection systems on wearable devices.

To meet the above requirements, recent studies have made
significant progress in automatic epilepsy detection tasks by
employing machine learning methods. Traditional machine
learning methods rely on prior knowledge for feature extrac-
tion and feature selection to realize the recognition of different
brain states, i.e., ictal and interictal states. Commonly used
models include support vector machine (SVM) [10], [11], k-
nearest neighbor (KNN) classifier [12], and random forest
(RF) classifier [13]. The performance of traditional machine
learning methods largely depends on the quality of features
extracted using domain knowledge. However, this feature
extraction mode has limitations in terms of the generalization
ability of the algorithms, making models difficult to apply to
complex and dynamic real-world environments.

Deep learning methods jointly learn feature representation
and classification from data with the help of deep structure,
thus avoiding the limitations of manual feature extraction and



improving epilepsy detection performance. In the realm of
epileptic EEG analysis, supervised learning methods such as
convolutional neural networks (CNNs) [14], [15], [16], long
short-term memory networks (LSTMs) [17], [18], [19], and
hybrid models [20], [21], [22] have demonstrated promising
results when trained on annotated data [23]. Conversely, un-
supervised learning methods, particularly autoencoders [24],
[25], [26], excel at capturing latent features associated with
epilepsy occurrences in EEG signals. By learning low-
dimensional representations of the data, autoencoders enable
automated seizure detection even in the absence of labeled
training data. Although deep learning models can get high
accuracy on the test datasets, in practical applications, deep
neural networks have many limitations on portable devices
as they cannot meet all the above algorithm requirements.
Firstly, data-driven neural networks have to accumulate a
large amount of patients’ seizure data to realize high-precision
seizure detection, which is difficult to achieve in the real world
due to the uncertainty of seizures. Secondly, the large model
weight size of deep learning models imposes a heavy burden
on the hardware, making it hard to conduct real-time seizure
detection on wearable devices. Finally, due to the black-box
nature of deep neural networks, the reliability of the algorithms
cannot be guaranteed, which limits their large-scale application
in the medical field.

Hyperdimensional computing (HDC), as a brain-inspired
vector-symbolic computational model, can meet the above
algorithm requirements for epileptic EEG analysis on portable
devices [27]. Inspired by the cognitive models [28], HDC ap-
plies hypervectors with high dimensionality and randomness to
represent the cortical oscillations recorded on EEG. The data
representations of different brain states are realized through
three operations on hypervectors: bundling, binding, and per-
mutation. In the item memory of HDC, the hypervectors are
randomly generated and exhibit quasi-orthogonality due to
their high dimensionality. Three operations, namely bundling,
binding, and permutation, are applied to these hypervectors to
achieve the representation of various brain states. The bundling
operation involves pointwise addition, which generates a hy-
pervector similar to all the input hypervectors. Moreover, the
binding operation, also known as pointwise multiplication,
establishes relationships between the input hypervectors. In the
binary HDC model, the XOR operation is utilized for binding
operations. Another important operation is permutation, which
generates a quasi-orthogonal hypervector by applying a per-
mutation matrix to the input hypervector. Permutation allows
for shuffling the input hypervector, and circular shifting is the
most widely adopted method in permutation operations [29].

Different from the feature extraction mode of traditional
machine learning methods, the high dimensionality of HDC
introduces redundancy in the encoding process to reduce
the impact of noise and artifacts. The generated holographic
distributed representations enable the classification of ictal and
interictal states by comparing similarities in hyperdimensional
space. The HDC model, which has a small model weight size
and high energy efficiency, is easy to implement and deploy on
hardware to realize real-time epilepsy monitoring on wearable
EEG devices [30]. Furthermore, the fast-learning property of

HDC enables it to generalize and identify unlabeled EEG
signals with limited annotated data, reducing the need for
extensive training data.

Researchers have proposed various HDC methods for
epilepsy detection based on scalp EEG and intracranial EEG
(iEEG) signals. In terms of model structure, Pale et al. con-
sidered intra-class variability and developed a semi-supervised
learning approach based on multi-centroid HDC model [31]. In
[32], a hybrid model was constructed to leverage both personal
and general HDC models, facilitating knowledge transfer be-
tween different datasets. Additionally, [33] and [34] introduced
feature selection algorithms in HDC models for the analysis
of iEEG and scalp EEG signals, respectively. Regarding input
feature design, Asgarinejad et al. utilized raw signal amplitude
as the input for HDC model [35]. In [36], various HDC
encoding schemes were evaluated on both iEEG and scalp
EEG signals, encompassing local binary pattern (LBP) feature
[37], raw signal amplitude feature, frequency spectrum feature,
and combinations of multiple features. Notably, by combining
the principles of symbolic dynamics [38] with HDC, Burrello
et al. achieved remarkable results in the iEEG-based seizure
detection task [39]. In their proposed method, symbolic LBP
codes were extracted from iEEG signals. And HDC was
adopted to encode them into hyperdimensional space, enabling
training and classification of hypervectors with different brain
states. Experimental results demonstrated that the proposed
scheme could quickly learn from a small number of seizures
and perform seizure detection on iEEG signals. Furthermore,
[40] showcased the superiority of LBP-based HDC model over
other baseline models in terms of energy consumption and
inference speed when performing epileptic iEEG analysis on
embedded devices.

However, compared with the analysis of iEEG, the epilepsy
monitoring of scalp EEG that this study focuses on poses
a greater challenge to the algorithms. Scalp EEG is low in
amplitude, so its analysis is more susceptible to noise and
artifacts than iEEG. Moreover, due to the spatial averaging
effect of the skull and dura [41], traditional LBP codes for
iEEG are too localized on individual samples to be robust
enough for detecting epilepsy in scalp EEG. Therefore, the
current approach is inadequate in accurately monitoring vari-
ous types of seizures in scalp EEG, especially when working
with limited datasets.

To address the above problems, we propose a multi-scale
LBP-based HDC (MSLBP-HDC) to improve the seizure de-
tection performance of scalp EEG on wearable devices. Our
contributions can be summarized as follows:

1) In MSLBP-HDC, the designed multi-scale LBP features
can integrate multi-scale information from scalp EEG for
seizure detection. By taking into account the duration
of spikes, the lengths of various temporal scales in
MSLBP-HDC are determined to extract dynamic fea-
tures of different types of epilepsy. In addition, model
ensemble is adopted to improve the accuracy and robust-
ness of the HDC model on small datasets. Compared
with traditional LBP-based HDC using a single limited
temporal scale, MSLBP-HDC improves the accuracy by



3.03% under the same condition of using 9000 bits in
hypervectors.

2) MSLBP-HDC, with its minimal model weight size,
outperforms advanced deep learning methods and SVM
on real clinical scalp EEG datasets, whether utilizing
the entire training data or just 1% of it. And MSLBP-
HDC shows superior and more stable performance than
the existing HDC methods under different initialization
seed settings in the item memory.

3) Feature interpretability analysis illustrates that MSLBP-
HDC can successfully identify the location of focal
epilepsy and the time of seizure onset, demonstrating
the reliability of the algorithm. Furthermore, the analysis
of embedded implementation highlights the exceptional
energy efficiency of MSLBP-HDC, making it well-
suited for wearable EEG devices.

II. METHODS

In this section, we introduce the architecture of MSLBP-
HDC, including the design of multi-scale LBP features to cap-
ture the dynamic changes of epileptic EEG and the application
of HDC to classify ictal and interictal states of the brain in
hyperdimensional space. Then we illustrate the feature inter-
pretability methods for the hypervectors of MSLBP-HDC to
identify the seizure onset in temporal and spatial dimensions,
respectively.

A. The Architecture of MSLBP-HDC

To overcome the limitation of traditional LBP coding that
only focuses on the local change trend of epileptic EEG, we
propose the multi-scale LBP encoding to combine dynamic
features of seizure over all electrodes at different temporal
scales. Then HDC is adopted to generate the holographic dis-
tributed representation of brain states through multi-scale LBP
features, which can effectively detect seizure from scalp EEG
time series with a low signal-to-noise ratio. The processing
pipeline of MSLBP-HDC is shown in Fig. 1, which includes
three parts: feature extraction and HDC encoding, learning and
classification of HDC, and post-processing.

1) Feature extraction and HDC encoding: When a patient
has a seizure, the recorded real-time EEG will show obvious
fluctuations in amplitude, such as spikes. Multi-scale LBP
encoding, as a symbolic dynamics method, can transform
epileptic EEG signals into bit strings while retaining useful
information related to seizure, thus improving computational
efficiency and reducing noise or artifacts’ interference in
feature extraction. LBP codes utilize binary bits to describe
the trend of signal variations, making them a suitable input
feature for binary HDC methods in feature analysis. In LBP
codes, a binary value 1 is assigned when there is an upward
trend between two consecutive time points of the signal, and
0 otherwise. For instance, if a signal exhibits an upward trend
followed by a downward trend, the LBP code would output
10’ as the signal feature input for analysis in the HDC model.
The computation of multi-scale LBP features is illustrated in
Algorithm 1.

Algorithm 1 Multi-Scale LBP Feature Extraction

Input:
Length of encoding window, Dyy;
Number of scales in multi-scale LBP features, N.qie;
Lengths of multi-scale LBP codes, L{*sLBF | [1sLBP,
Lengths of average windows, L{W ..., ﬁfgale; o
EEG samples of channel ch, EEGS", ..., EEGS) .
Output:
Multi-scale LBP features, msLBP.

1: for scale + 1,2,..., Nscaie do

2 Ls = (L7SEBP 4 1)x LAW,

33 forty < Lg,Ls+1,...,Dy do

4 for to < 1,2, ..., L™EBP 1 do

5: mean = 0;

6: start =t1 — Lg;

7: for t5 « start + (t2 — 1) x Lfc‘;Vle + 1, start +
(ty — 1) x LAW £ 2 .. start +ty x LAY do

8: mean = mean + EEG,??;

9: end for

10: Sgeale = mean /LW, ;

11: end for

A= S~ i

13: msLBPfl‘C‘fle‘ = concat(A > 0);

14:  end for

15: end for

16: return msLBP

The dynamic changes of epileptic EEG are captured using
multi-scale LBP encoding. And this is achieved by controlling
two parameters, namely L™LBP and LAW. [msLBP g
utilized to generate LBP codes of different lengths, which
helps in analyzing epilepsy with varying durations. Since
seizures can be variable between patients and even within a
patient, LBP codes of different lengths can aid in useful feature
extraction for different seizure types, enhancing the robustness
of the detection algorithm. On the other hand, LA"W is applied
to control signal resolutions during the LBP encoding process.
Conventional LBP codes can only describe the variation trend
between individual samples in EEG time series, but with LAV,
signal trends at different resolutions can be extracted into the
LBP encoding, thus reducing the interference of noise and
artifacts and improving the detection accuracy. Combining
these two parameters generates different temporal scales of
LBP codes that form the multi-scale LBP features.

Histogram of multi-scale LBP codes can reflect the emer-
gence of patterns in the scalp EEG time series to classify ictal
and interictal states of the brain. In our method, brain-inspired
HDC theory is adopted to generate an approximate version
of the multi-scale LBP histogram in hyperdimensional space,
which can simplify computation using only binary components
and save memory on wearable devices. Before encoding the
multi-scale LBP histogram, the item memory is applied to
allocate the quasi-orthogonal binary hypervectors to each EEG
electrode and multi-scale LBP codes of each temporal scale.
During the initialization of the item memory in HDC, we
count the number of applied multi-scale LBP codes in advance
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Fig. 1: Processing pipeline of multi-scale LBP-based HDC. It includes three parts: feature extraction and HDC encoding,
learning and classification of HDC, and post-processing.

and construct unique binary hypervectors for each code. It is
important to note that the hypervectors in the item memory are
initialized randomly during the training stage and can be easily
regenerated from the random seed by using cellular automaton
[42]. The allocated hypervectors for EEG electrodes and multi-
scale LBP codes can be defined as \.; and Bgcale, where ch
denotes the electrode and k represents the & — th LBP code
of multi-scale LBP codes at one temporal scale. The binary
hypervectors A, and ﬂsc‘”e satisfy the following conditions:
A1LAg... L AN, and BSC“ISJ_BSC‘”E J_ﬁsc‘”e The binding
operation is employed to create associations between the
hypervectors of the specific electrode and corresponding LBP
code, ie., Aoy ® ﬁ,:cj,lf For each temporal scale of multi-
scale LBP codes, the spatial information of scalp EEG over
all electrodes at time ¢ can be encoded in hyperdimensional
space via the bundling operation, and it can be written as,

Nep

= > Aen @ BRAS[H]

ch=1

¢scale

=A1 ® BRG] + A2 ® BRG] + -+ A, ® BREHS) [H].

(D

¢[t] is the holographic distributed representation of LBP in-
formation on all electrodes at time ¢. To encode the histogram
of multi-scale LBP codes inside the window Dyy, the bundling
operation is applied to sum ¢[t] hypervectors, ¢t € [1, Dy].
This process can be expressed as,

Nscale =

Dy
Z ¢scale[t]
t=1

<¢scale[1} + ¢scale[2] + ...+ ¢scale[DW]> )

where (.) indicates the sum of histogram hypervectors is
thresholded and binarized based on the majority rule. For each

2

temporal scale of multi-scale LBP codes, the corresponding
Nscale Can represent the seizure and non-seizure states of the
brain from a specific feature space. After encoding, we can
obtain the binary distributed hypervectors of multi-scale LBP
codes, which can be written as {91,792, ..., 7N ... }-

2) Learning and classification of HDC: In the training
stage, an associative memory is constructed, and two hyper-
vectors for each temporal scale, namely C¢%4! and Cinierictal
are stored to represent seizure and non-seizure states in hy—
perdimensional space. As shown in Fig. 1, the class hypervec-
tors C,, ;. are updated based on the histogram hypervector
Nscale- 10 generate multiple segments for training from the
input EEG time series, we apply an encoding window with
dimension Dy, and the encoding module of MSLBP-HDC
encodes multi-scale LBP features for each segment as a set
of binary hypervectors {n1, 72, ..., n...,. }- We then accumu-
late the 7scq1e With the same label into the corresponding
class hypervectors C_ . using the bundling operation, i.e.,
Cicate = Cocate T Mscale- It should be noted that MSLBP-
HDC only requires one training iteration to complete the
construction of class hypervectors. After training, the updated
C, a1 are stored in the associative memory for subsequent
classification.

During the inference stage, we obtain a set of hypervectors,
denoted by {n1,m2,...,1N...,. }» for an unannotated segment
from the encoding module of MSLBP-HDC. For each ns¢q1ec,
we determine its label [(7scqie) by comparing its normal-
ized Hamming distance to the class hypervectors, C¢*?! and

. . scale
Cinterictal regpectively. This process can be written as,

1, if  hamdist(C?% nyeare) <

. interictal
hamdist(CUerictal o, ie),

l(nscale) = (3)

0, otherwise,

where [(7scale) = 1 represents the ictal state and 0 means



interictal state. hamdist(.) is the function to calculate the
normalized Hamming distance and it can be expressed as,

D
hamdist(C,n) Z Lo(ayn(a) “)

where D is the dimension of binary hypervectors. Since
each temporal scale in MSLBP-HDC generates a classification
result I(7)scate) by comparing the distance with C,_ ;. in the
associate memory, the final detection result will be determined
through the post-processing module by utilizing multiple re-
sults from different temporal scales.

3) Post-processing: To enhance the precision of epilepsy
detection, MSLBP-HDC incorporates classification informa-
tion from multiple segments across different temporal scales
through model ensemble during the post-processing phase.
The decision window with dimension L, is defined to jointly
detect multiple scalp EEG segments, as depicted in Fig. 1. In
the post-processing module, the majority rule is adopted, and
the final decision result ( is represented as follows,

Lps Ngcate

iCt(Ll, if Z l(ngcale) >= W,
(= r=1 scale=1
interictal, otherwise,
o)

where 7., is the hypervectors of the r — th segment at
one temporal scale in the decision window. L, is a trade-off
between detection accuracy and latency. If L, is too large,
MSLBP-HDC is able to achieve high performance with great
latency. However, if L, is too small, the accuracy of MSLBP-
HDC will be low, resulting in unreliable detection results.

B. Feature interpretability Analysis

Feature interpretability methods are the critical component
of robust model validation procedures, which can inspect the
behavior of machine learning models, ensuring their trust-
worthiness in sensitive domains such as autonomous driving
and medical applications [43]. In this study, we adopt feature
explainability techniques to explore the information contained
in the features of MSLBP-HDC from both the time and space
domains. Specifically, we analyze the relationship between en-
coded histogram hypervectors and focal seizure area concern-
ing the spatial dimension. On the other hand, we investigate the
correlation between binary distributed hypervectors of HDC
and onset time regarding the temporal dimension. Additionally,
we use t-distributed Stochastic Neighbor Embedding (t-SNE)
to visualize the feature discriminability of different labels for
specific seizure type, namely video-detected seizure without
visual change in EEG [44].

1) Feature interpretability in spatial dimension: To ana-
lyze the feature explainability of MSLBP-HDC in the space
domain, we bundle holographic distributed representations of
multi-scale LBP codes at different times across each channel,
generating corresponding histogram hypervectors denoted as
Qgeqie,ch- The encoding process of o, ., can be written as,

scale ch — <Z 5}363}[16) >
_ scale S((ll€ S((ll€
= ( Biens 1] + Bifeny [21 + - + Biiens [Ds] )

where Dg refers to the length of the encoding window,
and we set it to 20 s for this experiment. For the feature
interpretability analysis, reliability is of utmost importance as
it provides suggestions for diagnosis and subsequent treatment
by medical professionals. In this case, we chose a signal length
of 20 seconds for feature relevance calculation to ensure high
reliability in identifying the seizure onset zone. EEG data
from 180 s to 160 s before the seizure is encoded into a
hypervector aiﬁﬁgfgﬁ“l to represent the interictal state of the
brain. Similarly, we encode the time series within the initial
20 s of seizure onset into a hypervector aiccfl"lle’ch to represent
the seizure state. The normalized Hamming distance between
two hypervectors for each channel across all temporal scales
in MSLBP-HDC, denoted as &y, is then calculated. It can be

expressed by,

(6)

Nscate

Z hamdist(a

h.,, integrates information from different temporal scales to
improve the precision of feature interpretation. By comparing
the Hamming distances h;, of different EEG channels during
ictal and interictal periods, this method can measure the degree
of signal change at different locations in the brain during a
seizure. Specifically, a larger h_; indicates that the signal of
this channel fluctuates greatly during the ictal period. Thus,
this location is closer to the ictogenic brain regions. During
an interictal state, there is no noticeable difference between
the hypervectors extracted from the EEG signals, resulting
in a smaller Hamming distance. However, during a seizure,
the EEG signals exhibit noticeable fluctuations, which are
captured by the hypervectors extracted from MSLBP-HDC.
As a result, these hypervectors differ significantly from those
in the interictal state, resulting in a larger Hamming distance.
In addition, to show the degree of EEG signal change during
the interictal state, we encode the EEG data from 160 s to
140 s before the seizure into a hypervector and calculate
its normalized Hamming distance with o257%c/e! for each
channel across all temporal scales.

2) Feature interpretability in temporal dimension: Similar
to feature explainability in the space domain, the interpretabil-
ity of features in the temporal dimension analyzes changes
in hypervectors over time during epilepsy occurrences. We
use 0.5 s as the length of Dy, in MSLBP-HDC encoding
module to extract hypervectors {11, 72, ..., nn...,. } from scalp
EEG segments, for both ictal and interictal periods. Tem-
poral changes in MSLBP-HDC features during seizures are
determined by calculating the normalized Hamming distance
between 7)scqic[t] at different times and the interictal hyper-
vectors nirterictal from 180 s to 179.5 s before the seizure.
This process can be written as,

ictal
n chr &

;anirictal). (7)
scale



qscale[t] = ha’deSt(nscale [t}7 n;zé?;Z(‘tal)' (8)
When a seizure occurs, the normalized Hamming distance
Qyeare Detween nictal and pinterictal jncreases in the temporal
dimension. Additionally, we visualize and compare feature
changes across different temporal scales in MSLBP-HDC.
Unlike the black-box nature of deep learning models, we
can employ straightforward feature interpretability methods
to analyze the spatial and temporal characteristics of features
in MSLBP-HDC. This enables the automatic determination
of seizure location and onset time using scalp EEG signals,
making feature explainability analysis of MSLBP-HDC a
valuable tool not only for testing model robustness but also
for providing clinical decision support to doctors in real-world
scenarios.

III. EXPERIMENT SETUP

A. Dataset Description

The performance of our proposed MSLBP-HDC method
and the existing methods were evaluated on the public epileptic
EEG dataset [45]. This dataset contained long-term scalp EEG
recordings from patients at the Epilepsy Monitoring Unit of
the American University of Beirut Medical Center. The multi-
channel epileptic EEG time series were acquired using 21
scalp electrodes following the 10-20 electrode system, and
the sampling rate was 500 Hz. Three seizure types were
recorded in the dataset: complex partial seizure, electrographic
seizure, and video-detected seizure without visual changes
over EEG. Due to contact noise in the Pz and Cz channels of a
single patient, which prevented normal EEG signal acquisition,
we excluded these channels for that patient. In addition, we
uniformly excluded specific channels (Pz and Cz channels)
from all participants in the experiment. We performed this
operation based on the following three reasons. Firstly, by
removing the same channels across all participants, we ensured
data consistency, thereby promoting fairness in the analysis.
Secondly, the Pz and Cz channels were not centrally positioned
for focal seizures. As a result, excluding data from these
channels has minimal impact on the analysis of epileptic
EEG signals. Lastly, utilizing EEG data with identical channel
configurations facilitated the calculation and comparison of
model weight sizes across different methods. This choice is
particularly relevant as deep learning models, such as time-
series-based CNN, exhibit an increasing number of parameters
as the number of channels in EEG expands. There were
many variations in the patient recordings, such as ictal onset
zones and seizure duration. The dataset utilized in this study
consisted of data from six patients, and we included the EEG
data of all six patients in our experiment. The scalp EEG
signals were bandpass filtered between 1 Hz divided by 1.6
and 70 Hz, and then the 50 Hz electrical utility frequency was
removed.

B. Experiment Protocol

We adopted a leave-one(recording)-out cross-validation pro-
cedure to evaluate all methods in the experiment. For each

patient’s seizure recordings, one recording containing interictal
and ictal portions was selected as the test set, while the
remaining recordings were used as the training set. We then
rotated the test set among all recordings until each recording
took turns as the test set. MSLBP-HDC and the baseline
models were trained individually for each patient.

The EEG data were divided into 0.5-second signal segments
as input for all methods, and segments less than 0.5 s were
discarded. This decision takes into account the variable du-
ration of seizures present in the dataset. Longer input signal
lengths would result in reduced training data of ictal state.
By utilizing a 0.5-second signal length as input, we ensured
an ample amount of data in the training set, which is crucial
for the effectiveness of data-driven machine learning models.
Moreover, the model weight size of the baseline models is
directly influenced by the input signal length. For wearable
devices, it is essential to maintain a small model weight size
while ensuring satisfactory detection performance. Leveraging
the post-processing module and the 0.5-second signal input
not only enhances the accuracy of seizure detection but
also mitigates the risk of excessive model weight size. This
approach is particularly significant in the context of wearable
devices, as it ensures smooth operation without overtaxing the
resources. Therefore, all algorithms employed the same post-
processing procedure to further improve performance.

In the post-processing procedure, the decision window Ly,
with a length of 5.5 s was defined. The methods detected
seizure onset by post-processing all classification results of
scalp EEG segments within the decision window. For the
task of detecting epilepsy occurrences, we need to balance
detection accuracy and latency when setting the signal length
for post-processing. Specifically, setting a smaller signal length
for post-processing can effectively reduce the detection la-
tency but may lower the detection accuracy, leading to an
increase in false alarm rate and impacting the patient’s daily
life. Conversely, a larger post-processing signal length can
ensure higher detection accuracy but increases the detection
latency, potentially depriving the patient of timely assistance
and intervention. Therefore, we set the post-processing signal
length as 5.5 s to strike a balance between detection accuracy
and latency. Moreover, we adopted the majority voting rule to
generate the final classification decision. Specifically, if more
segments were classified as seizure label, the final decision was
deemed as ictal state; otherwise, it was considered interictal
state.

C. Parameter Settings of MSLBP-HDC

In this experiment, we set Dy and Ngeqe to 0.5 s and
3, respectively, for multi-scale LBP feature extraction. The
values of LAW and L™LBP were [1, 3, 5] and [6, 10, 8],
respectively. And the number of LBP codes was [64, 1024,
256] for the three scales in the multi-scale LBP feature,
according to the parameter LB According to Algorithm
1, we can see that the lengths of LBP encoding Lg for
three scales were [7, 33, 45], corresponding to short, medium,
and long temporal scales in MSLBP-HDC. Previous studies
have shown that feature extraction mode with short, medium,



and long temporal scales are useful for EEG analysis [15],
[46]. Moreover, setting Ng.qie to 3 is a compromise between
accuracy and computational cost. The values of LAY and
L™msLBP ({etermine the value of Lg, and the determination
of Lg is based on the duration of spikes, which are the
main features for seizure detection [47]. Since the duration
of spikes ranges from 20 to 70 ms [48], feature extraction
can be performed on one or more spikes by using encoding
lengths of [7, 33, 45] for Lg, corresponding to time duration
of [14, 66, 90] ms, thus ensuring the detection accuracy of
MSLBP-HDC.

D. Comparison Metrics

Regarding the comparison metrics, we employed specificity,
sensitivity, and macroaveraging accuracy to evaluate algorithm
performance in epilepsy detection. Specificity is linked to an
accurate analysis of interictal periods, and high specificity can
effectively reduce false alarms. The calculation of specificity
can be written as,

Ninterictal

Z;

(Winterictal —— interictal)

Speci ficity = , 9)

N, interictal

where Npterictar 18 the number of interictal windows in
the test set and W;nterictal g the § — th interictal window.
Sensitivity measures the ability of the model to detect epilepsy
exactly and it can be represented as,

9
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Sensitivity = (10)

Nictal ’
where N;.;q; 1s the number of ictal windows in the test set and
Wictal is the i — th ictal window. Macroaveraging accuracy
is the average of specificity and sensitivity, and it can be
expressed as,

Speci ficity + Sensitivity
5 .

(11

Accuracy =

E. Compared Methods

The compared methods in this experiment include advanced
deep learning models, HDC methods, and SVM model. And
the HDC methods can be divided into time-series-based, LBP-
based and multi-features-based models according to the input.
Furthermore, we also investigate the quantized deep learning
methods that utilize int8 model weights. Specifically, we
employ the Tensorflow Lite Tool to convert the model weights
in deep learning models from float32 to int8.

1) TS-LSTM: The time-series-based long short-term mem-
ory network (TS-LSTM) processes raw EEG signals and
transmits useful information through the gate structure. [18]
proposed a TS-LSTM architecture that achieves good perfor-
mance in seizure detection.

2) TS-CNN: The time-series-based convolutional neural
network (TS-CNN) applies a convolutional structure to extract
task-related features from EEG time series. In [15], the TS-
CNN architecture design adopts the multi-scale convolutional
layer and length-one convolution. It shows high accuracy not
only for epileptic EEG but also for other EEG-based brain-
computer interface paradigms.

3) LBP-CNN: The LBP-based convolutional neural net-
work (LBP-CNN) combines traditional LBP features and
convolutional structure to analyze epileptic EEG data. LBP-
CNN in [16] can accurately classify different brain states from
EEG signals.

4) LBP-LSTM: The LBP-based long short-term memory
network (LBP-LSTM) feeds the extracted conventional LBP
features to the LSTM network. We consider the model ar-
chitecture in [19] and tune its hyperparameters for epilepsy
detection.

5) TS-HDC: The time-series-based hyperdimensional com-
puting method (TS-HDC) utilizes the continuous item memory
to map the quantized amplitude levels to the hypervectors. TS-
HDC, as presented in [36], can be employed for seizure onset
detection.

6) LBP-HDC: The LBP-based hyperdimensional comput-
ing method (LBP-HDC) in [39] encodes the traditional LBP
features to hypervectors and conducts analysis in hyperdimen-
sional space. It is also the state-of-the-art HDC method for
classifying ictal and interictal states in iEEG.

7) MF-HDC: The multi-features-based hyperdimensional
computing method (MF-HDC) incorporates features from
mean amplitude, power spectral density, and line length [49]
for epileptic EEG analysis. We utilize the Ch x F x V
architecture of MF-HDC proposed in [34] for performance
comparison.

8) LBP-SVM: The LBP-based support vector machine
method (LBP-SVM) employs traditional LBP features as input
for the SVM model. In [10], the authors developed the
LBP-SVM approach for epileptic EEG analysis and achieved
commendable accuracy performance.

IV. RESULTS
A. Classification Results

TABLE 1 illustrates the mean specificity, sensitivity, and
accuracy across all patients for MSLBP-HDC and the other
compared methods, where SEM denotes the standard error
of the mean. From the table, it is evident that MSLBP-
HDC attains the highest specificity (96.18%) compared to all
other algorithms. Additionally, LBP-based approaches such as
LBP-HDC, LBP-SVM, and LBP-based deep learning models
demonstrate superior specificity when compared to TS-based
algorithms, including TS-HDC and TS-based deep learning
methods. Due to the omission of temporal dynamic fea-
tures during feature extraction, MF-HDC exhibits the lowest
specificity compared to all other methods. High specificity,
is necessary for the algorithm to be deployed in the real
environment, as it can effectively reduce false alarm rate and
avoid corresponding patient anxiety [50]. In the experiment,
MSLBP-HDC also achieves the highest average accuracy



TABLE I: Average specificity, sensitivity, and accuracy across all patients for MSLBP-HDC and the existing methods. SEM
denotes the standard error of the mean.

Work Model Specificity == SEM (%)  Sensitivity &= SEM (%)  Accuracy & SEM (%)
Our work MSLBP-HDC 96.18 + 1.36 88.76 + 6.30 92.47 £+ 3.01
Ccalicskan et al, 2022 [18] TS-LSTM 78.26 £+ 7.79 57.90 £ 12.32 68.08 £+ 7.31
Du et al, 2022 [15] TS-CNN 7491 £ 6.97 89.48 + 7.33 82.20 + 5.84
Dhar et al, 2022 [16] LBP-CNN 95.40 £+ 1.72 82.19 + 7.09 88.79 + 3.41
Shekokar et al, 2021 [19] LBP-LSTM 93.66 £ 3.32 88.95 + 7.21 91.31 £ 3.77
Pale et al, 2021 [36] TS-HDC 70.10 £ 4.28 67.85 £ 5.69 68.97 £+ 3.89
Burrello et al, 2019 [39] LBP-HDC 92.71 £ 1.93 85.49 + 5.71 89.10 + 2.83
Pale et al, 2022 [34] MF-HDC 53.91 £ 10.89 79.46 + 8.32 66.68 + 8.24
Jaiswal et al, 2017 [10] LBP-SVM 92.71 £ 3.02 83.77 + 7.82 88.24 + 391
Ccalicskan et al, 2022 [18] Quantized TS-LSTM 78.26 + 7.79 57.95 + 12.28 68.10 + 7.20
Du et al, 2022 [15] Quantized TS-CNN 7491 £ 6.97 88.09 + 8.71 81.50 + 6.46
Dhar et al, 2022 [16] Quantized LBP-CNN 9523 £ 1.72 82.34 + 7.13 88.78 + 3.40
Shekokar et al, 2021 [19] Quantized LBP-LSTM 93.84 £+ 3.15 88.80 + 7.19 91.32 £+ 3.74

(92.47%). When compared to quantized LBP-LSTM, which
has the best accuracy (91.32%) among all deep learning
models, MSLBP-HDC attains better accuracy while having
a smaller model weight size, as shown in Fig. 2. MSLBP-
HDC only needs one training iteration to achieve such high
performance, while the training iterations of deep learning
models were set to 100 in the experiment to get a satisfactory
performance. Additionally, we can observe that the LBP-based
methods outperform time-series-based methods and MF-HDC
in terms of accuracy, demonstrating the effectiveness of LBP
features in seizure detection. For the mean sensitivity, the
time-series-based method TS-CNN performs best (89.48%).
It should be noted that both MSLBP-HDC and TS-CNN
adopt the idea of multi-scale feature extraction for epileptic
EEG analysis. MSLBP-HDC achieves better specificity and
accuracy than TS-CNN, and we will improve the sensitivity
performance of MSLBP-HDC later to make it more practical.

Fig. 2 shows the model weight size versus macroaver-
aging accuracy for all algorithms. We can clearly see that
MSLBP-HDC outperforms other classifiers in model weight
size and accuracy, demonstrating the practicality of our pro-
posed method for epilepsy detection on wearable devices. In
comparison to deep learning models and SVM, HDC models
achieve the smallest model weight size, as they only need
to store the class hypervectors and the random seed [51],
[39]. Additionally, the item memory in HDC models can
be easily reconstructed from the random seed using cellular
automaton [42]. For our proposed MSLBP-HDC, we set the
dimension of the hypervector to be 3,000 and Ng.q;. to be
3. Therefore, the model weight size of MSLBP-HDC can be
calculated as the sum of the weight of class hypervectors
(18 kbits) and the weight of the random seed (64 bits). It
is evident that the quantized deep learning models achieve
similar accuracy to their non-quantized counterparts but with
smaller model weight size. Due to the simplicity of LBP
features and the translation invariance of the convolutional
structure, quantized LBP-CNN has the smallest model weight
size among all deep learning models (approximately two times
larger than MSLBP-HDC). Although quantized LBP-LSTM
achieves the highest accuracy in all deep learning methods, its
larger model weight size, about 450 times larger than MSLBP-
HDC, limits its implementation on wearable devices. The

binary weights and operations in MSLBP-HDC are hardware-
friendly. This is significant for the long-term monitoring of
epilepsy patients on portable devices. In contrast, deep learning
models require floating-point or integer operations, which pose
higher hardware requirements and make their application more
challenging. Additionally, it can be observed that time series-
based methods, including TS-CNN, TS-LSTM, and TS-HDC,
exhibit poor performance due to the disparity in features
between amplitudes in time series and LBP codes. Moreover,
MF-HDC demonstrates lower accuracy in comparison to the
TS-HDC and LBP-HDC methods, despite having the same
model weight size.
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Fig. 2: The model weight size versus macroaveraging
accuracy for MSLBP-HDC and the other compared
algorithms.

The mean specificity, sensitivity, and accuracy of MSLBP-
HDC and compared methods for different seizure types are
shown in TABLE II. To assess the analytical performance of
various methods on different types of epileptic EEG data,
we calculate the average performance by aggregating the
specificity, sensitivity, and accuracy of MSLBP-HDC and
baseline models for patients with the same seizure type. It can
be observed that MSLBP-HDC achieves the highest specificity
among all models for all seizure types, which is consistent
with the observations in TABLE I. The high specificity of
MSLBP-HDC ensures a low probability of false detection in
the applications. From the table, it is evident that our proposed
method achieves the best performance across all three metrics



TABLE II: Mean specificity (SPE), sensitivity (SEN), and accuracy (ACC) of MSLBP-HDC compared to other methods on
different seizure types, including complex partial seizure, electrographic seizure, and video-detected seizure with no visual
change over EEG.

Complex Partial Seizure

Electrographic Seizure Video-Detected Seizure

Spe (%)  Sen (%) Acc (%) Spe (%) Sen (%) Acc (%) Spe (%) Sen (%)  Acc (%)

MSLBP-HDC 95.05 86.93 90.99 96.88 84.83 90.85 100.00 100.00 100.00
TS-LSTM 84.38 51.22 67.80 50.00 53.64 51.82 82.03 88.89 85.46
TS-CNN 79.56 84.23 81.89 50.00 100.00 75.00 81.25 100.00 90.63
LBP-CNN 94.66 76.61 85.63 93.75 92.95 93.35 100.00 93.75 96.88
LBP-LSTM 91.28 85.13 88.20 96.88 93.18 95.03 100.00 100.00 100.00
TS-HDC 69.40 64.48 66.94 59.38 60.28 59.83 83.59 88.89 86.24
LBP-HDC 91.80 84.58 88.19 89.06 80.91 84.99 100.00 93.75 96.88
MF-HDC 58.20 73.99 66.10 20.31 86.36 53.34 70.31 94.44 82.38
LBP-SVM 90.63 81.90 86.26 93.75 81.31 87.53 100.00 93.75 96.88
Quantized TS-LSTM 84.38 50.84 67.61 50.00 55.45 52.73 82.03 88.89 85.46
Quantized TS-CNN 79.56 82.14 80.85 50.00 100.00 75.00 81.25 100.00 90.63
Quantized LBP-CNN 94.79 76.61 85.70 92.19 93.86 93.03 100.00 93.75 96.88
Quantized LBP-LSTM 91.54 85.13 88.33 96.88 92.27 94.57 100.00 100.00 100.00

in the analysis of complex partial seizures. Regarding EEG sig-
nals with electrographic seizures, MSLBP-HDC, LBP-LSTM,
and quantized LBP-LSTM demonstrate the highest specificity.
However, it can be observed that time-series-based models
(TS-CNN, TS-LSTM, and TS-HDC) and MF-HDC exhibit
low specificity in the analysis of electrographic seizures. TS-
CNN and its quantized counterpart exhibit the best sensitivity,
while LBP-LSTM shows the highest accuracy among all the
methods. In the analysis of video-detected seizures without
visual changes over EEG, MSLBP-HDC, LBP-SVM, LBP-
HDC, LBP-based deep learning models and their quantized
counterparts achieve the highest sensitivity, demonstrating the
usefulness of LBP features in detecting this type of seizure.
MSLBP-HDC, TS-CNN, and their quantized models, as well
as LBP-LSTM and its quantized model, display the best
sensitivity performance. Furthermore, in terms of accuracy, it
is apparent that LBP-based methods outperform time-series-
based methods, with MSLBP-HDC, LBP-LSTM, and quan-
tized LBP-LSTM achieving the highest accuracy performance.

B. Few-Shot Learning Performance

Machine learning methods are capable of achieving sat-
isfactory accuracy with enough training data. However, in
real-world situations, acquiring clean and reliable scalp EEG
signals can be challenging in noisy environments or when
the patient has excessive movement or muscle activity [15].
Uncertainty about seizures also makes annotated data harder
to come by [39]. Therefore, few-shot learning performance is
important for machine learning methods to conduct seizure
detection with small training data.

In the few-shot learning experiment, we employed a leave-
one(recording)-out cross-validation procedure. For each iter-
ation, a complete recording of a patient, encompassing both
interictal and ictal portions, was selected as the test set, while
the remaining recordings were considered as candidates for
the training set. Subsequently, we randomly sampled 1% of
data from the interictal and ictal portions of the candidate
training set for the few-shot learning experiment. Specifically,
we initially selected a recording randomly from the candidate
training set. If the number of data points within the interictal

and ictal portions of this recording satisfied the requirement,
i.e., greater than or equal to 1% of the overall candidate
training set, we utilized the data from this recording as the
training set for the few-shot learning experiment. In cases
where the quantity fell short of the 1% threshold, we continued
to select subsequent recordings randomly until the desired
quantity was met. On average, the number of data points within
the training set for the few-shot learning experiment was 21.08
across all six patients in the dataset.

Fig. 3 shows the performance of MSLBP-HDC, MSLBP-
LSTM, MSLBP-CNN, and MSLBP-SVM with only 1% of the
available training data in the dataset, where Fig. 3(a) illustrates
the average accuracy across all patients, and Fig. 3(b) depicts
the accuracy for six patients. It should be noted that MSLBP-
HDC, deep learning models, and SVM adopt the same multi-
scale LBP features as input for a fair comparison. As shown
in Fig. 3(a), when using small training data, MSLBP-HDC
maintains high accuracy performance, while the accuracy of
CNN and LSTM is relatively low, demonstrating the practi-
cability of our proposed method in epilepsy detection tasks
on scalp EEG. MSLBP-SVM achieves the second-highest
accuracy performance among all the methods. However, the
model weight size of SVM is larger than that of MSLBP-HDC,
as shown in Fig. 2, which limits its implementation in real
scenarios. Furthermore, MSLBP-HDC, MSLBP-LSTM, and
MSLBP-SVM can enhance accuracy by increasing the post-
processing signal length, whereas the accuracy of MSLBP-
CNN remains nearly unchanged. In Fig. 3(b), MSLBP-HDC
achieves the best accuracy performance in three out of six
patients (patients 1, 4, and 6), illustrating the robustness
of our approach in learning seizure-related features from a
limited amount of data. In the case of patient 6, our analysis
reveals that MSLBP-HDC, MSLBP-SVM, and MSLBP-CNN
exhibit remarkably similar high-performance levels. How-
ever, MSLBP-LSTM demonstrates relatively lower accuracy
in comparison. Our proposed MSLBP-HDC achieves almost
100% accuracy for patient 4 using only 1% of the training data.
For patient 2, the performance gap between MSLBP-HDC
and LSTM gradually narrows as L, increases in the post-
processing module. For patients 3 and 5, MSLBP-CNN and
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Fig. 3: Few-shot learning performance of MSLBP-HDC, deep neural networks and SVM with multi-scale LBP features using
1% of the training data: Average accuracy across all patients (a) and accuracy for six patients (b) with different
post-processing signal lengths.

MSLBP-SVM are the best-performing models, respectively.
In the few-shot learning experiment, only 1% of the original
training data was used to train the model. It should be noted
that EEG signals with weak amplitudes are easily influenced
by noise and artifacts. In such cases, anomalous samples that
are affected by noise and artifacts may prevent the model
from accurately capturing essential features related to epilepsy
detection in EEG data, resulting in unstable feature extraction
and overfitting on anomalous data in the model training stage.
Consequently, insufficient training samples can lead to poor
generalization performance of models on certain subjects,
particularly for data-driven deep learning models such as
MSLBP-CNN. As evident from Fig. 3(b), all methods exhibit
performance variations across different patients. Unlike our
proposed MSLBP-HDC which achieves high accuracy perfor-
mance across multiple subjects, MSLBP-CNN fails to learn
useful features related to epileptic EEG signals for patients
1, 4, and 5, resulting in an accuracy of only around 50%
on these three subjects. Moreover, the accuracy of MSLBP-
CNN does not improve with an increase in the post-processing
signal length of these three patients due to its weak feature
extraction ability. The poor performance of MSLBP-CNN on
these three patients contributes to its low average accuracy
across all patients in Fig. 3(a). It can be clearly seen from
Fig. 3(a) that the average accuracy remains almost unchanged
as the post-processing signal length increases. In contrast,
for patients like patient 2, where MSLBP-CNN successfully
learns relevant features, the accuracy improves from 65.54%
to 73.08% as the post-processing signal length increases. In
summary, the results depicted in Fig. 3 demonstrate the robust-
ness of MSLBP-HDC in monitoring different epilepsy patients
with limited annotated data. Improving the few-shot learning
performance of MSLBP-HDC further is one of our future
works, which can enhance the practicality of our method.

C. Feature Explainability Analysis

Fig. 4 illustrates the feature relevance topographies for
patients with partial seizure locations during the ictal and

interictal phases, namely patients 1, 2, 5, and 6. It is evident
from the figure that there are significant differences in the fea-
ture relevance topographies between seizure and non-seizure
states. Specifically, the features in MSLBP-HDC during the
ictal phase, especially the hypervectors at the partial seizure
sites, exhibit a large difference from the features during the
interictal phase, i.e., a higher normalized Hamming distance.
On the other hand, the hypervectors from EEG signals during
the interictal phase do not differ significantly from each other.
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Fig. 4: The feature relevance topographies for patients with
partial seizure locations during the ictal and interictal phases,
where the color bar indicates the normalized Hamming
distance.

From the results of patient 1, it can be seen that the
largest normalized Hamming distance between hypervectors
appears near the right anterior temporal and right frontal
lobes, implying that the useful features are concentrated at
this location for MSLBP-HDC to conduct seizure detection.
This finding is consistent with the doctor’s diagnosis in the
dataset: the focal point of patient 1 was close to the right
anterior temporal and right frontal lobes [45]. Similar results
are observed for patients 2, 5, and 6. The primary seizure
sites for these patients are the right posterior temporal lobe,
left middle temporal lobe, and right frontal lobe, respectively,
which are consistent with the doctor’s diagnosis. Compared
to statistical analysis, which necessitates a large sample size



to obtain localization results for the ictogenic brain region,
rating the feature importance (Hamming distance) of channels
with MSLBP-HDC can provide diagnostic results similar to
those of doctors using only a 20-second signal segment. This
approach is more appropriate for localizing the ictogenic brain
region since seizures have a limited duration [52]. In such
cases, statistical analysis may not yield significant localization
results. Overall, MSLBP-HDC is able to identify the seizure
location in a short period of time for different patients,
demonstrating its reliability and generalizability.
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Fig. 5: The feature relevance between Epileptic EEG signals
and hypervectors of MSLBP-HDC at different temporal
scales in the time domain, where the colour bars denote the
normalized Hamming distance. Scale 1, 2, and 3 represent
short, medium, and long temporal scales in MSLBP-HDC,
respectively.

The feature relevance between epileptic EEG and hyper-
vectors of MSLBP-HDC at different temporal scales in the
time domain is shown in Fig. 5, which is generated from
the test set in one randomly chosen fold of the dataset. The
feature difference is obtained by comparing the normalized
Hamming distance of the hypervectors with seizure and non-
seizure labels at different times. It can be clearly seen that
for hypervectors of different temporal scales, when epilepsy
occurs, the normalized Hamming distance from the hypervec-
tor without seizure becomes larger, indicating that MSLBP-
HDC extracts epilepsy-related features to encode hypervectors
and conduct detection. Additionally, the hypervectors at long
temporal scale (scale 3) exhibit the more obvious feature dif-
ferences for seizure onset, since long-scale feature extraction
is more resistant to the interference of noise and artifacts. This
verifies the necessity of long-scale LBP-feature extraction in
our proposed method.

Fig. 6 depicts the t-SNE feature visualization of MSLBP-
HDC’s hypervectors at different temporal scales for video-
detected seizures with no visual change over EEG. It should be
noted that the test set is a randomly selected recording from the
epileptic EEG dataset. Although there are no obvious changes
in the scalp EEG time series, the feature distribution of
hypervectors reflects distinguishability between the interictal
and ictal portions at different temporal scales, demonstrating
the effectiveness of MSLBP-HDC for analyzing this seizure

type.
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Fig. 6: The t-SNE projections of MSLBP-HDC’s
hypervectors at different temporal scales for video-detected
seizure with no visual change over EEG, where scale 1, 2,

and 3 denote short, medium and long temporal scales in
MSLBP-HDC, respectively.

D. Embedded Implementation Analysis

In this subsection, we conduct a comprehensive analysis
of the embedded deployment of MSLBP-HDC. One of the
major challenges in this deployment arises from the significant
data transfers involved in the calculation of hypervectors
within the HDC model [53]. To address this issue, a promis-
ing approach to meet the requirements for advanced low-
power, high-speed computing platforms is to leverage next-
generation memristive devices to perform HDC. Among the
various non-volatile memory (NVM) technologies, Resistive
Random Access Memory (RRAM) [54] exhibits multi-state
programmability and promising compute-in-memory (CIM)
potential in the next-generation HDC area. Efficient CIM is
able to minimize dramatically the need for extensive data
movement, leading to improved energy efficiency in the im-
plementation of MSLBP-HDC. In our work, we utilize the
extensively modified DNN+NeuroSim integration framework
[55] to evaluate the performance of RRAM in the context of
MSLBP-HDC. This framework offers flexible and hierarchical
CIM array design options, ranging from device-level to circuit-
level and up to algorithm-level, providing us with highly
accurate prediction outcomes [56].

Table III provides a comprehensive overview of the en-
ergy efficiency and latency of embedded implementation of
MSLBP-HDC, along with comparisons to other existing works
in the field of epileptic EEG analysis. The results clearly
demonstrate that MSLBP-HDC achieves the highest energy
efficiency (0.14 pJ/class) due to its binary model architecture
and the CIM capability of RRAM hardware. In contrast, Li
et al. achieved an energy efficiency of 8.12 pJ/class [57], and
Lammie et al. achieved 18.7 pJ/class by employing CNN on
RRAM [58]. These results demonstrate that the utilization
of CNN with RRAM technology requires higher energy for
epileptic EEG analysis compared to the HDC model. Further-
more, the deployment of the HDC model within a microcon-
troller unit (MCU) consumed significantly more energy (18.5
uJ/class) compared with MSLBP-HDC on RRAM [50]. Ai et
al. achieved an energy efficiency of 0.15 pJ/class by utilizing
a CNN hardware deployment with 65-nm complementary



TABLE III: Energy efficiency and latency about embedded implementations of MSLBP-HDC and other existing works for
epileptic EEG analysis.

Work Method Technology Energy Efficiency Latency Simulation/Measurement
Our work Hyperdimensional Computing RRAM 0.14 pJ/class 23191 ps Simulation
Li et al, 2022 [57] Convolutional Neural Network RRAM 8.12 pJ/class 1.13 ps Simulation
Lammie et al, 2022 [58]  Convolutional Neural Network RRAM 18.7 pJ/class 11 ps Simulation
Burrello et al, 2021 [50] Hyperdimensional Computing MCU 18.5 uJ/class - Measurement
Zhan et al, 2019 [59] Support Vector Machine FPGA - 10.2 ps Measurement
Wen et al, 2022 [60] Support Vector Machine 65-nm CMOS 2.23 pJ/class - Simulation
Ai et al, 2023 [61] Convolutional Neural Network 65-nm CMOS 0.15 pJ/class 3.29 ms Simulation
Su et al, 2022 [62] Support Vector Machine 130-nm CMOS 1.28 pJ/class - Measurement
Cheng et al, 2018 [63] Ridge Regression 180-nm CMOS 62.5 pJ/class - Measurement
metal-oxide-semiconductor (CMOS) technology, surpassing ADC ADC

the hardware implementations of SVM [60], [62] and ridge
regression [63] for epileptic EEG analysis.

In terms of latency, MSLBP-HDC achieves a delay of
23191 ps on RRAM, outperforming the 3.29 ms achieved
by CNN in a 65-nm CMOS hardware deployment [61]. It is
worth noting that the achieved latency of 231.91 us, equivalent
to 4.31 kHz, in our scheme is more than sufficient for real-
time monitoring of seizure onset in wearable devices. Zhan
et al. achieved a latency of 10.2 ps by deploying SVM
using field-programmable gate arrays (FPGA) [59], while
Lammie et al. obtained 11 ps using CNN on RRAM [58].
Significantly, Li et al. achieved the minimal latency (1.13 ps)
using CNN on RRAM [57]. Benefiting from the excellent CIM
capability of RRAM, the embedded deployment of models
on RRAM achieves optimal energy efficiency (MSLBP-HDC)
and latency (CNN) among all the compared works. Notably,
our proposed method on RRAM achieves the best energy
efficiency for epilepsy detection. Given the importance of
energy consumption in long-term monitoring applications, this
emphasizes the effectiveness of MSLBP-HDC and RRAM for
wearable EEG devices.

Fig. 7 provides a breakdown of the energy usage and latency
for the embedded implementation of MSLBP-HDC in a typical
classification scenario. Regarding energy usage, the ADC and
accumulation circuits collectively contribute to 3.65% and
3.71%, respectively, while other peripherals such as decoders,
mux, switch matrix, and buffers account for 92.64% of the
overall energy consumption. A similar distribution is observed
in the latency breakdown, where the ADC and accumulation
circuits contribute to 2.20% and 4.93% of the total latency,
respectively, and other peripherals account for 92.87% of the
overall latency.

V. ABLATION STUDIES

In this section, we present ablation studies to demonstrate
the effectiveness of each component in our proposed MSLBP-
HDC model. Unlike the traditional LBP encoding that analyzes
EEG signals only at short temporal scales, the designed multi-
scale LBP codes contain features at three temporal scales:
short, medium, and long. To evaluate the efficacy of the newly
added medium and long scales, we conduct a comparison
between MSLBP-HDC and three existing solutions, namely
TS-HDC, LBP-HDC, and MF-HDC, using identical bit-length
conditions. LBP-HDC solely employs features extracted from

3.65% (0.01 1J) 2.20% (5.10 us)

Accumulation Circuits
4.93% (11.44 ps)

Accumulation Circuits
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Other Peripheries
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92.87% (215.37 ps)

Energy
@ (b)
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Fig. 7: Energy usage (a) and latency (b) breakdown about
embedded implementation of MSLBP-HDC for a typical
classification.

the short temporal scale, whereas TS-HDC utilizes raw am-
plitude features of EEG signals. And MF-HDC adopts the
features from both amplitude and power spectral density
for seizure detection. In addition, to assess the effectiveness
of using HDC for encoding multi-scale LBP features, we
compare the performance gain of HDC with deep learning
models, including CNN and LSTM, when using multi-scale
LBP features. The gain is computed by comparing it with the
performance of traditional LBP-based models.

A. Comparison with Existing HDC Methods

1) Performance comparison under different hypervector
settings: To explore the performance of the MSLBP-HDC
method further, we compare its mean specificity, sensitivity,
and accuracy with TS-HDC, LBP-HDC, and MF-HDC meth-
ods, using hypervectors of the same bit length in the HDC
models. As shown in TABLE IV, MSLBP-HDC outperforms
other HDC methods under different hypervector settings.
MSLBP-HDC is capable of analyzing spikes with varying
durations using multi-scale features, whereas LBP-HDC, with
only a single short-scale feature, TS-HDC, with raw amplitude
features, and MF-HDC, with the overall characteristic features
of EEG time series, cannot achieve this. Furthermore, it is
evident that LBP-based HDC models outperform TS-based and
MF-based HDC models under different hypervector settings,
demonstrating the effectiveness of LBP features in seizure
detection.

Increasing the bit length in the HDC model significantly
improves the performance of MSLBP-HDC and TS-HDC,
while no similar improvement is observed for LBP-HDC and



TABLE IV: Performance comparison of MSLBP-HDC, TS-HDC, LBP-HDC, and MF-HDC methods using hypervectors of
equal bit length in the HDC models, where Spe, Sen, and Acc denote specificity, sensitivity, and accuracy, respectively.

D = 3000 D = 6000 D = 9000
Spe (%) Sen (%)  Acc (%) Spe (%) Sen (%) Acc (%) Spe (%) Sen (%)  Acc (%)
MSLBP-HDC 94.36 88.49 91.43 95.23 88.47 91.85 96.18 88.76 92.47
TS-HDC 67.62 57.71 62.67 68.71 67.98 68.34 67.71 68.56 68.13
LBP-HDC 93.32 85.36 89.34 92.53 86.00 89.27 93.06 85.83 89.44
MF-HDC 58.33 77.72 68.03 54.60 80.56 67.58 54.34 78.49 66.42

MEF-HDC. When using 3000 bits in the hypervectors, the accu-
racy of MSLBP-HDC reaches 91.43%, compared to 89.34%
for LBP-HDC, 62.67% for TS-HDC, and 68.03% for MF-
HDC. Applying 9000 bits in the HDC model further improves
the accuracy of MSLBP-HDC to 92.47%, while LBP-HDC
achieves 89.44%, TS-HDC achieves 68.13%, and MF-HDC
achieves only 66.42%. TS-HDC achieves the largest sensitivity
gain when increasing the bit length in the hypervectors.
The sensitivity of TS-HDC increase from 57.71% to 68.56%
when HDC uses 3000 bits to 9000 bits in the hypervector
settings. Moreover, when using 9000 bits in hypervectors, the
sensitivity of MSLBP-HDC is 88.76%, while that of LBP-
HDC is 85.83%, MF-HDC achieves 78.49%, and TS-HDC
achieves only 68.56%. The difference in sensitivity highlights
the practicality of our method in seizure detection. In practical
applications, we set D = 9,000 in the MSLBP-HDC to
balance the model weight size and accuracy. When performing
24-hour real-time epilepsy detection using wearable devices,
a high model weight size would increase the computational
burden and slow down the operation in embedded systems.
Therefore, while ensuring high accuracy, it is crucial to
minimize the model weight size as much as possible.

100 T T T
[ MSLBP-HDC

B MF-HDC

Accuracy (%)

Complex Partial Seizure Electrographic Seizure  Video-Detected Seizure

Fig. 8: Accuracy Performance of MSLBP-HDC and other
existing HDC methods for the analysis of different seizure
types, under the condition of using 9000 bits hypervectors in
the HDC models.

Fig. 8 presents the accuracy performance of MSLBP-HDC,
TS-HDC, and LBP-HDC methods for the analysis of dif-
ferent seizure types, under the condition of using 9000 bits
hypervectors in the HDC models. As depicted in the figure,
MSLBP-HDC demonstrates superior performance compared
to other HDC models when considering various seizure types
with the same bit length in the hypervectors. Additionally,
all HDC methods exhibit improved accuracy in the analysis

of video-detected seizures when compared to complex partial
seizures and electrographic seizures. This finding suggests that
the HDC model excels in analyzing epileptic EEG signals of
this specific type. Notably, for complex partial seizures and
electrographic seizures, both MSLBP-HDC and LBP-HDC
exhibit higher accuracy performance than TS-HDC and MF-
HDC.

2) Performance comparison under different initialization
seed settings in the item memory: Furthermore, we investi-
gate the impact of different initialization seeds in the item
memory on the performance of HDC methods. Fig. 9 de-
picts the distributions of specificity, sensitivity, and accu-
racy of MSLBP-HDC, TS-HDC, LBP-HDC, and MF-HDC
with different initialization seeds in the item memory. The
HDC methods were trained using the leave-one(recording)-
out cross-validation procedure and then evaluated for their
performance. All HDC methods were trained five times with
different initialization seed settings in the item memory. From
the figure, it is evident that MSLBP-HDC exhibits minimal
fluctuations in performance due to the adopted ensemble
structure in the model. MSLBP-HDC achieves the highest
performance in terms of specificity, sensitivity, and accuracy
compared to TS-HDC, LBP-HDC, and MF-HDC methods.
On the other hand, TS-HDC shows the largest fluctuations
with different initialization seeds in the item memory. Such
large performance fluctuations increase resource consumption
during the training process to find the suitable seed settings,
which is not conducive to the practical implementation of
patient epilepsy detection.

3) Advantages Over LBP-HDC: Compared with LBP-
HDC, our proposed MSLBP-HDC showcases several notable
advancements in input feature, model architecture, and detec-
tion performance. MSLBP feature takes into account the scalp
EEG’s susceptibility to noise interference and the duration of
spikes, which are the distinctive characteristics of epileptic
EEG. As a result, MSLBP is able to extract dynamic features
at various time resolutions to capture abnormal cortical oscilla-
tions, which traditional LBP feature cannot achieve. Regarding
the model architecture, MSLBP-HDC has specific adaptations
to the HDC model to accommodate MSLBP features. Unlike
traditional HDC models that use hypervectors with a high
dimensionality of 10,000, we designed individual HDC models
with a relatively lower dimensionality of 3,000 in hypervectors
for each scale feature within the MSLBP, thus optimizing the
model weight size. Additionally, we employed a model ensem-
ble structure to integrate the analysis results from these sub-
HDC models. In terms of model performance, MSLBP-HDC
demonstrates superior detection performance compared to the



MSLBP-HDC TS-HDC LBP-HDC
Q @ Q
< i g N 8 il
i= c ! "
3 il & e &
@ [+ 3
& (I & " Ci ar H—
85 90 95 100 60 65 70 75 85 90 95 100
Performance (%) Performance (%) Performance (%)
MF-HDC The Meaning of Boxplot
T
g
Q- -
< @ © Interquartile Range (IQR)
5 L ’[D” 4 | 'E 7777777777 4 Outier
%} 2 inimum aximum
S| @R st Ghn e @ 10100
gl . —
@ Dl Il L Il L Il

34
o

70
Performance (%)

Fig. 9: The distributions of average specificity (Spe), sensitivity (Sen), and accuracy (Acc) of MSLBP-HDC, TS-HDC,

85

Values

LBP-HDC, and MF-HDC with different initialization seeds in the item memory. All HDC methods were trained using the
leave-one(recording)-out cross-validation procedure five times with different initialization seed settings in the item memory.
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Fig. 10: The performance gain of HDC and deep learning models by using multi-scale LBP features with post-processing

signal lengths of 0.5s, 3.5s, and 5.5s.

LBP-HDC method. Our proposed method achieves higher
detection performance while significantly reducing the model
weight size. And MSLBP-HDC consistently outperforms LBP-
HDC when analyzing different seizure types. In addition,
MSLBP-HDC demonstrates enhanced stability and accuracy
in seizure detection across different random initializations of
the item memory.

B. Performance Improvement with Multi-Scale LBP Features

Fig. 10 illustrates the performance improvement of HDC
and deep learning models by employing the proposed multi-
scale LBP features, compared with the models using traditional
short-scale LBP features. It should be noted that all methods
adopt the same post-processing procedure, and the lengths
of decision window L,, are 0.5 s, 3.5 s, and 5.5 s in this
experiment. We can see from the figure that the sensitivity
and accuracy of HDC improve the most for the different L,
settings, indicating that the designed multi-scale LBP features
are more suitable for HDC to analyze epileptic EEG signals.
With the 5.5 s signal segments as input in the post-processing
module, the HDC model achieves 2.86%, 3.40%, and 3.13%
gains in specificity, sensitivity, and accuracy, respectively. It
is significant for HDC to enhance the sensitivity performance
because the existing LBP-HDC model is weak in this metric,
as shown in TABLE L.

Furthermore, the LSTM model also obtains performance
enhancement by applying multi-scale LBP features, especially
for the specificity metric. And the improvements in accuracy
are 1.50%, 2.07%, and 1.13%, respectively, as the L, in-
creases. In contrast, the CNN method has no performance
gain but a performance loss with multi-scale LBP features. For
example, it has a 1.31%, 4.15%, and 2.73% loss in specificity,
sensitivity, and accuracy when the 3.5 s signal segments are
used as the input of the post-processing module. Investigating
the reason for the performance loss and improving the gener-
alizability of multi-scale LBP features for different methods
are some of our future works.

VI. CONCLUSION

In this study, we proposed an HDC model named MSLBP-
HDC to enhance the epilepsy detection performance of scalp
EEG on wearable devices. The designed multi-scale LBP
codes can integrate multi-scale information to capture the dy-
namic features of scalp EEG signals. In addition, we adopted
a model ensemble to further improve the accuracy and robust-
ness of MSLBP-HDC. In this way, MSLBP-HDC can extract
useful features of scalp EEG from different temporal scales
to overcome the influence of noise and improve the detection
performance for different seizure types, especially in small
datasets. We evaluated our method on an epileptic EEG dataset
acquired in real clinical scenarios, and the results demonstrate



that MSLBP-HDC achieves better detection performance with
the smallest model weight size compared to other methods.
Moreover, the feature explainability analysis illustrates that our
model is able to extract abnormal cortical oscillations rather
than noise or artifacts for seizure detection.

However, our proposed method has certain limitations.
Firstly, there is room for further improvement in the sensitivity
of MSLBP-HDC. Secondly, the detection performance of
MSLBP-HDC on electrographic seizures is relatively lower
compared to its analysis on other seizure types. In future
work, we aim to improve the performance of MSLBP-HDC,
with a specific focus on enhancing its sensitivity, detection
performance for electrographic seizures, and few-shot learning
capability. Additionally, we plan to evaluate the usefulness of
MSLBP feature on more machine learning models.
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