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Abstract
Let Gn be an inner form of a general linear group over a non-Archimedean local
field. We fix an arbitrary irreducible representation σ of Gn . Building on the work of
Lapid-Mínguez on the irreducibility of parabolic inductions, we show how to define
a full subcategory of the category of smooth representations of some Gm , on which
the parabolic induction functor τ �→ τ × σ is fully-faithful. A key ingredient of our
proof for the fully-faithfulness is constructions of indecomposable representations of
length 2. Such result for a special situation has been previously applied in proving
the local non-tempered Gan-Gross-Prasad conjecture for non-Archimedean general
linear groups. In this article, we apply the fully-faithful result to prove a certain big
derivative arising from Jacquet functor satisfies the property that its socle is irreducible
and has multiplicity one in the Jordan-Hölder sequence of the big derivative.

1 Introduction

Let F be a non-Archimedean local field and let D be a finite-dimensional F-central
division algebra. Let Gn = GLn(D) be the general linear group over D. Let Alg(Gn)

be the category of smooth representations of Gn over C. The parabolic induction
is an important tool in constructing representations and plays a central role in the
Zelevinsky classification of irreducible representations of GLn(F) [53]. Recently,
Aizenbud-Lapid and Lapid-Mínguez [3, 33–36] extensively study the irreducibility of
parabolic inductions, with rich connections to combinatorics and geometry.

This paper focuses on some homological aspects of parabolic inductions. The main
purpose is to elaborate some observations and results in [15], which we use functorial
properties of parabolic inductions for proving the local non-tempered Gan-Gross-
Prasad conjecture [21]. Our main result addresses the remark in [15, Section 9.2].
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We first explain the main object– the product functor. We denote by × the normal-
ized parabolic induction. For a fixed irreducible representationπ and a full subcategory
A of Alg(Gn), define

×π,A : A → Alg(Gn+k),

given by×π,A(ω) = π×ω. Herewe regard×π,A as a functor such that for amorphism
f : π ′ → π ′′ inA,×π,A( f ) = Idπ × f , the one induced from the parabolic induction
(see Section 3.1 for more precise descriptions).

Some general results about the product functor with respect to smooth duals and
cohomological duals are given in Section 3.

We briefly recall the Zelevinsky theory [53] for D = F , see Section 2.1 for more
notations. A segment takes the form [a, b]ρ for a supercuspidal representation ρ of
some Gm and a, b ∈ C with b − a ∈ Z≥0. Zelevinsky [53] associates each segment
� with a representation 〈�〉, called a segment representation. A multisegment is a
multiset of segments. Let Mult be the set of multisegments. For m ∈ Mult, let 〈m〉 be
the associated Zelevinsky module [53].

The irreducibility of the parabolic induction is extensively studied in [33]. A first
question is that for a given irreducible representation π of Gn , how one can find
another irreducible representation π ′ of Gm such that π × π ′ is also irreducible. One
way to do so is via ’building from the (basic) segment case’. The precise meaning is
as follows. Set

Mπ = {n ∈ Mult : 〈�〉 × π is irreducible ∀� ∈ n} .

Then, for any n ∈ Mπ , 〈n〉 × π is irreducible [33, Proposition 6.1]. The converse is
not true in general i.e. if 〈n〉 × π is irreducible, it is not necessary that n ∈ Mπ .

We write m1 ≤Z m2 if m1 is obtained from m2 by a sequence of intersection-
union operations (see Section 2.2). Our observation is that the setMπ is closed under
intersection-union operations in the following sense:

Theorem 1.1 (=Theorem 4.1) Let π be an irreducible representation of Gn. For
n ∈ Mπ , if n′ is another multisegment with n′ ≤Z n, then n′ ∈ Mπ .

Our proof for Theorem 1.1 uses properties from intertwining operators on �-
irreducible representations. Another possible approach for proving Theorem 1.1 is
to use the combinatorial criteria of Lapid-Mínguez in [33, Proposition 5.12].

We now set Aπ = Algπ (Gn) to be the full subcategory of Alg(Gn) whose objects
are of finite length and have all simple composition factors isomorphic to 〈m〉 for some
m ∈ Mπ . The significance of Theorem 1.1 is that one can obtain plenty examples of
extensions from the setMπ and soAπ is not semisimple inmost of cases. Indeed, those
extensions are preserved under ×π,Aπ

, shown in Proposition 5.7 and Theorem 9.2.
This in turn implies our main result:

Theorem 1.2 (=Theorem 10.2) Let π be an irreducible representation of Gn. Then
×π,Aπ

is a fully-faithful functor.

Chan [15] deals with the case that π is a Speh representation andA is some subcat-
egory coming from the irreducibility of the product between a cuspidal representation
and π .
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A key new ingredient in the proof of Theorem 1.2 is a construction of extensions
between two irreducible representations. This differs from the approach used in [15],
althoughwe also need a basic case (whenπ is also a segment representation) from [15].
The main idea comes from a study of first extensions in the graded Hecke algebra case
in [12]. Roughly speaking, those extensions for two non-isomorphic representations
come fromZelevinsky standardmodules, and those for two isomorphic representations
reduce to the tempered case. However, we remark that we do not have a concrete
classification for indecomposable modules of length 2.

For the self-extension case, we actually have more general statement:

Theorem 1.3 (=Theorem 9.2) Let π1 and π2 be irreducible representations of Gk and
Gl respectively such that π1 ×π2 is still irreducible. Suppose λ is an indecomposable
representation of length 2 with both simple composition factors isomorphic to π2.
Then π1 × λ is also indecomposable.

Perhaps an interesting point of Theorem 1.3 is that the parabolic induction does not
preserve indecomposability in general. In otherwords, somenon-trivial self-extensions
can be trivialized under parabolic inductions (see Remark 9.3).

Theorem 1.3 concerns about indecomposable modules of length 2. Our proof relies
on some constructions of those modules. One important ingredient is analogous prop-
erties in the affine highest weight category introduced by Kleshchev [32] (also see
[29]), see the proofs in Section 5. Roughly speaking such ingredient reduces to the
computations of Ext-groups for tempered modules. Such Ext-groups are now better
understood due to the work on discrete series by Silberger, Meyer, Opdam-Solleveld
[39, 44, 49] using analytic methods and by [11] using algebraic methods; and more
general case [45] via R-groups. We also refer the reader to [12] for more discussions.

Recent articles [3, 33–36] study the conditions of irreducibility for more general
multisegments. In particular, when one of the multisegments arises from a so-called
�-irreducible representation, there are some precise conjectures connecting to the
geometry of nilpotent orbits due to Geiß-Leclerc-Schröer and Lapid-Mínguez [23, 34,
35]. Thus onemay hope for a version of Theorem 1.2 for replacing the segment case by
other interesting classes of representations such as Speh, ladder or even �-irreducible
representations. One main problem goes back to understand the analog of the setMπ

in Theorem 1.1 and so Algπ (Gn) in Theorem 1.2. In [25], Gurevich-Lapid introduce
a new class of representations parabolically induced from ladder representations, and
so it is natural to ask if the extensions arising from those standard representations can
be used to define a suitable analogue of Algπ (Gn).

We now consider a Jacquet functor version of above discussions. For an irreducible
representation π of Gk and for an admissible representation τ of Gn , define

Dπ (τ ) := HomGk (π, τN−),

where N− is the opposite unipotent radical of the standard parabolic subgroup in
Gn containing Gk × Gn−k . Here τN− is viewed as a Gk-module via the embedding
Gk ↪→ Gk ×Gn−k to the first factor. We shall call such Dπ to be a big derivative, and
Dπ (τ ) has a natural Gn−k-module structure (also see Definition 8.1).
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The big derivative Dπ is the right adjoint functor of the product functor, if we
consider the functors are for the category of all smooth representations. However,
this is not entirely correct if we restrict the functor to the full subcategory Algπ (Gn)

defined above. Nevertheless, there are some interesting cases that Dπ forms an adjoint
functor for ×π,Algπ (Gn). For example, the case considered in [15] works. In those
cases, we could deduce that the big derivative is irreducible (see Lemma 11.3 for a
precise statement). This is consequently applied to prove:

Theorem 1.4 (c.f. Theorem 12.7) Suppose D = F. Let π be a generic irreducible
representation of Gk. Let τ be any irreducible representation of Gn such thatDπ (τ ) �=
0. Then Dπ (τ ) satisfies the socle irreducible property (i.e. Dπ (τ ) has unique simple
submodule and such simple submodule appears with multiplicity one in the Jordan-
Hölder sequence of Dπ (τ )).

When π is a cuspidal representation, the analogous statement for Theorem 1.4 for
the affine Hecke algebra of type A is shown in the work of Grojnowski-Vazirani [24]
by exploiting the explicit structure of a principal series.

The irreducibility part of the socle in Theorem 1.4 is shown by Kang-Kashiwara-
Kim-Oh [30] (also see [3]) in a greater generality on �-irreducible representations.
For the irreducibility part of the socle, some variants of more specific cases using
Gelfand-Kazhdan method are also shown by Aizenbud-Gourevitch [1].

Our emphasis on Theorem 1.4 is on the application of the product functor, which
gives a basic case in Proposition 11.5. An advantage of this method is that one does
not have to compute some internal structures of some modules. Hence, it has a higher
potential for other applications such as the one in [15]. We shall also show how to
extend the socle irreducible result to the case of generic representations (i.e. full version
of Theorem 1.4) in the appendix.

As an analog of the problem of studying the irreducibility of parabolic inductions,
one may ask the irreducibility of big derivatives. The product functor provides a
technique on such problem as shown in the article while Theorem 1.4 provides some
concrete examples.

A more classical viewpoint on studying parabolic inductions and Jacquet functors
is on the Grothendieck group of the category of smooth representations of GLn(F)’s,
in which those functors give a Hopf algebra structure [26, 51–54]. We hope this
work could emphasis on some interesting higher structures associated to parabolic
inductions and Jacquet functors.

2 Notations

2.1 Basic Notations

Let F be a non-Archimedean local field and let D be a finite-dimensional F-central
division algebra. LetGn = GLn(D), the general linear group over D. The groupG0 is
viewed as the trivial group. For g ∈ Gn , let ν(g) = |Nrd(g)|F , whereNrd : Gn → F×
is the reduced norm and |.|F is the absolute value on F . All the representations we
consider are smooth over C and we usually omit the adjectives ‘smooth’ and ‘over C’.
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For a representation π of Gn , we write deg(π) for n. We shall usually not distinguish
representations in the same isomorphism class.

For a supercuspidal representation ρ of Gn , let sρ be the unique value in R>0 such
that ρ × ν±sρ ρ is reducible. Set νρ = νsρ . For a, b ∈ Z with b − a ∈ Z≥0 and a
supercuspidal representation ρ, a segment [a, b]ρ is the set

{
νaρρ, νa+1

ρ ρ, . . . , νbρρ
}
.

We consider two segments [a, b]ρ and [a′, b′]ρ′ are equal if νaρρ ∼= νa
′

ρ′ρ′ and νbρρ ∼=
νb

′
ρ ρ′. Ifρ = 1 is the trivial representation ofG1,wemay simplywrite [a, b] for [a, b]1.
We also consider the empty set as a segment and also set [a, a−1]ρ = ∅. The absolute
length labs([a, b]ρ) of a segment [a, b]ρ is (b − a + 1)deg(ρ). A multisegment is a
multiset of non-empty segments, andwe also consider the empty set as amultisegment.
For a multisegment m = {�1, . . . ,�k}, define labs(m) = labs(�1) + . . . + labs(�k),
called the length of m.

We introduce the following notations:

• Irr(Gn) = the set of irreducible smooth representations of Gn and Irr =
∪nIrr(Gn);

• Alg(Gn) = the category of smooth representations of Gn ;
• Alg f (Gn) = the full subcategory of Alg(Gn) of all the smoothGn-representations
of finite length;

• let Alg f be the set of smooth representations of some Gn (in other words, it is the
set of all objects in Alg f (Gn) for some n);

• Segn = the set of segments of absolute length n; and Seg = ∪nSegn ;
• Multn = the set of multisegments of length n; and Mult = ∪nMultn ;
• for π ∈ Alg f , JH(π) = the set of simple composition factors in π (i.e. multiplic-
ities are not counted);

• ∨ : Alg(Gn) → Alg(Gn) is the smooth dual contravariant functor;
• for � = [a, b]ρ ∈ Seg, define

�∨ = [−b,−a]ρ∨;

for m = {�1, . . . ,�r } ∈ Mult,

m∨ = {
�∨

1 , . . . ,�∨
r

}

• for two supercuspidal representations ρ1, ρ2, we write ρ1 < ρ2 if there exists a
positive integer c such that ρ2 ∼= νcρ1ρ1. We write ρ1 ≤ ρ2 if either ρ1 < ρ2 or
ρ1 ∼= ρ2;

• for a segment � = [a, b]ρ , write a(�) = νaρρ and b(�) = νbρρ;
• for π ∈ Irr, we write csupp(π) = {σ1, . . . , σr } to be the unique multiset of
supercuspidal representations such that π is a composition factor of σ1 × . . .×σr ;

• for π ∈ Alg f , let soc(π) be the socle (i.e. maximal semisimple submodule) of π

and let cosoc(π) be the cosocle (i.e. maximal semisimple quotient) of π .

Since we are working on representations over C, we shall not distinguish cuspidal
representations and supercuspidal representations.
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2.2 More Notations for Segments andMultisegments

For m ∈ Mult, two segments �1 and �2 in m are said to be linked if �1 ∪ �2 is still
a segment and �1 �⊂ �2 and �2 �⊂ �1. We write �1 < �2 if �1 and �2 are linked
and a(�1) < a(�2). Note �1 < �2 automatically implies b(�1) < b(�2).

A multisegment m is said to be generic if any two segments in m are not linked.
As in [53], for m, n ∈ Multn , we say that m is obtained by an intersection-union

process if there are two linked segments �1,�2 in n such that

m =
{
n − {�1,�2} + {�1 ∪ �2,�1 ∩ �2} if �1 ∩ �2 �= ∅

n − {�1,�2} + {�1 ∪ �2} if �1 ∩ �2 = ∅
Here + and − represent the union and substraction as multisets.

Writem <Z n ifm can be obtained by a sequence of intersection-union operations
from n, and write m ≤Z n if m = n or m <Z n.

2.3 Langlands and Zelevinsky Classification

For a segment � = [c, d]ρ , let 〈�〉 (resp. St(�)) be the unique simple submodule
(resp. quotient) of

νcρρ × . . . × νdρρ.

For any multisegment m, write the segments in m as �1, . . . ,�r . We label the
segments in m such that

b(�1) �< b(�2) �< . . . �< b(�r ).

Let
ζ(m) = 〈�1〉 × . . . 〈�r 〉, λ(m) = St(�1) × . . . × St(�r ).

It is shown in [53] that there is a unique simple submodule in ζ(m), which will be
denoted 〈m〉. It is independent of a choice of a labeling above. There is a one-to-one
correspondence

Multn ←→ Irr(Gn), m �→ 〈m〉.
The Zelevinsky classification is due to Zelevinsky [53] when D = F and due to
Mínguez-Sécherre [41, 42] when D is general.

On the other hand, λ(m) has unique simple quotient, denoted by St(m). This gives
another one-to-one correspondence

Multn ←→ Irr(Gn), m �→ St(m).

The above correspondence in the form due to Langlands is known for D = F in [53]
and the general case follows from the local Jacquet-Langlands correspondence due
to Deligne-Kazhdan-Vignéras [20] for the zero characteristic and Badulescu [4] for
positive characteristics. Such classification also has significance in the unitary dual
problem, see work of Tadić, Sécherre, Badulescu-Henniart-Lemaire-Sécherre [8, 47,
51].
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2.4 Parabolic Inductions and Jacquet Functors

For non-negative integers n1, . . . , nr with n1 + . . . + nr = n, let Pn1,...,nr be the
parabolic subgroup containing the subgroupGn1×. . .×Gnr as block diagonalmatrices
and all upper triangular matrices. We shall call Pn1,...,nr to be a standard parabolic
subgroup. (Note that when ni is zero, Gni is regarded as the trivial group and we may
simply drop the term. We include such case for the convenience of notations later.)
Let Nn1,...,nr be the unipotent radical of Pn1,...,nr , and let N−

n1,...,nr be the unipotent
radical of the parabolic subgroup opposite to Pn1,...,nr .

For π1 ∈ Alg(Gn1) and π2 ∈ Alg(Gn2), define π1 × π2 to be

π1 × π2 = Ind
Gn1+n2
Pn1,n2

(π1 � π2),

the space of smooth functions from Gn1+n2 to π1 � π2 satisfying

f (pg) = δ(p)1/2 p. f (g),

where δ is the modular character of Pn1,n2 . The Gn-action on π1 × π2 is the right
translation on those functions i.e. for f ∈ π1 × π2,

(g. f )(g′) = f (g′g).

Here we consider π1 � π2 as a Pn1,n2 -representation by the inflation. We shall simply
call π1 × π2 to be a product. The product is indeed an associative operation and so
there is no ambiguity in defining π1 × . . . × πr .

For a parabolic subgroup P of Gn with the Levi decomposition LN , define the
Jacquet functor, as a L-representation:

πN = δ
−1/2
P · π

〈n.x − x : x ∈ π, n ∈ N 〉 ,

where δP is the modular character of P .
Both parabolic inductions and Jacquet functors are exact functors. For n1 + . . . +

nr = n, the parabolic induction π �→ IndGn
Pn1,...,nr

π has the Jacquet functor π �→
πNn1,...,nr

as its left adjoint functor, and has the opposite Jacquet functor π �→ πN−
n1,...,nr

as its right adjoint functor.
Following [34], for π ∈ Irr, π is said to be �-irreducible if π × π is irreducible.

Let Irr� be the set of �-irreducible representations. In the content of quantum affine
algebras, it is called real modules, see e.g. work of Hernandez-Leclerc and Kang-
Kashiwara-Kim-Oh [27, 30]. A particular class of �-irreducible representations is
those St(m) for a generic multisegment m ∈ Mult.

2.5 Geometric Lemma

For i ≤ n, we sometimes abbreviate Ni for Nn−i,i ⊂ Gn .
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Let π1 ∈ Alg(Gn1) and let π2 ∈ Alg(Gn2). Let n = n1+n2. The geometric lemma
[10] gives that (π1 × π2)Ni admits a filtration, whose successive subquotients are of
the form:

IndGn−i×Gi
Pn1−i1,n2−i2×Pi1,i2

((π1)Ni1
� (π2)Ni2

)φ,

where i1 + i2 = i and φ sends a Gn1−i1 × Gi1 × Gn2−i2 × Gi2 -representation to a
Gn1−i1 × Gn2−i2 × Gi1 × Gi2 -representation via the map

(g1, g2, g3, g4) �→ (g1, g3, g2, g4).

Moreover, the bottom layer in the filtration of (π1 × π2)Ni is when i1 = min {n1, i}
and the top layer in the filtration of (π1 × π2)Ni is when i2 = min {n2, i}.

2.6 Jacquet Functors on Segment and Steinberg Representations

Let [a, b]ρ ∈ Seg. Let k = deg(ρ). It follows from [53, Propositions 3.4 and 9.5] and
[51, Proposition 3.1] that

〈[a, b]ρ〉Nik
∼= 〈[a, b − i]ρ〉 � 〈[b − i + 1, b]ρ〉 (2.1)

and
St([a, b]ρ)Nik

∼= St([a + i, b]ρ) � St([a, a + i − 1]ρ), (2.2)

and the Jacquet modules 〈[a, b]ρ〉N j and St([a, b]ρ)N j are zero if k does not divide j .
We sometimes use the formulas implicitly in computing layers involving the geo-

metric lemma.

3 Some Generalities of the Product Functor

3.1 Product Functor

Let A be a full Serre subcategory of Alg(Gn). For a fixed irreducible representation
π of Gk , we define the product functor

×π,A : A → Alg(Gn+k)

as
×π,A(τ ) = π × τ

and, for a morphism f from τ to τ ′ in A and F ∈ π × τ (under the realization in
Section 2.4),

(×π,A( f )(F))(g) = (Idπ � f )(F(g)), for any g ∈ Gn+k .

Note that we do not assume ×π,A preserves simple objects at this point.
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Proposition 3.1 The functor ×π,A is exact and faithful.

Proof Exactness follows from that the parabolic induction is an exact functor. The
faithfulness then follows from that the functor sends a non-zero object to a non-zero
object. ��

3.2 Smooth Dual Functor

In this section, we specify to D = F . Let θ : Gn → Gn given by θ(g) = g−t , the
transpose inverse of g. This induces a covariant auto-equivalence for Alg(Gn), still
denoted by θ . For D = F , it is a classical result of Gelfand-Kazhdan that θ(π) ∼= π∨
for any π ∈ Irr.

Definition 3.2 A full Serre subcategory A of Alg f (Gn) is said to be ∼ -closed if for
any object C in A, C̃ is still in A.

One main example is the category Algπ (Gn), as shown in Theorem 4.1 later.
Define˜= θ ◦ ∨ and so it is also a contravariant functor.

Proposition 3.3 Let D = F. Let A be a ∼-closed full subcategory of Alg f (Gn). Let
π ∈ Irr(Gk). Define the right product functor

×π,A : A → Alg(Gn+k), ×π,A(π ′) = π ′ × π.

Then ×π,A is fully-faithful if and only if ×π,A is fully-faithful.

Proof We only prove the if direction, and the only if direction can be proved similarly.
We have the following isomorphisms:

HomGn+k (π × π ′
1, π × π ′

2)
∼=HomGn+k (π̃ × π ′

2, π̃ × π ′
1)∼=HomGn+k (π̃

′
2 × π̃ , π̃ ′

1 × π̃)

∼=HomGn+k (π̃
′
2 × π, π̃ ′

1 × π)

∼=HomGn (π̃
′
2, π̃

′
1)

∼=HomGn (π
′
1, π

′
2)

The first and last isomorphisms follow from taking the duals (and the representations
are admissible). The second isomorphism follows from the compatibility between
taking duals and parabolic inductions [43, Page 173]. The third isomorphism follows
from a result of Gelfand-Kazhdan [22, Theorem 2] (see [9, Theorem 7.3]). The fourth
isomorphism follows from the if direction. ��

3.3 Cohomological Dual Functor

Let H(Gn) be the space of compactly supported smooth C-valued functions on Gn ,
viewed as a Gn-representation with the action given by: for f ∈ H(Gn), (g. f )(g′) =
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f (g′g). Let R be a Bernstein component of Alg(Gn) and let d be the homological
dimension of R. Given a finitely-generated Gn-module π in R, define

D(π) = ExtdGn
(π,H(Gn))

viewed as a Gn-module. As shown in [6, Page 102] and [48, Page 132], D is a
contravariant exact functor. With the property that D2 = Id, D is a fully-faithful
functor. The functor also sends a simple object to a simple object and agrees with
the Aubert-Zelevinsky dual [2, 53] in the Grothendieck group level, see the work of
Schneider-Stuhler [48, Proposition IV.5.2] and Bernstein-Bezrukavnikov-Kazhdan [7,
Section 3.2]. Explicit algorithm for computing D(π) for π ∈ Irr is given by Mœglin-
Waldspurger [43].

We first recall the following result of Bernstein:

Theorem 3.4 [6, Theorem31(4)] WefixBernstein componentsR1 andR2 ofAlg(Gn1)

and Alg(Gn2) respectively. Let π1 and π2 be finitely-generated objects inR1 andR2
respectively. LetR be the unique Bernstein component containing the object π1 ×π2.
Then

D(π1 × π2) ∼= D(π2) × D(π1).

We remark that the switch in the terms on the RHS comes from switching the
induction between a standard parabolic subgroup and its opposite one.

Corollary 3.5 Let R be a Bernstein component of Alg(Gn) and let R f be the full
subcategory of R of all objects of finite lengths. Let A be a full Serre subcategory
of R f . Let π ∈ Irr. This gives a full subcategory D(A) whose objects are D(π) for
objects π in A and morphisms D( f ) for morphisms f in A. Then ×π,A is a fully-
faithful functor if and only if ×D(π),D(A) is a fully-faithful functor. Here ×D(π),D(A)

is defined in Proposition 3.3.

Proof This follows from Theorem 3.4 and that D is a fully-faithful contravariant
functor. ��

4 Product with A Segment Representation and Intersection-union
Process

Recall that for π ∈ Irr,Mπ is the set of all multisegments n such that for any segment
� in n, 〈�〉 × π is irreducible.

We say that π ∈ Alg f is SI or socle irreducible if soc(π) is irreducible and occurs
with multiplicity one in the Jordan-Hölder sequence of π .

Theorem 4.1 Let π ∈ Irr(Gn). Let m ∈ Mπ . For any n ∈ Mult with n ≤Z m,
n ∈ Mπ .

Proof For π1, π2 ∈ Alg f , let Rπ1,π2 be the normalized non-zero intertwining operator
from π1 × π2 to π2 × π1 (see [34, Section 2]). By the transitivity of ≤Z , we reduce
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to the case that m ∈ Mπ is of two linked segments. Now, fix an arbitrary π ∈
Irr, and let �1,�2 ∈ Seg such that 〈�1〉 × π and 〈�2〉 × π are irreducible. Then
(R〈�2〉×π × Id〈�1〉) ◦ (Id〈�2〉 × R〈�1〉×π ) sends 〈�2〉× 〈�1〉×π to π ×〈�2〉× 〈�1〉,
and is an isomorphism:

〈�2〉 × 〈�1〉 × π ∼= π × 〈�2〉 × 〈�1〉. (4.3)

By switching the labelling if necessary, we also have:

〈�1〉 × 〈�2〉 × π ∼= π × 〈�1〉 × 〈�2〉. (4.4)

Again, by switching labelling if necessary, we may and shall assume that 〈�1 + �2〉
is in the quotient of 〈�2〉 × 〈�1〉.

Let τ = 〈{�1,�2}〉 × π . Let

τ1 := soc(〈�1 ∪ �2 + �1 ∩ �2〉 × π), τ2 := cosoc(〈�1 ∪ �2 + �1 ∩ �2〉 × π).

Here�1∪�2+�1∩�2 is equal to the multisegment {�1 ∪ �2,�1 ∩ �2} if�1∩�2
is non-empty and is equal to the multisegment {�1 ∪ �2} if �1 ∩ �2 is empty.

Suppose 〈�1∪�2+�1∩�2〉×π is not irreducible to arrive a contradiction. Then,
we must have τ1 � τ2, which follows from �-irreducibility of 〈�1 ∪ �2 + �1 ∩ �2〉
([53, Theorem9.7] for D = F , see [51, Lemma 2.5] and [33, Lemma 6.17] for general)
and the SI property of 〈�1 ∪ �2 + �1 ∩ �2〉 [34, Lemma 2.8]. Thus, we must have
either τ1 � τ or τ2 � τ .

We now consider two cases separately:

(1) τ1 � τ . Then τ1 appears in the submodule of 〈�1 ∪ �2 + �1 ∩ �2〉 × π and so
appears in the submodule of 〈�2〉 × 〈�1〉 × π . Using Eq. 4.3, we also have that
τ1 is a submodule of π × 〈�2〉 × 〈�1〉. Since τ1 � τ , τ1 must come from the
submodule of π × 〈�1 ∪ �2 + �1 ∩ �2〉. This shows that

τ1 ∼= soc(π × 〈�1 ∪ �2 + �1 ∩ �2〉) ∼= soc(〈�1 ∪ �2 + �1 ∩ �2〉 × π).

In other words, the socle and cosocle of π × 〈�1 ∪ �2 + �1 ∩ �2〉 coincides by
[34, Corollary 2.4]. By [34, Lemma 2.8], we must then have that π ×〈�1 ∩�2 +
�1 ∪ �2〉 is irreducible.

(2) τ2 � τ . The proof is similar to the previous case, but we consider quotients rather
than submodules and use Eq. 4.4 rather than Eq. 4.3.

��
4.1 Some Explicit Criteria for AMultisegment inM�

A segment � = [a, b]ρ is said to be juxtaposed to another segment �′ = [a′, b′]ρ if
either b + 1 = a′ or b′ + 1 = a.
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Remark 4.2 (1) Let π ∼= St(m) for m ∈ Mult with all segments in m mutually
unlinked. Let m ∈ Mult such that π ∼= St(m). Then n ∈ Mπ if and only if
any segment in n is not juxtaposed to any segment in m. (See [5, THÉORÈME
0.1])

(2) Let π be a Speh representation with the corresponding multisegment m. We label
the segments in m = {�1, . . . ,�r } satisfying �1 < . . . < �r . Then n ∈ Mπ if
and only if any segment � in n satisfies � �< �1 and �r �< �. (See [33, Lemma
6.5])

5 Indecomposability Under Product Functor: Non-isomorphic Cases

5.1 Some Results on Irreducibility

In this section, we recall some results on the irreducibility of parabolic inductions.
Most results are from or deduced from [33].

Lemma 5.1 [33, Lemma 3.9] Let � ∈ Seg and let m ∈ Mult. Then 〈�〉 × 〈m〉 is
irreducible if and only if 〈�〉 × 〈m〉 ∼= 〈m〉 × 〈�〉.
Proposition 5.2 [33, Proposition 6.1] Let m ∈ Mult and let π = 〈m〉. Let p ∈ Mπ .
Then

(1) 〈p〉 × π is irreducible; and
(2) ζ(p) × π ↪→ ζ(p + m); and
(3) π × ζ(p) ↪→ ζ(p + m).

Lemma 5.3 Let m, p ∈ Mult. Then p ∈ M〈m〉 if and only if p∨ ∈ M〈m∨〉.

Proof This follows from definitions. ��

5.2 Indecomposability

We remark that an analogous result holds for other connected reductive groups with
replacing the Zelevinsky classification by the Langlands classification (also see [12]).
For the Langlands classification version, we remark that there is also an analogous
statement for branching laws [14], with the generic case conjectured by D. Prasad [46]
and proved in [19] by Savin and the author.

Lemma 5.4 Let m, n ∈ Multn. Suppose n �= m. Then

ExtiGn
(ζ(m∨)∨, ζ(n)) = 0

for all i.

Proof We shall prove by an induction on the sum of the numbers of segments in m
and n. When both m and n are empty sets, there is nothing to prove.
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Let m = {�1, . . . ,�r } with

b(�1) �< . . . �< b(�r ).

Similarly, let n = {
�′

1, . . . ,�
′
s

}
with

b(�′
1) �< . . . �< b(�′

s).

If no segment in n satisfies b(�′
i ) ≥ b(�1), then a cuspidal support argument

gives that ExtiGn
(ζ(m∨)∨, ζ(n)) = 0 for all i . Furthermore, if we have �′

i such that
b(�′

i ) > b(�1), then a cuspidal support argument again gives that

ExtkGn
(ζ(m∨)∨, ζ(n)) = 0.

Set ρ = b(�1). Thus, now we consider that b(�′
i )

∼= ρ and there is no segment �′
j

in n satisfying b(�′
j ) > ρ. Now, by relabelling if necessary (using Lemma 5.1), we

may assume that �1 is a shortest segment inmwith b(�1) ∼= ρ, and similarly assume
that �′

1 is a shortest segment in n with b(�′
1)

∼= ρ. We now consider the following
three cases:

• Suppose �′
1 � �1. Then, Frobenius reciprocity gives that:

(∗) ExtiGn
(〈�r 〉 × . . . × 〈�1〉, 〈�1〉 � ζ(n − �′

1))

∼= ExtiGn
((〈�r 〉 × . . . × 〈�1〉)Nn−labs (�

′
1)

, 〈�′
1〉 � ζ(n − �′

1)).

Now one analyzes the layers from the geometric lemma on the term (〈�r 〉× . . .×
〈�1〉)Nn−labs (�

′
1)
(also see Section 2.6). One sees that no layer has the same cuspidal

support as 〈�′
1〉 � ζ(n− �′

1), and so this gives such desired Ext-vanishing by the
standard argument on an action of the Bernstein center.

• Suppose �1 � �′
1. Then, one uses that

ExtiGn
(ζ(m∨)∨, ζ(n)) ∼= ExtiGn

(ζ(n)∨, ζ(m∨)).

Now, we write ζ(m∨) ∼= ζ(m∨ − �∨
1 ) × 〈�∨

1 〉. One applies Frobenius reciprocity
to give that:

ExtiGn
(ζ(n)∨, ζ(m∨)) ∼= ExtiGn−labs (�1)×Glabs (�1)

((〈�′
1
∨〉 × . . .

×〈�′
s
∨〉)Nlabs (�1)

, 〈�r
∨〉 × . . . × 〈�2

∨〉 � 〈�1
∨〉).

Now again analysing layers in the geometric lemma on (〈�′
1
∨〉 × . . . ×

〈�′
s
∨〉)Nlabs (�1)

(see Section 2.6 again), one can compare cuspidal supports to
give Ext-vanishing.
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• Suppose �1 = �′
1. Then we apply the Frobenius reciprocity as (*). Then, again

we compute the layers from the geometric lemma on the term

(〈�r 〉 × . . . × 〈�1〉)Nn−labs (�
′
1)

.

Then, a cuspidal support consideration on the Glabs (�1) factor in Glabs (�1) ×
Gn−labs (�1) gives that only possible layers contributing a non-zero Ext-group take
the form:

〈�1〉 � (〈�r 〉 × . . . × 〈�2〉).
Let G ′ = Glabs (�1) × Gn−labs (�1). Now, by the Künneth formula,

ExtiG ′(〈�1〉 � (〈�r 〉 × . . . × 〈�2〉), 〈�′
1〉 � ζ(n − �′

1))

=
⊕

k+l=i

ExtkG ′(〈�1〉, 〈�′
1〉) � ExtlG ′(〈�r 〉 × . . . × 〈�2〉, ζ(n − �′

1))

The latter term is zero by the induction, and so such layer will also give vanishing
Ext-groups. Now, since all layers in the geometric lemma give vanishing Ext-
groups, we again have that ExtiGn

(ζ(m∨)∨, ζ(n)) = 0 for all i .

��
Lemma 5.5 Let m, n ∈ Multn. Suppose n �Z m. Then

ExtiGn
(〈m〉, ζ(n)) = 0

for all i.

Proof The basic case is that when all the segments in m are unlinked. In such case,
either ζ(n) does not have the same cuspidal support as 〈m〉; or n is not generic. That
case then follows from Lemma 5.4.

We now consider that some segments in m are unlinked. Then it admits a short
exact sequence:

0 → ω → ζ(m∨)∨ → 〈m〉 → 0,

where ω is the kernel of the surjection. Then, the Zelevinsky theory [53, Theorem
7.1] implies that any simple composition factor of ω has the associated multisegment
m′ with m′ ≤Z m. Thus we still have m′

�Z n. Inductively on ≤Z (the basic case
explained above), we have that:

ExtiGn
(ω, ζ(n)) = 0

for all i . Thus a long exact sequence argument gives that

ExtiGn
(ζ(m∨)∨, ζ(n)) ∼= ExtiGn

(〈m〉, ζ(n)).

Now the former one is zero by Lemma 5.4 and so the latter one is also zero. ��
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For π1, π2 ∈ Irr, we write π1 ≤Z π2 ifm1 ≤Z m2, wherem1 andm2 are the unique
multisegments such that π1 ∼= 〈m1〉 and π2 ∼= 〈m2〉.
Lemma 5.6 Let λ be a representation of Gn of length 2. Suppose λ is indecomposable
and the two simple composition factors of λ are not isomorphic. Then either

(1) λ ↪→ ζ(p) for some multisegment p; or
(2) λ∨ ↪→ ζ(p) for some multisegment p.

Proof Let π be the simple quotient of λ and let π ′ be the simple submodule of λ. We
consider the following three cases:

• Case 1: π <Z π ′. Let p be the multisegment such that π ′ ∼= 〈p〉. We have the
following short exact sequence:

0 → π ′ → λ → π → 0.

Then applying HomGn (., ζ(p)), we have the following long exact sequence:

0 → HomGn (π, ζ(p)) → HomGn (λ, ζ(p)) → HomGn (π
′, ζ(p)) → Ext1Gn

(π, ζ(p)).

By Lemma 5.5, the first and last terms are zero, and the third term has one-
dimensional. Thus the unique map from λ to ζ(p) is still non-zero when restricting
to π ′. Since π ′ is the unique simple module, the map must then be an embedding.

• Case 2: π ′ <Z π . In such case, we consider λ∨, which has simple submodule π ′∨
and simple quotient π∨. We still have that π ′∨ <Z π∨. Now the argument in Case
1 gives the embedding λ∨ ↪→ ζ(p) for some multisegment p.

• Case 3: π ′ and π are not ≤Z -comparable. It suffices to prove that

Ext1Gn
(π, π ′) = 0

i.e. such indecomposable λ does not happen. To this end, let p and p′ be the
multisegments such that π ∼= 〈p〉 and π ′ ∼= 〈p′〉. We consider the following short
exact sequences:

0 → 〈p′〉 → ζ(p′) → ω → 0,

whereω is the cokernel of the first injection. Then, a long exact sequence argument
with Lemma 5.5 gives

HomGn (〈p〉, ω) ∼= Ext1Gn
(〈p〉, 〈p′〉).

The former one is zero since any simple composition factor ω′ in ω also satisfies
〈p〉 �Z ω′. Thus the latter Ext is also zero. ��
Define

Algπ (Gn)

to be the full subcategory of Alg f (Gn) of objects, all of whose simple composition
factors are isomorphic to 〈m〉 for somem ∈ Mπ . In other words, Algπ (Gn) is the full
Serre subcategory generated by simple objects of the form 〈m〉 for m inMπ .
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Proposition 5.7 Let λ be a representation of Gn of length 2. Suppose λ is indecom-
posable. Suppose the two simple composition factors of λ are not isomorphic and both
are in Algπ (Gn). Then π × λ is still an indecomposable representation of length 2.

Proof By Proposition 5.2(1), we have that π × λ has length 2. To show the inde-
composability, it suffices to show that π × λ has either unique simple quotient or
unique simple submodule. Let π1 be the simple quotient of λ and let π2 be the simple
submodule of λ. Let m be the multisegment associated to π .

According to the proof of Lemma 5.6, wemust have one of the following two cases:

• Case (1): π1 <Z π2. In such case, there exists an embedding, by Lemma 5.6,

λ ↪→ ζ(p)

for some multisegment p. Thus we also have an embedding:

π × λ ↪→ π × ζ(p).

But the lattermodule embeds to ζ(m+p) by Proposition 5.2(3), which has a unique
submodule. Thus, π × λ also has unique submodule and so is indecomposable.

• Case (2): π2 <Z π1. It suffices to show that

(π × λ)∨ = π∨ × λ∨

has unique simple submodule. We have the embedding, by (the proof of)
Lemma 5.6 again:

λ∨ ↪→ ζ(q) (5.5)

for some q ∈ Mult. We now consider the following embeddings:

π∨ × λ∨ ↪→ π∨ × ζ(q) ↪→ ζ(q + m∨),

where the first embedding follows from Eq. 5.5 and the second embedding follows
from Proposition 5.2 and Lemma 5.3. ��

6 Some Results Involving the Geometric Lemma

6.1 A Counting Problem

In order to give a favour of using the geometric lemma below, let us first consider the
following lemma involving some counting arguments. We first define some notions.

For m ∈ Mult and � ∈ Seg, let

m� = {
k times

︷ ︸︸ ︷
�, . . . ,�},
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where k is the multiplicity of� inm. In particular,m� is a submultisegment ofm. For
example, if m = {[1], [1, 2], [1, 2], [2, 3], [2, 3], [4]}, then m[1,2] = {[1, 2], [1, 2]}
and m[4] = {[4]}.

For two segments�,�′, wewrite� <b �′ if either one of the following conditions
holds:

• b(�) < b(�′); or
• b(�) ∼= b(�′) and a(�) ≤ a(�′).

We write � ≤b �′ if � = �′ or � <b �′. This defines a partial ordering on Seg.

Lemma 6.1 Let m ∈ Mult. We write m = {�1, . . . , �r }. Let � = [a, b]ρ be a ≤b-
maximal element in m. For each segment �i = [ai , bi ]ρi , we write: �+

i = [ai , ci ]ρi
and �−

i = [ci + 1, bi ]ρi for some ai − 1 ≤ ci ≤ bi . By abuse of notations, we write
A = ∪i�

+
i as a multiset of cuspidal representations. Let k be the number of segments

in m�. If
A = ∪k

j=1�

as multisets, then ci = bi if �i = � and ci = ai − 1 if �i �= �.

Proof Note that there are k copies of b(�) in ∪k
j=1�. Hence, we must also have k

copies of b(�) in A. Thus,wemust have k-copies of�i inmb=b(�) such that�
+
i = �i .

We write such k segments as �i1 , . . . ,�ik . Now, recall that � is ≤b-maximal from
our choice, and so if one of �i j �= �, then �i j contains the cuspidal representation
ν−1
ρ a(�). Thus it is impossible. Hence, all �i j = �. Then a simple count gives that

A = ∪k
j=1�. ��

Wenow study some applications on the aboveLemma6.1. For notational simplicity,
for m ∈ Mult, we set

ζ̃ (m) = ζ(m∨)∨.

This coincides with the notion ζ̃ (m) in Section 3.2 when D = F .

Lemma 6.2 Let m1,m2 ∈ Mult. Let m = m1 + m2. Let � be a ≤b-maximal element
in m. Let n1 = labs(m1), n2 = labs(m2), i1 = n1 − labs((m1)�) and let i2 =
n2−labs((m2)�). Let i = i1+i2. We now consider the filtration for (̃ζ (m1)×ζ̃ (m2))Ni

from the geometric lemma in Section 2.5. The only layer from that filtration, which
has the same cuspidal support as 〈m�〉 � 〈m − m�〉, takes the form

(∗) IndG
′

P (̃ζ (m1)Ni1
� ζ̃ (m2)Ni2

)φ,

where G ′ = Gn1+n2−i1−i2 × Gi1+i2 and φ : Gn1−i1 × Gi1 × Gn2−i2 × Gi2 →
Gn1−i1 × Gn2−i2 × Gi1 × Gi2 .

Moreover, the component in ζ̃ (m1)Ni1
and ζ̃ (m2)Ni2

in (*) contributing to the factor
〈m�〉 � 〈m − m�〉 can be refined to

〈(m1)�〉 � ζ̃ (m1 − (m1)�), 〈(m2)�〉 � ζ̃ (m1 − (m2)�〉.
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Proof The problem on the layer can be transferred to the counting problem by using
the Jacquet functor computations in Section 2.6. Then the lemma follows from
Lemma 6.1. ��

6.2 A Direct Summand Computation

Lemma 6.3 Let m ∈ Mult. Let � be a ≤b-maximal element. Let i = labs(m) −
labs(m�). Then the direct summand in 〈m〉Ni with same cuspidal support as 〈m�〉 �
〈m − m�〉 is actually isomorphic to 〈m�〉 � 〈m − m�〉.
Proof Let π = 〈m〉. Then, from standard results of the Zelevinsky classification [53],

π ↪→ 〈m�〉 × 〈m − m�〉.
This implies

πNi ↪→ (〈m�〉 × 〈m − m�〉)Ni .

Thus, any simple composition factor in πNi appears as a composition factor in:

(τ1 × τ2) � (τ3 × τ4)

such that τ1 � τ3 is a simple composition factor in 〈m�〉Ni ′ and τ2 � τ4 is a simple
composition factor in 〈m − m�〉Ni ′′ , where i

′ + i ′′ = i .
Let k = |m�| and write � = [a, b]ρ . Then csupp(τ1) ∪ csupp(τ3) (union as a

multiset) has k number of b(�). Now we suppose some b(�) come from csupp(τ3)
to obtain a contradiction. In such case, τ3 � τ4 also appears in ζ(m − m�)Ni ′′ . But
the latter term can be computed from the geometric lemma again. One sees that if
csupp(τ3) contains b(�), then it contains all the cuspidal representation in a segment
�′ ∈ mb=b(�) − m�. Since � is ≤b-maximal, �′ contains νρ · a(�). This gives a
contradiction that csupp(τ1) ∪ csupp(τ3) = csupp(〈m�〉).

We have concluded that all b(�) in csupp(〈m�〉) arises from csupp(τ1). Then, we
must have that τ1 = 〈m�〉 and i ′ = i and i ′′ = 0. This shows that the only layer in
the geometric lemma giving the desired module is 〈m�〉 � 〈m−m�〉. This shows the
lemma. ��

6.3 A Refined Computation

Lemma 6.4 We use the notations in Lemma 6.2. We consider the filtration for (〈m1〉×
〈m2〉)Ni from the geometric lemma. The only layer from that filtration, which has the
same cuspidal support as 〈m�〉 � 〈m − m�〉, takes the form

(∗∗) IndG
′

P (〈m1〉Ni1
� 〈m2〉Ni2

)φ.

Moreover, the component in 〈m1〉Ni1
and 〈m2〉Ni2

in (**) contributing to the factor
〈m�〉 � 〈m − m�〉 can be refined to

〈(m1)�〉 � 〈m1 − (m1)�〉, 〈(m2)�〉 � 〈m1 − (m2)�〉.
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Proof Note that the geometric lemma is functorial and so the first assertion follows
from the corresponding one in Lemma 6.2. The second assertion then follows from
Lemma 6.3. ��

In the following applications, we shall need two modifications. One is to use
Lemma 6.4 repeatedly while another one is to replace 〈m2〉 with an indecompos-
able module of length 2. We shall avoid notation complications to give such precise
statements and themeaningwill become clearer when one sees the required statements
in the following proofs.

7 Constructing Self-extensions

For π in Irr(Gn), we first show that self-extensions of π can be constructed via
self-extensions of its associated Zelevinsky standard module. Then we study self-
extensions of Zelevinsky standard modules and show it can be reduced to a tempered
case via a categorical equivalence in Corollary 7.5.

7.1 Constructing Extensions from �(m)

Letm ∈ Mult. Letπ = 〈m〉. In this subsection, we explain how to construct extensions
between two copies of 〈m〉 from extensions of two copies of ζ(m). One may compare
with the study in [12, Section 3]. We first show that one can do that by showing
Lemma 7.1 and then reinterpret the result via the Yoneda extension lemma.

Lemma 7.1 Let m ∈ Multn. Then we have a natural embedding

Ext1Gn
(〈m〉, 〈m〉) ↪→ Ext1Gn

(〈m〉, ζ(m)) ∼= Ext1Gn
(ζ(m), ζ(m)).

Proof We have
0 → 〈m〉 ↪→ ζ(m) → K → 0,

where K is the cokernel of the first embedding.
Now, by Lemma 5.4, we have that, for all i ,

ExtiGn
(K , ζ(m)) = 0.

Thus a standard long exact sequence gives that

ExtiGn
(〈m〉, ζ(m)) ∼= ExtiGn

(ζ(m), ζ(m)). (7.6)

Long exact sequence now gives that

0 = HomGn (〈m〉, K ) → Ext1Gn
(〈m〉, 〈m〉) → Ext1Gn

(〈m〉, ζ(m))



K. Y. Chan

Thus, combining with the above isomorphism,

0 → Ext1Gn
(〈m〉, 〈m〉) ↪→ Ext1Gn

(ζ(m), ζ(m))

��
We remark that the injection in Lemma 7.1 is not an isomorphism in gen-

eral. For example, if one takes m = {[0], [1]}, then 〈m〉 ∼= St([0, 1]) and so
dim Ext1G2

(〈m〉, 〈m〉) = 1, but dim Ext1G2
(ζ(m), ζ(m)) = 2.

We now explain Lemma 7.1 in module language via the Yoneda extension inter-
pretation ([38, Ch III Theorem 9.1], also see [38, Section 6, Pages 71 and 83]). We
can interpret an element in Ext1Gn

(〈m〉, 〈m〉) as a short exact sequence:

0 → 〈m〉 → π → 〈m〉 → 0.

By using Lemma 7.1, there exist short exact sequences such that the following diagram
commutes:

0 〈m〉 π 〈m〉 0

0 ζ(m) π ′ 〈m〉 0

0 ζ(m) π ′′ ζ(m) 0

Since the leftmost and rightmost vertical maps are injections, the middle vertical maps
are also injective. In other words, we obtain:

Lemma 7.2 Let π be an indecomposable representation of Gn of length two with both
irreducible composition factors isomorphic to 〈m〉 for some m ∈ Multn. Then there
exists an indecomposable representation π ′′ of Gn which

• admits a short exact sequence:

0 → ζ(m) → π ′′ → ζ(m) → 0

and
• π embeds to π ′′.

7.2 Extensions Between Two �(m)

Let �1, . . . ,�r be all the distinct segments such that m�i �= ∅ and label in the way
that �1 �b �2 �b . . . �b �r . Let ni = labs(m�i ) for i = 1, . . . , r . Denote by G(m)

the group Gn1 × . . . × Gnr . Let, as a G(m)-representation,

[m] = 〈m�1〉 � . . . � 〈m�r 〉.
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Lemma 7.3 For m ∈ Multn, and for any i ,

ExtiGn
(ζ(m), ζ(m)) ∼= ExtiG(m)([m], [m]).

Proof Let � be a ≤b-maximal element such that m� �= ∅. Then we write

ζ(m) = 〈m�〉 × ζ(m − m�).

Let n1 = labs(mb=ρ′) and let n = labs(m). Now,

ExtiGn
(ζ(m), ζ(m)) ∼= ExtiGn1×Gn−n1

(〈m�〉 � ζ(m − m�), 〈m�〉 � ζ(m − m�)),

which follows from first applying Frobenius reciprocity and then using the geometric
lemma and Lemma 6.1 to single out the only layer that has the same cuspidal support
as ζ(m�) � ζ(m − m�). We now repeat similar process for ζ(m − m�). ��

We now focus on i = 1 in Lemma 7.3 to study first extensions. We now have the
following:

Proposition 7.4 Letπ1, π2 ∈ Alg f (Gn). Suppose each ofπ1 andπ2 admits a filtration
with successive subquotients isomorphic to ζ(m). Let M = G(m) and let P be the
standard parabolic subgroup containing M. Then

(1) for each i = 1, 2, there exists an admissible M-representation τi which admits a
filtration with successive subquotients isomorphic to [m] such that πi ∼= IndGn

P τi ,
and

(2) π1 ∼= π2 if and only if τ1 ∼= τ2.

Proof Let n = labs(m). Let P = MN be the Levi decomposition. We first consider
(πi )N . Let τi be the projection of (πi )N to the component that has the same cus-
pidal support as [m]. By repeated use of Lemma 6.2 (under the situation that m2 in
Lemma 6.2 is empty), we have that τi admits a filtrationwhose successive subquotients
are isomorphic to [m]. Then, applying Frobenius reciprocity, we have

HomG(m)((πi )N , τi ) ∼= HomGn (πi , Ind
Gn
P τi )

and so we obtain a map f in HomGn (πi , Ind
Gn
P τi ) corresponding to the surjection

(πi )N � τi .

Claim: f is an isomorphism.
Proof of the claim: If f is not an isomorphism, then by counting the number of

composition factors, we must have an embedding 〈m〉 ι
↪→ πi such that f ◦ ι = 0.

However, via the functoriality of Forbenius reciprocity, we also have a composition
of maps

[m] ↪→ 〈m〉N ↪→ (πi )N � τ
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is zero. However, this is not possible since the multiplicity of [m] in (πi )N agrees with
that in τ via the construction above.

Now the claim gives that πi ∼= IndGn
P τi and this proves (1).

We now prove (2). The if direction is clear. For the only if direction, let f :
IndGn

P τ1 → IndGn
P τ2 be the isomorphism. Then the corresponding map, denoted f̃ ,

under Frobenius reciprocity is given by: f̃ (x) = f (x)(1), where 1 is the evaluation
at the identity by viewing f (x) as a function in IndGn

P τ2; and x is any representative
in (π1)N . Since f is an isomorphism, the map f̃ is surjective. Thus the multiplicity
of [m] in τ1 must be at least that in τ2. Similarly, we can obtain that the multiplicity
of [m] in τ2 must be at least that in τ1. Since the two multiplicities agree, f̃ restricted
to τ1 in (π1)N must be an isomorphism. ��
Corollary 7.5 Let m ∈ Multn. Let C1 be the full subcategory of Alg f (Gn) whose
objects admit a finite filtration with successive subquotients isomorphic to ζ(m). Let
C2 be the full subcategory of Alg f (G(m)) whose objects admit a finite filtration with
successive subquotients isomorphic to [m]. There is a categorical equivalence between
C1 and C2. HereAlg f (G(m)) is the category of smooth representations of finite length
of G(m).

Proof Using Proposition 7.4 (and its notations), one can write πi = IndGn
P τi for some

τi in C1. It remains to see that the induction functor in the previous proposition also
defines an isomorphism on the morphism spaces. The induced map

HomG(m)(τ1, τ2) → HomGn (π1, π2)

is injective since the parabolic induction sends any non-zero objects to non-zero
objects. Now it follows from Frobenius reciprocity,

HomGn (π1, π2) ∼= HomG(m)((π1)N , τ2) ∼= HomG(m)(τ1, τ2).

The last isomorphism follows from the proof of Proposition 7.4 that τi is the component
of (πi )N that has the same cuspidal support as τi . Now the finite-dimensionality of
the Hom spaces implies that the injection is also an isomorphism, as desired. ��
Corollary 7.6 We use the notations in Corollary 7.5. Let τ be an object in C2 and let
π be the corresponding representation under the equivalence in Corollary 7.5. Then

dim HomGn (〈m〉, π) = dim HomG(m)([m], τ ).

Proof Let k = dim HomG(m)([m], τ ). By the equivalence of categories, we have an
embedding:

k times
︷ ︸︸ ︷
ζ(m) ⊕ . . . ⊕ ζ(m) ↪→ π = IndGn

P τ.

Hence, dim HomGn (〈m〉, π) ≥ k.
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Let l = dim HomGn (〈m〉, π). Suppose l > k. Then, we have an embedding:

l times
︷ ︸︸ ︷
〈m〉 ⊕ . . . ⊕ 〈m〉 ↪→ π = IndGn

P τ.

Now since the Jacquet functor is exact, we have that:

l times
︷ ︸︸ ︷
[m] ⊕ . . . ⊕ [m] ↪→ τ.

This then gives a contradiction. Hence, we must have that l = k. ��

8 Big Derivatives

In this section, we introduce the notion of big derivatives and describe some basic
properties.

8.1 Big Derivatives

Definition 8.1 Let σ ∈ Irr(Gi ). For π ∈ Alg f (Gn), define

Dσ (π) = HomGi (σ, πN−
n−i

),

where πN−
n−i

is regarded as a Gi -representation via embedding Gi to the first factor of

Gi × Gn−i . We regard Dσ (π) as a Gn−i -representation via:

(g. f )(x) = (Ii , g). f (x).

By applying the element

(
In−i

Ii

)
, one can switch the Gi × Gn−i -representation

πN−
n−i

to Gn−i × Gi -representation πNi . This gives the following isomorphism:

Dσ (π) ∼= HomGi (σ, πNi ). (8.7)

We shall use the identification frequently in Section 11.
We similarly define the left version as:

D
′
σ (π) = HomGi (σ, πN−

i
),

where πN−
i

is regarded as a Gn−i × Gi -representation via the embedding Gi ↪→
Gn−i × Gi into the second factor of Gn−i × Gi . We remark that Dσ and D

′
σ are

left-exact, but not exact.
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Weonly prove results forD and results forD′ can be formulated andproved similarly
(c.f. Section 3.2). When π is �-irreducible, Dπ (τ ) is either zero or has unique simple
submodule [30]. If Dπ (τ ) �= 0, we shall denote by Dπ (τ ) the unique submodule.

8.2 Composition of Big Derivatives

Proposition 8.2 Let σ1, . . . , σr ∈ Irr such that σ1 × . . . × σr is still irreducible. Then

Dσr ◦ . . . ◦ Dσ1(π) ∼= Dσ1×...×σr (π).

Proof For the given condition, we have that σ1 × . . .×σs is still irreducible for s ≤ r .
Thus it reduces to r = 2. Let n1 = deg(σ1) and n2 = deg(σ2). We have: for any
τ ∈ Alg f (Gn−n1−n2) and π ∈ Alg f (Gn),

HomGn−n1−n2
(τ, Dσ2 ◦ Dσ1(π)) ∼=HomGn2×Gn−n1−n2

(σ2 � τ, Dσ1(π)N−
n2,n−n1−n2

)

∼=HomGn−n1
(σ2 × τ, Dσ1(π))

∼=HomGn1×Gn−n1
(σ1 � (σ2 × τ), πN−

n1,n−n1
)

∼=HomGn (σ1 × σ2 × τ, π)

∼=HomGn1+n2×Gn−n1−n2
((σ1×σ2) � τ, πNn1+n2,n−n1−n2

)

∼=HomGn−n1−n2
(τ, Dσ1×σ2(π)),

where the second, forth and fifth isomorphisms follow from Frobenius reciprocity,
the first, third and last ones follow from the adjointness of the functors. We remark
that the forth isomorphism also uses taking parabolic inductions in stages. Now the
natural isomorphism between the two derivatives follows from the Yoneda lemma. ��

Proposition 8.3 Let σ1, . . . , σr ∈ Irr� such that σ1 × . . . × σr is still �-irreducible.
Suppose Dσ1×...×σr (π) �= 0. Then Dσ1×...×σr (π) ∼= Dσ1 ◦ . . . ◦ Dσr (π).

Proof Let τ = Dσ1×...×σr (π). Then

π ↪→ τ × σ1 × . . . × σr .

Let Iσ1(τ ) be the unique simple submodule of τ × σ1. The unique submodule must
factor through the embedding:

Iσ1(τ ) × σ2 × . . . × σr ↪→ τ × σ1 × . . . × σr .

Then inductively, we have that Dσ2 ◦ . . . ◦ Dσr (π) ∼= Iσ1(τ ). This implies that Dσ1 ◦
Dσ2 ◦ . . . ◦ Dσr (π) ∼= τ . ��
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8.3 The Segment Case

We now consider a special case of the product functor and we recall the following
result shown in [15]. For � ∈ Seg, let C = C� be the full subcategory of Alg f (Gn)

whose objects π satisfy the property that for any simple composition factor τ in π and
any σ ∈ csupp(τ ), σ ∈ � (c.f. [15, Section 9.1]).

Let k = labs(�). The product functor

×�,C : C� → Alg(Gn+k)

as
×�,C(π) = 〈�〉 × π.

Lemma 8.4 Let � ∈ Seg. Then ×�,C is a fully-faithful functor.

Proof This is a special case of [15, Theorem 9.1]. ��
Corollary 8.5 Let � ∈ Seg. Letm be a multisegment with all segments equal to �. Let
n be a submultisegment of m. Then D〈n〉(〈m〉) = 〈m − n〉.
Proof This follows from Proposition 8.2, [15, Corollary 9.2] and Lemma 8.4. ��

Onemay also compare the above two statementswithLemma11.3 andRemark 11.4
below.

9 Indecomposability Under Product Functor: Isomorphic Cases

9.1 Indecomposibility

The following result is well-known (see [51, Proposition 2.3]), but we shall use some
similar computations in the proof of Theorem 9.2 and so we sketch some main steps
in the following proof.

Lemma 9.1 Let m1,m2 ∈ Mult. Suppose 〈m1〉 × 〈m2〉 is irreducible. Then

〈m1〉 × 〈m2〉 ∼= 〈m1 + m2〉.

Proof Let n = labs(m1) + labs(m2). It suffices to show that

HomGn (〈m1〉 × 〈m2〉, ζ(m1 + m2〉) ∼= C. (9.8)

Let n = m1 + m2. Let �1, . . . ,�r be all the segments such that n�i �= ∅. We shall
label the segments such that �1 �b . . . �b �r .

Let si = labs((m1)�i ) and let ti = labs((m2)�i ) for i = 1, . . . , r . Let ui = si + ti .
Let

G ′ = Gu1 × . . . × Gur ,
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and let
G ′′ = (Gs1 × Gt1) × . . . × (Gsr × Gtr ).

Let n1 = labs(m1) and let n2 = labs(m2). Note that

ζ(m1 + m2) = 〈n�1〉 × . . . × 〈n�r 〉.

We now apply the Frobenius reciprocity:

HomGu1×Gn−u1
(〈m1〉 × 〈m2〉, ζ(n�1) × . . . × ζ(n�r )).

Then, by Lemma 6.4, a possible layer that can contribute to the non-zero Hom is

(∗) Ind
Gu1×Gn−u1
P (〈m1〉Nn1−s1

� 〈m2〉Nn2−t1
〉)φ,

where

• the superscript φ is to twist the Gs1 × Gn1−s1 × Gt1 × Gn2−t1 -action to Gs1 ×
Gt1 × Gn1−s1 × Gn2−t1 in an obvious way;

• P is the standard parabolic subgroup containing Gs1 × Gt1 × Gn1−s1 × Gn2−t1 .

Indeed, this is the only possible layer by Lemma 6.4.
In such layer (*), by Lemma 6.4 again, the only direct summand that can (possibly)

contribute the Hom via Frobenius reciprocity is

〈(m1)�1〉 × 〈(m2)�1〉 � 〈m1 − (m1)�1〉 × 〈m2 − (m2)�1〉.

Now we inductively have that HomGn−s1−t1
(〈m1 − (m1)�1〉 × 〈m2 − (m2)�1〉, ζ(n−

n�1))
∼= C and so Künneth’s formula gives Eq. 9.8. ��

The idea of proving the following theorem is that one first enlarges to somemodules
close to standard modules. In particular, one uses Lemma 7.2 for a module of length
2. Then one applies Frobenius reciprocity and does some analysis as in the proof of
Lemma 9.1.

Theorem 9.2 Let π1, π2 ∈ Irr. Suppose π1 × π2 is irreducible. Let π be a representa-
tion of length 2 with the two simple composition factors isomorphic to π2. Then π is
indecomposable if and only if π1 × π is indecomposable.

Proof Let m1 and m2 be multisegments such that

π1 ∼= 〈m1〉, π2 ∼= 〈m2〉.

Since π1 × π2 is irreducible, π1 × π2 ∼= 〈m1 + m2〉 by Lemma 9.1.
Note that the if direction is clear.We now prove the only if direction. By Lemma 7.2

and taking the dual, there exists π ′′ ∈ Alg f such that
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• π ′′ admits a short exact sequence

0 → ζ̃ (m2) → π ′′ → ζ̃ (m2) → 0

and;
• π ′′ � π .

Let n = labs(m1) + labs(m2). We see that π1 × π ′′ is indecomposable if and only
if HomGn (π1 × π ′′, 〈m1 + m2〉) ∼= C. To prove the latter one, it suffices to show that

HomGn (π1 × π ′′, ζ(m1 + m2)) ∼= C.

Now we apply some similar strategy as the proof of Lemma 9.1. Let n = m1 +m2.
Let �1, . . . ,�r be all the distinct segments such that n�i �= ∅, and �1 �b �2 �b

. . . �b �r . Let si = labs((m1)�i ) and ti = labs((m2)�i ). Let ui = si + ti .
Now we write

ζ(n) = ζ(n�1) × . . . × ζ(n�r ).

Let G ′ = G(n). Let P be the standard parabolic subgroup in Gn containing G ′ with
the Levi decomposition P = G ′N . Recall that [n] = 〈n�1〉 � . . . � 〈n�r 〉 and so
ζ(n) = IndGn

P [n]. Now Frobenius reciprocity gives that:

(∗) HomGn (π1 × π ′′, ζ(n)) ∼= HomG ′((π1 × π ′′)N , [n]).

The analysis in the proof of Lemma 9.1 gives that the only possible layer contributing
a non-zero Hom in (*) (via the geometric lemma on (π1 × π ′′)N ) is of the form:

IndG
′

P̃
((π1)N ′ � (π ′′)N ′′)φ,

where

• N ′ is the unipotent radical corresponding to the partition (s1, . . . , sr ) and N ′′ is
the unipotent radical corresponding to the partition (t1, . . . , tr );

• the superscript φ is a twist sending Gs1 × . . . × Gsr × Gt1 × . . . × Gtr to Gs1 ×
Gt1 × . . . × Gsr × Gtr (by permutating the factors in an obvious way);

• P̃ is the standard parabolic subgroup inG ′ containingGs1 ×Gt1 × . . .×Gsr ×Gtr .

Thus, we have that:

HomGn (π1 × π ′′, ζ(n)) ∼= HomG ′(IndG
′

P̃
((π1)N ′ � (π ′′)N ′′)φ, [n]).

Indeed, as in Lemma 9.1, which uses Lemma 6.4 inductively, the only component in
(IndG

′
P̃

((π1)N ′ � (π ′′)N ′′)φ that can contribute to the nonzero Hom is:

IndG
′

P̃
([m1] � τ)φ,

where τ is the direct summand in (π)N ′′ whose simple composition factors have the
same cuspidal support as [m2]. Attributing to the multiple use of Lemma 6.3, we
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conclude that τ has length 2 and both composition factors of τ are isomorphic to [m2].
Thus we further have

(∗∗) HomGn (π1 × π ′′, ζ(n)) ∼= HomG ′(IndG
′

P̃
([m1] � τ)φ, [n]).

As the functors described in the proof of Corollary 7.5, τ satisfies Ind
Gn2
P∗ τ ∼=

π ′′, where P∗ is the standard parabolic subgroup containing Gt1 × . . . × Gtr , and
Corollary 7.5 implies that τ is indecomposable and of length 2 with both factors
isomorphic to [m2]. In particular, τ has a unique simple quotient.

Now we return to compute the latter Hom of (**). Let

G ′′ = Gs1 × Gt1 × . . . × Gsr × Gtr .

In such case, applying the second adjointness, such Hom is equal to

HomG ′′(([m1] � τ))φ, [n]N−),

where N− is the unipotent radical in Pt
s1,t1 × . . .× Pt

sr ,tr ⊂ Gu1 × . . .×Gur . By using
Hom-tensoring adjointness, the previous Hom turns to:

(∗ ∗ ∗) HomGt1×...×Gtr
(τ,HomGs1×...×Gsr

([m1], [n])),

where we regard [n] as a Gs1 × . . . × Gsr -representation via the embedding:

(g1, . . . gr ) �→ (

(
g1

It1

)
, . . . ,

(
gr

Itr

)
).

Let σi = 〈(m1)�i 〉. Finally, using Künneth formula on (***) and combining with (*),
we have that:

HomGn (π1 × π ′′, ζ(n)) ∼= HomGt1×...×Gtr
(τ, Dσ1(〈n�1〉) � . . . � Dσr (〈n�r 〉))

and so, by Corollary 8.5,

HomGn (π1 × π ′′, ζ(n)) ∼= HomGt1×...×Gtr
(τ, 〈n′

1〉 � . . . � 〈n′
r 〉),

where n′
i = (n)�i − (m1)�i . Now, as discussed above τ has only unique simple

quotient and we so have that the Hom space has dimension 1, as desired. Thus, we
have HomGn (π1×π ′′, ζ(m1+m2)) ∼= C and so HomGn (π1×π ′′, 〈m1+m2〉) ∼= C.��
Remark 9.3 In general, the parabolic induction does not preserve self-extensions. For
example, we consider π = 〈[0]〉. Let τ = (π × π)N1 . Then

IndG2
P1,1

τ ∼= π × π ⊕ π × π.
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10 Fully-faithfulness of the Product Functor

10.1 A Criteria for Proving fully-faithfulness

We recall the following criteria for proving fully-faithfulness:

Lemma 10.1 [15, Lemma A.1] LetA and B be abelian Schurian k-categories, where
k is a field. Let F : A → B be an additive exact functor. Suppose the following holds:

(1) any object of A has finite length;
(2) for any simple objects X and Y in A, the induced map of F from Ext1A(X ,Y ) to

Ext1B(F(X), F(Y )) is an injection;
(3) F(X) is a simple object in B if X is a simple object in A;
(4) for any simple objects X and Y in A, X ∼= Y if and only if F(X) ∼= F(Y ).

Then F is a fully-faithful functor.

The original statement of [15, Lemma A.1] is stated in a slightly different way, but
the proof still applies.

We remark that elements in Ext1A(X ,Y ) can be interpreted as short exact sequences
in Yoneda extensions [38], and the addition corresponds to the Baer sum. Then the
exact functor F : A → B sends a short exact sequence to a short exact sequence and
so induces a map from Ext1A(X ,Y ) to Ext1B(F(X), F(Y )) above.

If we consider the full subcategory B′ of B containing all F(X) for objects X in
A, then F defines an equivalence of categories fromA to B′ [50, Lemma 4.2.19]. We
remark that B′ may not be Serre in B.

10.2 Product Functor

Recall that Algπ (Gn) is defined in Section 5.2.

Theorem 10.2 Let π ∈ Irr. Let k = deg(π). Let C = Algπ (Gn). The functor ×π,C
defined in Section 3.1 is fully-faithful i.e.

HomGn+k (×π,C(τ1),×π,C(τ2)) ∼= HomGn (τ1, τ2)

for any τ1, τ2 ∈ Algπ (Gn).

Proof It suffices to check the conditions in Lemma 10.1. For (1), it follows from the
definitions. For (3), it follows fromProposition 5.2. For (4), it follows fromLemma 9.1.
For (2), it follows from Proposition 5.7 and Theorem 9.2. ��
Remark 10.3 Let π ∈ Irr. Let λ be an indecomposable representation such that for
any π ′ ∈ JH(λ), π × π ′ is irreducible. In general, it is not necessary that π × λ is
indecomposable. For example, take π = 〈[0]〉 and let λ = 〈[1]〉 × 〈[0]〉. Then π × λ

is a direct sum of two irreducible representations.

Corollary 10.4 The functor ×π,C : C → Alg(Gn+k) determined by τ �→ τ × π is
fully-faithful.
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Proof When D = F , it follows from Theorem 10.2 and Proposition 3.3. In gen-
eral, using the Zelevinsky type classification, one can prove in a similar way to
Theorem 10.2. ��

10.3 Dual Formulation

Theorem 10.5 Let π ∈ Irr. Let

Nπ = {m ∈ Mult : St(�) × π is irreducible ∀� ∈ m} .

Let C′ := Alg′
π (Gn) be the full subcategory of Alg f (Gn) whose objects have all

simple composition factors isomorphic to St(m) for some m ∈ Nπ . Then the product
functors ×π,C′ and ×π,C′

are fully-faithful.

Proof Note that D(〈�〉) = St(�∨) by using the formulation in [48]. This follows
from Theorem 10.2, Corollary 10.4 and Corollary 3.5. ��

10.4 Self-extensions

We now study the fully-faithfulness of some �-irreducible representations. One may
compare with Lemma 8.4.

Proposition 10.6 Let π ∈ Irr(Gl). Let π ′ ∈ Irr such that π × π ′ is irreducible. Let
Algπ ′,self(Gn) be the full subcategory of Alg f (Gn) whose objects have all simple
composition factors isomorphic to π ′. Then the product functor

×s
π : Algπ ′,self(Gn) → Alg(Gn+l)

given by
×s

π (τ ) = π × τ

is fully-faithful.

Proof Again we check the conditions in Lemma 10.1. (1), (3) and (4) are automatic.
(2) follows from Theorem 9.2. ��
Remark 10.7 For π ∈ Irr�, Dπ (π × π) is possibly not irreducible. For example, take
m = {[0, 1], [1]}. Let π = 〈m〉. Via a geometric lemma consideration, one deduces
that:

(〈[0]〉 × 〈[1]〉 × 〈[1]〉 × 〈[0, 1]〉) � 〈[1]〉
is a submodule of D[1](π × π) (also see Example 11.6 below). Then

(〈[0]〉 × 〈[1]〉 × 〈[1]〉) � π

is a submodule of D[0,1] ◦ D[1](π × π) ∼= Dπ (π × π) (see Proposition 8.2).
One may further ask when π ∈ Irr� is prime in the Bernstein-Zelevinsky ring, is

it true that Dπ (π × π) = π? This holds for when π is a Speh representation by using
[15], but it is not clear for the general situation.
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11 Application on the SI Property for Big Derivatives

11.1 More Notations on Derivatives

Recall that the big derivative is defined in Definition 8.1. For � ∈ Seg, set D� =
DSt(�).

For π ∈ Irr, let D�(π) be the unique submodule of D�(π) if D�(π) �= 0. Let
D�(π) = 0 if D�(π) = 0.

For a generic multisegment m, we similarly set Dm = DSt(m). For π ∈ Irr, we
similarly define Dm(π) as the unique submodule of Dm(π) if Dm(π) �= 0 and define
Dm(π) = 0 otherwise. The uniqueness of the simple submodule in D�(π) andDm(π)

follows from [33] and [30].
Set i = labs(m). With a slight reformulation from above, we also have that:

πNi � Dm(π) � St(m),

or equivalently, by [34, Corollary 2.4],

Dm(π) � St(m) ↪→ πNi ,

or equivalently, by Frobenius reciprocity,

π ↪→ Dm(π) × St(m).

11.2 �-invariants and1-reduced Representations

We shall first discuss more results on derivatives.
Define ε�(π) to be the largest non-negative integer k such that

Dk
�(π) �= 0.

Define
η�(π) = (ε[a,b]ρ (π), ε[a−1,b]ρ (π), . . . , ε[b,b]ρ (π)).

Using similar terminologies in [36, Section 7], a segment [c, d]ρ is said to be [a, b]ρ-
saturated if d = b and a ≤ c. Define mx(π,�) to be the multisegment that contains
exactly the �-saturared segments �′ with the multiplicity ε�′(π). We shall call π to
be �-reduced if mx(π,�) = ∅.

We give two useful properties related to the η-invariant, which will also be used in
the appendix. Those properties are also useful in the study of the Bernstein-Zelevinsky
derivatives [16, 18]:

Proposition 11.1 (c.f. [36, Proposition 7.3]) Let π ∈ Irr and let � ∈ Seg. Let p =
mx(π,�). Let i = labs(p). Then Dp(π) � St(p) is a direct summand in πNi .
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Proof Let τ = Dp(π). Then τ is �-reduced. We also have the embedding:

π ↪→ τ × St(p).

Then we apply the Jacquet functor Ni on τ × St(p). We first mention two important
ingredients. The first one is to use the Jacquet functor computations for Eq. 2.2. The
second one is that the �-reduced property on τ implies that if a simple composition
factor in τN j (for some j) takes the form ω1 � ω2 and satisfies that csupp(ω2) ⊂
∪�′∈p�′ (as a multiset), then b(�) /∈ csupp(ω2).

Now, we have to see which layer in the geometric lemma can contribute to the same
cuspidal support as τ � St(p). But, the second point implies that, all b(�) must come
from a factor from St(p). However, the first point will then force that the layer in in
τ × St(p))Ni must come from the layer of the form τ � St(p). Thus τ � St(p) is a
direct summand in (τ × St(p))Ni and so is a direct summand in πNi . ��

We shall use it to do a reduction later. When � is a singleton, Proposition 11.1 is
also shown by Jantzen [28] and Mínguez [40] (also see [24]).

Whenm ∈ Mult is generic, St(m) = λ(m) and St(m) is generic when D = F [53].
For generic m ∈ Mult and π ∈ Irr, denote by Im(π) the unique simple submodule of
π × St(m). (Here the uniqueness follows from [30] and [34] since St(m) ∈ Irr�.)

Amultisegmentm is said to be�-saturated if all the segments inm are�-saturated.
We denote by Mult�−sat the set of all �-saturated multisegments.

Proposition 11.2 (c.f. [36, Proposition 7.3]) Let � ∈ Seg. Let τ ∈ Irr. Suppose τ is
�-reduced. Let p ∈ Mult�−sat . Then,

(1) Ip(τ ) appears with multiplicity one in τ × St(p);
(2) for π ′ in JH(τ × St(p)) with π ′

� Ip(τ ), mx(π ′,�) �= p.

Proof Note that τ ∼= Dp ◦ Ip(τ ) by definitions. Then, we again have that:

Ip(τ ) ↪→ τ × St(p).

In Proposition 11.1, we showed that τ � St(p) appears with multiplicity one in (τ ×
St(p))Nl , where l = labs(p). This implies (1). Moreover, the proof of Proposition 11.1
also shows that no other composition factor in (τ ×St(p))Nl takes the form τ ′ �St(p).
This implies (2). ��

11.3 SI Property on the Segment Case

We introduce one more notions for convenience. For a cuspidal representation ρ, a
multisegment p is said to be strongly ρ-saturated if b(�) ∼= ρ for any segment� in p.

Lemma 11.3 Fix a cuspidal representation ρ. Let p be a strongly ρ-saturated multi-
segment. Let � ∈ p. Then

D�(St(p)) = D�(St(p)) = St(p − �).
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Proof Let π = St(�). By [53] and [51], St(p − �) ∈ Mπ . Note that St(p) =
St(p − �) × St(�).

Let n = labs(p − �) and let k = labs(�). We consider the full subcategory A′ of
Alg(Gn) whose objects have all composition factors isomorphic to St(p−�), and let
B′ be the full subcategory of Alg(Gn+k) whose objects have all composition factors
isomorphic to St(p). By Theorem 10.2, ×π,A′ : A′ → B′ is a fully-faithful functor.
Moreover, D� : B′ → A′ is well-defined and is right-adjoint to ×π,A′ . Thus,

D�(St(p)) = D�(×St(�)(St(p − �))) = St(p − �)

is irreducible, by [50, Lemma 4.24.3]. ��
Remark 11.4 The statement of Lemma 11.3 does not hold in general if we simply
replace D� by D

′
�.

For σ ∈ Irr� and π ∈ Irr, by [30], there exists at most one τ ∈ Irr such that

τ � σ ↪→ πNdeg(σ )
.

If such τ exists, denote such τ by Dσ (π). Otherwise, set Dσ (π) = 0.

Proposition 11.5 Fix a cuspidal representation ρ. Let p be a strongly ρ-saturated
multisegment. Let σ = St(p) and let π ∈ Irr. Suppose Dσ (π) �= 0. Then Dσ (π) is SI.

Proof We write σ = St(�) for some segment �. Let p = mx(π,�). Then we have
that

π ↪→ Dp(π) × St(p).

Now, one has:
D�(π) ↪→ D�(Dp(π) × St(p)).

From Definition 8.1, one has to compute a Jacquet module on Dp(π) × St(p) and the
structure again can be computed from the geometric lemma. With a standard cuspidal
support argument before, one boils down to have:

D�(π) ↪→ Dp(π) × D�(St(p)).

By Lemma 11.3, we have that

D�(π) ↪→ Dp(π) × St(p − �).

Now D�(π) is the unique submodule of Dp(π) × St(p − �) and appears with mul-
tiplicity one in Dp(π) × St(p − �) by [33] or [30]. Hence D�(π) also appears with
multiplicity one in D�(π). ��
Example 11.6 For a segment � and π ∈ Irr, D�(π) is not irreducible in general. For
example, let m = {[1], [0, 1]}. Then D[1](〈m〉) has length two.

One may further consider the indecomposable component τ in 〈m〉N1 which con-
tains 〈[0, 1]〉�〈[1]〉 as the submodule. It is shown by (some variants of) [13, Corollary
2.9] (also see [16]) that τ is the direct summandwith all the simple composition factors
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in 〈m〉N1 with the same cuspidal support as 〈[0, 1]〉�〈[1]〉. Thus we have the following
relation:

D[1](〈m〉) � 〈[1]〉 � D[1](〈m〉) � 〈[1]〉 � τ.

11.4 An Application

We give an application on studying how to embed some Jacquet modules into some
layers arising from the geometric lemma. The study of how to do such embedding will
be used in [17, 18] for studying commutations of some derivatives and integrals.

Proposition 11.7 Let π = St(n) for some generic n ∈ Multn. Let � ∈ Seg such
that D�(π) �= 0. Let τ be the unique indecomposable component with the unique
submodule D�(π) � St(�) in πNlabs (�)

. Then mx(π,�) contains only one segment if
and only if

D�(π) � St(�) ∼= D�(π) � St(�) ∼= τ.

Proof Let n be the multisegment such that π ∼= St(n). Let m = mx(π,�). Let
i = labs(�). Ifm contains only one segment, thenm = {�}. Then D�(π) � St(�) is
a direct summand in πNi (see Proposition 11.1). Thus we have D�(π) = D�(π) and
τ ∼= D�(π) � St(�).

We now prove the converse direction. Since we are dealing with the generic case,
we have a simple description on mx as:

mx(π,�) = {[a(�′), b(�)] : �′ ∈ n, a(�′) ≤ b(�)
}

Thus a geometric lemma shows that D�(π) � St(�) appears more than one time in
πNi .

Let ω = Dm(π). On the other hand, if D�(π) � St(�) ∼= τ , then

τ ∼= D�(π) � St(�) ↪→ D�(ω × St(m)) � St(�).

Again, computing D�(ω × St(m)) involves a compution of a Jacquet module on
ω × St(m), which leads to analyzing on layers in the geometric lemma. Again with
a standard comparison on cuspidal support, there is only one layer contributing the
submodule D�(π), that is of the form ω × D�(St(m)). Since that layer appears in the
toppest one, we must then have that:

τ ↪→ (ω × D�(St(m))) � St(�).

By Lemma 11.3, we then have:

τ ↪→ (ω × St(m − �)) � St(�). (11.9)

Since mx(ω,�) = ∅, Proposition 11.2 gives that D�(π) appears with multiplicity
one in ω × St(m − �) and so as in τ . This contradicts to what we argued before.
Hence, we cannot have τ ∼= D�(π) � St(�). ��
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An alternate way to see Proposition 11.7 is that if mx(π,�) contains more than
one segment, then τ cannot be written into the form ω′ � St(�) for some ω′ ∈ Alg f
since this otherwise will imply D�(π) ∼= ω′ and so τ ∼= D�(π) � St(�) giving a
contradiction. This consequently gives:

Corollary 11.8 Let π = St(n) for some generic n ∈ Mult. Let � be a segment such
that D�(π) �= 0. Let ω be a representation of finite length such that

π ↪→ ω × St(�).

Let i = labs(�). Let p : πNi � ω�St(�) be the projection arising from the geometric
lemma (see Section 2.5). Let ι : D�(π) � St(�) ↪→ πNi be the unique embedding.
Suppose mx(π,�) contains at least two segments. Then p ◦ ι = 0.

Proof Let τ be the unique indecomposablemodule inπNi that contains D�(π)�St(�)

as submodule.
We have the following short exact sequence:

0 → κ → πNi

p→ ω � St(�) → 0,

where κ is the kernel of the projection p. If τ ∩ κ �= 0, then D�(π) � St(�) must
contain the unique submodule D�(π)�St(�) by the uniqueness of simple submodule
in τ . Thus it suffices to show τ ∩ κ �= 0. Suppose not. Then,

τ ↪→ ω � St(�).

This implies that τ ∼= ω′�St(�) for some submoduleω′ ofω. ThenD�(π)�St(�) ∼=
τ . This contradicts Proposition 11.7. ��

Appendix: SI Property of Big Derivatives for Generic Representations

It is interesting to generalize Proposition 11.5 to a larger family of big derivatives. We
shall explain how to extend to generic representations in this appendix.

Lemma on1-reduced Representations

We generalize the idea of η-invariants in Section 11.2 to representations of finite
lengths.

Definition 12.1 Let π ∈ Alg f . Let � ∈ Seg. We say that π is �-reduced if for any
�-saturated segment �̃, D�̃(π) = 0.

The following lemma is a simple exercise using the Jacquet functors and we shall
omit the details.

Lemma 12.2 Let π ∈ Alg f . Then π is �-reduced if and only if π ′ is �-reduced for
any π ′ in JH(π).
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Generic Case

We first have the following commutativity result:

Lemma 12.3 Let �1,�2 be two unlinked segments. Let π ∈ Alg f . Then

D�1 ◦ D�2(π) ∼= D�2 ◦ D�1(π).

Proof Since St(�1)×St(�2) ∼= St(�2)×St(�1) is irreducible by [51, 53], the result
follows from Proposition 8.2. ��
Lemma 12.4 Let π ∈ Irr. Let � ∈ Seg. Suppose π is �-reduced. Let �′ be a segment
such that a(�) ≤ a(�′) ≤ b(�) ≤ b(�′). Then D�′(π) = D�′(π) = 0.

Proof Suppose D�′(π) �= 0. Let i = labs(�′). Then we have an embedding:

D�′(π) � St(�′) ↪→ πNi .

Let �′′ = [a(�′), b(�)]. Let n = deg(π) and let j = labs(�′′). Write � = [a, b]ρ .
We apply the Jacquet functor N j on the second factor, and so, by

St(�′)N j = St([νρ · b(�), b(�′)]) � St(�′′),

we have
D�′(π) � St([νρ · b(�), b(�′)]) � St(�′′) ↪→ πNn−i,i− j, j .

By taking Jacquet functor in stages and applying Frobenius reciprocity, we have that
D�′′(π) �= 0. This gives a contradiction. ��

Recall that Mult�−sat is defined in Section 11.2.

Lemma 12.5 Let π ∈ Alg f . Let � ∈ Seg and let p ∈ Mult�−sat . Let �′ be a segment
such that a(�) ≤ a(�′) and b(�) ≤ b(�′). Suppose D�′(Ip(π)) �= 0. Suppose, for
any segment �̃ with the following two properties:

• b(�̃) ∼= b(�); and
• a(�̃) ≤ b(�),

we have D�̃(π) = 0. Let �′′ = [a(�′), b(�)]. Then

D�′(π × St(p)) ∼= D[ν·b(�),b(�′)](π) × St(p − �′′).

Proof Let i = labs(�′). Recall that

(∗) D�′(π × St(�′)) ∼= HomGi (St(�
′), (π × St(p))Ni ).

Let m = labs(p). Then the layers in the geometric lemma of (π × St(p))Ni take the
form: for k + l = i ,

ωk,l = IndGn+m−i×Gi
Pn−k,m−l×Pk,l

((π)Nk � (St(p))Nl )
φ,
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where φ is a twist takes aGn−k ×Gk ×Gm−l ×Gl -representation to aGn−k ×Gm−l ×
Gk × Gl -representation.

Write �′ = [a′, b′]ρ′ . By Frobenius reciprocity, we have that:

HomGi (St(�
′), ωk,l) ∼= HomGk×Gl (τk � τ̃l , ω̃k,l)

where
τk = St([ν−(k−1)

ρ′ b(�′), b(�′)]), τ̃l = St([a(�′), νl−1
ρ′ a(�′)])

and
ω̃k,l = IndGn+m−i×Gi

Pn−k,m−l×Pk,l
((π)Nk � (St(p))Nl )

φ.

Thus we have that:

(∗∗) HomGi (St(�
′), ωk,l) ∼= Dτk (π) × Dτ̃l (St(p)).

Let l∗ = labs([a(�′), b(�)]) and k∗ = labs(�′) − l∗. Note that if l �= l∗, then
either

Dτl (π) = 0 or Dτ̃k (St(p)) = 0,

which follows by either the assumption in the lemma or a comparison of the cuspidal
support.

Now combining (*), (**) and the claim, we have that

D�′(π × St(�′)) ∼= Dτk∗ (π) × Dτ̃l∗ (St(p))

Now the lemma follows from Lemma 11.3. ��
Lemma 12.6 Let π ∈ Alg f . Let p ∈ Mult�−sat . Let �′ be a segment satisfying one of
the following conditions:

(1) a(�′) < a(�) and b(�) ≤ b(�′); or
(2) b(�′) < a(�); or
(3) b(�) < a(�′).

Then
D�′(π × St(p)) = D�′(π) × St(p).

Proof This again follows by using the geometric lemma and to notice the only layer
for contributing the big derivative. We omit the details. ��

We now generalize Proposition 11.5 to arbitrary generic representations. In order
to use induction, one uses Section 11.2 and some properties in Proposition 11.2. For
two segments �,�′, we write � ≤a �′ if either one of the conditions hold:

• a(�) < a(�′); or
• a(�) ∼= a(�′) and b(�) ≤ b(�′).

Theorem 12.7 Let m ∈ Mult be generic. Let σ = St(m). Then, for any π ∈ Irr with
Dσ (π) �= 0, Dσ (π) is SI.
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Proof We shall prove by an induction on the number of segments in m. When there is
only one segment in m, it follows from Proposition 11.5.

We consider the set
B = {b(�) : � ∈ m} .

Then we choose a minimal element ρ in B with respect to ≤ (see the ordering in
Section 2.1). Among those strongly ρ-saturated segments, we choose a ≤a-maximal
segment �∗ (equivalently the shortest one among those).

Let
n = {

�̃ : a(�̃) � a(�∗)
} ∪ {

�̃ \ �∗ : a(�̃) ∼= a(�∗), �̃ ∈ m
}

Here �̃ \ �∗ is the set-theoretic subtraction i.e. for writing �∗ = [a∗, b∗]ρ′ and
�̃ = [a∗, b̃]ρ′ ,

�̃ \ �∗ = [b∗ + 1, b̃]ρ′ .

Claim 1: n is generic.
Proof of Claim 1: It follows form the choice of �∗ that there is no segment �̃ in m
such that �̃ � �∗. Then it is direct to check from the genericity of m that n is also
generic.

We shall use Claim 1 later. We now consider some other multisegments:

o = {
�̃ ∈ m : a(�̃) ∼= a(�)

}
, o′ = {

�̃ \ � : �̃ ∈ o
}
,

p = m − o.

Let t = mx(m,�∗) and let τ = Dt(π). let k be the number of segments in t. We
now prove another claim:
Claim 2: Do(τ × St(t)) ∼= Do′(τ ) × St(t − k · �).
Proof of Claim 2:We shall prove inductively on the number of segments. When there
is only one segment in o, it follows from Lemmas 12.4 and 12.5. We suppose there are
more than one segments. In such case, we pick a longest segment � in o and hence
b(�̃) ≤ b(�) for any �̃ ∈ o. This also implies

�̃ \ � ⊂ � (12.10)

for any �̃ ∈ o.
Now induction gives that

Do−�(τ) × St(t)) ∼= Do′′(τ ) × St(t − (k − 1) · �),

where o = {
�̃ \ �

}
�̃∈o−�

. Now the claim will follow from Lemma 12.5 if we can
verify that

D�(Do−�(τ)) = 0.

To this end, we use (12.10) and so we can apply Lemma 12.3 (several times) to obtain

D�(Do−�(τ) = Do−� ◦ D�(τ) = 0.
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Now now prove another claim:
Claim 3: Dp ◦ Do(τ × St(t)) ∼= Do′+p(τ ) × St(t − k · �).
Proof: It follows from Claim 2 that we only have to prove:

Dp(Do′(τ ) × St(t − k · �)) ∼= Do′+p(τ ) × St(t − k · �).

This follows by using Lemma 12.6 several times.

Now to prove Dσ (π) appears with multiplicity one in the Jordan-Hölder series of
Dσ (π), it suffices to show that Dσ (π) appears with multiplicity one in Dσ (Dp(π) ×
St(p)). Now Claim 2 reduces to prove that (**) Do′+p(τ ) × St(t − k · �).

Before proving (**), we have one more claim:
Claim 4: Do′(τ ) and Do′+p(τ ) are �-reduced.
Proof of Claim 4: With a similar argument to proving Claim 2, we have:

Dt−k�̇+o(τ × St(t)) ∼= Do′(τ )

We see that the LHS is�-reduced (sinceDt−k�̇+�′+o(τ ×St(t)) = 0 for a�-saturated
segment �′) and so is the RHS. Now it follows from Lemma 12.3 that we also have
mx(Dp ◦ Do′(τ ),�) = ∅.

Let t′ = t − k · �.
Claim 1 shows that Do′+p(τ ) is SI by induction. With Claim 4, the SI property

of Do′+p(τ ) × St(t′) now follows from [36, Lemma 7.1] and so we also have the SI
property for Do+p(τ × St(t)) by Claim 3. Since π ↪→ τ × St(t), we now also have
the SI property of Dσ (π). ��
Remark 12.8 We remark that [30, Corollary 3.7] shows that there is a unique simple
submodule of Dσ (π) for σ ∈ Irr� and π ∈ Irr. Indeed, for the special case of generic
representations, it also follows from [13, Proposition 2.5] (also see [16]), using some
inputs from branching laws.
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