

1 **Editor summary:**
2 A review of NIR-II fluorescence imaging is presented, with a focus on fluorophores and probes and
3 imaging techniques.

4 **Reviewer Recognition:**
5 Nature Photonics thanks Jun Qian and the other, anonymous, reviewer(s) for their contribution to
6 the peer review of this work.

7
8
9

10 **In vivo NIR-II fluorescence imaging for biology and medicine**

11 Feifei Wang¹, Yeteng Zhong², Oliver Bruns^{3,4}, Yongye Liang⁵, Hongjie Dai^{6,7*}

12 ¹Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong
13 Kong 999077, China

14 ²CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center
15 for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese
16 Academy of Sciences, Beijing100190, China

17 ³Department for Functional Imaging in Surgical Oncology, National Center for Tumor
18 Diseases (NCT/UCC) Dresden, Germany

19 ⁴Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany

20 ⁵Department of Materials Science and Engineering, South University of Science and
21 Technology of China, Shenzhen, China.

22 ⁶Department of Chemistry and Bio-X, Stanford University, Stanford, CA 94305, USA

23 ⁷Department of Chemistry, School of Engineering and School of Biomedical Sciences, The
24 University of Hong Kong, Hong Kong 999077, China

25

26

27

28 * Correspondence to: hdai@stanford.edu

29

30 **Abstract**

31 Due to reduced light scattering and tissue autofluorescence, in vivo fluorescence imaging in
32 the 1000 - 3000 nm near-infrared II (NIR-II) spectral range can afford non-invasive imaging at
33 millimetres-depths within biological tissue. Infrared fluorescent probes labelled with
34 antibodies or other targeting ligands also enable NIR-II molecular imaging at the single cell
35 level. In this Review, we present recent developments in the design of fluorophores and probes
36 emitting in the NIR-II window based on organic synthesis and nanoscience approaches. We
37 also review advances in NIR-II wide-field and microscopy imaging modalities, with a focus on

38 preclinical imaging and promising clinical translation case studies. Finally, we outline current
39 issues and challenges for the wider adoption of NIR-II imaging in biomedical research and
40 clinical imaging.

41

42 1. Introduction

43 Optical imaging is important to biology and medicine as it boasts exceptional
44 spatiotemporal resolution for non-invasive *in vivo* imaging with potentially diffraction limited
45 or sub-diffraction limited spatial resolution in real time, which complements X-ray computed
46 tomography, magnetic resonance imaging and ultrasound imaging. However, the spatial
47 resolution and penetration depth of *in vivo* fluorescence imaging into live tissues is limited by
48 combined effects of absorption, scattering, tissue autofluorescence, quantum yields (QY) of
49 probes, optical configuration and detector sensitivity/efficiency. High resolution fluorescence
50 imaging relies on ballistic and slightly scattered snake-like photons transmitting through tissues,
51 whereas multiple-scattered diffusive photons contribute to noise or background and ruin the
52 diffraction-limited resolution^{1,2}. Light scattering within tissues is dominated by Rayleigh and
53 Mie scattering³, both decreasing as $\lambda^{-\alpha}$ at longer wavelengths⁴ (Fig. 1a), where λ is imaging
54 wavelength and $\alpha = 0.2-4$ for tissues⁵. Reduced light scattering can afford deeper and higher-
55 contrast fluorescence imaging with less diffusive noise at longer wavelengths.

56 For decades near-infrared imaging in the 700-900 nm NIR-I window has been pursued for
57 *in vivo* biomedical imaging⁶ to benefit from suppressed light scattering by tissues compared
58 to visible light as well as lower absorption by hemoglobin⁷. NIR-I fluorescence imaging
59 became widely accepted owing to successes of fluorophores such as indocyanine green (ICG),
60 and the advent of digital imaging technology in the early 2000s⁸. However, *in vivo* imaging in
61 NIR-I still suffers from light scattering caused feature blurring, shallow penetration depth and
62 high background due to both scattering and autofluorescence from endogenous chromophores
63 or pigmented components in the body^{9,10}.

64 The Dai group in 2009 demonstrated the first 1000-1700-nm NIR-II preclinical
65 fluorescence imaging of mice using hydrophilic polymer coated single-walled carbon
66 nanotubes (SWNTs) and a liquid nitrogen cooled indium gallium arsenide (InGaAs) camera¹¹.
67 In 2022, the group performed *in vivo* imaging in the 1700-2000 nm range and refined the
68 definition of NIR-II to be 1000-3000 nm¹², largely overlapping with the 900-3000 nm short-
69 wave infrared (SWIR) range. Subsequently the group established NIR-II superior spatial
70 resolution, imaging depth, signal/background ratio (SBR) and diminished tissue
71 autofluorescence over NIR-I imaging^{5,10-29}. Light absorption by water in biological tissues and
72 light scattering by tissues limit light penetration depth into a living body. Considering water
73 absorption by vibrational overtone modes, tissue scattering of light, and the detection range of
74 ~900-1700 nm of InGaAs cameras, one can divide the NIR-II range into several sub-windows
75 with local maxima in light penetration depth vs. wavelength (Fig.1b)¹², including NIR-IIa
76 (1300-1400 nm), NIR-IIb (1500-1700 nm), NIR-IIc (1700-2000 nm) and NIR-IId window
77 (~2100–2300 nm). Moderate light absorption of water in the 1400-1500 nm range was shown
78 to enhance NIR-II image contrast due to multiply scattered diffusive light decays faster than
79 ballistic light^{30,31}. Beyond NIR-IId light absorption by vibrational normal modes of water is

80 too overwhelming, making through-tissue fluorescence imaging impossible ¹². Fluorescence
81 imaging of a fluorophore-filled capillary through different thicknesses of tissue phantoms made
82 of intralipid solutions (Fig. 1c) ¹² and mouse brain (Fig. 1d) ¹⁷ showed clearly improved
83 resolution and SBR when transitioning from NIR-I, IIa to IIb and IIc sub-windows. This is
84 because high resolution and low feature smearing hinge on low scattering, afforded with longer
85 wavelength light. NIR-II imaging beyond 1 cm tissue depth has been demonstrated ³².

86 Notably, although NIR-I light exhibited much lower light absorption, tissue penetration
87 depth is much shallower than NIR-II light due to scattering (Fig. 1b), making NIR-II imaging
88 a step-out technology over the traditional NIR technique. Large Stoke's shift between
89 excitation (typically 808 nm) and emission for wide-field imaging in the > 1500 nm NIR-IIb,
90 IIc and IId sub-windows eliminates any tissue autofluorescence background (Fig. 1d) even in
91 mouse liver ¹⁰. NIR-IIb and IIc regions are the highest performing sub-windows for in vivo
92 NIR-II imaging.

93

94 **2. Recent progress in NIR-II fluorophores and nanoprobes**

95 Fluorescent probes for biological imaging should exhibit high brightness (high QY and
96 molar absorptivity/extinction coefficient) and biocompatibility. The QY of NIR-II fluorophores
97 is lower than visible or NIR-I counter-parts. In molecular fluorophores, non-radiative
98 relaxation between the zero-vibrational level of excited states and the higher isoenergetic
99 vibrational levels of the ground state can quench the molecular fluorescence ³³; and this effect,
100 called the 'energy gap law', becomes more pronounced as the energy gap shrinks at longer
101 wavelengths. In aqueous environments, the NIR-II molecular fluorophores, typically with
102 larger π -conjugated backbones, suffer from stronger intermolecular interactions, which lead to
103 further non-radiative decay of the NIR-II emission ³⁴. The abundance of hydroxyl groups in
104 aqueous solution is also reported to be a serious quencher to NIR-II luminescence of rare-earth
105 nanoparticles (RENPs) ¹⁹. The nonpolar conjugated backbones of molecular fluorophores and
106 the hydrophobic capping layers of inorganic nanoparticles require effective hydrophilic
107 modification for biocompatibility, a process that decreases the fluorescence QY drastically.
108 Despite these challenges recent years have witnessed an outpouring of promising high-
109 performance NIR-II probes.

110 **Inorganic nanostructured NIR-II probes.** The first NIR-II imaging ¹¹ utilized SWNTs
111 photoluminescent in the 1000-1700 nm range (Fig. 2a) ¹³ depending on nanotube chirality and
112 diameter in the 0.7-1.4 nm (Fig. 2b) ^{5,15,17,35}. NIR-II quantum dots (QDs) included silver sulfide
113 (Ag_2S ; 1100-1400 nm) ^{16,36}, lead sulfide (PbS ; 1000-2000 nm; QDb: 1500-1700 nm and QDc:
114 1700-2000 nm; Fig. 2c) ^{12,21}, and indium arsenide (InAs ; 900-1600 nm) ³⁷, exhibiting higher
115 fluorescence QY than SWNTs. These QDs were typically overcoated with a passivation shell
116 to avoid oxidation and afford core-shell QDs with bright NIR-II emission in aqueous solutions
117 ^{25,33,40}. Down-conversion RENPs showed fascinating optical properties such as narrow-band
118 emission spanning NIR-II range ³⁸, long luminescence lifetime (up to 10's of ms scale) ³⁹, and
119 Auger effect based persistent luminescence after X-ray irradiation ⁴⁰. To enhance NIR-II
120 emission, we developed Ce^{3+} -doping ¹⁹ and cubic-phase ²³ strategies to suppress up-conversion
121 while boosting Er^{3+} down-conversion luminescence at 1550 nm by ~ 9-fold and ~ 8-fold,

122 respectively. More recently, cubic-phase RENPs based on Tm^{3+} emitter were developed (Fig.
123 2e), exhibiting 1600-1700 nm sub-NIR-IIb fluorescence amplification ⁴¹. Finally, gold
124 molecular clusters with ultra-small size ($Au_{25} \sim 1.6$ nm, Fig. 2f) exhibited luminescence in
125 1000-1400 nm ^{27,42,43}.

126 Inorganic nanostructured NIR-II probes are often synthesized in organic solvents. To impart
127 biocompatibility for preclinical use, we coated the probes with three hydrophilic, cross-linked
128 polymer layers ('P³ coating'; Fig. 2g) to impart high biocompatibility ^{23,25}. The P³ cross-linked
129 surface coating enabled rapid biliary clearance and reduced the long-term retention induced
130 side effects of a wide range of nanomaterials, including RENPs, PbS QDs, and
131 superparamagnetic iron oxide nanoparticles, enhancing their *in vivo* pharmacokinetics and the
132 potential use for nanomedicine ²⁵.

133 **Molecular fluorophores.** Molecular fluorophores are important NIR-II probes due to well-
134 defined structures, rich chemical and structural tunability, and generally high biocompatibility
135 and favorable pharmacokinetics. Thus far, NIR-II molecular fluorophores include polymethine
136 (Fig. 2h) ^{44,45}, donor-acceptor molecules (Fig. 2i) ^{18,46,47}, boron-dipyrrromethene (BODIPY, Fig.
137 2j) ⁴⁸, rhodamine (Fig. 2k) ⁴⁹ and metal-macrocycles complexes (Fig. 2l) ⁵⁰. High performance
138 *in vivo* NIR-II fluorescence imaging have been demonstrated using organic fluorophores
139 exhibiting advanced properties such as long wavelength peak absorption up to 1400 nm ⁴⁵,
140 large absorption coefficient of $10^5 \text{ mol}^{-1} \cdot \text{cm}^{-1}$ ⁵¹, high quantum yields (QY) of $> 5\%$ ⁴⁷, or long
141 emission in the NIR-IIb window ⁵². These molecules generally have large conjugated
142 backbones with high hydrophobicity. For aqueous solubility researchers typically encapsulate
143 the molecules in amphiphilic polymer matrixes ^{21,53} or functionalize them with hydrophilic side
144 chains ⁵⁴.

145 The absorption/emission wavelength of NIR-II molecular fluorophores can be red-shifted
146 by increasing the conjugated backbone length ⁵², increasing donor/acceptor unit strength ⁵⁵, or
147 forming J-aggregates ⁴⁵. Video-rate multicolor imaging with NIR-II fluorescence under
148 multiplexed excitation wavelength has been demonstrated with flavylum polymethine dyes
149 with finely tuned heterocycle modification ⁴⁴. Due to the energy gap law, red-shifted
150 fluorophores generally show lower QY, especially for molecular fluorophores with peak
151 absorption over 1000 nm. Strong interactions between water molecules and conjugated
152 backbones cause substantial non-radiative decay for NIR-II molecular fluorophores ^{54,55},
153 Protecting the conjugated backbones from water molecules is vital for high fluorescent QY in
154 aqueous conditions.

155 An advantage of organic NIR-II fluorophores over inorganic nanoparticle probes is the
156 smaller sizes that favor renal excretion upon administration to a body. Renal excretion of NIR-
157 II probes is preferred for potential clinical use since excretion through the kidney/urinary
158 pathway is fast, making them safer and less likely to cause toxic effects than probes remaining
159 in the body for extended times. To date, only several NIR-II molecular fluorophores have been
160 reported with renal-excretion ability ^{18,20,48,56}. A caveat is that attaching highly hydrophilic side
161 groups such as β -cyclodextrin (β -CD) ⁵⁶ and poly(oligo(ethylene glycol) dimethacrylate)
162 polymer brushes ⁴⁸ to NIR-II fluorophores can facilitate renal excretion, but typically lowers

163 the fluorescence QY due to non-radiative relaxation of excited states by strong fluorophore-
164 water interactions.

165 **Fluorescent proteins.** Genetically encoded fluorescent proteins (FPs) have been widely
166 deployed for long-term visualizing and tracking of molecules, cells or structures with high
167 specificity in cells or organisms. Recently, towards NIR-II imaging of FPs for reduced light
168 scattering, improved imaging depth/resolution and reduced diffused noise ⁵⁷, there has been a
169 growing interest in the emission tails of NIR-I FPs into the > 1000 nm NIR-II window. Bacterial
170 phytochrome photoreceptors (BphPs), cyanobacteriochromes (CBCRs) and allophycocyanins
171 (APCs) have been employed as a source to design NIR-I FPs ⁵⁸. It has been demonstrated that
172 FPs engineered from BphPs (e.g. iRFP670, iRFP682, iRFP702, iRFP713, and iRFP720) ⁵⁹ and
173 CBCRs (e.g. monomeric miRFP670nano and miRFP718nano) ⁶⁰ exhibit fluorescence emission
174 tails in the NIR-II window. iRFP713 has been knocked into the mouse genome for long-term
175 monitoring of liver regeneration models and imaged at > 900 nm ⁵⁹. The NIR-II fluorescence
176 of miRFP718nano was three times brighter than miRFP670nano and 1.5- and 2-times brighter
177 than that of miRFP709 and miRFP703, respectively ⁶⁰. The performance of miRFP718nano
178 was evaluated for liver inflammation models beyond 1050 nm, using 50 mWcm⁻² excitation
179 and a 30 ms exposure time ⁶⁰.

180

181 3. NIR-II imaging modalities

182 **NIR-II 2D wide-field imaging.** NIR-II wide-field fluorescence imaging employs an excitation
183 source such as expanded laser beam ¹¹, light-emitting diode (LED) ²³, X-ray beam ⁶¹ or
184 Cerenkov radiation ⁶² (Fig. 3a) to illuminate an entire 3D object (e.g., a mouse) and projects
185 the generated NIR-II fluorescence to a 2D image captured by a camera . Non-coaxial excitation
186 is commonly employed to avoid the use of dichroic mirrors and background signals due to
187 intense reflections from the samples. Other NIR-II wide-field modes requires no excitation
188 source, including chemiluminescence ⁶³, bioluminescence ⁶⁴ and afterglow fluorescence
189 imaging ⁴⁰. Wide-field imaging of phantoms or tissues showed penetration depth and resolution
190 of NIR-II imaging are ~ 1.7 ^{5,17,32,59,64-66} and ~ 2.1 ^{15,17,66-69} times better than NIR-I imaging,
191 respectively, but significantly influenced by the imaging conditions.

192 NIR-II imaging in various sub-windows employs a suitable camera and optical filters on
193 the camera side. For NIR-IIa and NIR-IIb fluorescence imaging, a cooled InGaAs camera (900-
194 1700 nm) with wide dynamic range and low read noise and dark current is used. For NIR-IIc
195 and NIR-IId wide-field imaging, cameras based on photosensitive semiconductors with small
196 bandgaps, such as “extended InGaAs” (900-2600 nm), indium antimonide (InSb, 960-5000 nm)
197 and mercury cadmium telluride (HgCdTe or MCT, 800-14000 nm) are required. Recently, NIR-
198 IIc wide-field imaging was explored utilizing a MCT camera ⁷⁰, but with the caveat of higher-
199 cost, higher noise and lower sensitivity than commonly used InGaAs cameras. NIR-II imaging
200 acquisition speed has reached to 300 fps using a fast InGaAs camera ⁷¹. The resolution of NIR-
201 II wide-field imaging with a field-of-view (FOV) covering the entire mouse is ~ 100 μ m limited
202 by the small numbers of pixels of available cameras.

203 For NIR-II imaging-guided surgery, a multispectral system is essential, allowing concurrent
204 visible photographic and NIR-II fluorescence/luminescence imaging under bright surgical

205 room-light conditions (Fig. 3a). To avoid imaging parallax, color camera and NIR-II camera
206 could share the same chromatic aberration corrected lens set²⁸ or use two separate lens sets
207 sharing a portion of the same coaxial optical path⁷², allowing both cameras to capture the same
208 location from the same angle.

209 **NIR-II 3D confocal microscopy.** A NIR-II confocal microscope employs a laser beam tightly
210 focused to a point raster scanned in x-y-z to excite fluorophores point-by-point in a sample. At
211 each point the emitted fluorescence was detected after passing through a pinhole to reject out-
212 of-focus signals, and signal is used for constructing a 3D image (Fig. 3b). Confocal NIR-II
213 fluorescence imaging increased the tissue penetration depth limit by ~ 10 fold over visible
214 confocal microscopy (< 100 μm in visible). The penetration depth of confocal microscopy can
215 be optimized by employing both long excitation and emission wavelengths, high quantum yield
216 fluorophores and detectors with high sensitivity and low noise.

217 Initially NIR-II confocal microscopy was realized by using NIR-I excitation, NIR-II
218 emission and an InGaAs photomultiplier tube (PMT) detector^{21,73}. For examples, NIR-IIb
219 confocal imaging of QDb in mouse blood vasculatures under a 785-nm excitation resolved
220 blood vessels at ~ 700 μm in intact tumors on mice with sub-10 μm resolution²¹. Confocal
221 imaging of aggregation-induced emission (AIE) dots filled cerebral blood vessels after
222 craniotomy was performed using 793 nm excitation and > 1000 nm emission, achieving 800
223 μm penetration depth in mouse brain with ~ 9 μm resolution⁷⁴. Recently we exploited
224 superconducting nanowire single-photon detector (SNSPD) for NIR-II confocal microscopy
225 and found it superior to InGaAs PMT with shorter timing jitter, higher sensitivity, and lower
226 noise¹². A home-built SNSPD with a timing jitter of ~ 109 ps was demonstrated to realize NIR-
227 II lifetime imaging using an 800-nm femtosecond laser for excitation⁷⁵.

228 NIR-II confocal microscopy with 1310 nm excitation, QDb probes and a SNSPD enabled
229 cerebral blood vessels imaging *in vivo* at a depth of ~ 1.7 mm into the hippocampus region
230 after craniotomy⁷⁶, close to the ~ 1.6 mm imaging depth achieved by 1280-nm excited two-
231 photon microscopy⁷⁷. The tunable spectrum-response range of SNSPD presents opportunities
232 for confocal imaging in the NIR-IIc and NIR-IId windows beyond the detection limit of
233 InGaAs PMT. To push the penetration depth limit of *in vivo* non-invasive one-photon imaging,
234 NIR-IIc confocal microscopy with 1650-nm excitation was demonstrated using QDc and a
235 SNSPD, reaching an imaging depth of ~ 1.1 mm into an intact mouse head. It also allowed non-
236 invasive *through tissue* molecular imaging of mouse inguinal lymph nodes with single-cell and
237 single-vessel resolution (Fig. 3b, middle and right)¹². This was the first time that both
238 excitation and emitted light in the > 1500 nm regime were utilized for *in vivo* confocal imaging
239 to minimize light scattering and maximize imaging depth.

240 The longest excitation wavelength of 1650 nm for NIR-II one-photon confocal microscopy
241 is close to that (~1700 nm) used by multi-photon microscopy⁷⁸, with the excitation light
242 intensity decaying similarly traversing through tissues. The one-photon fluorescence emission
243 of the excited probes scales linearly with excitation light intensity, while two-photon and three-
244 photon fluorescence scale with the second and third power of the excitation, respectively^{12,79}.
245 This suggests slower emission intensity decay and deeper imaging depth of confocal
246 microscopy than multi-photon microscopy with similar excitation wavelength. *In vivo* NIR-IIc

247 confocal microscopy can be done non-invasively through intact tissues, in contrast to
248 multiphoton intravital microscopy. Multi-photon imaging is advantageous in higher SBR⁷⁹ and
249 the availability of genetically engineered probes. By combining NIR-IIc confocal microscopy
250 with multiphoton microscopy that both uses ~1650-1700 nm excitation, one could maximize
251 the capability of multichannel molecular-specific and cellular-specific imaging to investigate
252 complex biological systems *in vivo*.

253 **NIR-II 3D light sheet microscopy.** Light sheet microscopy (LSM) utilizes orthogonally
254 arranged illumination and wide-field detection to afford high-speed optical sectioning and
255 three-dimensional volumetric imaging, an approach capable of minimal phototoxicity and
256 subcellular resolution⁸⁰ or sub-diffraction limited resolution by using lattice illumination and
257 adaptive optics⁸¹. However, the imaging depth of LSM for *in vivo* imaging of live tissues in
258 the visible window is shallow, ~ 200 μm for mouse brain after craniotomy²⁴ due to light
259 scattering. Two-photon light sheet microscopy at 1040 nm allows for deeper imaging into
260 mouse brain (up to ~ 300 μm) with high resolution owing to reduced scattering of the NIR-II
261 excitation⁸². The penetration depth can be further extended by using Bessel⁸³ or Airy beam⁸⁴
262 for excitation, but it is still limited by scattering of the visible emitted light.

263 An oblique NIR-IIb LSM with ~ 1319 nm excitation and ~ 1500-1700 nm detection was
264 developed for *in vivo* mice imaging with cellular resolution²⁴ (Fig. 3c, middle). NIR-II LSM
265 prevented shadows and stripes caused by tissue scattering and absorption, problems common
266 to visible LSM. NIR-IIb LSM enabled non-invasive imaging/sectioning of intact mouse head
267 with a total penetration depth of ~ 750 μm , resolving vascular channels connecting the skull
268 and brain cortex of mice. These channels were used by immune cells trafficking between the
269 skull bone marrow and cortex for immune protection of mouse brain⁸⁵. In another application,
270 PD-1⁺ cells migrating irregularly in tumor vasculatures were monitored by NIR-IIb LSM at a
271 frame rate of 20 fps (Fig. 3c, bottom left).

272 The wavelength of NIR-II light is two to four times longer than visible light; the diffraction-
273 limited spatial resolution (Rayleigh criteria⁸⁶, $0.61\lambda/\text{NA}$) of NIR-II LSM is lower than visible
274 LSM. In addition, NIR-II imaging at deep tissues still experienced light scattering, causing
275 background increase and reduced spatial resolution. A scanning Airy beam with self-healing or
276 attenuation-compensation properties⁸⁴ was employed for excitation⁸⁷ in NIR-II LSM to
277 improve SBR, tissue penetration and *z*-direction resolution.

278 Structured illumination has been introduced into NIR-II LSM to improve spatial resolution
279 by extracting high-frequency details embedded in low-resolution moiré fringes⁸⁸ imaged under
280 a scanning Gaussian-beam comb pattern with several shifted phases²⁶. The NIR-II structured-
281 illumination LSM can minimize background interference, increase SBR and increase spatial
282 resolution by up to 2 times²⁶ (Fig. 3c, right), and has been utilized for longitudinally imaging
283 of immune cells in response to immunotherapy in the tumor microenvironment of a mouse
284 model²⁶. The resolution can be further enhanced by using objectives with a higher NA.

285

286 **4. Applications in preclinical imaging**

287 NIR-II imaging has been extensively performed preclinically since 2009 for (1) visualizing
288 blood vasculature structures, measuring hemodynamics and perfusion for cardiovascular
289 diseases; (2) lymph node imaging; (3) molecular imaging and (4) functional imaging.

290 **Vascular and hemodynamic imaging.** Dynamic NIR-II imaging speed for hemodynamics
291 increased from the initial ~ 5 fps using SWNT probes ⁸⁹ to recently ~ 90 fps using ErNPs ²³.
292 Cardiovascular disease models have been investigated by NIR-II imaging using circulating
293 carbon nanotubes ⁵, QDs ³⁷, AIE nanodots ⁹⁰ and gold clusters ⁹¹ respectively. Dynamic
294 monitoring of blood perfusion and hemodynamics in individual blood vessels for disease
295 models of peripheral arterial disease (PAD) ^{15,89}, middle cerebral artery occlusion (MCAO)
296 stroke ⁵ (Fig. 4a), and traumatic brain injury (TBI) ⁹² were performed. Vascular regeneration
297 was imaged with PbS/CdS QDs in the NIR-IIb window longitudinally in a mouse model of
298 PAD. Blood flow was also imaged with InAs QDs in disordered vasculatures in glioblastoma
299 multiforme tumor to observe the impact of brain tumor growth on cerebral vasculatures (Fig.
300 4b)³⁷. The tumor, arterial vessels and venous vessels were identified by dynamic contrast-
301 enhanced imaging through principal component analysis (PCA) ^{6,18,23,25,40}.

302 **Lymph node imaging.** Sentinel lymph nodes (LNs) are the initial drainage nodes of the
303 primary tumor where cancer metastasis first occurs. Locating the sentinel LNs for biopsy is
304 important to assessing metastatic spread to the LN basin ⁹³. NIR-II fluorescence imaging
305 provides accurate localization of LNs and lymphatic vessels with better contrast and resolution
306 than in the NIR-I window ^{25,94,95}. Recently ‘super-stealth’ Au-phosphorylcholine (Au-PC)
307 nanocluster probes were developed for imaging the draining LNs of cancer tumors after
308 intratumoral administration, with minimal interference by surrounding tissues *in vivo* (Fig. 4c)
309 ²⁷.

310 **Molecular Imaging.** NIR-II molecular imaging of tumor biomarkers have been pursued with
311 t
312 argeted NIR-II probes conjugated with antibodies or other ligands, capable of high spatial
313 r
314 e
315 s
316 o

317 1 High endothelial venules (HEVs) in LNs are small postcapillary venules responsible for
318 u mediating entry of immune cells from blood circulation into LNs ⁹⁹. Recently, using targeted
319 t antibody-NIR-II probes, *in vivo* NIR-IIc confocal microscopy performed non-invasive
320 through-tissue molecular imaging of HEVs, CD169⁺ subcapsular sinus macrophages and CD3
321 ♀ T cells in the inguinal LNs of mice (Fig 3b) ¹².
322 n

323 We employed NIR-II molecular imaging for assessing the immune responses of mice to
324 jmmunotherapy. The different fluorescence lifetimes of ErNPs (~ 4.6 ms, emission ~ 1600 nm)
325 and QDb (~ 46 ms, emission ~ 1600 nm) were exploited for *in vivo* two-plex NIR-IIb molecular
326 imaging of PD-L1 and CD8, revealing the accumulation of CD8+ cytotoxic lymphocytes
327 (CTLs) in the CT26 tumor upon treatment by anti-PD-L1 conjugated to ErNPs (Fig. 4d) ²³.
328 W~~ide~~-field imaging and structured-illumination LSM were used for multiplex and multiscale
329 molecular imaging of the CT26 tumor microenvironment in mice ²⁶, for longitudinal tracking
330 g
331 h
332 c
333 o

378 of CD4, CD8, and OX40 at the single-cell level in response to immunotherapeutic CpG and
379 OX40 antibody treatment by intratumoral injection.

380 Recently, a cancer nanovaccine was developed by conjugating ovalbumin (OVA)
381 covalently and class-B cytosine–phosphate–guanine (CpG B) electrostatically to pErNP²⁹.
382 Upon subcutaneous injection, NIR-IIb imaging revealed trafficking of the nanovaccine, rapidly
383 migrating to inguinal LNs through lymphatic vessels (Fig. 4e). Two doses of vaccination led to
384 tumor eradication and cure/survival of mice. Wide-field imaging and structured-illumination
385 LSM revealed abundant OVA antigen-specific CD8+ CTLs recruited to the tumor in the treated
386 mouse (Fig. 4f). This was the first-time *in vivo* imaging of antigen specific CTLs was
387 performed to correlate with immunotherapeutic effects of cancer vaccines (Fig. 4g).

388 **NIR-II functional imaging.** Functional imaging to probe the environmental parameters and
389 cellular responses to stimulus is another exciting direction of *in vivo* NIR-II imaging, examples
390 include NIR-II fluorescent molecules responding to external stimulus or environment, such as
391 pH⁶⁵, redox species¹⁰⁰, nitroreductase¹⁰¹, $\text{A}\beta$ plaques¹⁰² and cell endocytosis¹⁰³. A
392 unimolecular NIR-II chemiluminescence probe for H_2S was constructed by conjugating
393 Schaap's dioxetane with a donor-acceptor core¹⁰⁴. A more recent advancement is NIR-IIb
394 imaging of oxyhemoglobin saturation (sO_2) in blood vessels based on the absorption difference
395 between oxyhemoglobin and deoxyhemoglobin at specific excitation wavelengths (650, 808,
396 and 980 nm) of pErNPs, enabling visualization of the sO_2 levels in tumor-associated vessels
397 (Fig. 4h)¹⁰⁵. Atomically precise NIR-II Au₂₂ clusters with strong NIR-II fluorescence exhibits
398 potent enzyme-mimetic activities, promising for early intervention of oxidative stress⁴³.

399 **NIR-II imaging-guided surgery.** Preclinical NIR-II imaging for intraoperative navigation is
400 an active area of research towards potential clinical translations. Surgical removal of tumors
401 (e.g. glioblastoma¹⁸, pancreatic tumor¹⁰⁶, colorectal tumor²⁰, ovarian tumor¹⁰⁷ and breast
402 tumor⁹⁴) navigated by NIR-II imaging showed high promise. NIR-IIb molecular imaging of
403 tumors using ErNP-TRC105 targeting tumor vasculature angiogenesis afforded tumor-to-
404 muscle signal ratio up to ~ 300, allowing high-precision image-guided tumor resection down
405 to few-cell level²⁸. A recent work showed successful surgical removal of LNs labeled with
406 QDb, achieving high LN to muscle ratios of ~ 200⁹⁴. In another work, NIR-II imaging-guided
407 surgery led to complete resection of severe inflammatory bowels and ensured a secure surgical
408 anastomosis by using AIE nanoprobes¹⁰⁸.

409

410 **5. Towards clinical imaging**

411 For any successful clinical translation of NIR-II fluorescence imaging, it is imperative to
412 develop contrast agents that are safe for use in humans. Several groups found that traditional
413 NIR-I organic dyes such as ICG and IRDye800CW exhibited emission tails into the NIR-II
414 window^{34,109} and can be utilized for NIR-II imaging to benefit from reduced light scattering
415 and high imaging contrast and resolution. Since ICG is a Food and Drug Administration (FDA)-
416 approved fluorophore, clinical trials of NIR-II imaging with ICG in human patients is of
417 relatively low risk, but requires switching to an InGaAs based imaging system that has not
418 gone through rigorous regulatory approval. Along this line, NIR-II fluorescence-guided

419 surgical resection of liver tumors in human patients was successfully performed after
420 intravenous injection of ICG with a dose of 0.5 mg kg^{-1} , demonstrating a higher tumor
421 detection sensitivity and rate than imaging in the NIR-I region (Fig. 5a)⁹⁶. However, the ICG
422 is a non-targeted probe, making false positives of tumors as it accumulates in other tissues⁹⁶.
423 Active tumor targeting for imaging guided surgery has clinically tested bioconjugates of
424 IRDye800CW in NIR-I window³⁴. IRDye800CW-conjugates exhibiting tail emission beyond
425 1000 nm, has potential for better determination of tumor margins²⁸.

426 Another promising direction of clinical translation is NIR-II imaging of perfusion. NIR-II
427 imaging of ICG-tagged blood has been used to observe anastomotic vessels and the salvaged
428 distal limbs¹¹⁰. It allowed observation of skin perforator vessels at the deep fascial level (Fig.
429 5b) and revascularization (Fig. 5c) before and after flap transplantation, respectively, with
430 higher contrast, better resolution, and a longer duration of observation than NIR-I imaging¹¹⁰.

431 Clinical trials of SWIR imaging using a label-free approach by exploiting the absorption
432 properties of water were reported¹¹¹. One example is the otoscope which uses the negative
433 contrast of the water absorption band at 1480 nm to detect fluid in the middle ear¹¹¹.

434

435 **6. Outlook and future directions**

436 **Probes and fluorophores.** Currently organic NIR-II fluorophores with high absorptivity, QY
437 and aqueous solubility, and ability of renal excretion and conjugation to target ligands are still
438 rare. Molecules emitting predominantly in the NIR-IIb sub-window are also desired to compete
439 with nanoprobes based on inorganic QDs and rare-earth nanoparticles. Another major
440 challenge is the synthesis of functional NIR-II fluorophores with optical properties sensitive to
441 environment and stimulus, especially for imaging-based sensing of pH, gas molecules, Ca^{2+}
442 and other ions, and voltages and action potentials across ion channels of neurons.

443 The wide emission spectra of NIR-II fluorophores (FWHM = ~ 75-290 nm) have limited
444 multiplexed imaging^{18-21,27,36,37,42,112}. Multiplexed molecular imaging can be expanded by
445 employing multi-color probes with different narrow-band emissions, probes with different
446 excitation wavelengths, and probes with different fluorescence/luminescence lifetimes, all
447 conjugated to molecular specific ligands to target different molecules in a body. For inorganic
448 based nanoparticles, it is desired to have narrow emission widths across the 1000-2300 nm
449 range with little spectral overlapping. Currently aqueous soluble, biocompatible NIR-II^d
450 probes (emission peak ~ 2200 nm) are lacking. Developing NIR-II probes with tunable
451 fluorescence lifetime is another important approach to increase multiplexed molecular imaging
452 ²³ *in vivo* and should be pursued further. Thus far three-plex NIR-IIb imaging has been realized
453 by combining continuous wave and lifetime imaging using QDs and rare-earth nanoparticles
454²⁹.

455 Developing genetically engineered NIR-II fluorescent proteins has been a daunting
456 challenge thus far, and the success of which would mirror the GFP revolution, and undoubtedly
457 boost the NIR-II field and lead to much more broad adoption of the imaging modality by
458 biologists and medical scientists. NIR-II fluorescent proteins exist in nature, and several purple
459 photosynthetic bacteria, including *blastochloris tepida*, *blastochloris viridis*, and

460 *halorhodospira halochloris*, possess bacteriochlorophyll *b*-based light harvesting complexes,
461 exhibiting absorption and fluorescence in the NIR-II range¹¹³. Among them, light-harvesting
462 1-reaction center (LH1-RC) complex from *blastochloris viridis* has been observed to emit
463 fluorescence with peak in NIR-II window¹¹³, opening up opportunities for the development of
464 NIR-II fluorescent proteins, but these very large protein complexes are still very difficult to use
465 in genetic labelling strategies in mammalian cells¹¹⁴.

466 **NIR-II imaging devices and methods.** New camera technologies with high sensitivity, low
467 noise, broad spectral range spanning 1000 – 2300 nm and greater pixel numbers are important
468 to enhance the NIR-II imaging performances and capabilities. High quantum-efficiency image
469 intensifiers in the NIR-II range are needed for time-resolved/ultra-fast imaging and for weak
470 fluorescence detection/imaging. Better cameras for NIR-IIc and NIR-IId imaging beyond
471 InGaAs are needed for optimizing the benefit of in vivo fluorescence imaging in 2D wide-field
472 and 3D light-sheet microscopy modes. Point detectors such as SNSPDs enabled high resolution
473 deep tissue confocal microscopy in the NIR-IIc sub-window, but remains a challenge for the ~
474 2200 nm NIR-IId range with low dark noise.

475 To push the resolution limit, it is desired to introduce optical super-resolution methods to
476 microscopic imaging in the NIR-II window, similar to the approaches developed for the visible
477 range such as non-linear SIM, stochastic optical reconstruction microscopy (STORM),
478 photoactivated localization microscopy (PALM) and stimulated emission depletion (STED)
479 microscopy. To realize these, specially designed NIR-II fluorescent probes and low-light
480 sensitive detectors are required.

481 It is an interesting and exciting direction to invoke deep learning and artificial intelligence
482 (AI) to enhance NIR-II fluorescence imaging. Recently, the cycle generative adversarial
483 network (CycleGAN) was used to transform a blurred in vivo NIR-I or NIR-IIa image to a
484 much higher-clarity image resembling NIR-IIb image¹¹⁵. Training with experimental data in a
485 higher sub-window (e.g., NIR-IIc) could be used for machine learning, and then applied to
486 transform and improve images acquired in the lower sub-window (e.g., NIR-IIb). AI
487 approaches could address the problems of scarcity of probes¹¹⁵ and affordability of high-end
488 expensive cameras in the higher sub-windows, enabling noise reduction and sensitivity
489 enhancement.

490 **Clinical translation.** Preclinical in vivo NIR-II fluorescence imaging has accumulated a large
491 body of promising results for potential clinical translations. However, a major hurdle is the lack
492 of clinically proven high performance NIR-II fluorophores or nanoprobes that are safe and have
493 favorable pharmacokinetics for human use. Although FDA-approved ICG has high safety track
494 record and exhibit tail fluorescence into the NIR-II window, the emission is mostly in the <
495 1200 nm range and imaging still suffers from substantial light scattering and high background.
496 ICG also lacks functional groups for conjugation to target ligands and cannot be used for
497 molecular imaging. Alternative dyes or probes are needed with a similar safety profile as ICG,
498 with longer wavelength emission ideally in the NIR-IIb sub-window.

499 Among inorganic probes, rare-earth down-conversion nanoparticles are bright emitters for
500 the high performing (low scattering, low autofluorescence) NIR-IIb imaging window, and have
501 afforded excellent molecular imaging agents. Similar composition up-conversion nanoparticles

502 have proven highly safe to mice preclinically. However, clinical translation is uncertain due to
503 probe scaling up issues and the lack of safety data from clinical settings. Quantum dots are
504 even more challenging due to toxic elements. Another highly promising NIR-II probe is
505 molecular gold clusters such as Au₂₅GSH and Au₂₅PC, as Au is widely accepted as a safe
506 element, the clusters are rapidly renal excreted, exhibiting little non-specific tissue
507 binding/uptake, and have shown higher performance in NIR-II LNs imaging than ICG ²⁷.
508 Regardless, the clinical translation of any NIR-II agent must undergo rigorous phase I to III
509 clinical trials for pharmacokinetics, toxicity, stability, side-effects/risks to humans and proof of
510 benefits ^{116,117}.

511 Standardization of NIR-II imaging system is another key step towards clinical translation.
512 A set of characteristics of image devices for clinic use have been suggested in order to meet
513 the requirements of the operating-room environment and clinical workflow ¹¹⁸. Although
514 originally intended for the evaluation of NIR-I fluorescence guided surgery systems, these
515 criteria can provide a guide to future clinical NIR-II imaging devices, including (1) overlay of
516 white-light and fluorescence images in real-time, (2) operation within surgical lighting; (3)
517 high sensitivity, (4) *in situ* quantitative capabilities, (5) concurrent multi-plex fluorescence
518 imaging and (6) maximized ergonomic utility for surgery ¹¹⁸. The standardization for NIR-II
519 imagers and contrast agents will accelerate regulatory approval, optimize device development,
520 guarantee product quality, standardize clinical trials and reduce the risk ^{116,117}.

521 The NIR-II imaging enabled tumor resection down to few-cell level with zero background
522 ²⁸. Under this resolution, manual resection/surgical operation by hand could be challenging.
523 We envisage that the combination of NIR-II imaging and surgical robots could become a
524 powerful tool for precision medicine.

525

526 Competing interests

527 The authors declare no competing interests.

528 Materials & Correspondence

529 All relevant data are available from H. Dai upon reasonable request.

530 References

- 531 1 Genack, A. Z., Chabanov, A. A., Sebbah, P. & van Tiggelen, B. A. in *Encyclopedia of Condensed*
532 *Matter Physics* (eds Franco Bassani, Gerald L. Liedl, & Peter Wyder) 307-317 (Elsevier, 2005).
- 533 2 Shi, L. & Alfano, R. R. *Deep imaging in tissue and biomedical materials: using linear and*
534 *nonlinear optical methods*. (CRC Press, 2017).
- 535 3 Jacques, S. L. Optical properties of biological tissues: a review. *Phys. Med. Biol.* **58**, R37 (2013).
- 536 4 Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. *Nat.*
537 *Biomed. Eng.* **1**, 0010 (2017).
- 538 5 Hong, G. *et al.* Through-skull fluorescence imaging of the brain in a new near-infrared window.
539 *Nat. Photonics* **8**, 723-730 (2014).
- 540 6 Weissleder, R. A clearer vision for *in vivo* imaging. *Nat. Biotechnol.* **19**, 316-317 (2001).
- 541 7 Friebel, M., Helfmann, J., Netz, U. & Meinke, M. Influence of oxygen saturation on the optical
542 scattering properties of human red blood cells in the spectral range 250 to 2000 nm. *J. Biomed.*
543 *Opt.* **14**, 034001 (2009).

544 8 Reinhart, M. B., Huntington, C. R., Blair, L. J., Heniford, B. T. & Augenstein, V. A. Indocyanine
545 green:historical context, current applications, and future considerations. *Surg. Innov.* **23**, 166-175
546 (2016).

547 9 Smith, A. M., Mancini, M. C. & Nie, S. Second window for in vivo imaging. *Nat. Nanotechnol.* **4**,
548 710-711 (2009).

549 10 Diao, S. *et al.* Biological imaging without autofluorescence in the second near-infrared region.
550 *Nano Res.* **8**, 3027-3034 (2015).

551 11 Welsher, K. *et al.* A route to brightly fluorescent carbon nanotubes for near-infrared imaging in
552 mice. *Nat. Nanotechnol.* **4**, 773-780 (2009).

553 12 Wang, F. *et al.* In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using
554 superconducting nanowire single-photon detectors. *Nature Nanotechnology* **17**, 653-660 (2022).

555 13 Liu, Z., Tabakman, S., Welsher, K. & Dai, H. Carbon nanotubes in biology and medicine: In vitro
556 and in vivo detection, imaging and drug delivery. *Nano Res.* **2**, 85-120 (2009).

557 14 Welsher, K., Sherlock, S. P. & Dai, H. Deep-tissue anatomical imaging of mice using carbon
558 nanotube fluorophores in the second near-infrared window. *P. Natl. Acad. Sci. USA* **108**, 8943-
559 8948 (2011).

560 15 Hong, G. *et al.* Multifunctional in vivo vascular imaging using near-infrared II fluorescence. *Nat.*
561 *Med.* **18**, 1841-1846 (2012).

562 16 Hong, G. *et al.* In vivo fluorescence imaging with Ag₂S quantum dots in the second near-infrared
563 region. *Angew. Chem. Int. Edit.* **51**, 9818-9821 (2012).

564 17 Diao, S. *et al.* Fluorescence imaging in vivo at wavelengths beyond 1500 nm. *Angew. Chem. Int.*
565 *Edit.* **54**, 14758-14762 (2015).

566 18 Antaris, A. L. *et al.* A small-molecule dye for NIR-II imaging. *Nat. Mater.* **15**, 235-242 (2016).

567 19 Zhong, Y. *et al.* Boosting the down-shifting luminescence of rare-earth nanocrystals for biological
568 imaging beyond 1500 nm. *Nat. Commun.* **8**, 737 (2017).

569 20 Wan, H. *et al.* Developing a bright NIR-II fluorophore with fast renal excretion and its application
570 in molecular imaging of immune checkpoint PD-L1. *Adv. Funct. Mater.* **28**, 1804956 (2018).

571 21 Zhang, M. *et al.* Bright quantum dots emitting at ~1,600 nm in the NIR-IIb window for deep
572 tissue fluorescence imaging. *P. Natl. Acad. Sci. USA* **115**, 6590-6595 (2018).

573 22 Ma, Z. *et al.* A theranostic agent for cancer therapy and imaging in the second near-infrared
574 window. *Nano Res.* **12**, 273-279 (2019).

575 23 Zhong, Y. *et al.* In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb
576 rare-earth nanoparticles. *Nat. Biotechnol.* **37**, 1322-1331 (2019).

577 24 Wang, F. *et al.* Light-sheet microscopy in the near-infrared II window. *Nat. Methods* **16**, 545-552
578 (2019).

579 25 Ma, Z. *et al.* Cross-link-functionalized nanoparticles for rapid excretion in nanotheranostic
580 applications. *Angew. Chem. Int. Edit.* **59**, 20552-20560 (2020).

581 26 Wang, F. *et al.* In vivo NIR-II structured-illumination light-sheet microscopy. *P. Natl. Acad. Sci.*
582 *USA* **118**, e2023888118 (2021).

583 27 Baghdasaryan, A. *et al.* Phosphorylcholine-conjugated gold-molecular clusters improve signal for
584 Lymph Node NIR-II fluorescence imaging in preclinical cancer models. *Nat. Commun.* **13**, 5613
585 (2022).

586 28 Wang, F. *et al.* High-precision tumor resection down to few-cell level guided by NIR-IIb
587 molecular fluorescence imaging. *P. Natl. Acad. Sci. USA* **119**, e2123111119 (2022).

588 29 Ren, F. *et al.* Shortwave-infrared-light-emitting probes for the in vivo tracking of cancer vaccines
589 and the elicited immune responses. *Nat. Biomed. Eng.* (2023, <https://doi.org/10.1038/s41551-023-01083-5>).

590 30 Carr, J. A., Aellen, M., Franke, D., So, P. T. C., Bruns, O. T. & Bawendi, M. G. Absorption by
591 water increases fluorescence image contrast of biological tissue in the shortwave infrared. *P. Natl.*
592 *Acad. Sci. USA* **115**, 9080-9085 (2018).

593 31 Yoo, K. M., Liu, F. & Alfano, R. R. Imaging through a scattering wall using absorption. *Opt. Lett.*
594 **16**, 1068-1070 (1991).

595 32 Shao, W. *et al.* Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals
596 in the second near-infrared biological window. *J. Am. Chem. Soc.* **138**, 16192-16195 (2016).

598 33 Wei, Y.-C. *et al.* Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration
599 decoupling. *Nat. Photonics* **14**, 570-577 (2020).

600 34 Zhu, S., Tian, R., Antaris, A. L., Chen, X. & Dai, H. Near-infrared-II molecular dyes for cancer
601 imaging and surgery. *Adv. Mater.* **31**, 1900321 (2019).

602 35 Chen, R. J., Zhang, Y., Wang, D. & Dai, H. Noncovalent sidewall functionalization of single-
603 walled carbon nanotubes for protein immobilization. *J. Am. Chem. Soc.* **123**, 3838-3839 (2001).

604 36 Zhang, Y. *et al.* Ag₂S quantum dot: a bright and biocompatible fluorescent nanoprobe in the
605 second near-infrared window. *ACS Nano* **6**, 3695-3702 (2012).

606 37 Bruns, O. T. *et al.* Next-generation *in vivo* optical imaging with short-wave infrared quantum
607 dots. *Nat. Biomed. Eng.* **1**, 0056 (2017).

608 38 Zhong, Y. & Dai, H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II
609 imaging of biological systems. *Nano Res.* **13**, 1281-1294 (2020).

610 39 Gu, Y. *et al.* High-sensitivity imaging of time-domain near-infrared light transducer. *Nat.*
611 *Photonics* **13**, 525-531 (2019).

612 40 Pei, P. *et al.* X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. *Nat.*
613 *Nanotechnol.* **16**, 1011-1018 (2021).

614 41 Yang, Y. *et al.* Fluorescence-amplified nanocrystals in the second near-infrared window for *in vivo*
615 real-time dynamic multiplexed imaging. *Nat. Nanotechnol.* **18**, 1195-1204 (2023).

616 42 Chen, Y. *et al.* Shortwave Infrared *In Vivo* Imaging with Gold Nanoclusters. *Nano Lett.* **17**, 6330-
617 6334 (2017).

618 43 Ma, H. *et al.* Bioactive NIR-II gold clusters for three-dimensional imaging and acute
619 inflammation inhibition. *Sci. Adv.* **9**, eadh7828 (2023).

620 44 Cosco, E. D. *et al.* Shortwave infrared polymethine fluorophores matched to excitation lasers
621 enable non-invasive, multicolour *in vivo* imaging in real time. *Nat. Chem.* **12**, 1123-1130 (2020).

622 45 Sun, C. *et al.* J-aggregates of cyanine dye for NIR-II *in vivo* dynamic vascular imaging beyond
623 1500 nm. *J. Am. Chem. Soc.* **141**, 19221-19225 (2019).

624 46 Yang, Q. *et al.* Rational design of molecular fluorophores for biological imaging in the NIR-II
625 window. *Adv. Mater.* **29**, 1605497 (2017).

626 47 Zhu, X. *et al.* High brightness NIR-II nanofluorophores based on fused-ring acceptor molecules.
627 *Nano Res.* **13**, 2570-2575 (2020).

628 48 Yao, C. *et al.* A bright, renal-clearable NIR-II brush macromolecular probe with long blood
629 circulation time for kidney disease bioimaging. *Angew. Chem. Int. Edit.* **61**, e202114273 (2022).

630 49 Qin, Z. *et al.* NIRII-HDs: a versatile platform for developing activatable NIR-II fluorogenic
631 probes for reliable *in vivo* analyte sensing. *Angew. Chem. Int. Edit.* **61**, e202201541 (2022).

632 50 Wang, T. *et al.* A hybrid erbium(III)-bacteriochlorin near-infrared probe for multiplexed
633 biomedical imaging. *Nat. Mater.* **20**, 1571-1578 (2021).

634 51 Lei, Z. *et al.* Stable, Wavelength-Tunable Fluorescent Dyes in the NIR-II Region for *In Vivo*
635 High-Contrast Bioimaging and Multiplexed Biosensing. *Angewandte Chemie International
636 Edition* **58**, 8166-8171 (2019).

637 52 Liu, S. *et al.* Incorporation of planar blocks into twisted skeletons: boosting brightness of
638 fluorophores for bioimaging beyond 1500 nanometer. *ACS Nano* **14**, 14228-14239 (2020).

639 53 Liu, C., Wang, X., Zhu, X., Ma, R., Lin, Q. & Liang, Y. 3,4-Ethylenedithio thiophene donor for
640 NIR-II fluorophores with improved quantum yields. *Mater. Chem. Front.* **7**, 2419-2425 (2023).

641 54 Ma, H. *et al.* Propylenedioxy Thiophene Donor to Achieve NIR-II Molecular Fluorophores with
642 Enhanced Brightness. *Chemistry of Materials* **32**, 2061-2069 (2020).

643 55 Yang, Q. *et al.* Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent
644 performance. *J. Am. Chem. Soc.* **140**, 1715-1724 (2018).

645 56 Huang, J. *et al.* Renal-clearable Molecular Semiconductor for Second Near-Infrared Fluorescence
646 Imaging of Kidney Dysfunction. *Angewandte Chemie International Edition* **58**, 15120-15127
647 (2019).

648 57 Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor *in vivo*
649 imaging. *Nat. Methods* **10**, 751-754 (2013).

650 58 Oliinyk, O. S., Chernov, K. G. & Verkhusha, V. V. Bacterial phytochromes, cyanobacteriochromes
651 and allophycocyanins as a source of near-infrared fluorescent probes. *Int. J. Mol. Sci.* **18**, 1691
652 (2017).

653 59 Chen, M. *et al.* Long-term monitoring of intravital biological processes using fluorescent protein-
654 assisted NIR-II imaging. *Nat. Commun.* **13**, 6643 (2022).

655 60 Oliynyk, O. S. *et al.* Deep-tissue SWIR imaging using rationally designed small red-shifted near-
656 infrared fluorescent protein. *Nat. Methods* **20**, 70-74 (2023).

657 61 Naczynski, D. J. *et al.* X-ray-induced shortwave infrared biomedical imaging using rare-earth
658 nanoprobes. *Nano Lett.* **15**, 96-102 (2015).

659 62 Cao, X. *et al.* Cherenkov excited short-wavelength infrared fluorescence imaging in vivo with
660 external beam radiation. *J. Biomed. Opt.* **24**, 051405 (2018).

661 63 Shen, H. *et al.* Rational design of NIR-II AIEgens with ultrahigh quantum yields for photo- and
662 chemiluminescence imaging. *J. Am. Chem. Soc.* **144**, 15391-15402 (2022).

663 64 Lu, L. *et al.* NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated
664 metastases tracing. *Nat. Commun.* **11**, 4192 (2020).

665 65 Wang, S. *et al.* Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging
666 and pH sensing. *Nat. Commun.* **10**, 1058 (2019).

667 66 Starosolski, Z., Bhavane, R., Ghaghada, K. B., Vasudevan, S. A., Kaay, A. & Annapragada, A.
668 Indocyanine green fluorescence in second near-infrared (NIR-II) window. *PLOS ONE* **12**,
669 e0187563 (2017).

670 67 Ren, T.-B. *et al.* A general strategy for development of activatable NIR-II fluorescent probes for in
671 vivo high-contrast bioimaging. *Angew. Chem. Int. Edit.* **60**, 800-805 (2021).

672 68 Wang, Z. *et al.* Dynamically monitoring lymphatic and vascular systems in physiological and
673 pathological conditions of a swine model via a portable NIR-II imaging system with ICG. *Int. J.
674 Med. Sci.* **19**, 1864-1874 (2022).

675 69 Xue, D. *et al.* Structural and functional NIR-II fluorescence bioimaging in urinary system via
676 clinically approved dye methylene blue. *Engineering* **22**, 149-158 (2023).

677 70 Chang, Y. *et al.* Bright Tm³⁺-based downshifting luminescence nanoprobe operating around
678 1800 nm for NIR-IIb and c bioimaging. *Nat. Commun.* **14**, 1079 (2023).

679 71 Arús, B. A. *et al.* Shortwave infrared fluorescence imaging of peripheral organs in awake and
680 freely moving mice. *Front. Neurosci.* **17** (2023, <https://doi.org/10.3389/fnins.2023.1135494>).

681 72 Kim, T., O'Brien, C., Choi, H. S. & Jeong, M. Y. Fluorescence molecular imaging systems for
682 intraoperative image-guided surgery. *Appl. Spectrosc. Rev.* **53**, 349-359 (2018).

683 73 Wan, H. *et al.* A bright organic NIR-II nanofluorophore for three-dimensional imaging into
684 biological tissues. *Nat. Commun.* **9**, 1171 (2018).

685 74 Yu, W. *et al.* NIR-II fluorescence in vivo confocal microscopy with aggregation-induced emission
686 dots. *Sci. Bull.* **64**, 410-416 (2019).

687 75 Yu, J. *et al.* Intravital confocal fluorescence lifetime imaging microscopy in the second near-
688 infrared window. *Opt. Lett.* **45**, 3305-3308 (2020).

689 76 Xia, F. *et al.* Short-wave infrared confocal fluorescence imaging of deep mouse brain with a
690 superconducting nanowire single-photon detector. *ACS Photonics* **8**, 2800-2810 (2021).

691 77 Kobat, D., Horton, N. & Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex.
692 *J. Biomed. Opt.* **16**, 106014 (2011).

693 78 Horton, N. G. *et al.* In vivo three-photon microscopy of subcortical structures within an intact
694 mouse brain. *Nat. Photonics* **7**, 205-209 (2013).

695 79 Gu, M., Gan, X., Kisteman, A. & Xu, M. G. Comparison of penetration depth between two-
696 photon excitation and single-photon excitation in imaging through turbid tissue media. *Appl. Phys.
697 Lett.* **77**, 1551-1553 (2000).

698 80 Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Optical sectioning deep
699 inside live embryos by selective plane illumination microscopy. *Science* **305**, 1007-1009 (2004).

700 81 Liu, T.-L. *et al.* Observing the cell in its native state: Imaging subcellular dynamics in
701 multicellular organisms. *Science* **360**, eaaq1392 (2018).

702 82 Yu, H. *et al.* in *Biophotonics Congress: Biomedical Optics Congress 2018*
703 (*Microscopy/Translational/Brain/OTS*). BF3C.3 (Optica Publishing Group).

704 83 Olarte, O. E. *et al.* Image formation by linear and nonlinear digital scanned light-sheet
705 fluorescence microscopy with Gaussian and Bessel beam profiles. *Biomed. Opt. Express* **3**, 1492-
706 1505 (2012).

707 84 Nylk, J. *et al.* Light-sheet microscopy with attenuation-compensated propagation-invariant beams.
708 *Sci. Adv.* **4**, eaar4817 (2018).

709 85 Herisson, F. *et al.* Direct vascular channels connect skull bone marrow and the brain surface
710 enabling myeloid cell migration. *Nat. Neurosci.* **21**, 1209-1217 (2018).

711 86 Wang, F. *et al.* Scanning superlens microscopy for non-invasive large field-of-view visible light
712 nanoscale imaging. *Nat. Commun.* **7**, 13748 (2016).

713 87 Liu, P. *et al.* Airy beam assisted NIR-II light-sheet microscopy. *Nano Today* **47**, 101628 (2022).

714 88 Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: Wide-field fluorescence
715 imaging with theoretically unlimited resolution. *Proceedings of the National Academy of Sciences
716 of the United States of America* **102**, 13081-13086 (2005).

717 89 Hong, G. *et al.* Near-Infrared II fluorescence for imaging hindlimb vessel regeneration with
718 dynamic tissue perfusion measurement. *Circ.-Cardiovasc. Imag.* **7**, 517-525 (2014).

719 90 Qi, J. *et al.* Real-time and high-resolution bioimaging with bright aggregation-induced emission
720 dots in short-wave infrared region. *Adv. Mater.* **30**, 1706856 (2018).

721 91 Liu, H. *et al.* Atomic-precision gold clusters for NIR-II imaging. *Adv. Mater.* **31**, 1901015 (2019).

722 92 Zhang, X.-D. *et al.* Traumatic brain injury imaging in the second near-infrared window with a
723 molecular fluorophore. *Adv. Mater.* **28**, 6872-6879 (2016).

724 93 Chatterjee, A., Serniak, N. & Czerniecki, B. J. Sentinel lymph node biopsy in breast cancer: a
725 work in progress. *Cancer J.* **21** (2015).

726 94 Tian, R. *et al.* Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-
727 guided surgery. *Adv. Mater.* **32**, 1907365 (2020).

728 95 Li, M. *et al.* Near-infrared-II ratiometric fluorescence probes for non-invasive detection and
729 precise navigation surgery of metastatic sentinel lymph nodes. *Theranostics* **12**, 7191-7202
730 (2022).

731 96 Hu, Z. *et al.* First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in
732 the visible and near-infrared-I/II windows. *Nat. Biomed. Eng.* **4**, 259-271 (2020).

733 97 Morlandt, A. B. *et al.* Fluorescently labeled Cetuximab-IRDye800 for guided surgical excision of
734 ameloblastoma: a proof of principle study. *J. Oral. Maxil. Surg.* **78**, 1736-1747 (2020).

735 98 Suo, Y. *et al.* NIR-II fluorescence endoscopy for targeted imaging of colorectal cancer. *Adv.
736 Healthc. Mater.* **8**, 1900974 (2019).

737 99 Girard, J.-P., Moussion, C. & Förster, R. HEVs, lymphatics and homeostatic immune cell
738 trafficking in lymph nodes. *Nat. Rev. Immunol.* **12**, 762-773 (2012).

739 100 He, L. *et al.* Engineering of reversible NIR-II redox-responsive fluorescent probes for imaging of
740 inflammation in vivo. *Angew. Chem. Int. Edit.* **61**, e202211409 (2022).

741 101 Lan, Q., Yu, P., Yan, K., Li, X., Zhang, F. & Lei, Z. Polymethine molecular platform for
742 ratiometric fluorescent probes in the second near-infrared window. *J. Am. Chem. Soc.* **144**, 21010-
743 21015 (2022).

744 102 Miao, J. *et al.* An activatable NIR-II fluorescent reporter for in vivo imaging of Amyloid- β
745 plaques. *Angew. Chem. Int. Edit.* **62**, e202216351 (2023).

746 103 He, Y. *et al.* NIR-II cell endocytosis-activated fluorescent probes for in vivo high-contrast
747 bioimaging diagnostics. *Chem. Sci.* **12**, 10474-10482 (2021).

748 104 Chen, Z. *et al.* Design and synthesis of a small molecular NIR-II chemiluminescence probe for in
749 vivo-activated H₂S imaging. *P. Natl. Acad. Sci. USA* **120**, e2205186120 (2023).

750 105 Fang, Z. *et al.* Oxyhaemoglobin saturation NIR-IIb imaging for assessing cancer metabolism and
751 predicting the response to immunotherapy. *Nat. Nanotechnol.* (2023,
752 <https://doi.org/10.1038/s41565-023-01501-4>).

753 106 Tian, R. *et al.* Rational design of a super-contrast NIR-II fluorophore affords high-performance
754 NIR-II molecular imaging guided microsurgery. *Chem. Sci.* **10**, 326-332 (2019).

755 107 Wang, P. *et al.* NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for
756 metastatic ovarian cancer. *Nat. Commun.* **9**, 2898 (2018).

757 108 Fan, X. *et al.* Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence
758 imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD). *Adv. Healthc.
759 Mater.* **10**, 2101043 (2021).

760 109 Antaris, A. L. *et al.* A high quantum yield molecule-protein complex fluorophore for near-infrared
761 II imaging. *Nat. Commun.* **8**, 15269 (2017).

762 110 Wu, Y. *et al.* First clinical applications for the NIR-II imaging with ICG in microsurgery. *Front.*
763 *Bioeng. Biotech.* **10** (2022).

764 111 Carr, J. A., Valdez, T. A., Bruns, O. T. & Bawendi, M. G. Using the shortwave infrared to image
765 middle ear pathologies. *P. Natl. Acad. Sci. USA* **113**, 9989-9994 (2016).

766 112 Shi, X. *et al.* Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in
767 vivo high-resolution imaging in the NIR-II window. *Nano Res.* **13**, 2239-2245 (2020).

768 113 Magdaong, N. C. M., Niedzwiedzki, D. M., Goodson, C. & Blankenship, R. E. Carotenoid-to-
769 bacteriochlorophyll energy transfer in the LH1-RC core complex of a bacteriochlorophyll b
770 containing purple photosynthetic bacterium *blastochloris viridis*. *J. Phys. Chem. B* **120**, 5159-
771 5171 (2016).

772 114 Chang, Z. *et al.* Near infrared-II fluorescent protein for in-vivo imaging. *bioRxiv*,
773 2022.2003.2004.482971 (2022).

774 115 Ma, Z., Wang, F., Wang, W., Zhong, Y. & Dai, H. Deep learning for in vivo near-infrared imaging.
775 *P. Natl. Acad. Sci. USA* **118**, e2021446118 (2021).

776 116 Tummers, W. S. *et al.* Regulatory aspects of optical methods and exogenous targets for cancer
777 detection. *Cancer. Res.* **77**, 2197-2206 (2017).

778 117 Scheuer, W., van Dam, G. M., Dobosz, M., Schwaiger, M. & Ntziachristos, V. Drug-based optical
779 agents: infiltrating clinics at lower risk. *Sci. Transl. Med.* **4**, 134ps111-134ps111 (2012).

780 118 DSouza, A., Lin, H., Henderson, E., Samkoe, K. & Pogue, B. Review of fluorescence guided
781 surgery systems: identification of key performance capabilities beyond indocyanine green
782 imaging. *J. Biomed. Opt.* **21**, 080901 (2016).

783 119 Wang, M., Wu, C., Sinefeld, D., Li, B., Xia, F. & Xu, C. Comparing the effective attenuation
784 lengths for long wavelength in vivo imaging of the mouse brain. *Biomed. Opt. Express* **9**, 3534-
785 3543 (2018).

786

787 Acknowledgments

788 H. Dai acknowledges National Institutes of Health NIH DP1-NS-105737 as the sole funding
789 source for Dai group's work reviewed in this publication.

790

791

792 **Figure 1. Motivation for NIR-II fluorescence imaging.** (a) Reduced scattering coefficients
793 of different biological tissues and intralipid phantom with concentrations of 0.8% and 4.6% in
794 the 400-3000 nm window. (b) The attenuation length ($1/(1/l_s+1/l_a)$) of brain tissue mimicked
795 by 5% intralipid solution in the NIR-I and NIR-II windows, where l_s and l_a are scatter and
796 attenuation lengths¹². The stars in the graph denote the effective attenuation length of mouse
797 brain that has been previously reported^{78,119}. (c) Fluorescence imaging of a 50- μ m capillary
798 submerged at various depths in 5% intralipid by a wide-field system with a 2D InGaAs camera
799 or a confocal microscope with SNSPDs. An 808-nm and a 1319-nm laser were used for NIR-
800 IIb wide-field imaging and confocal microscopy, respectively. NIR-IIc confocal microscopy
801 was performed with 1540-nm or 1650-nm excitations¹². (d) Non-invasive NIR-I, NIR-IIa and
802 NIR-IIb fluorescence imaging of cerebral vasculatures of mice¹⁷.

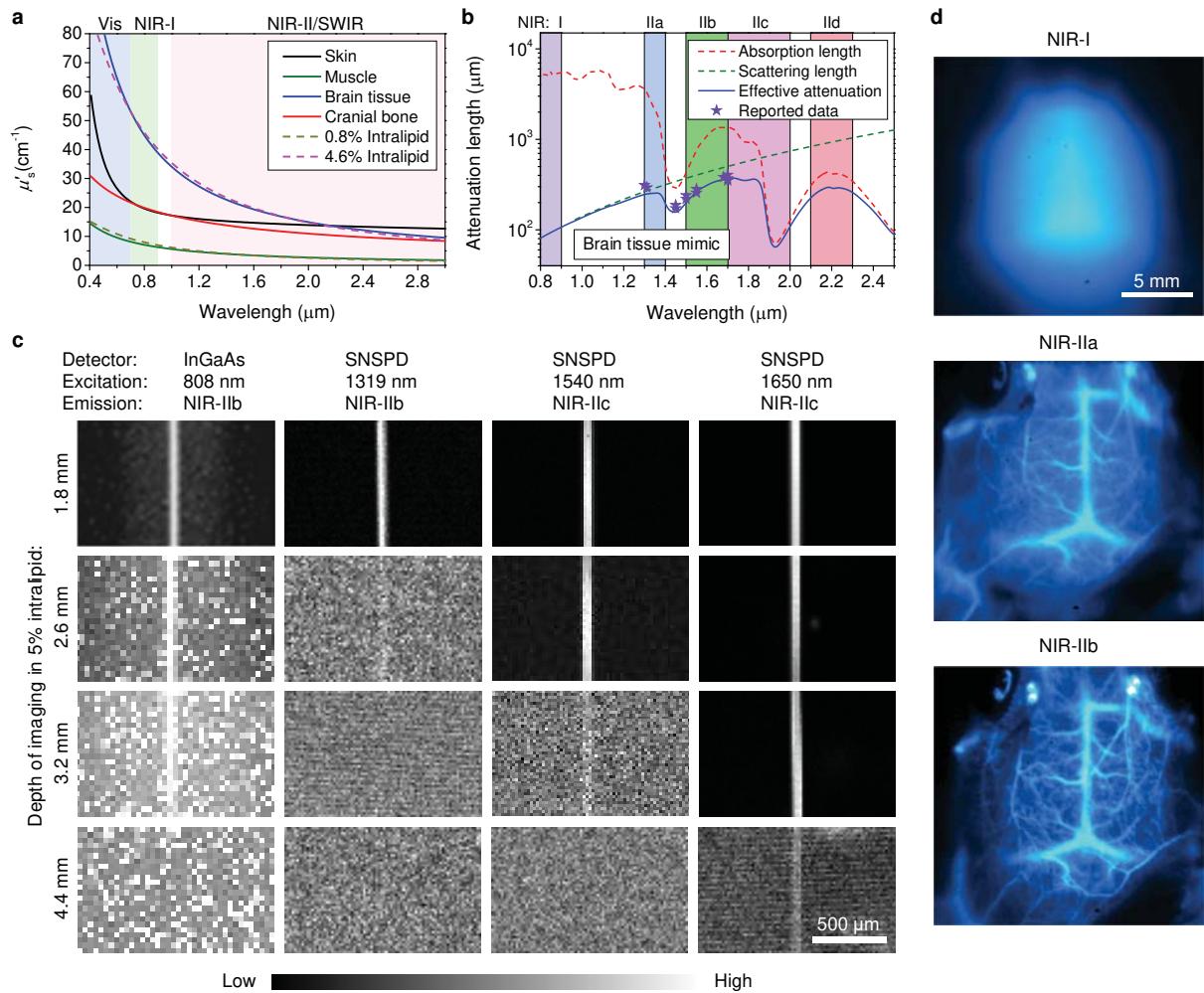
803

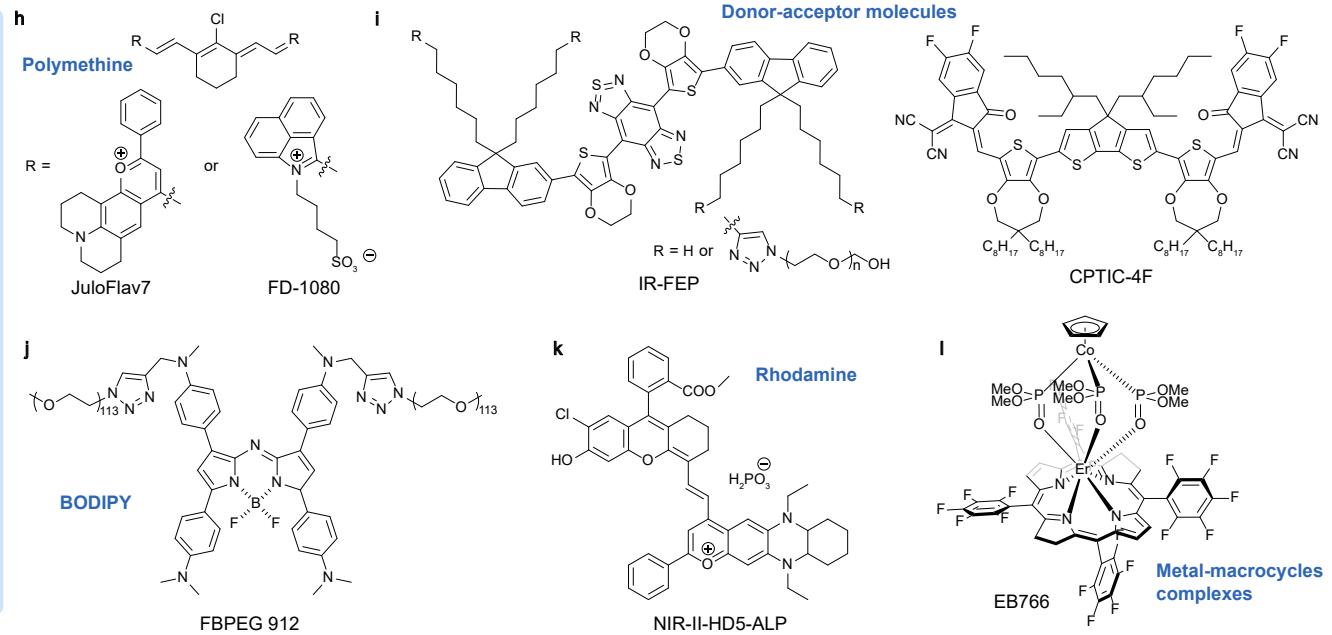
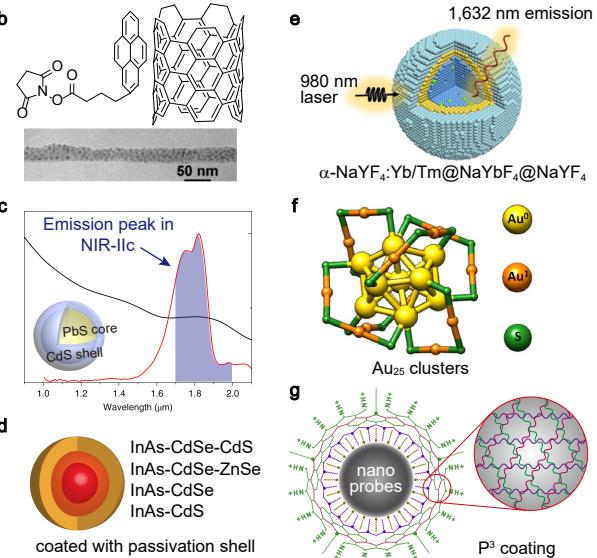
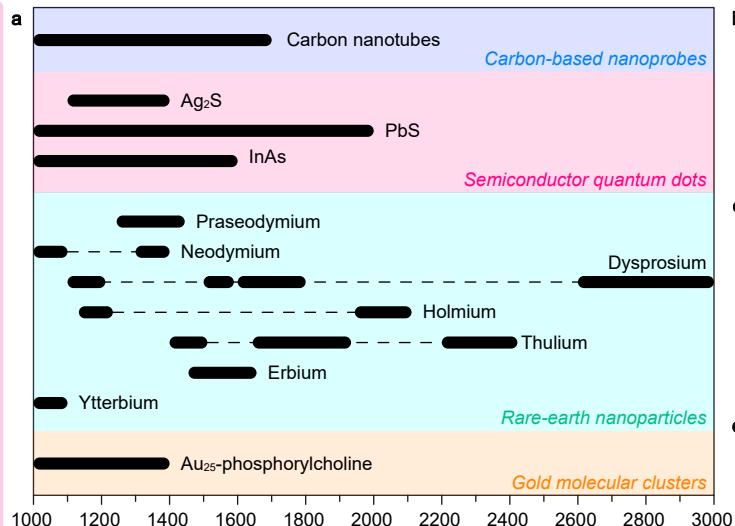
804 **Figure 2. NIR-II fluorescence probes.** (a) The emission spectral ranges of different inorganic
805 nanostructured NIR-II probes. (b) Schemes of SWNTs with proteins anchored on the surface
806 via pyrene π -stacking³⁵. (c) Emission spectrum and schematic design (inset) of NIR-IIc core-

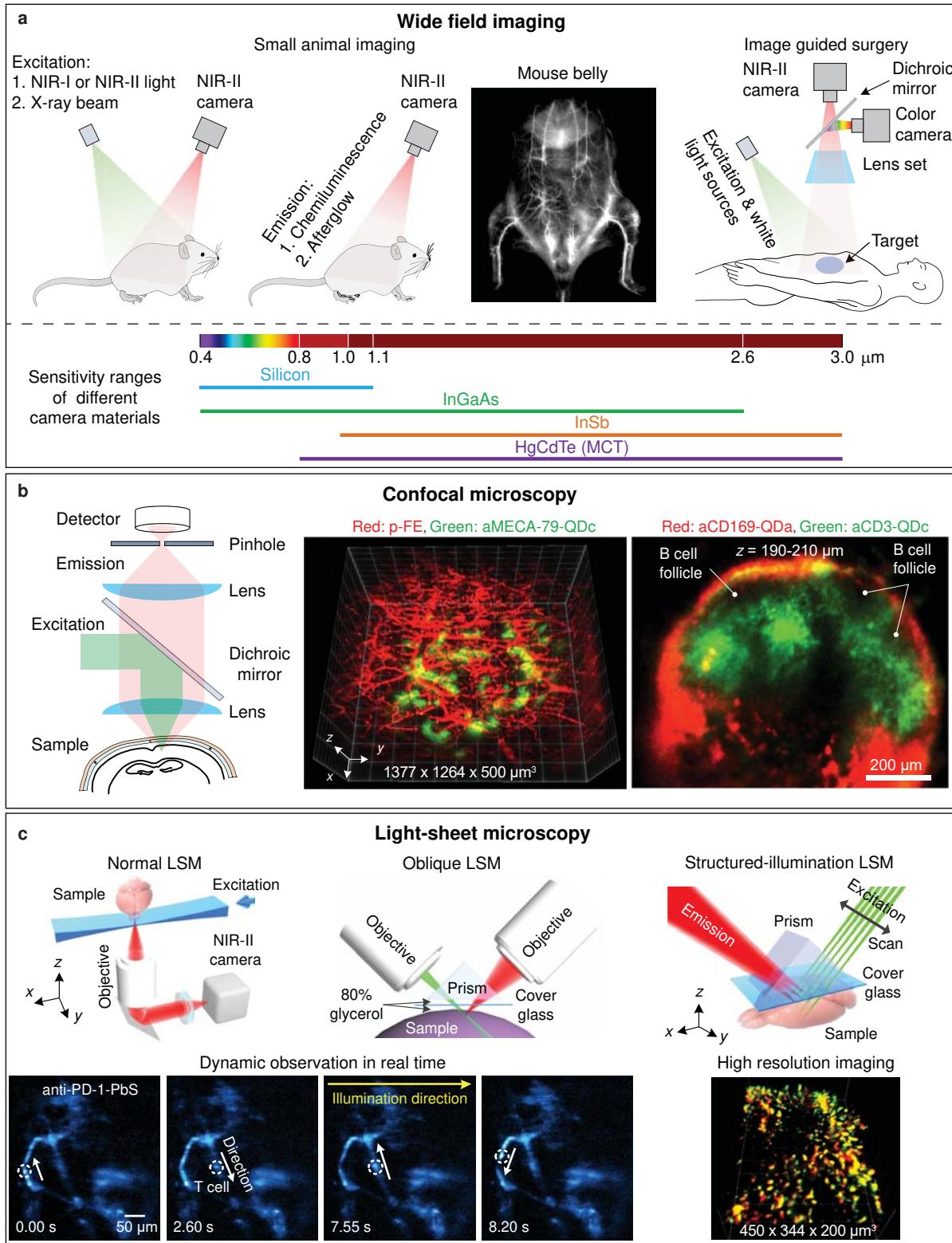
807 shell PbS/CdS QDs ¹². (d) Schematic overview of InAs-based QDs coated with passivation
808 shell ³⁷. (e) Schematic of the Tm³⁺-doped cubic-phase core–shell-structured RENPs ⁴¹. (f)
809 Crystallographic representation of Au₂₅ nanoclusters ²⁷. (g) Schematic illustration of the
810 hydrophilic RENPs with P³ coating cross-linking polymeric layers ²³. The example structures
811 of NIR-II molecular fluorophores (h) polymethine (JuloFlav7 ⁴⁴ and FD-1080 ⁴⁵), (i) donor-
812 acceptor molecules (IR-FEP ⁴⁶ and CPTIC-4F ⁴⁷), (j) BODIPY (FBPEG 912 ⁴⁸), (k) rhodamine
813 (NIR-II-HD5-ALP ⁴⁹) and (l) metal-macrocycles complexes (EB766 ⁵⁰).

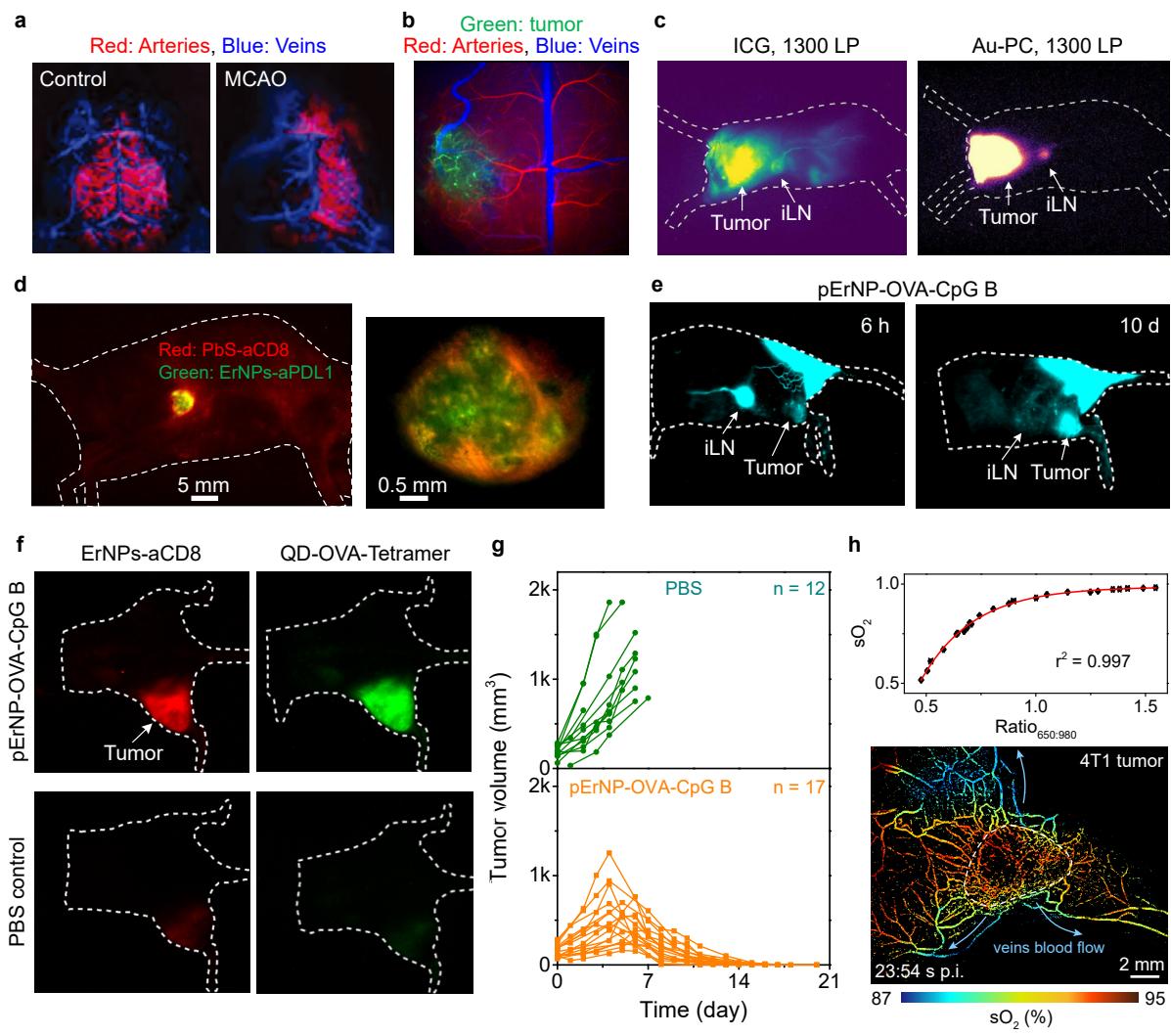
814

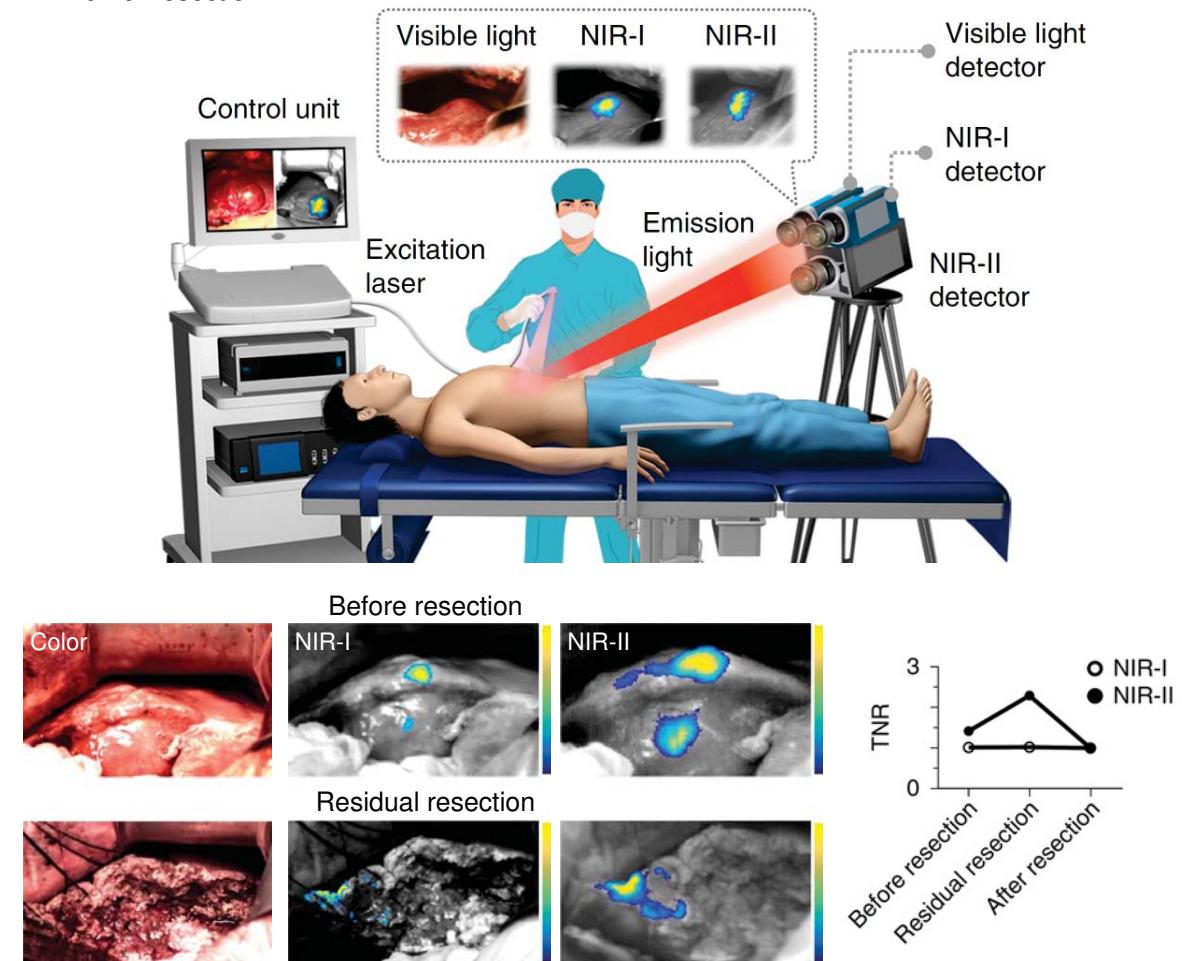
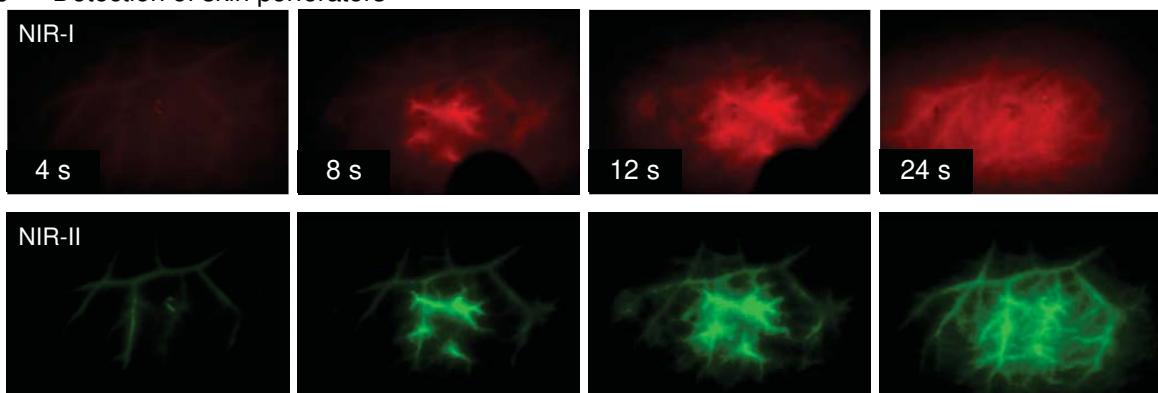
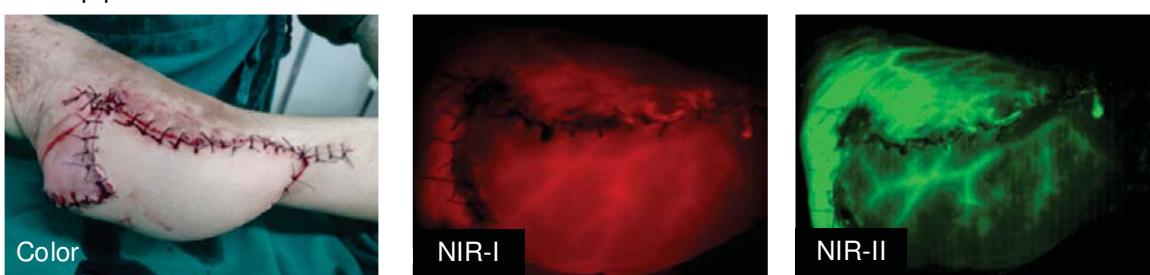
815 **Figure 3. NIR-II imaging modalities.** (a) Upper: schemes of NIR-II wide-field imaging
816 systems for small animal imaging and image guided surgery. Bottom: the sensitivity range of
817 different camera materials. (b) Left: a scheme of NIR-II confocal microscope. Middle: Non-
818 invasive confocal microscopy of blood vessels (red) in NIR-IIa window and HEVs labelled by
819 aMECA-79-QDc (green, QDc: NIR-IIc PbS QDs) in NIR-IIc window in an inguinal lymph
820 node. Right: Confocal microscopy of CD169⁺ macrophages (aCD169-QDa, QDa: NIR-IIa PbS
821 QDs) and CD3⁺ T cells (aCD3-QDc) in a inguinal lymph node ¹². (c) Upper: schemes of NIR-
822 II light sheet microscopes with normal and oblique configurations and NIR-II structured-
823 illumination LSM. Bottom-Left: Time-course recording of PD-1⁺ cells (white circles) in a
824 CT26 tumor labeled by anti-PD-1-PbS QDs at 20 frames per second by oblique LSM ²⁴.
825 Bottom-Right: A higher-resolution NIR-II structured-illumination LSM of aCD4-ErNPs (red)
826 and aOX40-QDb (green) in a CpG-treated tumor ²⁶.


827




828 **Figure 4. NIR-II preclinical imaging.** (a) NIR-II PCA overlaid images showing arterial and
829 venous vessels of a healthy mouse and a mouse with MCAO ⁵. (b) NIR-II imaging of a brain
830 tumor, arteries and veins ³⁷. (c) NIR-II imaging of sentinel LNs after injection of ICG and Au-
831 PC ²⁷. (d) Two-plex NIR-IIb imaging of a mouse bearing CT-26 tumor at 24 h post intravenous
832 injection of ErNPs-aPDL1 and PbS QDs-aCD8 ²³. (e) Time-course recording of vaccine
833 trafficking pathways after injection of pErNP-OVA-CpG B ²⁹. (f) NIR-IIb imaging of mice
834 bearing E.G-7 tumors with intratumoral injection of pErNP-OVA-CpG B or PBS ²⁹. (g)
835 Treatment efficacy corresponding treatment in (f) ²⁹. (h) NIR-IIb imaging of sO₂. Upper: The
836 relationship between sO₂ value and the ratio of fluorescence signals excited at 650 nm and 980
837 nm. Bottom: NIR-IIb sO₂ imaging of the perfusion of pErNP into 4T1 tumor ¹⁰⁵.


838


839 **Figure 5. NIR-II clinical imaging.** (a) Upper: A schematic shows an example equipment for
840 visible, NIR-I and NIR-II image-guided surgery for clinical tumor resection. Bottom:
841 Intraoperative visible, NIR-I and NIR-II imaging of a tumor before and during tumor resection
842 ⁹⁶. (b) Preoperative (Upper) NIR-I and (Bottom) NIR-II fluorescence imaging revealed four
843 possible perforators after intravenous injection of ICG. NIR-II imaging resolved more
844 perforators than traditional Doppler method. One of them overlapped with the Doppler location
845 ¹¹⁰. (c) Left: color image of human heel after flap transplantation. NIR-I (Middle) and NIR-II
846 (Right) fluorescence imaging of flap perfusion and revascularization. NIR-II imaging enhanced
847 visualization of revascularization compared to NIR-I imaging ¹¹⁰.

a Tumor resection**b** Detection of skin perforators**c** Flap perfusion