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Abstract

Dispersion relation reflects the dependence of wave frequency on its wave vector when
the wave passes through certain materials. It demonstrates the properties of this material
and thus it is critical. However, dispersion relation reconstruction is very time consuming
and expensive. To address this bottleneck, we propose in this paper an efficient dispersion
relation reconstruction scheme based on global polynomial interpolation for the approxi-
mation of 2-dimension photonic band functions. Our method relies on the fact that the
band functions are piecewise analytic with respect to the wave vector in the first Brillouin
zone. We utilize suitable sampling points in the first Brillouin zone at which we solve the
eigenvalue problem involved in the band function calculation, and then employ Lagrange
interpolation to approximate the band functions on the whole first Brillouin zone. Numer-
ical results show that our proposed method can significantly improve the computational
efficiency.

Key words: Photonic Crystals, band function, Lagrange Interpolation, sampling methods

1 Introduction

Photonic Crystals (PhCs) are periodic dielectric materials with size of their period comparable
to the wavelength [17]. The propagation of electromagnetic waves inside such materials depends
heavily on their frequencies. Furthermore, electromagnetic waves within a certain frequency
range cannot propagate in certain PhCs. This forbidden frequency range is the so-called band
gap, which motivates many important applications, including optical transistors, photonic fibers
and low-loss optical mirrors [37, 27, 25, 35]. In this paper, we focus on 2-dimension PhCs which
are periodic in the xy plane and homogeneous along the z axis with high-contrast dielectric
columns or holes spaced in dielectric materials.

To fully understand PhCs, research interest falls on the propagating frequency as well as
the band gap. The periodicity of PhCs allows using the Bloch’s theorem so that the original
Helmholtz eigenvalue problem on the whole space is transformed into a family of Helmholtz
eigenvalue problems defined on the unit cell parameterized by the wave vector k varying in the
irreducible Brillouin zone (IBZ) Bred [24]. The frequency ωn which is a scaling of the square
root of nth largest eigenvalue, regarded as a function of the wave vector k is the so-called the
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nth band function for all n P N`. The band gap is the distance between two adjacent band
functions. Consequently, the calculation of the nth band function ωnpkq involves solving infinite
number of the Helmholtz eigenvalue problems defined on the unit cell parameterized by the wave
vector k P Bred, which have high-contrast and piecewise constant coefficients. To reduce this
computational cost, a natural approach is to decrease the number of parameters k by limiting
them to BBred. A practical approach is to discretize BBred uniformly to generate the parameters.
Although there is no rigorous theoretical foundation, this approach demonstrates its accuracy
for many numerical tests on 2-dimension PhCs. To further reduce the number of parameters,
several sampling algorithms have been proposed. In specific, Hussein introduced the model order
reduction method to band gap calculation and proposed to use the high symmetry points and the
intermediate points centrally intersecting the straight lines joining these high symmetry points
as the sampling points [14]. Klindworth proposed to use Taylor expansion to approximate the
reordered band functions based on the fact that band functions can be reordered so that they
are analytic functions of k and an adaptive step size controlling was proposed to determine the
sampling points [23]. In addition, some improvements to these methods have also been proposed
in recent years [30, 18, 19].

1.1 Motivation for sampling inside Bred

However, recently the question of whether BBred are sufficient to characterize the band gap has
received intensive interest. Figure 1 illustrates the extrema of the first six band functions of two
2-dimension PhCs as depicted in Figures 4 and 5. One can observe that they do not always
appear over BBred. For example, Figure 1(d) depicts an extremum inside Bred which corresponds
to the maximum value of the sixth band function. In Table 1 we present this maximum value and
compare it with the maximum value of this case obtained using only BBred, which demonstrates
the importance of the interior information. Furthermore, some work has shown counterexamples
that highlight the dangers of just using BBred [11, 26, 7]. Thus, it is urgent to develop an accurate
and efficient sampling algorithm in the whole IBZ Bred.

(a) Square lattice TM mode(b) Square lattice TE mode(c) Hexagonal lattice TM
mode

(d) Hexagonal lattice TE
mode

Figure 1: Extrema exist at points marked with red circles, and green points are used to measure
the extrema.

Nevertheless, to the best of our knowledge, there have been no trials in designing such kind
of sampling algorithms. To fill this vacancy, we propose in this paper the use of several efficient
sampling algorithms that can be combined with Lagrange interpolants to approximate band
functions in Bred. This work is built upon several well-developed sampling algorithms, which are
wildly used in numerical approximation [1, 32, 3, 28, 6].
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Bred BBred

Band number k Extrema k Extrema

6 p0.719762, 0.049867q Maxi “ 1.071796 p0.690971, 0q Maxi “ 1.069602

Table 1: Hexagonal lattice TE mode: band function’s extrema obtained using Bredand BBred.

1.2 Main contributions

Our main contributions are threefold. On the one hand, we analyze and summarize key regularity
properties of band functions, cf. Theorems 3.2 and 3.6: First, band functions are piecewise
analytic functions; Second, singularities occur only on branch points and the origin. These two
results are proved by showing that tpωnpkq

c
q2u8n“1, which are referred to as the Bloch variety (3.1),

are zeros of a real analytic function in R3. The locations of singular points are confirmed via
implicit mapping theorem; Third, we give the formula for calculating the first partial derivatives
of band functions at non-singularities, and thus point out that the first partial derivatives of
band functions may be discontinuous at branch points where the dimension of the corresponding
eigenspace is greater than one. This formula further reveals that band functions are Lipschitz
continuous.

On the other hand, our proposed method can be utilized without resorting band functions
which is crucial for the Taylor expansion based method as developed in [23]. Without resorting,
we are allowed to approximate the first few band functions, which are the interest of many
practical applications, while the aforementioned approach can only approximate the whole band
functions simultaneously. Moreover, our method approximates band functions in the whole IBZ,
and we can further incorporate it into many other numerical methods, e.g., adaptive FEM [9]
and hp FEM [31], to calculate band functions with high accuracy and efficiency.

This paper is organized as follows. In Section 2, we describe the Maxwell eigenvalue problem
involved in band structure calculation and elaborate on the derivation of the parameterized
eigenvalue problem through Bloch’s theorem as well as the two modes in two-dimension PhCs.
Section 3 is concerned with the main regularity of the band functions, based upon which we
introduce the numerical schemes to reconstruct these band functions in Section 4. Extensive
numerical experiments are illustrated in Section 5 to support our theoretical findings. Finally,
we present in Section 6 conclusions and future work.

2 Preliminaries

To study the propagation of light in Photonic Crystals, we begin with the macroscopic Maxwell
equations. In SI convention, the Maxwell equations are composed of the following four equations
[16]:

∇ˆ E ` BB
Bt
“ 0,

∇ˆH´
BD
Bt

“ J ,

∇ ¨D “ ρ,

∇ ¨B “ 0,
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where E is the electric field, H is the magnetic field, D is the electric displacement field, B is the
magnetic induction field, J is the free current density, ρ is the free charge density. Assuming
there are no sources of light, we can set J “ 0 and ρ “ 0.

It is conventional to use the so-called constitutive relations to describe how D and B de-
pend on E and H. Strictly speaking, the constitutive relations are nonlinear. However, for
most of the dielectric materials, we assume the field strengths are sufficiently weak and the ma-
terials are isotropic and nondispersive media, then it is reasonable to use the following linear
approximations:

D “ ε0εE ,
B “ µ0µH,

where ε0 is the vacuum permittivity, ε is the relative permittivity, µ0 is the vacuum permeability,
and µ is the relative magnetic permeability. Note that here both ε and µ are scalar functions
that map points in R3 to R and ε, µ P L8pR3q. In most Photonic Crystals, it is assumed that
the materials are nonmagnetic, i.e., µ ” 1.

After introducing all of the above assumptions, the Maxwell equations can be formulated as

∇ˆ E ` µ0
BH
Bt

“ 0, (2.1a)

∇ˆH´ ε0ε
BE
Bt
“ 0, (2.1b)

∇ ¨ pεEq “ 0, (2.1c)

∇ ¨H “ 0. (2.1d)

Here both E and H are functions of time and space, i.e., E “ Epx, tq, H “ Hpx, tq, while the
coefficients of these partial differential equations are time-independent. Thus, we can use the
Fourier transformation in time domain to decompose the functions E and H depending on space
and time into functions depending on spatial frequency, i.e.,

Epxq :“ pFtEqpx;ωq “

ż

R
Epx, tqeiωtdt,

Hpxq :“ pFtHqpx;ωq “

ż

R
Hpx, tqeiωtdt.

According to Ftpu
1q “ ´iωFtu, further applying the Fourier transform operator to equations

(2.1a)-(2.1d) , we get the time harmonic Maxwell equations:

∇ˆ Epxq ´ iωµ0Hpxq “ 0, (2.2a)

∇ˆHpxq ` iωε0εpxqEpxq “ 0, (2.2b)

∇ ¨ pεpxqEpxqq “ 0, (2.2c)

∇ ¨Hpxq “ 0. (2.2d)

Remark 2.1. Since the Fourier transformation forms complex-valued fields, we should remember
to take the real part of the above equations to obtain the physical fields.

Now applying the curl operator to (2.2a) and using (2.2b), we obtain

∇ˆ p∇ˆ Epxqq ´ p
ω

c
q
2εpxqEpxq “ 0, (2.3)
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where ε0µ0 “ c´2. Similarly, applying the curl operator to (2.2b) and using (2.2a), we obtain

∇ˆ
ˆˆ

1

εpxq

˙

∇ˆHpxq

˙

´

´ω

c

¯2

Hpxq “ 0. (2.4)

For a given frequency ω, we can find the existence of the spatial pattern Epxq and Hpxq
through the above equations (2.3) and (2.4). In fact, we only need to consider one of the above
equations, since we can derive from (2.2a) and (2.2b) that

Hpxq “ ´
i

ωµ0

∇ˆ Epxq, (2.5a)

Epxq “
i

ωε0εpxq
∇ˆHpxq. (2.5b)

Remark 2.2. The two divergence equations (2.2c) and (2.2d) are implicitly satisfied, which can
easily be seen by applying the divergence operator to equations (2.2a) and (2.2b), and considering
the fact that ω ą 0. Hence, now we only focus on the other two of the time harmonic Maxwell
equations as long as we drop those “spurious modes” existing at ω “ 0.

To summarize, the eigenvalue problems (2.3) and (2.4) are two crucial parts of studying the
propagation of electromagnetic waves in PhCs and our aim is to find the eigenpairs pω,Eq and
pω,Hq satisfying these two equations, respectively.

2.1 Modes in two-dimensional Photonic Crystals

In 2D case, the permittivity ε is invariant in the direction of the holes or rods, the z-direction.
Hence, the permittivity ε satisfies εpxq “ εpx, y, 0q, for all x “ px, y, zq P R3. So we can also
restrict our electric field and magnetic field to the xy plane, i.e.,

Epxq “ Epx, y, 0q “ pE1px, y, 0q, E2px, y, 0q, E3px, y, 0qq,

Hpxq “ Hpx, y, 0q “ pH1px, y, 0q, H2px, y, 0q, H3px, y, 0qq,

for all x “ px, y, zq P R3. Then a straightforward calculation leads to

∇ˆ E “

ˆ

BE3

By

˙

i`

ˆ

´
BE3

Bx

˙

j`

ˆ

BE2

Bx
´
BE1

By

˙

k, (2.6)

∇ˆ p∇ˆ Eq “

ˆ

B2E2

ByBx
´
B2E1

By2

˙

i`

ˆ

´
B2E2

Bx2
`
B2E1

BxBy

˙

j`

ˆ

´
B2E3

Bx2
´
B2E3

By2

˙

k, (2.7)

∇ˆH “

ˆ

BH3

By

˙

i`

ˆ

´
BH3

Bx

˙

j`

ˆ

BH2

Bx
´
BH1

By

˙

k, (2.8)

∇ˆ
ˆ

1

εpxq
∇ˆH

˙

“

ˆ

B

By

1

εpxq

BH2

Bx
´
B

By

1

εpxq

BH1

By

˙

i`

ˆ

´
B

Bx

1

εpxq

BH2

Bx
`
B

Bx

1

εpxq

BH1

By

˙

j`

ˆ

´
B

Bx

1

εpxq

BH3

Bx
´
B

By

1

εpxq

BH3

By

˙

k. (2.9)

Plugging (2.7) into (2.3), we obtain

´∆E3pxq ´ p
ω

c
q
2εpxqE3pxq “ 0, in R2.
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Combining with (2.6), (2.5a) implies

H1pxq “ ´
i

ωµ0

B

By
E3pxq,

H2pxq “
i

ωµ0

B

Bx
E3pxq.

Analogously, we derive

´∇ ¨ 1

εpxq
∇H3pxq ´ p

ω

c
q
2H3pxq “ 0, in R2.

Following equation (2.8) and (2.5b), we get

E1pxq “
i

ωε0εpxq

B

By
H3pxq,

E2pxq “ ´
i

ωε0εpxq

B

Bx
H3pxq.

The above derivation yields two scalar eigenvalue problems and we also deduce that the com-
ponents of the electric field and magnetic field are not independent. Indeed, H1, H2 are related
to E3, and E1, E2 are related to H3. Thus, we can classify the electromagnetic waves in terms
of whether E3 or H3 equals to zero. which is often referred to as TE mode and TM mode re-
spectively. In other words, in TE mode, the magnetic field is directed along the z axis and the
electric field is perpendicular to this axis, while TM mode consists of electric field along z axis
and magnetic field perpendicular to the z axis.

To conclude, the eigenvalue problems in 2D PhCs reduce to

´∆Epxq ´ p
ω

c
q
2εpxqEpxq “ 0, in R2 (TM mode), (2.10)

´∇ ¨ 1

εpxq
∇Hpxq ´ pω

c
q
2Hpxq “ 0, in R2 (TE mode). (2.11)

2.2 Bloch’s theorem

Bloch’s theorem [22] states that in periodic crystals, wave functions take the form of a plane
wave modulated by a periodic function. Mathematically, they can be written as

Ψpxq “ eik¨xupxq,

where Ψ is the wave function, upxq is a periodic function with the same periodicity as the crystal
lattice, k is the wave vector. Functions of this form are known as Bloch functions or Bloch states.

Proposition 2.1. The periodicity condition of upxq implies that each Bloch state can be de-
termined by its values within the unit cell Ω spanned by the primitive lattice vectors. So it is
sufficient to study only in the unit cell Ω.

Proposition 2.2. In 2-dimension case, eipk`n¨bq¨x “ eik¨x, where n “ pn1, n2q P pZ`q2, b “
pb1,b2q, and each bi is the reciprocal lattice vector with the property bi ¨ aj “ 2πδij for all
primitive lattice vectors aj. Thus, the wave vector can be restricted into the unit reciprocal
lattice B, which is the so-called first Brillouin zone. In addition, note that in some cases, further
utilization of symmetry can even restrict k to the triangular irreducible Brillouin zone Bred which
is proved in detail in [17].
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By Bloch’s theorem, we have Epxq “ eik¨xu1pxq, Hpxq “ eik¨xu2pxq, and hence the eigenvalue
problems (2.10) and (2.11) reduce to

´p∇` ikq ¨ pp∇` ikqu1pxqq ´ p
ω

c
q
2εpxqu1pxq “ 0, in Ω (TM mode), (2.12a)

´p∇` ikq ¨
ˆ

1

εpxq
p∇` ikqu2pxq

˙

´ p
ω

c
q
2u2pxq “ 0, in Ω (TE mode), (2.12b)

where k varies in the first Brillouin zone, and uipxq satisfies the periodic boundary conditions
uipxq “ uipx` ajq with aj being the primitive lattice vector for i, j “ 1, 2.

Now we consider both modes simultaneously by

´ p∇` ikq ¨ αpxqp∇` ikqupxq ´ λβpxqupxq “ 0, in Ω, (2.13)

with k P B and λ “
`

ω
c

˘2
. In the TM mode, U describes the electric field E in z-direction and

the coefficients αpxq and βpxq are

αpxq :“ 1, βpxq :“ εpxq.

Similarly, in the TE mode, U describes the magnetic field H in z-direction and the coefficients
αpxq and βpxq are

αpxq :“
1

εpxq
, βpxq :“ 1.

3 Regularity of band functions and eigenfunctions

To further analyze the properties of band functions, we first define some function spaces. Let
L2pΩq denote the space of square integrable functions equipped with the weighted norm

}f}2 :“

ż

Ω

|fpxq|2βpxqdx.

Let H1pΩq Ă L2pΩq with square integrable gradient be equipped with the standard H1 norm.
H1
πpΩq Ă H1pΩq is composed of functions with periodic boundary conditions on BΩ. Moreover,

let

H1
πpΩ,∆, αq :“

 

v P H1
πpΩq : ∆v P L2

pΩq, αBnLv|L “ ´αBnRv|R and αBnTu|T “ ´αBnBu|B
(

with BnL , BnR , BnB , BnT denoting the outward normal derivatives on the left, right, bottom and
top boundaries of Ω, respectively.

The Bloch’s theorem expands the original operator L :“ ´ 1
βpxq

∇ ¨ αpxq∇ defined on Sobolev

space H2pR2q into a new set of operators Lk :“ ´ 1
βpxq
p∇ ` ikq ¨ αpxqp∇ ` ikq defined on

H1
πpΩ,∆, αq. The following theorem proved in [10] represents the spectrum of the operator

L using that of Lk.

Theorem 3.1. For all k P B, Lk has a non-negative discrete spectrum. We can enumerate these
eigenvalues in a nondecreasing manner and repeat according to their finite multiplicities as

0 ď λ1pkq ď λ2pkq ď ¨ ¨ ¨ ď λnpkq ď ¨ ¨ ¨ ď 8.
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tλnpkqu
8
n“1 is an infinite sequence with λnpkq being a continuous function with respect to the

wave vector k and λnpkq Ñ 8 when n Ñ 8. Moreover, the spectrum σpLq of the operator L is
connected to the spectrum σpLkq of the operators Lk through

σpLq “
ď

kPB
σpLkq.

In view that λnpkq “
´

ωnpkq
c

¯2

, Theorem 3.1 implies that each band function ωnpkq is con-

tinuous for all band number n P N`.
Next we introduce one of the most important properties of band functions, which lays the

main foundation for our proposed interpolation method.

Theorem 3.2 (Piecewise analyticity of the band functions). 2D periodic PhCs band functions
are piecewise analytic in the first Brillouin zone B. In specific, each band function ωnpkq is
analytic in BzXn, where Xn is a subset composed of branch points and the origin with zero
Lebesgue measure.

Proof. Our proof is mainly based upon the analyticity of the Bloch variety that was proved in
[24, Theorem 4.4.2]. For the sake of completeness, we repeat it in Theorem 3.3. Our proof is
inspired by the procedure used in [36], wherein the Bloch wave of Schrödinger equation with
periodic potential was considered.

The Bloch variety is defined as

BpLkq “
 

pk, λq P R3 : Lku “ λu admits a nonzero function u P H1
πpΩ,∆, αq

(

. (3.1)

Theorem 3.3 implies that there is an analytic function Dpk, λq on R3 such that BpLkq is its set
of zeros, i.e.,

BpLkq “
 

pk, λq P R3
|Dpk, λq “ 0

(

.

We now decompose BpLkq into two types of sets, where the first type is

Br :“
!

pk0, λ0q P BpLkq :
Bm´1D

Bλm´1
“ 0 in a neighborhood of pk0, λ0q

and
BmD

Bλm
|pk0,λ0q ‰ 0 for some m P N`

)

, (3.2)

and the second type is Bs :“ BpLkqzB
r.

Note that λnpkq Ñ 8 when n Ñ 8 for all k P B. To the aim of defining a bounded subset
of BpLkq, we introduce

Bn :“
n
ď

l“1

tpk, λlpkqq|pk, λlpkqq P BpLkqu .

Analogously, this leads to bounded subsets of Br and Bs given by

Br
n :“ Bn XB

r and Bs
n :“ Bn XB

s.

Furthermore, let Xs
n be the projection of Bs

n onto λ “ 0 defined by

Xs
n :“ tk P B|pk, λq P Bs

n for some λu .
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The definition of Bs
n implies that Xs

n is the set of branch points for the first n bands. Moreover,
for any pk0, λ0q P Bs

n, there is an integer m P N` such that pk0, λ0q P tpk, λq : Dpk, λq “
0u X tpk, λq : BmD

Bλm
“ 0u, which is a one-dimensional variety. Hence Xs

n, the projection of Bs
n

onto the hyperplane λ “ 0, is a subset of B with Lebesgue measure zero. Let k0 P BzXs
n, i.e.,

pk0, λlpk0qq P B
r
n for l “ 1, ¨ ¨ ¨ , n. Due to the implicit mapping theorem for analytic functions

[21], there is a neighborhood Npk0q in which λlpkq is the unique analytic solution of B
m´1D
Bλm´1 “ 0

for some m P N`. This implies that each positive band function ωlpkq “ c ¨
a

λlpkq is analytic
in BzXs

n. Besides, it is well known that only at the origin the first eigenvalue equals to 0. Thus,
we have Xn “ Xs

n Y t0u.

Theorem 3.3. ([24, Theorem 4.4.2]) Let L be a general periodic elliptic operator in Rn, then
the complex Bloch variety of L,

BpLq “ tpk, λq P Cn
ˆ C| the equation Lu “ λu has a non-zero Bloch function with ku,

is the set of all zeros of an entire function on Cn`1.

Theorem 3.4 (mentioned in [23] and proved by perturbation theory [20]). If we only consider
one component ki of the vector k “ pk1, k2q, then all the positive band functions can be resorted
when crossing the branch points such that they are analytic functions with respect to ki.

Theorem 3.2 states that band functions are piecewise analytic with potential singularities
occurring at branch points and origin. Theorem 3.4 further shows the analytic continuation
of band functions in one variable through branch points. In the following, we will discuss the
properties of these singular points and the smoothness of band functions in more details. First
we study the limit of eigenfunctions along any band functions.

The variational formulation of (2.13) is: for a given k P B, find non-trivial eigenpair pλ, uq P
pR, H1

πpΩqq satisfying

$

&

%

ż

Ω

αp∇` ikqu ¨ p∇´ ikqv̄ ´ λβuv̄dx “ 0, for all v P H1
πpΩq

}u} “ 1.

(3.3)

Using the sesquilinear forms

apu, vq :“

ż

Ω

αp∇` ikqu ¨ p∇´ ikqv̄ dx,

bpu, vq :“

ż

Ω

βuv̄ dx,

(3.3) reads: for a given k in B, find non-trivial eigenpair pλ, uq P pR, H1
πpΩqq such that

#

apu, vq “ λbpu, vq, for all v P H1
πpΩq

bpu, uq “ 1.
(3.4)

Suppose that we fix a particular k, then we denote the eigenspace of one of the corresponding
eigenvalues λ as Epλq and let L̃k be the operator defined on the quotient space H̃1

πpΩ,∆, αq :“
H1
πpΩ,∆, αq{Epλq with the same form as Lk. Then the unique different value between the

resolvent sets of L̃k and Lk is λ. More precisely, they have the relation ρpL̃kq “ ρpLkqYtλu, i.e.,
λ is in the resolvent set of L̃k. In the following, we investigate the regularity of the eigenfunctions.
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Theorem 3.5 (Continuity of the eigenfunctions in BzXn). Let ωnpkq be the nth band function for
n P N`, and let upx;kq be one of its corresponding normalized eigenfunctions if the corresponding
eigenvalue λnpkq has multiplicity larger than one, then the follow statement hold,

(i) upx;kq can be defined such that upx;kq is continuous with respect to the wave vector k for
k R Xn.

(ii) If k P Xn and the multiplicity of the eigenvalue λnpkq is M ě 2 with tuqpx;kquMq“1 being
its associated eigenfunctions, then there may be a normalized eigenfunction upx;kq that
admits jump discontinuity, i.e., there is tcqi˘u

M
q“1 Ă C, satisfying

lim
δÑ0

upx;k˘ δeiq “
M
ÿ

q“1

cqi˘uqpx;kq and

›

›

›

›

›

M
ÿ

q“1

cqi˘uqpx;kq

›

›

›

›

›

“ 1,

but
M
ÿ

q“1

cqi`uqpx;kq ‰
M
ÿ

q“1

cqi´uqpx;kq.

Here, δ ą 0 is a parameter such that k ˘ δei P B and ei is the canonical basis in R2 for
i “ 1, 2.

Proof. For the sake of simplicity, we drop the band number for the moment. Let ωpkq be the
band function with upx;kq being the associated eigenfunction for any k P B. Let the error
function be

eipδq :“ upx;k` δeiq ´ upx;kq,

with δ ą 0 being a parameter such that k` δei P B.
By an application of (2.13) and (3.4), we deduce that the error function eipδq satisfies the

strong formulation
pLk ´ λpkqq eipδq “ fpx; δq, (3.5)

where

fpx; δq “ pλpk` δeiq ´ λpkqqupx;k` δeiq ´ δp2ki ` δq
1

εpxq
upx;k` δeiq

` δi
1

βpxq

B

Bxi
pαpxqupx;k` δeiqq ` δi

1

εpxq

B

Bxi
upx;k` δeiq.

The corresponding weak formulation is

apeipδq, vq ´ λpkqbpeipδq, vq “ gpv;k, λ, uq, for all v P H1
πpΩq,

with gpv;k, λ, uq being

gpv;k, λ, uq “ pλpk` δeiq ´ λpkqq bpupx;k` δeiq, vq

´ δp2ki ` δqmαpupx;k` δeiq, vq ´ δmαipupx;k` δeiq, vq,

and

mαipu, vq “

ż

Ω

iα

ˆ

u
Bv̄

Bxi
´ v̄

Bu

Bxi

˙

dx, i “ 1, 2, (3.6a)

mαpu, vq “

ż

Ω

αuv̄ dx. (3.6b)
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Following the Fredholm–Riesz–Schauder theory [29], we can derive that for a given k and a
corresponding eigenvalue λpkq, Problem (3.5) has a unique solution eipδq “ pL̃k ´ λIq´1fpx; δq
in the quotient space H̃1

πpΩ,∆, αq which is bounded by

}eipδq}H̃1
πpΩq

ď }pL̃k ´ λIq
´1
} ¨ }fpx; δq}. (3.7)

Note that λpkq is a continuous function and upx;kq P H1
πpΩ,∆, αq, which lead to }fpx; δq} Ñ 0

as δ Ñ 0. Together with (3.7), the error function eipδq converges to some function in Epλpkqq
as δ Ñ 0. In a similar manner, we obtain upx;k ´ δeiq ´ upx;kq converges to some function in
Epλpkqq as δ Ñ 0, i.e.,

lim
δÑ0

upx;k˘ δeiq P Epλpkqq. (3.8)

Next, we discuss case by case whether a given wave vector k belongs to the singular set Xn as
defined in Theorem 3.2. If k R Xn and the multiplicity of λ is 1 ď M P N`, then the definition
of Br (3.2) implies the existence of a neighborhood Npkq such that for any k ˘ δei P Npkq,
the eigenvalues λpk ˘ δeiq have the same multiplicity. Together with (3.8), this implies the
corresponding eigenfunction satisfying

lim
δÑ0

upx;k˘ δeiq “
M
ÿ

q“1

cqi˘uqpx;kq,

›

›

›

›

›

M
ÿ

q“1

cqi˘uqpx;kq

›

›

›

›

›

“ 1.

Here, tcqi˘u
M
q“1 Ă C are some constant. Thus, we can always find a combination of these M

normalized eigenfunctions tuqpx;kquMq“1 such that there is a normalized eigenfunction upx;kq,
satisfying

lim
δÑ0

upx;k` δeiq “ lim
δÑ0

upx;k´ δeiq “ upx;kq, for i “ 1, 2.

When k P Xn is a singular point and λpkq has multiplicity M ě 2, there is no such kind of
neighborhood Npkq such that for any k ˘ δei P Npkq, the multiplicity of λpk ˘ δeiq is also
M since the Lebesgue measure of Xn vanishes. Consequently, there is no guarantee we can
construct such kind of normalized eigenfunctions to ensure the continuity at k. We only have
for any normalized eigenfunction upx;k˘ δeiq at k˘ δei,

lim
δÑ0

upx;k˘ δeiq “
M
ÿ

q“1

cqi˘uqpx;kq,

with some constant tcqi˘u
M
q“1 Ă C such that }

řM
q“1 c

q
i˘uqpx;kq} “ 1 for i “ 1, 2. This completes

the proof.

Remark 3.1 (Differentiability of the eigenfunctions in BzXn). As is shown in [23], we can fur-
ther prove that the eigenfunctions corresponding to the nth band function can indeed be organized
to be continuously differentiable of any degree in BzXn. However, the properties of eigenfunc-
tions at Xn are not discussed in the aforementioned paper. The authors conjectured that there
may exist an ordering of band functions such that the corresponding eigenfunctions are also con-
tinuously differentiable at Xn. In contrast, Theorem 3.5 indicates the possibility of discontinuity
of the eigenfunctions in Xn.
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Now, we are able to prove the regularity of band functions.

Theorem 3.6 (Lipschitz continuity of the band functions). For the case of 2-dimension periodic
PhCs, ωnpkq P LippBq X ÅpBq for all n P N`. Here, LippBq is the space of Lipschitz continuous
functions in the first Brillouin zone B and ÅpBq denotes the space composed of piecewise analytic
functions with their singular point sets having a zero Lebesgue measure.

Proof. On the one hand, let k P BzXn, and suppose the multiplicity of the eigenvalue λnpkq is
M ě 1 for some n P N`. For simplicity, we drop n and k in the proof. Theorem 3.5 guarantees
the existence of a normalized eigenfunction upx;kq which is continuous in a neighborhood of k.
Taking the partial derivative with respect to ki for i “ 1, 2 at k on both sides of (3.4), this leads
to

ap
Bu

Bki
, vq ´ λbp

Bu

Bki
, vq “ f p1qpv;k, u,

Bλ

Bki
q,

with

f p1qpv;k, u,
Bλ

Bki
q :“ ´mαipu, vq ´ 2kimαpu, vq `

Bλ

Bki
bpu, vq.

Here, the bilinear forms mαip¨, ¨q and mαp¨, ¨q are defined in (3.6).
Note that the operator in the equation above pLk´λIq has the eigenspace Epλq as its kernel.

Let tupu
M
p“1 be a set of basis in Epλq. As a consequence of the Fredholm–Riesz–Schauder theory

[29], adding additional orthogonality with Epλq leads to the well-posedness of the following
problem: seeking Bkiu P H

1
πpΩq, s.t.,

$

&

%

apBkiu, vq ´ λbpBkiu, vq “ f p1qpv;k, u,
Bλ

Bki
q for all v P H1

πpΩq,

bpBkiu, upq “ 0 for p “ 1, ¨ ¨ ¨ ,M.

(3.9)

Let the test function v :“ u, we obtain

apBkiu, uq ´ λbpBkiu, uq “ apu, Bkiuq ´ λbpu, Bkiuq “ f p1qpu;k, u,
Bλ

Bki
q “ 0. (3.10)

Therefore, Bλ
Bki

has to be the solution to the following problem,

f p1qpu;k, u,
Bλ

Bki
q “ 0.

This results in
Bλ

Bki
“ 2kimαpu, uq `mαipu, uq. (3.11)

Consequently, Bλ
Bki

is uniformly bounded.
On the other hand, let k0 P Xn and suppose the multiplicity of the eigenvalue λnpk0q is M ě 1

for some n P N` and let its associated eigenfunctions be tuqpx;k0qu
M
q“1. Then a combination of

(3.11) and Theorem 3.5 leads to the left and right partial derivatives,

Bλ

Bki˘

ˇ

ˇ

ˇ

ˇ

k“k0

“ lim
δÑ0˘

p2kimαpu, uq `mαipu, uqq|k“k0`δei

“ 2ki

M
ÿ

q“1

M
ÿ

p“1

cqi˘c
p
i˘ pmαpuqpx;kq, uppx;kqq `mαipuqpx;kq, uppx;kqqq .

12



Here, the complex values tcqi˘u
M
q“1 Ă C satisfy Theorem 3.5 for i “ 1, 2. Consequently, Bλ

Bki˘

ˇ

ˇ

ˇ

k“k0

are bounded but may take different values.
Finally, the first partial derivative of each positive band function at k P BzXn can be easily

derived from the relation λpkq “
´

ωpkq
c

¯2

. Since the first band function vanishes at k “ 0,

Bω1

Bki`

ˇ

ˇ

ˇ

k“0
“ 8, which is unbounded. Consequently, we proved ωnpkq P LippBq X ÅpBq for all

n P N`, and this completes our proof.

4 Numerical schemes

As shown in the previous section, band functions of 2D periodic PhCs are real-valued, non-
negative, continuous, and piecewise analytic within the first Brillouin zone B. Besides, in 2D
PhCs with symmetrical structures, there exists a triangular area within the first Brillouin zone
B, which is the so-called irreducible Brillouin zone (IBZ) Bred. All other points in B can be
transferred into Bred by mirror symmetry or rotational symmetry, so the eigenvalues at these
points are also the same as the eigenvalues of the corresponding points in Bred, as proved in [17].
Hence, what we focus on is the band function approximation within the triangular domain Bred

or within the quadrilateral domain including Bred and its mirror symmetric area along one of its
edges which we denote as B̃red. After we have obtained the approximate band functions in Bred

or B̃red, the symmetry allows us to directly acquire the approximate band functions in B.
Based upon the properties of band functions we derived, we exploit in this work the band

function reconstruction using Lagrange interpolation. In specific, given a set of N distinct
sampling points tkiu

N
i“1 Ă C for C :“ Bred or C :“ B̃red and the corresponding band function

values tωpkiqu
N
i“1 for a certain band number, the corresponding Lagrange interpolation Lω is a

linear combination of the Lagrange polynomials tlipkqu
N
i“1 for those sampling points satisfying

lipkjq “ δij such that it interpolates the data, i.e.,

Lω “
N
ÿ

i“1

ωpkiqlipkq. (4.1)

We refer to [5, Section 2] for more details on Lagrange interpolation. Here, tωpkiqu
N
i“1 are derived

by solving the eigenvalue problem (2.13) numerically.
As is known that the optimal nodal set within a domain C in uniform norm is characterized

by minimizing the so-called Lebesgue constant ΓN
`

tkiu
N
i“1

˘

, defined by

ΓNptkiu
N
i“1q :“ max

kPC

N
ÿ

i“1

|lipkq|. (4.2)

Let PnpCq be the polynomial space with degree at most n such that N :“ dimpPnpT qq satisfies
N “ pn ` 1q2 for C “ B̃red and N “ 1

2
pn ` 1qpn ` 2q for C “ Bred . Then we have the following

near-best approximation which bounds our interpolation error through the Lebesgue constant
[34, Theorem 15.1],

sup
kPC
|ωpkq ´ Lωpkq| ď

`

1` ΓN
`

tkiu
N
i“1

˘˘

inf
pnPPnpCq

sup
kPC
|ωpkq ´ pnpkq|.

However, the minimization of (4.2) is not trivial to solve for any type of domain in more than
one dimension. Since the denominator of the Lagrange polynomials vanishes on a subset of C,
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the Lebesgue constant is not continuous with respect to the point set tkiu
N
i“1 in CN . Besides,

ΓNptkiu
N
i“1q is very sensitive to the location of the interpolation points, which makes the min-

imization procedure subtle. Although there have been several attempts to produce nodal sets
using direct and indirect methods to minimize the Lebesgue constant, for example, Heinrichs
directly minimized the Lebesgue constant in a triangular area with Fekete points as their ini-
tial guess [13], Babuška minimized norms of the Lagrange interpolation operator, which also
yields small Lebesgue constant in a triangle [6], Sommariva provided the approximate Fekete
and approximate optimal nodal points in the square and the triangle by solving numerically
the corresponding optimization problems [4], nor are we able to find the exact optimal points.
Thus, the question of how to sample points in Bred and B̃red which are suitable for polynomial
interpolation is still an open question.

Since in the multivariate case, the optimal Lagrange interpolant is hard to determine, our
aim is to find a suitable sampling point set, on which our Lagrange interpolation performs well
when dealing with the band function reconstruction.

4.1 Sampling points in triangle

To standardize the problem, let the right isosceles triangle T be the reference triangle,

T :“ tx “ px, yq : 0 ď x ď 1, 0 ď y ď 1´ xu,

and let PnpT q be the space of polynomials on T with degree at most n,

PnpT q “ spantxiyj, i` j ď nu.

In the following, we introduce several sampling methods on this reference triangle T .

Mean optimal points

The mean optimal nodal set is defined by minimizing a norm related to the Lagrange interpolation
operator L, which takes the form [6]

}L}2 :“

ż

T

N
ÿ

i“1

|lipxq|
2dx. (4.3)

Here, tlipxqu
N
i“1 is defined in the same way as in (4.1). Compared with (4.2), the minimization

of (4.3) involves less computational complexity and is thus more favorable. Indeed, suppose
tpipxqu

N
i“1 is a set of standard orthogonal polynomials on the triangle T with degree at most

n, i.e.,
ş

T
pipxqpjpxqdx “ δij for all i, j “ 1, ¨ ¨ ¨ , N , then for any given point set txju

N
j“1, the

Lagrange polynomials, if exist, can be expressed as lkpxq “
řN
i“1 akipipxq with some constants

takiu
N
k,i“1, which allows (4.3) to be expressed as }L}2 “

řN
k“1

řN
i“1 |aki|

2. In comparison, the

calculation of ΓNptxiu
N
i“1q is equivalent to the calculation of maxxPT

řN
k“1 |

řN
i“1 |akipipxq|, which

has more computational complexity. Numerical results show that }L}2zΓN
`

txiu
N
i“1

˘

is not large
and the performance of this kind of point set is nearly optimal.
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Fekete points

Fekete point set [2] is another kind of nearly optimal nodal point set that maximizes the absolute
value of the determinant of Vandermonde matrix V px1,x2, ¨ ¨ ¨ ,xNq,

max
tx1,x2,¨¨¨ ,xN uĂT

|detpV px1,x2, ¨ ¨ ¨ ,xNqq| . (4.4)

Here, V px1,x2, ¨ ¨ ¨ ,xNq is of size N ˆN with entries

Vij “ gjpxiq for i, j “ 1, ¨ ¨ ¨ , N.

tgiu
N
i“1 denotes a set of basis functions in PnpT q. Note that detpV q can be regarded as a polyno-

mial function of px1, ¨ ¨ ¨ ,xnq, which implies the existence of Fekete points for a given compact set
T . Note also that Problem (4.4) involves less computational complexity than the minimization
of (4.2). As the first attempt, Bos [2] constructed the Fekete point set up to the 7th order, which
was further extended up to degree 13 [6] and 18 [32] in a triangle, respectively.

Improved Lobatto grid

The improved Lobatto grid is proposed in [1] as an improvement of the original Lobatto grid,
which composes of pξi, ηjq defined by

ξi “
1

3
p1` 2vj ´ vi ´ vkq, ηj “

1

3
p1` 2vi ´ vj ´ vkq for i “ 1, ¨ ¨ ¨ , n` 1 and j “ 1, ¨ ¨ ¨ , n` 2´ i.

Here, k :“ n` 3´ i´ j and vi :“ 1
2
p1` tiq with ti denoting the zeros of the nth degree Labatto

polynomials.
This proposed point set utilizes the zeros of Lobatto polynomials which are close to optimal

for 1D interpolation [8]. It is generated by deploying Lobatto interpolation nodes along the
three edges of the triangle, and then computing interior nodes by averaged intersections to
achieve three-fold rotational symmetry. The symmetry of the distribution with respect to the
three vertices is a significant improvement of the original Lobatto grid. Its straightforward
implementation makes it an attractive choice, and numerical results show that the Lebesgue
constant for this point set is competitive with the above mentioned two point sets.

The following figures show the comparison of mean optimal points, Fekete points, and the
improved Lobatto grid for n “ 4, 8.

(a) n “ 4 (b) n “ 8

Figure 2: Mean optimal points, Fekete points, and improved Lobatto grid for n “ 4, 8.
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Remark 4.1 (Lebesgue constants for mean optimal points, Fekete points and improved Lobatto
grid). Although there is no rigorous proof on the boundedness of the Lebesgue constants for mean
optimal points, Fekete points and improved Lobatto grid, numerical evidence [6, 32, 1] suggests
that their Lebesgue constants are proportional to

?
N .

4.2 Sampling points in quadrilateral

For a quadrilateral, we will first project it into the unit square S :“ r´1, 1s2 by projective
mapping [12] and then consider the polynomial space with two variables and degree at most n
in each variable, i.e.,

PnpSq “ spantxiyj, i, j ď nu.

It is well known that in 1D case, interpolation using the zeros of Chebyshev polynomials is close
to optimal. So in the case of unit square, we mainly consider the following two sampling point
sets with tensor product:

The Chebyshev points of the first kind (Cheb1) in the interval r´1, 1s are the zeros of the
Chebyshev polynomial of the first kind Tn`1pxq,

xk “ cos
2k ` 1

2pn` 1q
π, k “ 0, ¨ ¨ ¨ , n.

The Chebyshev points of the second kind (Cheb2) in the interval r´1, 1s are the zeros of the
Chebyshev polynomial of the second kind Un´1pxq times px2 ´ 1q, i.e.,

xi “ cos

ˆ

i

n
π

˙

, i “ 0, ¨ ¨ ¨ , n.

Figure 3 demonstrates the comparison of Cheb1 and Cheb2 for n “ 4 and n “ 8 after using
tensor product to expand them to the unit square.

(a) n “ 4 (b) n “ 8

Figure 3: Cheb1 and Cheb2 with tensor product for n “ 4, 8.

Remark 4.2 (Lebesgue constants for Cheb1 and Cheb2). Since the Lebesgue constants of Cheb1
and Cheb2 are both proportional to logpNq [15], where N “ n ` 1 is the dimension of the
polynomial space in r´1, 1s, the Lebesgue constants of our nodal point sets are proportional to
plogpNqq2, where N “ pn ` 1q2 is the dimension of the polynomial space with two variables and
degree at most n in each variable.
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Remark 4.3 (Comparison of computational complexity). It is worth noticing that the com-
putational complexity for (4.1) is consistent corresponding to all these five sampling methods,
even though the number of Chebyshev points is almost twice as the number of those three kinds of
sampling points within the triangular area, due to the mirror and rotational symmetry mentioned
earlier. For example, in Figure 3(a), we have 25 Chebyshev points, but we only need to compute
eigenvalues at 15 of them within the right isosceles triangle.

Remark 4.4. Considering the importance of the edges of the IBZ BBred, we expect that the
performance of Cheb2 is better than that of Cheb1. The numerical results presented in the next
section can further confirm this speculation.

5 Numerical experiments

To demonstrate the performance of our proposed method (4.1) together with the sampling meth-
ods presented in Sections 4.1 and 4.2, we mainly consider PhCs with a square unit cell as in
Figure 4 and a hexagonal unit cell as in Figure 5. We calculate the eigenvalue problem for a
given sampling point using the conforming Galerkin Finite Element method.

Figure 4: Square lattice: unit cell (left) and the corresponding first Brillouin zone (right). The
IBZ is the blue area with vertices Γ “ p0, 0q, X “ 1

a
pπ, 0q and M “ 1

a
pπ, πq.

Figure 5: Hexagonal lattice: unit cell (left) and the corresponding first Brillouin zone (right).

The IBZ is the blue area with vertices Γ “ p0, 0q, K “ 1
a
p4

3
π, 0q and M “ 1

a
pπ,

?
3

3
πq.

Due to the high contrast between the relative permittivity of the circular medium and its
external medium, we utilize a fitted mesh Th generated by distmesh2d provided by Persson
and Strang to avoid the stabilization issue when an unfitted mesh is used, which is depicted in
Figures 6(a) and 6(b). Here, we choose mesh size h “ 0.025a for square lattice and h “ 0.05a
for hexagonal lattice. The associated conforming piecewise affine space is

Vh “ tvh P CpΩq : vh|K P P1pKq for all K P Th u.
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(a) Square lattice #DOFs=2107 (b) Hexagonal lattice #DOFs=1781

Figure 6: Discretization of the unit cell Ω by distmesh2d.

Given k P B, the conforming Galerkin Finite Element approximation to Problem (3.4) reads
as finding non-trivial eigenpair pλh, uhq P pR, Vhq, satisfying

#

apuh, vhq “ λbpuh, vhq for all v P Vh

bpuh, uhq “ 1.
(5.1)

Note that Bred is a triangle for both cases. We map it into the right isosceles triangle and use B̂
which is composed of 253 evenly distributed points shown in Figure 7(a) and Figure 7(b) as the
reference solution. The pointwise relative error is defined as

eipkq :“
|ωipkq ´ Lωipkq|

ωipkq
for k P B̂ and i “ 1, ¨ ¨ ¨ , 6.

(a) 253 evenly distributed points in
the IBZ of square lattice.

(b) 253 evenly distributed points
in the IBZ of hexagonal lattice.

Figure 7: B̂.

Here, ωipkq is ith band function obtained directly by the conforming Galerkin Finite Element
method over B̂ using the same mesh on the unit cell Ω, and Lωipkq is the Lagrange interpolation
(4.1) with a certain sampling method. In specific, we use maximum relative error and average
relative error to investigate the performance of our methods, which are defined by

error8 :“ max
i“1,¨¨¨ ,6

max
kPB̂

|eipkq| and erroravg :“
1

253

ÿ

kPB̂

˜

1

6

6
ÿ

i“1

|eipkq|

¸

.
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(a) TM mode (b) TE mode

(c) TM mode (d) TE mode

Figure 8: Square lattice: the performance of (4.1) under error8 and erroravg.

(a) TM mode (b) TE mode

(c) TM mode (d) TE mode

Figure 9: Square lattice: band functions along BBred using Fekete points and Cheb2 with degree
n “ 8.
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5.1 Numerical tests with square lattice in Figure 4

In this section, we are concerned with the case of square lattice as in Figure 4, wherein the lattice
vectors are a1 “ ap0, 1qT , and a2 “ ap1, 0qT with a positive parameter a. The circle area has
radius r “ 0.2a and ε “ 8.9 (as for alumina) which is embedded in air (ε “ 1). In this case,
due to the symmetry of the first Brillouin zone B, we can restrict the sampling points k to the
triangle Bred and apply the sampling methods in Subsection 4.1. Alternatively, we can sample k
in a quadrilateral B̃red composed of Bred and the its symmetric area along its longest edge, then
consider the sampling methods in Subsection 4.2.

The performance of Lagrange interpolation on those five kinds of sampling points is shown in
Figure 8. Note that the horizontal axis shows the number of sampling points inside Bred. Figure
9 depicts the approximate band structure along the edges of the irreducible Brillouin zone using
Fekete points and Cheb2 with degree n “ 8.

(a) TM mode (b) TE mode

(c) TM mode (d) TE mode

Figure 10: Hexagonal lattice: the performance of (4.1) under error8 and erroravg.

5.2 Numerical tests with hexagonal lattice in Figure 5

In this section, we focus on another kind of 2D PhCs which has infinite periodic hexagonal
lattice. As shown in Figure 5, its unit cell is composed of six cylinders of dielectric material
with dielectric constant ε “ 8.9 embedded in the air. The lattice vectors are a1 :“ ap1, 0qT and

a2 :“ ap1
2
,
?

3
2
qT with lattice constant a “ 3R. The radius of cylinders is r “ 1

3
R. Here, the

positive parameter R denotes the length of hexagon edges. In this case, due to the symmetry of
the first Brillouin zone, we can restrict the wave vector k to Bred or B̃red which is composed of
Bred and the symmetric area of Bred along its longest edge.

In Figure 10, we display the performance of Lagrange interpolation methods (4.1) based
upon those five types of sampling methods measured in error8 and erroravg against the number
of sampling points inside Bred. One can observe excellent performance for all cases from Figures
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8 and 10. For instance, 45 sampling points inside Bred leads to error8 below 1% depending on
the choice of sampling methods as well as the smoothness of the band functions. Note that the
performance for hexagonal unit cell is typically better than that for the square unit cell since the
first six band functions are smoother in the former case. One can infer the regularity of band
functions along the edges of Bred. We observe from Figures 11 and 9 that the band functions
with square lattice exhibit a larger and more diverse frequency distribution range, resulting in
more singularities. Besides, we can also observe from Figures 8 and 10 that the performance
of Lagrange interpolation based upon the first three sampling methods (Fekete points, mean
optimal points and improved Lobatto grid) in both TE mode and TM mode, are similar or
better than Cheb1 and Cheb2.

(a) TM mode (b) TE mode

(c) TM mode (d) TE mode

Figure 11: Hexagonal lattice: band functions along the edges of the irreducible Brillouin zone
using Fekete points and Cheb2 with degree n “ 8.

Figure 11 illustrates the approximate band structure along the edges of the irreducible Bril-
louin zone using Fekete points and Cheb2 with degree n “ 8, showing that the approximate
band functions match the ground truth well within a reasonable accuracy. Together with Figure
9, we conclude that all those five methods can provide reasonably good reconstruction. Figure
12 shows a zoomed-in view of some special points in Figures 9 and 11. We can observe that the
areas with large interpolation errors are clearly the areas where the adjacent band functions are
very close, which is consistent with the conclusion we have drawn before that the branch points
are singular points.

Note that it is quite difficult or even impossible to identify all branch points or distinguish
from a fake branch point where two adjacent band functions are close but without intersecting
due to many factors, for example the rounding error and numerical error resulting from (5.1). As
a result, our numerical method can only yield approximative branch points where the adjacent
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band functions are close. Nevertheless, the overall performance demonstrates that our method is
capable of approximating the band functions of 2-dimension PhCs within a reasonable accuracy.

(a) Square lattice TM mode (b) Square lattice TE mode

(c) Hexagonal lattice TM mode (d) Hexagonal lattice TE mode

Figure 12: Zoom-in to the interpolation results within the red box area.

(a) Square lattice TM mode (b) Square lattice TE mode

(c) Hexagonal lattice TM mode (d) Hexagonal lattice TE mode

Figure 13: Convergence results.

We present in Figure 13 the convergence of our proposed method for the crystals with both
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square lattice and hexagonal lattice for the TM mode and TE mode. We observe algebraic
convergence and the slopes of these five sampling methods are similar as we expected from the
approximation theory [33].

6 Conclusion

In this paper, we analyze the properties of photonic band functions and consider the problem of
band structure reconstruction in the context of two-dimensional periodic PhCs. The regularity of
band functions is crucial for our proposed approximation method. In contrast to the traditional
sampling algorithms based upon global polynomial interpolation and limited to the edges of the
irreducible Brillouin zone, we propose an efficient and accurate global approximation algorithm
based upon the Lagrange interpolation methods for computing band functions over the whole first
Brillouin zone. Regarding the selection of sampling points, we consider five different sampling
algorithms to select suitable interpolation points in the first Brillouin zone or the irreducible
Brillouin zone. We observe algebraic convergence rate and the numerical tests demonstrate that
our method can approximate band functions efficiently. For example, our methods reach relative
error below 1% using only 45 sampling points. It should be noted that we focus on sampling
algorithms based upon global polynomial interpolation in this paper since this is the current
Start-Of-The-Art. However, this current method cannot identify branch points quite efficiently,
since the global interpolation approximation has a relatively slow convergence rate due to the
piecewise analyticity of the band functions. In order to make better use of this property, we
will explore adaptive sampling algorithms based upon piecewise polynomial interpolation in the
future for better performance.

Acknowledgments

Y. W. acknowledges support from the Research Grants Council (RGC) of Hong Kong via the
Hong Kong PhD Fellowship Scheme (HKPFS). G.L. acknowledges support from Newton Interna-
tional Fellowships Alumni following-on funding awarded by The Royal Society and Early Career
Scheme (Project number: 27301921), RGC, Hong Kong. We thank Richard Craster (Imperial
College London) for fruitful discussion.

References

[1] M. Blyth and C. Pozrikidis. A lobatto interpolation grid over the triangle. IMA journal of
applied mathematics, 71(1):153–169, 2006.

[2] L. Bos. On certain configurations of points in rn which are unisolvent for polynomial
interpolation. Journal of approximation theory, 64(3):271–280, 1991.

[3] L. Bos, S. De Marchi, A. Sommariva, and M. Vianello. Computing multivariate fekete and
leja points by numerical linear algebra. SIAM Journal on Numerical Analysis, 48(5):1984–
1999, 2010.

[4] M. Briani, A. Sommariva, and M. Vianello. Computing fekete and lebesgue points: simplex,
square, disk. Journal of Computational and Applied Mathematics, 236(9):2477–2486, 2012.

23



[5] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang. Spectral methods: fundamentals in
single domains. Springer Science & Business Media, 2007.
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