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Abstract—This paper investigates the input-output gain of
linear discrete-time cone-preserving systems. The cone linear
absolute-norm and cone max-norm, which are applied to describe
input-output gains of cone-preserving systems, are introduced.
Subsequently, by utilizing the property of cone-preserving sys-
tems, several necessary and sufficient conditions to characterize
input-output gains of the system in terms of cone-induced norms
are provided. The results indicate that input-output gains of cone-
preserving systems can be characterized by the static gain matrix.
The duality between the two cone-induced gains is also unveiled.

Index Terms—Cone invariance, input-output gain, positive
systems, static gain.

I. INTRODUCTION

The study of positive systems, characterized by trajectories
that remain within the nonnegative orthant under any nonnega-
tive initial conditions, has garnered significant interest recently.
This is attributed to their extensive applications in real-world
physical processes that involve nonnegative variables, such as
viral infections [8], disease transmission [1], and electrical
networks [14]. Different from positive systems, the state of
systems with cone-invariance resides in a proper cone rather
than the nonnegative orthant. This property enables systems
with cone invariance to not only generalize positive systems,
but also to possess distinct applications involving cooperation
and comparison, such as the rendezvous in multi-agent systems
[4] and chemical reaction networks [2].

Stability and input-output gain, as fundamental properties in
analyzing dynamic systems, have drawn significant attention
in the study of positive systems in recent years. The research
revealed some unique properties for positive systems. As stated
in Theorem 13 of [9], the relationship between the stability
of positive systems and property of the system matrix has
been established. The result also showed that the equivalent
stability condition for linear positive systems is characterized
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by linear inequalities. Furthermore, the stability conditions of
different types of positive systems, e.g., time-delayed positive
systems [11], [13], [15], [16], switched positive systems [23],
positive periodic systems [24], have been extensively analyzed.
The foundation of performance analysis for positive systems
is stability. Along this line, when the system is stable, the
input-output performance of positive systems which is mainly
referred to the L1- and L∞-gains has been investigated. In
[5], the analytical formula of L1- and L∞-gain for linear
continuous-time positive systems were given, and the result
showed that the L1-gain of a positive system equals the L∞-
gain of its dual positive system. The discrete-time case was
taken into consideration in [6], [18]. It showed the DC-
dominance property of positive systems. In other words, the
input-output gains of positive systems are characterized by the
static gain matrix.

As mentioned before, cone-preserving systems can be
viewed as the generalization of positive systems. The question
naturally arises whether cone-preserving systems also exhibit
these unique properties characteristic of positive systems. Re-
cently, there are some studies on cone-preserving systems [7],
[10], [21]. The research showed that some unique properties
of positive systems are due to cone-preserving properties
rather than nonnegativity. The stability of time-delayed cone-
preserving systems was analyzed in [19], [22], [25]. These
studies established equivalent asymptotic stability conditions
for continuous-time/discrete-time systems, featuring cone in-
variance and various types of time delays. The results indicated
that the stability of cone-preserving systems with time delays
remains unaffected by the magnitude and variation of these
delays. Since the stability is a prerequisite condition for input-
output gain analysis, upon examining the stability conditions,
investigating the input-output performance of cone-preserving
systems is a logical step. In [20], Shen and Lam applied the
cone linear absolute-norm and cone max-norm instead of the
L1- and L∞-norm in positive systems to describe the input-
output performance for linear continuous-time cone-preserving
systems. The result showed that the input-output gain of the
cone-preserving systems is exactly characterized by the static
gain matrix.

Motivated by above works, criteria for analyzing input-
output gains of linear discrete-time cone-preserving systems
are investigated in this paper. The definitions of cone linear
absolute-norm and cone max-norm introduced in [20] are
recalled first. Equivalent conditions to guarantee the cone-
preserving property and the asymptotic stability of the sys-
tem are introduced. Then, by utilizing the two cone-induced
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norms, the characterizations of input-output gains of linear
discrete-time cone-preserving systems are given. Furthermore,
equivalent conditions that apply partial order relationship to
describe the input-output gain are also investigated.

II. PRELIMINARIES

Mathematical notions and cone related definitions are first
introduced. To begin, we present the following mathematical
notions. N = {1,2, . . .} and N0 = {0,1, . . .}. Rn and Rn×m

denote the sets of n-dimensional real vector spaces and real
matrices with dimensions n×m, respectively. AT represents
the transpose of A. I represents an identity matrix of a suitable
dimension.

Preliminary definitions about cones from Chapter 1 of [3]
are revisited. Let set S ⊆Rn, SG represents the set containing
all nonnegative linear combinations of elements within the
set S. ∂S and intS represent the boundary and interior of set
S, respectively. A cone K is said to be closed if it satisfies
the condition K = KG, solid if intK ̸= ø, and pointed if
K ∩ (−K) = {0}. If the cone is closed, solid, and pointed, it
is said to be a proper cone. The dual of cone K is denoted by
the set K∗ =

{
y ∈ Rn | yTx ≥ 0,∀x ∈ K

}
. With the definition of

a proper cone, several partial order relations are introduced.
x ≺K y means that y − x ∈ intK, while x ⪯K y means that
y−x∈K. Moreover, matrix A is referred to as a K-nonnegative
matrix, if Ax ∈ K, ∀x ∈ K.

Definitions related to cone linear absolute-norm, cone max-
norm, and cone-induced matrix norm from [17] are recalled.

Definition 1. [17] Given a proper cone K ⊂Rn and a vector
η ∈ intK∗, the cone linear absolute norm of the vector x ∈Rn

is defined as

∥x∥
η ,1 = inf

{
η

Tu : −u ⪯K x ⪯K u
}
.

Remark 1. When x ∈ K, the set V1 = {u | −u ⪯K x ⪯K u}
equals set V2 = {u | u = x+ y,∀y ∈ K}, and the cone linear
absolute-norm satisfies

∥x∥
η ,1 = inf

{
η

Tu : u = x+ y,∀y ∈ K
}
.

Since η ∈ intK∗, one can conclude that ηTu ≥ ηTx. By letting
y = 0, the infimum of ηTu is obtained and the cone linear
absolute-norm is calculated by ∥x∥

η ,1 = ηTx, where x ∈ K.

Definition 2. [20] Given a proper cone K ⊂Rn and a vector
u ∈ intK, an order interval Bu is given as

Bu = {x ∈ Rn | −u ⪯K x ⪯K u} .
And the cone max-norm of the vector y ∈ Rn is defined as

∥y∥u,∞ = inf{t ≥ 0 | y ∈ tBu} .
It could be found that the cone max-norm ∥x∥u,∞

exhibits monotonic behavior with respect to cone K (i.e.
∥x∥u,∞ ≥ ∥y∥u,∞ for all x ⪰K y.).

Definition 3. [3] Let u ∈ intK, the cone induced operator
norm for the matrix is defined as

∥A∥u,∞ = sup
∥x∥u,∞=1

∥Ax∥u,∞ .

Moreover, if A is K-nonnegative, then ∥A∥u,∞ = ∥Au∥u,∞ holds.

III. MAIN RESULTS

The definition of system with cone invariance is given,
and several input-output gains of discrete-time cone-preserving
system characterized by two cone-induced norms are discussed
in this section. A linear discrete-time system is first taken into
consideration,

x(k+1) = Ax(k)+Bww(k),

y(k) =Cx(k)+Dww(k),
(1)

where x(k) ∈ Rnx , w(k) ∈ Rnw and y(k) ∈ Rny are state vec-
tor, disturbance vector, and output vector accordingly. The
system matrices A ∈ Rnx×nx , Bw ∈ Rnx×nw , C ∈ Rny×nx , and
Dw ∈ Rny×nw . The definition of a cone-preserving system and
an equivalent condition for this is given.

Definition 4. Given three proper cones Kx ⊂ Rnx , Kw ⊂ Rnw

and Ky ⊂Rny , system (1) is said to be monotone with respect
to (Kx,Kw,Ky) if, for any disturbance w(k) ∈ Kw and initial
condition x(0) ∈ Kx, system (1) satisfies that x(k) ∈ Kx and
y(k) ∈ Ky for all k ∈ N0.

Lemma 1. [19], [25] Given three proper cones Kx ⊂ Rnx ,
Kw ⊂ Rnw and Ky ⊂ Rny , system (1) is monotone with respect
to (Kx,Kw,Ky) if and only if A is Kx-nonnegative, BwKw ⊂ Kx,
CKx ⊂ Ky and DwKw ⊂ Ky.

Now, the asymptotic stability of system (1) that is mono-
tone with respect to (Kx,Kw,Ky) is considered. As a cone-
preserving system with time delay to be zero, the asymptotic
stability criterion in [19] can be applied to the system (1).
Furthermore, an alternative asymptotic stability condition is
proposed, which is derived from the equivalence between
Schur stability and asymptotic stability as demonstrated in
[25].

Lemma 2. [19], [25] For a linear discrete-time cone-
preserving system (1) with disturbance w(k) = 0, ∀k ∈ N0,
the statements below are equivalent:
i) System (1) is asymptotically stable;
ii) Matrix A is a Schur matrix;
iii) There exists a vector λ ∈ intKx satisfying (A− I)λ ≺Kx 0.

Remark 2. Note that, if there exists a vector λ ∈Kx satisfying
condition (A − I)λ ≺Kx 0, one can find a positive scalar l
satisfying (A− I)(λ + lv′) ≺Kx 0 for any vector v′ ≻Kx 0. In
other words, the condition that there exists a vector λ ∈ Kx
satisfying (A − I)λ ≺Kx 0, is also an equivalent stability
condition for system (1). Similar results for positive systems
can be found in [6] and Chapter 2 of [12].

Lemma 2 gives an equivalent condition to determine
whether system (1) is asymptotically stable, and it also shows
an equivalent condition to determine whether a Kx-nonnegative
matrix is a Schur matrix.

A. Cone Linear Absolute-Norm Induced Gain

In this subsection, cone linear absolute-norm induced gain
is investigated. According to Definition 1, the value of cone
linear absolute-norm can be calculated directly. Combining
the asymptotic stability condition and the definition of cone
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linear absolute-norm, we can use the cone linear absolute-norm
to describe the input-output performance of system (1), and
theorems are given.

Theorem 1. Given proper cones Kx, Kw, Ky and vectors v1 ∈
intK∗

w, v2 ∈ intK∗
y . Suppose system (1) is monotone with respect

to (Kx,Kw,Ky) and asymptotically stable. Then, for v ∈ Kw,
under zero initial conditions, there exists a scalar γ such that
∑

∞
k=0 ∥y(k)∥v2,1 ≤ γ ∑

∞
k=0 ∥w(k)∥v1,1 holds for all w(k) ∈ Kw

and the infimum of γ is

γ0 = inf{γ}= sup
∥v∥v1 ,1

=1

∥∥[C(I −A)−1Bw +Dw
]

v
∥∥

v2,1
. (2)

Proof. According to state space equation of system (1), when
the initial conditions x(0) = 0, one has

x(1) = Bww(0),
x(2) = ABww(0)+Bww(1),

...

x(n) = An−1Bww(0)+An−2Bww(1)+ · · ·
+ABww(n−2)+Bww(n−1).

(3)

By state space equation of system (1) and (3), the output vector
y(k) satisfies

y(0) = Dww(0),
y(1) =CBww(0)+Dww(1),
y(2) =CABww(0)+CBww(1)+Dww(2),

...

y(n) =CAn−1Bww(0)+ · · ·+CABww(n−2)
+CBww(n−1)+Dww(n).

(4)

By Definition 1 and (4), we have

0

∑
k=0

∥y(k)∥v2,1 = vT
2 Dww(0),

1

∑
k=0

∥y(k)∥v2,1 = vT
2 (Dww(0)+CBww(0))+ vT

2 Dww(1),

...
n

∑
k=0

∥y(k)∥v2,1 =
n−1

∑
l=0

[
vT

2

(
Dw +C

(
n−1−l

∑
m=0

Am

)
Bw

)
w(l)

]
+ vT

2 Dww(n).
(5)

Since vT
2CAk1Bww(k2) ≥ 0 for all k1 ∈ N0 and k2 ∈ N0, (5)

gives the inequality

n

∑
k=0

∥y(k)∥v2,1 ≤
n−1

∑
l=0

[
vT

2C

(
n−1

∑
m=0

Am

)
Bww(l)

]
+

n

∑
l=0

vT
2 Dww(l).

(6)
When n → ∞, inequality (6) becomes

∞

∑
k=0

∥y(k)∥v2,1 ≤
∞

∑
l=0

vT
2 Dww(l)+

∞

∑
l=0

[
vT

2C

(
∞

∑
m=0

Am

)
Bww(l)

]
.

(7)

Since system (1) is asymptotically stable, inequality (7) im-
plies

∞

∑
k=0

∥y(k)∥v2,1 ≤ vT
2 Dw

∞

∑
l=0

w(l)+ vT
2C(I −A)−1Bw

∞

∑
l=0

w(l)

≤ γ0vT
1

∞

∑
l=0

w(l) = γ0

∞

∑
l=0

∥w(l)∥v1,1 (8)

holds for all w(k) ∈ Kw. By inequality (8), one can con-
clude that γ0 is one of the scalar γ letting inequality
∑

∞
k=0 ∥y(k)∥v2,1 ≤ γ ∑

∞
k=0 ∥w(k)∥v1,1 holds.

Then our goal is to check whether γ0 is infimum of γ , in
other words, whether γ can reach the value of γ0. Suppose
w(0) = v′1, where v′1 ∈ Kw with vT

1 v′1 = 1, and w(k) = 0 for all
k ≥ 1. Then according to (5), the equation

n

∑
k=0

∥y(k)∥v2,1 = vT
2 Dww(0)+

[
vT

2C

(
n−1

∑
m=0

Am

)
Bww(0)

]
(9)

holds. When n → ∞, (9) gives

lim
n→∞

n

∑
k=0

∥y(k)∥v2,1 = vT
2
[
Dw +C(I −A)−1Bw

]
v′1. (10)

By choosing vector v′1 to maximize the right hand side of (10),
one has

lim
n→∞

n

∑
k=0

∥y(k)∥v2,1 = sup
∥v∥v1 ,1

=1

∥∥[C(I −A)−1Bw +Dw
]

v
∥∥

v2,1
= γ0.

(11)
The γ can reach the value of γ0 and Theorem 1 is proved. □

Theorem 1 gives a way of using cone linear absolute norm
to describe the input-output performance of system (1). In our
works, cones Kx, Ky, Kw and vectors v1, v2 are arbitrarily cho-
sen proper cones and vectors, respectively. When the proper
cones Kx, Ky, Kw are positive orthants and vectors v1, v2 have
all entries equal to 1, equation (2) turns to the characterization
of ℓ1-gain of positive systems. For a positive system, the ℓ1-
gain cannot only be calculated by the 1-norm of the transition
matrix but also be calculated via linear inequalities. It arouses
our interest whether, for system (1), we can find several partial
order inequalities to characterize the cone linear absolute-
norm induced gain of system (1). The conditions are given
in Theorem 2 below.

Theorem 2. Given proper cones Kx, Kw, Ky and vectors v1 ∈
intK∗

w, v2 ∈ intK∗
y . Suppose system (1) is monotone with respect

to (Kx,Kw,Ky), system (1) is asymptotically stable and satisfies
∑

∞
k=0 ∥y(k)∥v2,1 < γ ∑

∞
k=0 ∥w(k)∥v1,1 for all nonzero w(k)∈ Kw,

if and only if there exist a scalar γ > 0 and a vector p ≻K∗
x 0

satisfying

(A− I)T p+CTv2 ≺K∗
x 0, (12)

BT
w p+DT

wv2 ≺K∗
w γv1. (13)

Proof. Sufficiency: The asymptotic stability is proved first.
According to inequalities (12), the inequality holds as follows:

(A− I)T p ≺K∗
x −CTv2. (14)

Since v2 ∈ intK∗
y and Cx′ ∈ Ky, for any x′ ∈ Kx, inequality

vT
2Cx′ ≥ 0 holds. Based on the definition of dual of a cone,
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CTv2 ∈ K∗
x holds. Therefore, when inequality (14) holds, there

exists a vector p ≻K∗
x 0 such that (A− I)T p ≺K∗

x 0. Based on
Lemma 2, system (1) is asymptotically stable.

Since y(k) ∈ Ky and w(k) ∈ Kw, according to Remark 1, the
cone linear absolute-norm of y(k) and w(k) are written as

∥y(k)∥v2,1 = vT
2 y(k), (15)

∥w(k)∥v1,1 = vT
1 w(k). (16)

Then the function ∑
∞
k=0 ∥y(k)∥v2,1 −∑

∞
k=0 γ ∥w(k)∥v1,1 is writ-

ten as
∞

∑
k=0

(
∥y(k)∥v2,1 − γ ∥w(k)∥v1,1

)
=

∞

∑
k=0

(
vT

2 y(k)− γvT
1 w(k)

)
=

∞

∑
k=0

[
vT

2 (Cx(k)+Dww(k))− γvT
1 w(k)

]
. (17)

According to inequality (13), (17) satisfies the following
inequality:

∞

∑
k=0

[
vT

2 (Cx(k)+Dww(k))− γvT
1 w(k)

]
≤

∞

∑
k=0

(
vT

2Cx(k)− pTBww(k)
)
. (18)

Based on inequality (12), inequality (18) can be further
simplified to

∞

∑
k=0

[
vT

2 (Cx(k)+Dww(k))− γvT
1 w(k)

]
≤

∞

∑
k=0

[
pT(I −A)x(k)− pTBww(k)

]
=

∞

∑
k=0

[
pT (x(k)− x(k+1))

]
= lim

k→∞

[
pT (x(0)− x(k))

]
= pTx(0) = 0. (19)

The sufficiency of conditions (12) and (13) in Theorem 2 is
proved.
Necessity: According to Theorem 1, inequality

γ >
∥∥[C(I −A)−1Bw +Dw

]
v
∥∥

v2,1
, (20)

holds for all ∥v∥v1,1 = 1, where v ∈ Kw. It can be rewritten as

vT
2
[
C(I −A)−1Bw +Dw

]
v < γ, (21)

for all ∥v∥v1,1 = 1, where v ∈ Kw. For inequality (21), we first
define a vector p = (I −A)−T

(
CTv2 + εξ

)
, where ε > 0 and

ξ ∈ intK∗
x . One can find that p ∈ intK∗

x . Based on inequality
(21), it is always the case that a sufficiently small scalar ε > 0
exists, so that

vT (BT
w p+DT

wv2
)
< γvTv1. (22)

Notice that inequality (22) holds for all v ∈ Kw, and γv1 −(
BT

w p+DT
wv2
)
∈ intK∗

w. Then we can claim that the vector p
satisfies inequality (13). Furthermore, inequality

(A− I)T p+CTv2 = (A− I)T(I −A)−T (CTv2 + εξ
)
+CTv2

=−CTv2 − εξ +CTv2 ≺K∗
x 0 (23)

holds. The proof of necessity has been established.. □

B. Cone Max-Norm Induced Gain

The cone max-norm induced gain of system (1) is analyzed
in this subsection. Similar to section 3.1, two theorems will
be given to characterize the cone max-norm induced gain of
system (1).

Theorem 3. Given proper cones Kx, Kw, Ky and vectors
v3 ∈ intKw, v4 ∈ intKy. Suppose system (1) is monotone with
respect to (Kx,Kw,Ky) and asymptotically stable, then there
exists a scalar η letting sup∥y(k)∥v4,∞

≤ η sup∥w(k)∥v3,∞
for

all w(k) ∈ Kw and the infimum of η is

η0 = inf{η}=
∥∥[C(I −A)−1Bw +Dw

]
v3
∥∥

v4,∞
. (24)

Proof. Without loss of generality, we assume sup∥w(k)∥v3,∞
=

1. A system with constant disturbance w(k) ≡ v3 is given as
follows:

x̄(k+1) = Ax̄(k)+Bwv3,

ȳ(k) =Cx̄(k)+Dwv3.
(25)

Letting ex(k) = x̄(k)− x(k) and ey(k) = ȳ(k)− y(k), a system
for ex(k) and ey(k) is given as follows:

ex(k+1) = Aex(k)+Bw (v3 −w(k)) ,

ey(k) =Cex(k)+Dw (v3 −w(k)) .
(26)

According to Lemma 1, the inequalities x̄(k) ⪰Kx x(k) and
ȳ(k) ⪰Ky y(k) hold for all ∥w(k)∥v3,∞

= 1, and sup∥ȳ(k)∥v4,∞
is the infimum of η . By the state equation of system (25), ȳ(k)
is denoted as

ȳ(k) =C

(
k−1

∑
i=0

Ai

)
Bwv3 +Dwv3. (27)

According to (27), inequality

ȳ(k+1)− ȳ(k) =CAkBwv3 ⪰Ky 0 (28)

holds for all k ∈ N0, and value of ∥ȳ(k)∥v4,∞
increases with

the increase of k. When k → ∞, (27) leads to

lim
k→∞

ȳ(k) =C(I −A)−1Bwv3 +Dwv3. (29)

According to (29), the infimum of η is∥∥[C(I −A)−1Bw +Dw
]

v3
∥∥

v4,∞
, (30)

and Theorem 3 is proved. □

Remark 3. The infimum of η in Theorem 3 can also be written
as the supremum of a cone max-norm which is similar to (2)
in Theorem 1 as follows:

sup
∥v∥v3 ,∞

=1

∥∥[C(I −A)−1Bw +Dw
]

v
∥∥

v4,∞
. (31)

Since the expression in (31) reaches the maximum value when
v = v3, we use (24) instead of (31) in Theorem 3.

Similar to Theorem 2, the cone max-norm induced gain can
be characterized by partial order inequalities, and the results
are given in Theorem 4 below.

Theorem 4. Given proper cones Kx, Kw, Ky and vectors v3 ∈
intKw, v4 ∈ intKy. Suppose system (1) is monotone with respect
to (Kx,Kw,Ky), system (1) is asymptotically stable and satisfies
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sup∥y(k)∥v4,∞
<η sup∥w(k)∥v3,∞

for all w(k)∈Kw, if and only
if there exist a scalar η > 0 and a vector p ≻Kx 0 satisfying

(A− I)p+Bwv3 ≺Kx 0, (32)
Cp+Dwv3 ≺Ky ηv4. (33)

Proof. Sufficiency: First, the asymptotic stability is proved.
Based on inequality (32), an inequality

(A− I) p ≺Kx −Bwv3 ⪯Kx 0 (34)

hold. According to Lemma 2, the systems is asymptotically
stable. Then one can assume that sup∥w(k)∥v3,∞

= f , where
f > 0. By applying mathematical induction, the fact that there
exists a vector p ∈ intKx such that x(k)⪯Kx f p for all k ∈ N0
is first proved below. When k = 0, we have x(0) = 0 ≺Kx f p.
Then we assume that x(i)⪯Kx f p for all i ≤ n. Let k = n, we
have

x(n+1) = Ax(n)+Bww(n)

⪯Kx f Ap+Bww(n)

⪯Kx f (Ap+Bwv3). (35)

According to inequality (32), inequality x(n+1)⪯Kx f p holds.
By the above induction, the inequality x(k)⪯Kx f p, ∀k ∈ N0
holds. According to inequality (33), the following inequality

y(k) =Cx(k)+Dww(k),

⪯Ky f (Cp+Dwv3),

≺Ky f ηv4, (36)

holds for all k ∈ N0. Since system (1) is monotone with
respect to (Kx,Kw,Ky), the inequality y(k)+ f ηv4 ⪰Ky 0 holds.
Combining with inequality (36), the cone max-norm of y(k)
satisfies the inequality ∥y(k)∥v3,∞

< f η . The proof of the
sufficiency has been established.
Necessity: Since system (1) is asymptotically stable and
satisfies sup∥y(k)∥v4,∞

< η sup∥w(k)∥v3,∞
, matrix A is a Schur

matrix and the inequality∥∥[C(I −A)−1Bw +Dw
]

v3
∥∥

v4,∞
< η (37)

holds. Inequality (37) also indicates that there exists a positive
scalar ε > 0 such that[

C(I −A)−1Bw +Dw
]

v3 + εq ≺Ky ηv4, (38)

holds, for all ∥q∥2 ≤ 1. By letting p= (I−A)−1 (Bwv3 + εv′)∈
intKx, where v′ ∈ intKx and

∥∥(I −A)−1v′
∥∥

2 ≤ 1, the following
two inequalities

(A− I)p+Bwv3 ≺Kx 0, (39)
Cp+Dwv3 ≺Ky ηv4, (40)

hold. The necessity of Theorem 4 is proved. □

Remark 4. Theorems 1–4 provide the characterization of
the cone-induced gains using cone-induced norms and partial
order inequalities. When the given cones are n-dimensional
polyhedral cones with n edges, one can employ the affine
transformation to convert the characterization of the cone-
induced gains into the weighted ℓ1- or ℓ∞-gain characteri-
zation. However, for a broader range of proper cones, such

as second-order cones, determining how to utilize linear
inequalities or linear matrix inequalities to characterize the
conditions in Theorems 1–4 remains a potentially significant
future research direction.

C. Duality of Cone-Induced Gain
For discrete-time positive systems, there is duality property

that the ℓ1-gain of a positive system is equal to the ℓ∞-gain
of the dual of the system. For cone-preserving systems, this
property is not intuitive. In the following, we will discuss
whether such a property holds for cone-preserving systems.
First, a dual system of the discrete-time cone-preserving
system (1) is given as follows:

x̄(k+1) = ATx̄(k)+CTw̄(k),

ȳ(k) = BT
wx̄(k)+DT

ww̄(k).
(41)

It should be pointed out that the proper cones of x̄(k), w̄(k) and
ȳ(k) are changed into K∗

x , K∗
y and K∗

w accordingly. The reason
why the cones of x̄(k), w̄(k) and ȳ(k) are different from the
ones in system (1) is given in what follows. Take disturbance
w̄(k) as an example. For system (1), Cv ∈ Ky holds for all
v∈Kx. For a vector v′ ∈K∗

y , inequality v′TCv≥ 0 always holds.
In other words, vTCTv′ ≥ 0 holds for all v ∈ Kx, and CTv′ ∈ K∗

x
for all v′ ∈ K∗

y . Therefore, w̄(k) ∈ K∗
y and so do matrices A,

Bw and Dw and x̄(k) ∈ K∗
x , ȳ(k) ∈ K∗

w. Based on Theorem 2
and Theorem 4 for the cone linear absolute-norm induced gain
and the cone max-norm induced gain, the duality property of
cone-induced gains is given as follows.

Theorem 5. The cone linear absolute-norm of the cone-
preserving system (1) is equal to the cone max-norm of the
dual of the system (41) for all v1 = v4 ∈ K∗

w and v2 = v3 ∈ K∗
y ,

where v1 and v2 are the vectors of cone linear absolute-norm
induced gain in system (1) and v3 and v4 are the vectors of
cone-max norm induced gain in dual system (41).

Proof. Theorem 5 is proved by contradiction. We assume that
the cone linear absolute-norm induced gain of system (1) is
γ1 and the cone max-norm induced gain of system (41) is
γ2, where γ1 ̸= γ2. Let γ̄ = 0.5(γ1 + γ2). First, we assume that
γ2 > γ1, which indicates the inequality γ2 > γ̄ > γ1. Since γ1 is
the infimum of γ satisfying (12)–(13), one can find a vector
p′ ≻K∗

x 0 such that

(A− I)T p′+CTv2 ≺K∗
x 0, (42)

BT
w p′+DT

wv2 ≺K∗
w γ̄v1, (43)

based on Theorem 2. According to Theorem 4, when inequali-
ties (42)–(43) hold, the cone-max norm induced gain of system
(41) satisfies γ2 ≤ γ̄ , which contradicts the assumption that
γ2 > γ̄ . Then, one has shown that the assumption γ2 < γ1
is false in a similar way, which is omitted here. Therefore,
γ1 = γ2, and the Theorem 5 is proved. □

Theorem 5 also indicates that the expression

sup
∥v∥v1 ,1

=1

∥∥[C(I −A)−1Bw +Dw
]

v
∥∥

v2,1

= sup
∥v∥v2 ,∞

=1

∥∥[BT
w(I −A)−TCT +DT

w
]

v
∥∥

v1,∞

holds.
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Fig. 1. Cones Kx, Kw and Ky

IV. ILLUSTRATIVE EXAMPLES

Example 1. The following system matrices of system (1) are
used in the first example.

A =

0.37 −0.06 0.10
0.08 0.18 −0.16
0.10 −0.12 0.09

 , Bw =

2.07 −0.35 −0.45
0.36 1.35 −0.42
0.72 0.59 −0.75

 ,
C =

[
0.27 −0.09 0.35
0.29 −0.13 −0.41

]
, Dw =

[
0.51 0.03 0.05
0.50 0.07 0.01

]
.

The Kx and Kw are three-dimensional second-order cones I
satisfying

I =
{

x ∈ R3 : xTQx ≥ 0,xTe ≥ 0
}
,

where e= [1, 0, 0]T and Q3 = 2eeT−I, and Ky is a polyhedral
cone given as

Ky = Cone
([

1 2
2 1

])
.

The cones Kx, Kw and Ky are depicted in Fig. 1.
Since the eigenvalues of matrix A are 0.0332, 0.3259 and

0.2809, the system is asymptotically stable. Let v1 = [3, 1, 1]T

and v2 = [4, 1]T. Based on Theorem 1, the cone linear
absolute-norm induced gain of system (1) is maximized with
the value to be 6.3576, when v = [0.629, −0.477, −0.410]T.
Disturbances w1(k) and w2(k) are given below:

w1(k) =
[
4/(k+1)2 1/(k+1)2 1/(k+1)2

]T
, k > 0,

w2(k) =
{[

0.629 −0.477 −0.410
]T

, k = 0
0, k > 0

.

The variations of the performance ratio

∑
k
i=0 ∥y(i)∥v2,1

∑
k
i=0 ∥w(i)∥v1,1

(44)

with disturbances w1(k) and w2(k) are depicted in Fig. 2. One
can find that the ratio (44) for both of the two disturbances
is less than the cone linear absolute-norm induced gain, and
the trajectory of ratio (44) with the disturbance w2 converges
to the upper bound of the cone linear absolute-norm induced
gain.

To analyze the cone max-norm induced gain performance,
two vectors, v3 ∈

∫
Kw and v4 ∈

∫
Ky, for cone max-norm are

chosen as follows:

v3 =
[
1.2 0.1 0.4

]T
, v4 =

[
2 3

]T
.

0 2 4 6 8 10 12 14 16 18 20
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2

3

4

5

6
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Fig. 2. Variation of the ratio (44) with disturbances w1(k) and w2(k)
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Fig. 3. Variation of the performance ratio (46) with w3(k) and w4(k)

Based on Theorem 3, the cone max-norm induced gain is∥∥[C(I −A)−1Bw +Dw
]

v3
∥∥

v4,∞
= 2.4133. (45)

To demonstrate the effectiveness of the calculated upper bound
and the necessity of Theorem 3, two disturbances are intro-
duced as follows:

w3(k) =
[
6 1 2

]T
, w4(k) =

[
1.2 0.1 0.4

]T
.

Fig. 3 shows the variation of the performance ratio

supi∈[0,k] ∥y(i)∥v4,∞

supi∈[0,k] ∥w(i)∥v3,∞

. (46)

It shows that the performance ratio (46) monotonically in-
creases under the given disturbances w3(k) and w4(k). When
the constant disturbance w4(k) equals to the vector v3, the
ratio monotonically increases and converges to the cone max-
norm induced gain, which verifies Remark 3.

Example 2. To illustrate the duality of the two gains, the
following example is given. Assume K∗

w ⊂ R2 has two edges[
3 1

]T and
[
0 1

]T, and let

v1 = v4 =
[
1 2

]T
,

and[
C (I −A)−1 Bw +Dw

]T
v2 =

[
C (I −A)−1 Bw +Dw

]T
v3 = [2 1]T,
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where v1 and v2 are the vectors of cone linear absolute-norm
induced gain in system (1) and v3 and v4 are the vectors of
cone-max norm induced gain in dual system (41). Then the
cone linear absolute-norm of the original system (1) is

sup
∥v∥v1 ,1

=1

∥∥∥[C (I −A)−1 Bw +Dw

]
v
∥∥∥

v2,1

= sup
∥v∥v1 ,1

=1
vT
[
C (I −A)−1 Bw +Dw

]T
v2. (47)

When v=
[
1 0

]T, vT
[
C (I −A)−1 Bw +Dw

]T
v2 gets the max-

imum value 2. The cone max-norm of the dual of the system
(41) is

sup
∥v∥v3 ,∞

=1

∥∥∥[BT
w (I −A)−T CT +DT

w

]
v
∥∥∥

v4,∞

=
∥∥∥[BT

w (I −A)−T CT +DT
w

]
v3

∥∥∥
v4,∞

= 2. (48)

One can find that cone linear absolute-norm of the original
system (1) equals to the cone max-norm of its corresponding
dual system (41).

V. CONCLUSION

In this paper, the cone linear absolute-norm and cone max-
norm are introduced to characterize the input-output gain of
linear discrete-time cone-preserving systems. Several equiv-
alent conditions describing the input-output performance of
cone-preserving systems are proposed. The conditions have
shown that the two cone-induced gains can be calculated via
the linear programming. As generalizations of ℓ1- and ℓ∞-gain
of positive systems, the theoretical results have also indicated
the duality of two cone-induced gains.

REFERENCES

[1] M. Ait Rami, V. S. Bokharaie, O. Mason, and F. Wirth. Stability criteria
for SIS epidemiological models under switching policies. Discrete and
Continuous Dynamical Systems-Series B, 19(9):2865–2887, 2014.

[2] M. Banaji. Monotonicity in chemical reaction systems. Dynamical
Systems, 24(1):1–30, 2009.

[3] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathe-
matical Sciences. Philadephia, PA: SIAM, 1994.

[4] R. Bhattacharya, J. Fung, A. Tiwari, and R. M. Murray. Ellipsoidal cones
and rendezvous of multiple agents. In Proceedings of IEEE Conference
on Decision and Control, volume 1, pages 171–176. IEEE, 2004.

[5] C. Briat. Robust stability and stabilization of uncertain linear positive
systems via integral linear constraints: L1-gain and L∞-gain charac-
terization. International Journal of Robust and Nonlinear Control,
23(17):1932–1954, 2013.

[6] X. Chen, J. Lam, P. Li, and Z. Shu. l1-induced norm and controller
synthesis of positive systems. Automatica, 49(5):1377–1385, 2013.

[7] Y. Chen, P. Bolzern, and P. Colaneri. Stability, 1 performance and state
feedback design for linear systems in ice-cream cones. International
Journal of Control, 94(3):784–792, 2021.

[8] E. Eisele and R. F. Siliciano. Redefining the viral reservoirs that prevent
HIV-1 eradication. Immunity, 37(3):377–388, 2012.

[9] L. Farina and S. Rinaldi. Positive Linear Systems: Theory and Applica-
tions. New York: Wiley-Interscience, 2000.

[10] C. Grussler and A. Rantzer. On second-order cone positive systems.
SIAM Journal on Control and Optimization, 59(4):2717–2739, 2021.

[11] W. M. Haddad and V. Chellaboina. Stability theory for nonnegative
and compartmental dynamical systems with time delay. In American
Control Conference, 2004. Proceedings of the 2004, volume 2, pages
1422–1427. IEEE, 2004.

[12] W. M. Haddad, V. Chellaboina, and Q. Hui. Nonnegative and Compart-
mental Dynamical Systems. Princeton, New Jersey: Princeton University
Press, 2010.

[13] A. Ilchmann and P. H. A. Ngoc. Stability and robust stability of
positive Volterra systems. International Journal of Robust and Nonlinear
Control, 22(6):604–629, 2012.

[14] T. Kaczorek. Positive electrical circuits and their reachability. Archives
of Electrical Engineering, 60(3):283–301, 2011.

[15] X. Liu, W. Yu, and L. Wang. Stability analysis of positive systems
with bounded time-varying delays. IEEE Transactions on Circuits and
Systems II: Express Briefs, 56(7):600–604, 2009.

[16] P. H. A. Ngoc. Stability of positive differential systems with delay. IEEE
Transactions on Automatic Control, 58(1):203–209, 2013.

[17] T. I. Seidman, H. Schneider, and M. Arav. Comparison theorems using
general cones for norms of iteration matrices. Linear algebra and its
applications, 399:169–186, 2005.

[18] J. Shen and J. Lam. L∞-gain analysis for positive linear systems
with unbounded time-varying delays. IEEE Transactions on Automatic
Control, 60(3):857–862, 2015.

[19] J. Shen and J. Lam. On the decay rate of discrete-time linear delay
systems with cone invariance. IEEE Transactions on Automatic Control,
62(7):3442–3447, 2016.

[20] J. Shen and J. Lam. Input–output gain analysis for linear systems on
cones. Automatica, 77:44–50, 2017.

[21] J. Shen and J. Lam. On the algebraic Riccati inequality arising in cone-
preserving time-delay systems. Automatica, 113:108820, 2020.

[22] J. Shen and W. X. Zheng. Stability analysis of linear delay systems with
cone invariance. Automatica, 53:30–36, 2015.

[23] W. Xiang, J. Lam, and J. Shen. Stability analysis and L1-gain char-
acterization for switched positive systems under dwell-time constraint.
Automatica, 85:1–8, 2017.

[24] B. Zhu, J. Lam, and Y. Ebihara. Input–output gain analysis of positive
periodic systems. International Journal of Robust and Nonlinear
Control, 31(8):2928–2945, 2021.

[25] B. Zhu, J. Lam, X. Lu, and K.-W. Kwok. Stability analysis of discrete-
time cone-preserving systems with time-varying delays. IEEE Control
Systems Letters, 7:3181–3186, 2023.


