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Abstract
1. Identifying the drivers that promote unique species compositions (i.e. ecological 

uniqueness) is crucial to understanding the mechanisms underpinning diversity 
patterns and for effective conservation planning. Environmental conditions are 
often sampled differentially in datasets, which can lead to rarer environments 
having unique species compositions, provided that environmental differences 
increase compositional differences. This effect, however, will be undesirable 
when a study aims to test the direct impact of environments rather than their 
availability.

2. We developed an approach to reduce the effects of environmental availability in 
ecological uniqueness analyses through calculating expected pairwise composi-
tional dissimilarities for each unique environmental condition. We further used 
simulations to assess the performance of our methods by randomly generating 
communities from two hypothetical environments with non- overlapping species 
pools. Additionally, we used a dataset of 50 tree communities to demonstrate 
how environmental availability could impact relationships between environmen-
tal conditions and ecological uniqueness in empirical studies.

3. Our simulations revealed that uniqueness metrics based on observed values are 
sensitive to environmental availability, while our approach correctly concluded 
that there were no differences among environments under the unbalanced de-
sign. Our analysis of tree communities produced divergent conclusions between 
the two approaches, as increasing slope reduced ecological uniqueness after con-
trolling for their low availability in the dataset only. This suggests that low envi-
ronmental availability inflated the ecological uniqueness of sites with high slope, 
which opposed its direct negative effects on ecological uniqueness, leading to a 
weak relationship based on observed values.

4. To achieve a more mechanistic understanding of ecological uniqueness patterns, 
the effects of environmental availability must be considered. We recommend that 
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1  |  INTRODUC TION

Beta (β) diversity is critical to understanding how species composi-
tion varies across space and time, and for inferring the mechanisms 
that structure biodiversity (Baselga, 2010; Tatsumi et al., 2021). 
Estimating beta diversity is also used to understand the scaling 
relationships between alpha (α) and gamma (γ) diversity (Barton 
et al., 2013), the spatial distribution of ecosystem function and ser-
vices (Mori et al., 2018), and the prioritisation of protected areas 
(Devictor et al., 2010; Socolar et al., 2016). The contribution of dif-
ferent communities to β diversity can vary strongly, depending on 
how unique their species compositions are (i.e. ecological unique-
ness), which are quantified based on pairwise compositional dissim-
ilarities (Legendre & de Cáceres, 2013; Mokany, Ware, et al., 2022). 
Many studies have sought to determine relationships between eco-
logical uniqueness and environmental drivers, and citing ecologi-
cal mechanisms such as increasing disturbance (Allen et al., 2019; 
Leão et al., 2020) and low ecological specialisation (García- Navas 
et al., 2022) as potential explanations. In conservation studies, eco-
logical uniqueness has been included in assessing the effectiveness 
of conservation measures (Cetra et al., 2022; Ribeiro et al., 2022; 
So & Dudgeon, 2021) and identifying environments that should be 
prioritised for protection (Dubois et al., 2020; Jyrkänkallio- Mikkola 
et al., 2018; Mokany et al., 2020). One way to quantify ecological 
uniqueness is by averaging pairwise compositional dissimilarity, also 
known as pairwise beta diversity (e.g. Marion et al., 2017), between 
the focal sites and other sites (hereafter as βpair) (Mokany, Ware, 
et al., 2022). Ecological uniqueness can also be measured as the 
distance to the centroid within a multivariate space, with the cen-
troid representing the ‘average’ of communities within a sampling 
pool (Anderson et al., 2006). Legendre and de Cáceres (2013) have 
further developed the index Local Contribution to Beta Diversity 
(LCBD), which is the ratio between the squared distance to the cen-
troid of each site and the total squared distance to the centroid of all 
sites (see Table S1 for their calculations).

Some studies have noted that uniqueness can be affected by 
the number of sampling units of different environmental conditions 
(hereafter referred to as ‘environmental availability’) within the 
sampling pool, with a rarer environment containing more unique 
compositions (Baidya & Bagchi, 2022; Dubois et al., 2020; Ejrnæs 
et al., 2018; Mokany, McCarthy, et al., 2022). This mechanism, how-
ever, is not always considered when assessing uniqueness patterns 

across space (Schneck et al., 2022). In some cases, the effects of 
environmental availability can be desirable, such as when the objec-
tive is to illustrate or predict the ecological uniqueness of different 
sites within landscapes and therefore identify conservation priori-
ties (Dansereau et al., 2022; Dubois et al., 2020; Heino et al., 2022). 
However, if the objective is to examine how environmental drivers 
affect ecological uniqueness through specific mechanisms, such 
as whether human disturbance favours generalists and therefore 
reduces the uniqueness of communities (Allen et al., 2019; Leão 
et al., 2020), or isolation promotes speciation, and therefore unique 
communities (Perbiche- Neves et al., 2019), the effects of environ-
mental availability should be controlled to minimise its confounding 
effects.

Conflating the effects of environmental availability and the en-
vironment can also misguide conservation efforts. For example, in-
correctly attributing uniqueness patterns to direct environmental 
impacts, such as habitat degradation, can lead to inappropriate man-
agement recommendations (Legendre & de Cáceres, 2013; Schneck 
et al., 2022). As one example, García- Navas et al. (2022) found that 
the ecological uniqueness of bird communities started to decline 
rapidly when surrounding olive grove cover exceeded 50%, inter-
preting this as a signal of biotic homogenisation driven by agricul-
tural expansion. Subsequently, management recommendations were 
proposed, such as restoring and protecting natural and semi- natural 
habitats. While this may be plausible, sites with >50% surrounding 
olive grove cover are more common in the sampling pool, thus the 
results could be driven by their higher environmental availability 
rather than agricultural expansions driving the homogenisation of 
communities. Additionally, sampling bias can create mismatches in 
environmental availability between the sampling pool and field con-
ditions (Ejrnæs et al., 2018). As a result, such patterns would reflect 
sampling designs rather than ecological processes and have limited 
relevance to underlying drivers.

Previously, removing the effects of uneven environmental avail-
ability in uniqueness analyses has been achieved through resampling 
(Baidya & Bagchi, 2022). However, such approaches do not apply to 
numeric variables without binning, which can lead to other issues, 
including reduced power, arbitrary cut- offs, biased estimates, under-
estimated variance and inflated type- I error (Royston et al., 2006). 
Furthermore, applying resampling approaches can be challenging 
when multiple environmental variables are of interest, especially 
when these variables have very different evenness distributions.

studies use both uncorrected and corrected analyses to identify not only the di-
rect effects of environmental conditions but also the degree to which their avail-
ability influences the observed relationships between ecological uniqueness and 
environment conditions. Our approach should be most necessary and applicable 
in unbalanced designs, which is a common characteristic in empirical studies.

K E Y W O R D S
beta diversity, compositional uniqueness, dissimilarity modelling, rare environment, sampling 
bias, unbalanced design
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Assuming that environmental differences increase compositional 
differences, which is typically true (Graco- Roza et al., 2022), we ex-
pect sensitivity of ecological uniqueness metrics to environmental 
availability. Imagine a study interested in examining the effects of 
habitat differences on ecological uniqueness, with 15 and five com-
munities from habitats A and B, respectively. The average βpair value 
for each site of habitat A would be based on 14 and five within-  and 
between- habitat comparisons, while for each site of habitat B, the 
metric would be from 4 within-  and 15 between- habitat compari-
sons. Note that the numbers of within- habitat comparisons are al-
ways one fewer than the number of communities within the group 
since any community will not compare metrics with itself. Thus, if 
within- habitat compositional differences are smaller than between- 
habitat differences, the rarer habitats (i.e. habitat B in the hypothet-
ical example) should always exhibit higher uniqueness. For distance 
to centroid and LCBD, the centroid represents the average commu-
nity within the species pool in a multivariate space. Under an unbal-
anced design, the average community should be more representative 
of habitat A due to their higher availability. Thus, again rare habitats 
would show higher distance to centroid and LCBD. While our hypo-
thetical examples are based on a nominal variable, the effects should 
apply to continuous variables as long as environmental differences 
increase compositional differences. In the rare cases where environ-
mental differences decrease compositional differences (Graco- Roza 
et al., 2022), the opposite would occur: the rare habitat should show 
lower uniqueness than the common habitats.

Here, we use simulations to illustrate how the uneven availability 
of different environments can alter relationships between ecological 
uniqueness and environmental conditions for different metrics. We 
then propose a statistical method to remove the effects of uneven 
environmental availability for continuous, ordinal, and nominal vari-
ables. We further used an empirical dataset to demonstrate the im-
portance of our analyses to identify causes of ecological uniqueness.

2  |  MATERIAL S AND METHODS

2.1  |  Steps to remove the effects of environmental 
availability

Our approach (Figure 1) is based on modelling βpair with different 
environmental variables, including ordinal, nominal, and continu-
ous, followed by averaging expected βpair across each unique envi-
ronmental condition. We developed an R function for this analysis, 
which is available on GitHub (https://github.com/tpakn ok/Beta- 
diver sity). Future updates to the function will also be available on 
the repository. We focused on βpair because other metrics (e.g. dis-
tance to centroid) are additionally influenced by matrix size (Marion 
et al., 2017; Stier et al., 2013), and βpair is widely employed in ecologi-
cal analyses. While the focus on βpair is similar to generalised dissimi-
larity modelling (GDM), our approach does not assume βpair increases 
with environmental dissimilarity (Mokany, Ware, et al., 2022), as 
negative relationships have been found in some empirical studies 

(Graco- Roza et al., 2022). Additionally, GDM assumes the same βpair 
for all communities compared to other communities sharing identical 
environmental conditions (Mokany, Ware, et al., 2022). However, this 
is unlikely true, as many empirical studies have shown that within- 
habitat βpair differs across habitat groups (Newbold et al., 2016).

Briefly, the first step of our proposed analysis is to construct one 
model between βpair and environmental variables for each focal site 
(Figure 1a). Then we project all models to each unique environmen-
tal condition sampled in the dataset, thus obtaining the expected 

F I G U R E  1  The proposed steps to remove the effects of 
environmental availability in uniqueness analyses. (a) Relationships 
between βpair and environmental conditions are modelled for each 
site separately, represented by different lines in the figure. (b) 
Generate a niche space defined as the hyperrectangle bounded by 
the minima and maxima of each environmental variable of interest 
before simulating hypothetical sites evenly spread across the 
niche space. Orange points represent the minima and maxima of 
the hypothetical variables used in this example, while black points 
are not used for constructing niche space. Blue points represent 
hypothetical sites generated. (c) For each actual site, extract the 
expected βpair at each hypothetical site based on the model built in 
step 1, before averaging them to obtain the ecological uniqueness 
of each site.
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βpair when comparing with each unique condition (Figure 1b). For 
each site, we calculate expected ecological uniqueness by averaging 
expected βpair with each unique condition (Figure 1c). All environ-
mental conditions are only represented once in the projection, thus 
removing the effects of environmental availability effects in calcu-
lating ecological uniqueness. Details of each major step of our anal-
yses are provided below.

For each site, we obtain βpair with other communities using a 
dissimilarity index. The R function calculates the Jaccard dissim-
ilarity by default, as it is less sensitive to other issues (e.g. taxo-
nomic error) and therefore more likely to derive a correct inference 
(Schroeder & Jenkins, 2018). Nevertheless, any dissimilarity can 
be used in the function. We then use generalised additive mod-
elling (GAM) for each site separately, regressing βpair against envi-
ronmental conditions but not environmental similarity (Figure 1a), 
since the same dissimilarity can indicate different conditions and 
therefore different βpair. For example, a natural site compared with 
agricultural and urban sites would both have environmental dis-
similarity at 1, while at 50% urban land cover, the dissimilarity with 
0% and 100% would be 0.5, with the sign being neglected (Ferrier 
et al., 2007). The use of GAM also allows non- linearity in how en-
vironmental differences drive βpair. Random effects and correlation 
structures can also be added in our function, in which case it will 
instead fit a generalised additive mixed model (GAMM) using R 
package mgcv (Wood, 2017).

After forming the relationships between βpair and environmen-
tal variables for each site, we project dissimilarity in niche space 
to obtain ecological uniqueness measures (Figure 1b). The niche 
space is a hyper- rectangular box bounded by the minima and max-
ima of each environmental variable observed within the sampling 
pool to reduce (but not eliminate) extrapolation (Figure 1b). For 
nominal variables all unique levels are included to form the bound-
aries. This approach is comparable to previous studies projecting 
dissimilarity in real world environments to identify ecologically 
unique areas (Harwood et al., 2022; Mokany et al., 2020; Mokany, 
McCarthy, et al., 2022; Shaw et al., 2022; Willis et al., 2012), yet 
here the projection is applied toward a hypothetical environment 
to remove the influence of environmental availability. Within this 
hypothetical environment, we conduct a gridded sampling (Perret 
& Sax, 2022) and calculate the expected ecological uniqueness for 
each site. We obtain expected βpair at all levels for nominal and 
ordinal variables, but the latter was treated as a numeric variable 
in the models (Ferrier et al., 2007). We generated a fixed number 
of evenly spaced points across each environmental gradient for 
numeric variables.

We then calculate the expected βpair with all hypothetical- actual 
site pairs based on the GAMM results (Figure 1c). We subsequently 
calculate the unweighted mean of these expected βpair to obtain 
ecological uniqueness of each actual site within the niche space, 
termed as Uniche. Ecological uniqueness based on the observed 
dataset, which is the unweighted mean of βpair between each actual 
site pair, would be termed as Uobs. These variables can then be re-
gressed against environmental conditions to examine their effects 

on ecological uniqueness. Comparing results between the Uobs and 
Uniche models provides insights into how environmental availability 
affects uniqueness patterns. The Uniche model offers a more robust 
conclusion on the direct effects of environmental conditions be-
cause environmental availability effects are minimised.

We also note here that, under designs with even environmen-
tal availability, our proposed analysis should provide similar, but not 
identical, results, with analyses based on observed data. Consider an 
example with an equal number (n) of communities from two habitats. 
The Uobs of any communities would be based on n between- habitat 
comparisons and n − 1 within- habitat comparisons (recall that com-
munities do not compare metrics with themselves). For Uniche, the 
expected βpair to a community from different habitats would first 
be obtained, before further averaging them across habitats. Thus, 
Uobs would be slightly biased toward between- habitat comparisons 
(n > n − 1). In Uniche both within-  and between- habitat comparisons 
would have equal weighting, leading to slight differences in the 
results.

2.2  |  Simulation

To illustrate how environmental availability alters the results of eco-
logical uniqueness, we first simulated communities from two habitats, 
A and B (Figure 2). To generate ecologically realistic communities, 
we used the tree count data (diameter at breast height ≥ 10 cm) of 
a 50- ha sample plot in Barro Colorado Island of Panama obtained 
from the R package vegan (Oksanen et al., 2022), which contains 50 
1- ha quadrats. We used the null model algorithm r2dtable from the 
same package to randomly generate species composition for each 
community, while preserving other community properties such as 
species abundance across all quadrats, and alpha (α) and gamma (γ) 
diversity within and across plots. Next, we generated two sets of 
communities of 50 quadrats with non- overlapping species pools and 
assigned them to habitats A and B. Specifically, we used the r2dtable 
algorithm twice and generated two sets of communities, but con-
sidered distinct species identities, such that no species overlapped 
across the two habitats. The aim was to create a habitat gradient 
with between- habitat variations stronger than within- habitat vari-
ations. We quantified the observed uniqueness for each quadrat 
from both habitats based on the full dataset, before running a lin-
ear regression with uniqueness as the response and habitat identity 
as predictor. The coefficient obtained is assumed to represent the 
“true” differences across habitats. Due to their popularity, we used 
three uniqueness metrics for our analyses— distance to the centroid, 
LCBD and Uobs. We used the function betadisper in vegan (Oksanen 
et al., 2022) to calculate the distance to centroid, and the function 
LCBD.comp in adespatial (Dray et al., 2022) to calculate LCBD. The 
Jaccard dissimilarity matrix was square root transformed before 
computing the distance to centroid and LCBD of each plot (Legendre 
& de Cáceres, 2013).

We then randomly subsampled the landscape with different 
sampling patterns to represent balanced and unbalanced habitat 
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availability in the sampling pool. In addition to the complete sam-
pling scenario, we created two balanced and two unbalanced sce-
narios, with the number of quadrats as (10, 10), (20, 20), (5, 15) and 
(10, 30) from habitat A and B. After each subsampling, we quanti-
fied compositional uniqueness using the three metrics and Uniche. 
For factor variables no spline could be fit, and therefore the GAM 
in our proposed analysis is equivalent to linear regression. After ob-
taining uniqueness metrics for each plot, we used linear regression 
with habitat identity as the only variable and extracted the coeffi-
cient, which represents average habitat differences in uniqueness at 
plot levels. We repeated the subsampling 100 times, thus generating 
100 sets of uniqueness metrics for each sampling scenario. We con-
ducted pairwise Pearson's correlation between the four uniqueness 
metrics to assess the strength of correlation in each set. Because 
we detected almost perfect correlation between LCBD, distance to 
centroid, and Uobs (R > 0.99, see Section 3), we only retained Uobs to 

compare with Uniche in subsequent analyses as they have more com-
parable scales.

To assess whether environmental availability influences the 
results of uniqueness analyses, we calculated the differences be-
tween the true coefficient and the ones obtained from the sub-
sampled landscape for each metric. True coefficients for both 
Uobs and Uniche were set as the coefficient obtained (i.e. average 
habitat differences at plot levels) when using the completely sam-
pled landscape. We further used one- sample t- tests to examine if 
the coefficient differences differed from zero for each metric and 
sampling pattern combination. We also conducted other analyses 
using simulated communities and numeric variables to demon-
strate the influence of uneven environmental availability and 
obtained similar conclusions that environmental availability influ-
enced uniqueness patterns (see Text S1 for details of simulation 
and Figure S1 for results).

F I G U R E  2  Steps of the simulation 
analyses. First, a landscape of 100 plots 
was generated, with 50 plots assigned to 
two habitats with non- overlapping species 
pools and no uniqueness differences. 
Then two balanced and two unbalanced 
subsampling schemes were used, each 
repeated 100 times to obtain subsampled 
landscapes. We then calculated average 
uniqueness differences between habitats 
at plot levels for each iteration. These 
numbers were compared with the true 
effect size obtained under complete 
sampling.
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2.3  |  Empirical analyses

We again used the tree count data and topographic variables of 
the 50- ha sample plot in Barro Colorado Island of Panama. We se-
lected the elevation, convexity and slope of each 1 ha quadrat (see 
de Cáceres et al., 2012 for details). While other environmental data 
such as soil nutrients are available for each quadrat, we chose these 
three variables as they have been shown to affect beta diversity in 
the system (de Cáceres et al., 2012). All environmental data were 
obtained from the R package BiodiversityR (Kindt, 2022).

We first created density plots of each topographic variable to as-
sess the evenness of environmental availability in the data. We then 
calculated Uobs by obtaining average βpair of each quadrat based on Jac-
card dissimilarity, followed by applying the proposed workflow to ob-
tain Uniche. We formed a hyperrectangular niche space using the minima 
and maxima of each topographic variable, and we generated 25 evenly 
spaced hypothetical sites across each gradient. In total 253 = 15,625 
hypothetical sites were distributed as a grid in the niche space. We also 
added a spatial exponential covariance structure based on the coordi-
nates of each plot. We used a normal distribution in the GAMM and 
three splines to parameterise the relationship between βpair and topo-
graphic variable for each quadrat, leading to 50 GAMM models. For 
both uniqueness metrics, we regressed uniqueness against the three 
topographic variables in a generalised least square model, again with a 
spatial exponential covariance structure.

3  |  RESULTS

We used a simulation landscape with two habitats of a non- 
overlapping species pool to examine the effects of environmental 
availability on uniqueness patterns, expecting uniqueness to be 
higher in the rarer habitats under unbalanced subsampling, but simi-
lar between habitats under complete sampling and balanced subsam-
pling. We first assessed the correlation strength between distance 
to centroid, LCBD, Uobs and Uniche. Pearson's correlation showed that 
the four uniqueness metrics were almost perfectly correlated under 
complete sampling and balanced subsampling in all iterations (mini-
mum Pearson's R > 0.99). Under unbalanced subsampling, distance 
to centroid, LCBD and Uobs were again almost perfectly correlated 
in all iterations (minimum Pearson's R > 0.99), but their correlations 
with Uniche strongly varied across iterations, with Pearson's R ranging 
from −0.63 to 0.92 (Figure S2). Increasing the number of subsamples 
reduced the fluctuation of Pearson's R across iterations (Figure S2).

Because of the high correlations, only Uobs was used for compar-
isons with Uniche in subsequent analyses. Both uniqueness metrics 
exhibited minimal differences between habitats when the simulated 
landscape was completely sampled (p ~ 0.34 for all metrics). In all 
iterations, all uniqueness metrics were extremely similar between 
habitats under balanced subsampling irrespective of total sample 
size (Figure 3a), consistent with our expectations. We further com-
pared average habitat differences under complete sampling and 
balanced subsampling, and found no significant difference between 

them (p > 0.68). Under unbalanced subsampling, Uobs was always 
higher in the rarer habitats (A) regardless of the total number of 
samples, in contrast with results obtained from complete sampling 
(p < 0.001; Figure 3a). This indicates that rarer environments in the 
sampling pool exhibit higher ecological uniqueness. However, habi-
tat differences of Uniche based on unbalanced subsampling were sim-
ilar to estimations based on complete sampling (p > 0.41; Figure 3b). 
The total number of subsamples only altered the fluctuation of hab-
itat differences across iterations, but not the conclusions on habitat 
differences in uniqueness.

As a proof of concept, we analysed the relationships between 
topographic variables and the compositional uniqueness of tree 
communities. We found high unevenness in environmental avail-
ability for different topographic variables, with the convex, flat and 
higher elevational plots being more common within the dataset (Fig-
ure 4a– c). We detected no effects of convexity (Figure 4d) and el-
evation (Figure 4e) on uniqueness for Uobs and Uniche (Table S2). We 
recorded minimal effects of slope on uniqueness when effects of 
environmental availability were not controlled, as demonstrated by 
the results based on Uobs (Figure 4f). The effects of slope changed 
from minimal to negative when environmental availability was con-
trolled using Uniche (Figure 4f).

4  |  DISCUSSION

Our simulation shows that conventional uniqueness metrics 
tend to be influenced by environmental availability, with rarer 

F I G U R E  3  Violin plots visualizing estimated habitat differences 
across 100 simulations under even and uneven environmental 
availability based on (a) Uobs and (b) Uniche. The dashed line 
represents the estimated differences under a complete sampling 
scenario.
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3118  |   Methods in Ecology and Evoluon METHODS IN ECOLOGY AND EVOLUTION

environments showing higher uniqueness. This result dem-
onstrates that environmental availability can drive ecological 
uniqueness patterns even in the absence of a direct effect of the 
environment (Baidya & Bagchi, 2022; Dubois et al., 2020; Ejrnæs 
et al., 2018; Mokany, McCarthy, et al., 2022). Environmental avail-
ability can also obscure effects of how environmental conditions 
directly affect uniqueness, as demonstrated in our empirical anal-
yses where slope emerged as an important predictor only after 
controlling environmental availability. This can be explained as 

environmental availability promoting a positive relationship be-
tween slope and uniqueness due to flat areas being more com-
mon (Figure 4c), and subsequently opposing the negative direct 
effect of slope on the uniqueness of tree communities. Therefore, 
removing the effects of environmental availability can lead to 
changes in effect size or even qualitative conclusions. Thus, in-
terpreting any uniqueness patterns requires the consideration of 
the role of environmental availability before attributing them to 
other mechanisms contributed by environmental drivers, such as 

F I G U R E  4  Results of empirical analyses using tree and topographical data from Barro Colorado Island of Panama. (a– c) density plots of 
each topographic variable illustrating their availability within the sampling pool. (d– f) predicted relationships between Uobs or Uniche with 
different topographic variables. Dashed and solid lines represent insignificant and significant relationships. Shaded areas represent 95% CI of 
predictions. Conclusions based on LCBD and distance to centroid were similar to Uobs and were presented in Table S2.
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dispersal (Vilmi et al., 2017) and environmental tolerance of spe-
cies associated with the environment (García- Navas et al., 2022).

Apart from statistical methods, altering the sampling design can 
also remove the effects of environmental availability. For nominal 
variables, the design should be as balanced as possible, while strati-
fied sampling by environmental conditions (Restaino et al., 2016) or 
gridded sampling within environmental space (Perret & Sax, 2022) 
can be used for numeric variables. An advantage of directly analys-
ing data from these sampling designs is that all errors can be retained 
during the analyses, whereas in our analyses the corrected ecolog-
ical uniqueness is based on mean responses to each environmental 
condition only. Thus, a more appropriate sampling design is more 
preferable if environmental conditions of the study system are avail-
able, such as macroclimatic conditions, topography and landcover 
(Perret & Sax, 2022). However, in many systems, prior knowledge 
of environmental conditions is not available, and even when avail-
able such sampling design can be logistically challenging to achieve 
compared to random sampling (Isaac et al., 2020). Minimizing un-
evenness of environmental availability also becomes increasingly 
difficult when many environmental drivers are of interest. Studies 
analysing existing datasets such as long- term monitoring data (Allen 
et al., 2019) are unlikely to have even environmental availability. In 
these cases, a statistical procedure must be used to remove effects 
of environmental availability.

Our projection uses a niche space constructed as a bounding 
box formed by minima and maxima of all environmental variables of 
interest to obtain expected βpair, followed by averaging to calculate 
ecological uniqueness. Yet in principle, any ecologically relevant en-
vironmental data can be used to obtain expected βpair. One example 
is obtaining predictions under conditions identical to the observed 
sites, which effectively calculates β- diversity within the same envi-
ronment. Many studies have calculated β- diversity within the same 
habitat group, such as natural, agricultural and urban habitats, be-
fore comparing them across groups (Newbold et al., 2016). However, 
our approach allows comparisons across continuous variables. Ad-
ditionally, if future environmental conditions are available, our anal-
yses can also be used to assess the extent of future changes in the 
species composition of different sites (Mokany, Ware, et al., 2022).

One drawback of our method is the large computational effort re-
quired when the dataset is large. We set 25 points by default evenly 
spaced across the gradient for any continuous variable. Therefore, 
the size of the niche space would be 25n if there are n environmen-
tal variables of interest. The BCI dataset contains 50 communities 
with three topographic variables, and the analyses took 6 s (using a 
Lenovo Legion 5 with AMD Ryzen 7 6800H and 16GB DDR5 mem-
ory). For large datasets with many sites and environmental variables, 
we recommend carefully selecting environmental variables before 
running analyses to minimize computational effort. Multicollinear-
ity should be examined and, if present, some environmental vari-
ables should be combined using multivariate analyses such as PCA 
(Dormann et al., 2013; Zuur et al., 2010). Reducing the number of 
hypothetical sites is also possible, especially when the relationship 
between βpair and environmental conditions is less complicated.

Our proposed analyses only address the averaging problem asso-
ciated with uneven environmental availability. Another problem com-
monly associated with uneven environmental availability is that low 
sampling effort can result in poor estimations of community prop-
erties that influence β diversity, including gamma diversity and the 
shape of species abundance distributions (Brocklehurst et al., 2018; 
Engel et al., 2021; Lu et al., 2019; Schroeder & Jenkins, 2018), which 
can eventually propagate to uniqueness analyses. Such problems 
can also occur in studies having gridded or balanced design since 
sampling completeness might not be equal between environments 
even under identical sampling effort, which is well- known for α and 
γ diversity estimations (Chao & Jost, 2012) but also increasingly rec-
ognised for β diversity (Engel et al., 2021). In our study, we used Jac-
card dissimilarity due to its popularity; though Jaccard can still be 
affected by other sampling issues but is relatively more robust com-
pared to many other metrics (Beck et al., 2013; Cardoso et al., 2009; 
Schroeder & Jenkins, 2018). Recent studies have also proposed new 
metrics to minimise sampling effects on beta diversity patterns 
(Brocklehurst et al., 2018; Chao et al., 2005; Engel et al., 2021; Zou 
& Axmacher, 2020). More simulations are required to compare the 
performance of different indices under uneven environmental con-
ditions, which is beyond the scope of this study. Selecting an appro-
priate metric can further enhance the performance of our analyses in 
identifying per- se effects of environmental conditions.

The accuracy in determining direct environmental effects on 
uniqueness also depends on how well other confounding factors 
are controlled, including the effects of distance between commu-
nities on βpair (Nekola & White, 1999). As our analyses use GAMM 
from R package mgcv (Wood, 2017), correlation structures can be 
added to control for spatial effects, as in the case of our empirical 
analyses where we used a spatial exponential correlation struc-
ture. In some cases, the distance- decay relationships and therefore 
spatial effects can vary across environmental conditions (Newbold 
et al., 2016). Grouping factors can be added when specifying correla-
tion structures in GAMM easily, such that only observations within 
environments (but not between environments) are correlated. For 
continuous environmental variables, users must manually specify a 
correlation structure. Because of the possibility to include correla-
tion structures, our analyses can also be used to identify how envi-
ronmental conditions drive temporal uniqueness, or both spatial and 
temporal uniqueness simultaneously (Tatsumi et al., 2021).

Apart from taxonomic identities, recent studies have also ex-
tended ecological uniqueness metrics to spectral, functional trait 
and phylogenetic data (Heino et al., 2022; Laliberté et al., 2020; 
Nakamura et al., 2020). Additionally, any βpair metric can be decom-
posed into species replacement and richness difference compo-
nents, followed by applying uniqueness metrics to calculate how 
sites contribute to these components in generating overall β pat-
terns (Legendre, 2014). Our simulation and empirical example only 
focused on overall taxonomic uniqueness, but we believe this can 
be generalised to other uniqueness analyses, as the quantification 
of these metrics is based on the same principles (Heino et al., 2022; 
Laliberté et al., 2020; Nakamura et al., 2020). Overall, our proposed 
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analyses allow for comparisons of uniqueness patterns of different 
diversity dimensions based on observed data and after reducing the 
effects of uneven environmental availability, promoting a more com-
prehensive understanding of mechanisms generating ecologically 
unique communities.
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Additional supporting information can be found online in the 
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Table S1: Calculations of different uniqueness metrics.
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Text S1: Simulation with numeric variables
Figure S1: Relationships between uniqueness metrics and the 
simulated environmental gradient across 100 simulations. The solid 
lines represent the average relationship across simulations, while the 
transparent lines represent results from individual simulations.
Figure S2: Correlations between different uniqueness metrics with 
Uniche under two unbalanced sampling scenarios. Because of the 
nearly perfect correlations among the three uniqueness metrics, the 
three metrics exhibited similar correlation patterns.
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