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A B S T R A C T   

Dynamic functional networks (DFN) have considerably advanced modelling of the brain communication pro-
cesses. The prevailing implementation capitalizes on the system and network-level correlations between time 
series. However, this approach does not account for the continuous impact of non-dynamic dependencies within 
the statistical correlation, resulting in relatively stable connectivity patterns of DFN over time with limited 
sensitivity for communication dynamic between brain regions. Here, we propose an activation network frame-
work based on the activity of functional connectivity (AFC) to extract new types of connectivity patterns during 
brain communication process. The AFC captures potential time-specific fluctuations associated with the brain 
communication processes by eliminating the non-dynamic dependency of the statistical correlation. In a simu-
lation study, the positive correlation (r = 0.966, p < 0.001) between the extracted dynamic dependencies and 
the simulated "ground truth" validates the method’s dynamic detection capability. Applying to autism spectrum 
disorders (ASD) and COVID-19 datasets, the proposed activation network extracts richer topological reorgani-
zation information, which is largely invisible to the DFN. Detailed, the activation network exhibits significant 
inter-regional connections between function-specific subnetworks and reconfigures more efficiently in the 
temporal dimension. Furthermore, the DFN fails to distinguish between patients and healthy controls. However, 
the proposed method reveals a significant decrease (p < 0.05) in brain information processing abilities in pa-
tients. Finally, combining two types of networks successfully classifies ASD (83.636 % ± 11.969 %, mean ± std) 
and COVID-19 (67.333 % ± 5.398 %). These findings suggest the proposed method could be a potential analytic 
framework for elucidating the neural mechanism of brain dynamics.   

1. Introduction 

The human brain establishes cognitive functions through continuous 
communication between multiple functional systems. Complex and 
multifaceted communication crucially supports efficient information 
processing. Numerous studies have utilized structural and functional 

brain networks to determine the neural mechanisms that allow efficient 
processing (Park and Friston, 2013; Sporns and Betzel, 2016; Buckner 
and DiNicola, 2019; Ricchi et al., 2022). Nevertheless, the relatively 
stable connectivity patterns over time poses a significant limitation of 
the functional network in modeling the brain’s efficient communication 
process. The prevailing functional network approaches rely solely on 
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statistical correlation and do not account for the complexity between the 
balance of dynamic neural fluctuations and essential maintenance. 
Therefore, capturing the precise dynamic neural fluctuations within 
statistical correlations and establishing an optimal spatiotemporal 
framework for brain communication remain significant challenges. 

Efficient transmission or distribution of information requires coor-
dinated engagement. In the context of brain networks, functional con-
nectivity (FC) has been extensively utilized to characterize this process. 
Static FC is traditionally calculated using statistical correlations over the 
entire time series of data acquisition (Hutchison et al., 2013). Explora-
tions of static FC on various physiological signals (EEG, EMG, fMRI, etc.) 
significantly extend our knowledge of the functional brain architecture 
underlying cognitive processes, diseases and their neural modulation 
(Petersen and Sporns, 2015; Ji et al., 2019; Zimmermann et al., 2018; 
Zhao et al., 2019; Xu et al., 2021; Wang et al., 2021). However, static FC 
ignores detailed moment-to-moment variations in the communication 
and thus cannot meet the advancing requirement of network neurosci-
ence concerning inherent dynamics. Recently, the investigation of 
continuous neural interactions has attracted substantial interest. Among 
these studies, the sliding window is the most popular method for 
extracting moment-to-moment communications (Chang and Glover, 
2010; Raut et al., 2021). Briefly, segmenting the entire time series into 
several shorter "windows" improves the statistical correlation’s temporal 
resolution, and accounting for the windows can provide time-varying 
("dynamic") FC (Sakoglu et al., 2010; Calhoun and Adali, 2016; 
Vidaurre et al., 2017; Zhou et al., 2020). The time-varying FC has been 
robustly associated with cognitive processes and changes in processing 
efficiency as a function of time-resolved communication trajectories 
within the given period (Zhang et al., 2016; Yang, 2023). 

However, the conventional FC calculation largely relies on indirect 
measures, such that the time series indirectly encode information of 
neural activity that originates from a stream of spontaneous neural ac-
tivity (Demertzi et al., 2019; Barttfeld et al., 2015; Laumann et al., 
2017). This was demonstrated in studies using anesthesia, which 
showed that FC still fluctuates during unconsciousness, with some 
properties remaining similar to those of the conscious state (Amico et al., 
2017; Vincent et al., 2007; Liang et al., 2015). Thus, a fraction of 
time-varying FC reflects non-cognitive intrinsic or homeostatic process 
(Lurie et al., 2020; Mostame et al., 2019). This non-cognitive component 
serves as the background during the communication process, making it 
essential to distinguish neural fluctuations precisely from the back-
ground. Therefore, a critical issue in characterizing communication is to 
develop a method that can sensitively detect the "ground truth" of neural 
communication processes underlying FC. Directly applying FC to mea-
sure the neural activity dynamics may not be optimal, as this approach 
fails to account for the underlying instantaneous dynamic dependency 
within the FC, thereby limiting quantification accuracy. 

The functional network models brain activity and comprises statis-
tical correlations between various functional systems. Depending on the 
static or time-varying FC application, the pattern of functional network 
is extended across spatial (static functional network, SFN) or spatio-
temporal (dynamic functional network, DFN) scales. Regarding brain 
dynamics, the reconfiguration of DFN follows the evolution of the brain 
communication process. However, studies have highlighted the limita-
tions of its organization. Anatomical structure strongly constrains the 
relationship between the brain’s anatomical structure and functional 
network, as suggested by numerous studies (Honey et al., 2009; Her-
mundstad et al., 2013; Lu et al., 2011). Various anatomical elements and 
links are crucial for generating and propagating information flow in the 
human brain. This constraint contributes to the composition of 
task-irrelevant network patterns and compresses network alterations 
(Fox et al., 2005; De Luca et al., 2006; Lewisa et al., 2009). The con-
nectivity pattern of DFN is relatively stable over time and similar to its 
group-averaged architecture (Mostame and Sadaghiani, 2021; Krienen 
et al., 2014). Such a stable pattern persists consistently across diverse 
tasks and brain functions (Cole et al., 2014). These findings suggest that 

the DFN is not sensitive to the communication dynamics of the human 
brain and provides little information on network reconfiguration during 
the brain communication process. 

Current DFN construction methods directly apply pairwise statistical 
correlations to determine connections, allowing us to learn the distri-
bution of joint functional activity between various brain regions and 
their temporal evolution (Farahani et al., 2019). However, this analytic 
framework is influenced by both neural activity and non-cognitive 
intrinsic or homeostatic processes, resulting in significant constraints 
in representing the brain communication process. Consequently, 
communication dynamics constitute only one aspect of DFN’s topolog-
ical properties. Especially, with the significant constraints, the DFN may 
be challenging to reconfigure its optimal topologies for complex infor-
mation transmission modes to support one or more brain functions (Solé 
et al., 2002). From a natural selection perspective, directly using the 
DFN to characterize the brain communication processes is not 
economical concerning complex brain functions. We must consider an 
alternative network to describe the brain communication processes 
precisely. The underlying instantaneous dynamic dependency within 
the FC could be a valuable marker to assess the dynamic of the 
communication process. As a result, a new framework is required to 
model the dynamic communication extracted from DFN. 

This work proposes a novel framework called an activation network 
to more accurately capture the underlying spatiotemporal reorganiza-
tion within the dynamic functional network. To address the limitations 
of the current DFN framework for detecting dynamics due to back-
ground dependency within FC, we assume that the activity of functional 
connectivity (AFC) and background of functional connectivity (BFC) 
represent FC’s communication dynamics and non-dynamic de-
pendencies, respectively. The BFC is the non-dynamic dependency 
within the statistical correlation, calculated based on the time-invariant 
properties of time series from pair-wise brain regions. The AFC elimi-
nates the non-dynamic dependencies of the statistical correlation to 
capture potential time-specific fluctuations associated with the brain 
communication processes, thereby characterizing dynamic de-
pendencies. We then compose the activation network to extract the 
spatiotemporal patterns of the communication processes based on the 
AFC. The simulation validates the dynamic detection ability of AFC, 
proving its sensitivity to predefined dynamics. Applying the framework 
to resting-state fMRI datasets we demonstrate that the proposed method 
can efficiently extract inter-regional connections between function- 
specific systems and establish a more comprehensive description of to-
pological reorganization. The proposed method is also validated by its 
application to classifying individuals with autism spectrum disorders 
(ASD) and coronavirus disease infections (COVID-19). It can also work 
with DFN to provide a more comprehensive description of the brain 
communication process. The activation network establishes an appro-
priate spatiotemporal framework to characterize the communication 
processes underlying dynamic brain activity. 

2. Materials and methods 

Fig. 1 depicts a schematic presentation of the AFC approach and 
establishing the activation network. In the pairwise time series and 
sliding window method, the primary problem is recognizing time- 
invariant and time-specific properties of time series during brain 
communication. The whole time series retains the general (time- 
invariant) properties shared across different time windows. For 
windowed time series, it follows both time-invariant evolutionary rules 
and time-specific properties because of the communication dynamics of 
brain activity. The windowed correlation is computed by directly 
applying Pearson’s correlation to the windowed time series. Addition-
ally, we assume there is no brain dynamic within the time series. The 
background of functional connectivity (BFC) within each window is 
computed by introducing the time-invariant properties from whole time 
series into windowed time series while correlation calculation. The 
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activity of functional connectivity (AFC) is computed by the relative 
difference between windowed correlation and BFC. We defined the BFC 
as the dependency within windowed correlation computed based on the 
time-invariant properties. We defined the AFC as the dependency within 
windowed correlation that encompasses time-specific properties after 
removing its corresponding background. The AFC measures the extent to 
which the activity level of statistical correlation is activated from the 
general state to the time-specific state. Then, AFC across all regions of 
interest (ROIs) is used to construct the map of the whole brain activity 
level. The opposite activity levels could extract two different high and 
low activation patterns for each time window. Thus, the spatiotemporal 
connectivity pattern of the activation network includes a high activation 
network (HAN) and a low activation network (LAN). 

2.1. Activation network 

2.1.1. Activity of functional connectivity calculation 
Statistical correlation can be expressed in various ways, such as 

coherence, phase synchronization, mutual information, etc. Pearson’s 
correlation calculates the linear correlation between pairwise time series 
and is the most common and simplest method (Farahani et al., 2019). 
Therefore, it was chosen as an example to show the computation of the 
activity of functional connectivity in this study. 

We start with pairwise discrete non-stationary time series X =
{xi}i=1,2,…,n and Y = {yi}i=1,2,…,n. We apply a sliding-window method 

with a window length of w and a step length of s to segment windowed 
time series, denoted as xt and yt, at the tth time window from the whole 
time series X and Y. Pearson’s correlation of the windowed time series xt 
and yt is: 

r(t) =
∑w

i=1

(
xi,t − xt

)(
yi,t − yt

)

wσxt σyt

(1)  

where xi,t and yi,t are the ith time points within tth time window and w is 
the number of time points within the time window, and xt and yt are 
denoted as the means of xt and yt, and σxt and σyt are denoted as the 
standard deviations of xt and yt. 

As the brain activity is dynamic, the time series across time windows 
do not follow the second-order stationary assumption where their 
distribution is not constant. The means and standard deviations 
of windowed time series xt and yt are xt = 1

w
∑w

i=1xi,t, yt = 1
w
∑w

i=1yi,t, 

σxt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
w
∑w

i=1(xi,t − xt)
2

√

, σyt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
w
∑w

i=1(yi,t − yt)
2

√

. Therefore, the 
windowed correlation rwin(t) at time window t is calculated by: 

rwin(t) =
∑w

i=1xi,tyi,t − wxtyt
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑w

i=1x2
i,t − wx2

t

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑w
i=1y2

i,t − wy2
t

√ (2) 

The background of functional connectivity rback(t) at time window t is 
calculated based on the time-invariant properties. If we assume there is 
no brain dynamic, the windowed time series xt and yt follow the time- 

Fig. 1. The overview of extracting AFC and establishing the activation network. (a) The AFC calculation process. Time series from two arbitrary regions (X and 
Y) in the human brain are used to calculate the AFC between any two regions of interest (ROIs). With the pairwise time series and sliding window method, the 
primary problem is recognizing time-invariant and time-specific properties of time series during brain communication. The whole time series retains the general 
(time-invariant) properties shared across different time windows. The windowed time series emphasizes the property of a limited period, encompassing both time- 
invariant evolutionary rules and time-specific fluctuations resulting from the communication dynamics of brain activity. The windowed correlation is computed by 
directly applying Pearson’s correlation to the windowed time series. Additionally, we assume there is no brain dynamic within the time series. The background of 
functional connectivity (BFC) within each window is computed by introducing the time-invariant properties from the whole time series into the windowed time series 
while correlation calculation. The activity of functional connectivity (AFC) is computed by the relative difference between windowed correlation and BFC. (b) The 
whole brain activity level map comprises the AFC between all ROIs. (c) Each windowed activity level map could be thresholded according to two opposite activity 
levels to extract high and low activation structures. The high activation structure shows the connections activated at this time, while the low activation structure 
shows the relatively stable connections. (d) Examples of the high activation network (HAN), low activation network (LAN), and dynamic functional network (DFN). 
They are from a randomly selected subject of the healthy controls of the ASD dataset. rwin(t): windowed correlation at time window t. rback(t): BFC at time window t. 
Ac(t): AFC at time window t. 
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invariant distribution that consistent with the whole time series X and Y. 
In this case, the rback(t) at time window t is calculated based on assuming 
a time-invariant means and standard deviations of the whole time series 
X and Y: xt = x, yt = y, σxt = σx, σyt = σy, where x and y are denoted as 
the means of X and Y, and σx and σy are denoted as the standard de-
viations of X and Y. If we normalize the whole time series X and Y such 
that x = 0, y = 0, σx = 1,σy = 1, the rback(t) is calculated by: 

rback(t) =
1
w
∑w

i=1
xi,tyi,t (3) 

The activity of functional connectivity Ac(t) at time window t is 
calculated by subtracting the background component from the 
windowed correlation. However, since the rback(t) is not constant across 
time windows, simply the difference between rwin(t) and rback(t) cannot 
be directly compared between different time windows. Therefore, the 
Ac(t) is calculated by the relative difference between rwin(t) and rback(t) at 
time window t: 

Ac(t) =
⃒
⃒
⃒
⃒
rwin(t) − rback(t)

rback(t)

⃒
⃒
⃒
⃒ (4) 

The AFC measures the extent to which the activity level of statistical 
correlation is activated from the general state to the time-specific state. 
Specifically, when no difference between windowed correlation and its 
background (rwin(t) = rback(t)) at time t, the value of Ac(t) is 0 that there 
is no brain dynamic. On the other hand, the larger difference between 
rwin(t) and rback(t), the greater the value of Ac(t), indicating the activity of 
functional connectivity is more activated from the background state at 
time t and a higher level of brain dynamic. 

2.1.2. High and low activation network construction 
The activation network uses the AFC between various functional 

systems to model brain activity. It is a spatiotemporal network (node * 
node * time) represented as sets of nodes and their pairwise connections, 
where the nodes are ROIs, and the values of AFC measure the connec-
tions. This approach allows for studying the distribution of connections 
activated at different levels of brain activity and their temporal evolu-
tion. The activation network measures the underlying activity of the 
functional structure (DFN). Considering high and low activity levels, sets 
of the connections with the highest and lowest AFC values are used to 
construct the high activation network (HAN) and low activation 
network (LAN) to represent different modes during the communication 
process. The HAN is a spatiotemporal network encompassing connec-
tions from each time window with the highest AFC values. It indicates 
the highly dynamic spatiotemporal connectivity pattern that emerges 
during brain communication. The LAN is a spatiotemporal network 
encompassing connections from each time window with the lowest AFC 
values. It indicates the low dynamic spatiotemporal connectivity pattern 
that emerges during brain communication. We use both HAN and LAN in 
the following analysis. Table 1 provides a brief glossary of terms used in 
this article. 

2.2. Datasets 

2.2.1. Simulated resting-state BOLD-fMRI data 
Using simulated resting-state BOLD-fMRI data, we can control the 

time series’ "ground truth". This allows us to simulate functional con-
nectivity’s activity and background properties to assess the proposed 
method’s dynamic detection ability. To do this, we measure the level of 
strengthening and weakening of background correlation influenced by 
dynamic (ΔFC) to express the activity of functional connectivity. 
Simulated BOLD-fMRI is generated by a multivariate Gaussian process 
and a first-order Vector Autoregressive (VAR) model to simulate the 
background and dynamic data (Supplementary Fig. 1), respectively 
(Thompson et al., 2018). The background data mainly provide the sta-
bility of FC. 

To generate the background data, we use pairwise zero-mean 
multivariate Gaussian processes, σ = (σ1, …, σn), with a randomly 
generated covariance matrix Σ between − 1 and 1 to represent back-
ground correlation. We then specify the dynamics of the simulated data. 
We expect the background correlation to be influenced stochastically by 
dynamics to reflect the ongoing nature of resting-state BOLD-fMRI 
fluctuations. The dynamic data are estimated pairwise from the first- 
order VAR model: εt = Aεt− 1 + et, where A = 0.8 is the autocorrela-
tion coefficient, and et is the residual of the model determined by 
random Gaussian process with a mean of 0.2 and standard deviation 
(std) of 0.12 (Supplementary Fig. 2). Finally, the simulated BOLD-fMRI 
data are the linear combination of background and dynamic data: V =

σ + εt. We validate the proposed method by correlating it withΔFC. We 
generate data 5000 times with a data length of 3000 points to ensure 
reliable output. 

2.2.2. Autism spectrum disorders (ASD) data 
The ASD data used in this study are obtained from the Autism Brain 

Imaging Data Exchange (ABIDE) (Di Martino et al., 2014). To exclude 
the influence of multiple recording sites, we have opted to choose a 
single site for our study, employing two specific criteria for selection: 1) 
Sufficient subject number; 2) Sufficient data length. The resting-state 
fMRI data of children from the University of Michigan (sample 1) site 
meets these criteria most effectively. The data includes 110 participants, 
of which 55 are patients with ASD (12.73 ± 2.45 years; 83.64 % male) 
and the remaining are healthy controls (14.07 ± 3.18 years; 69.09 % 

Table 1 
Glossary of terms used in this article.  

Name Measurement and meaning Index 

Windowed correlation The statistical correlation among the 
windowed pairwise neurophysiological 
time series derived from various brain 
regions. It is assumed to retain both 
dynamic and non-dynamic dependencies 
due to the communication dynamics and 
non-cognitive intrinsic or homeostatic 
processes of brain activity. 

Fig. 1a 

Background of functional 
connectivity (BFC) 

The dependency within windowed 
correlation computed based on the time- 
invariant properties. 

Fig. 1a 

Activity of functional 
connectivity (AFC) 

The dependency within windowed 
correlation that encompasses time- 
specific properties after removing its 
corresponding background. It measures 
the extent to which the activity level of 
statistical correlation is activated from 
the general state to the time-specific 
state. 

Fig. 1a 

High activation network 
(HAN) 

The spatiotemporal network 
encompassing connections from each 
time window with the highest AFC 
values. It indicates the highly dynamic 
spatiotemporal connectivity pattern that 
emerges during brain communication. 

Fig. 1d 

Low activation network 
(LAN) 

The spatiotemporal network 
encompassing connections from each 
time window with the lowest AFC values. 
It indicates the low dynamic 
spatiotemporal connectivity pattern that 
emerges during brain communication. 

Fig. 1d 

Time-varying functional 
connectivity (time- 
varying FC) 

Segmenting the entire time series into 
several shorter "windows" improves 
statistical correlation’s temporal 
resolution, and accounting for the 
windows can provide time-varying FC. 

Section 1 

ΔFC The level of strengthening and weakening 
of background correlation influenced by 
dynamic to express the activity of 
functional connectivity. It is applied to 
quantify the dynamics of simulated 
BOLD-fMRI data. 

Section 
2.2.1  
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male). The resting-state fMRI data are acquired using a 3 Tesla GE Signa 
scanner. Resting-state fMRI data are recorded with an EPI sequence (TR 
2 s, TE 30 ms, flip angle 90∘, spatial resolution 3.4 * 3.4 * 3.0 mm) during 
a 10-minute eyes-open scan. All images are obtained with informed 
consent following established human participant research procedures. 
Detailed information can be found at http://fcon_1000.projects.nitrc. 
org/indi/abide/. 

2.2.3. COVID-19 data 
The UK Biobank has been gradually releasing resting-state functional 

magnetic resonance imaging data from the COVID-19 re-imaging 
research, with a total of 490 functional volumes recorded using a single- 
shot gradient recalled echo–planar imaging pulse sequence (Sudlow 
et al., 2015). As of 31 May 2022, 613 adult participants below 65 met 
the inclusion criteria. Out of these, 299 adult participants (43.81 % men; 
aged 59.48 ± 3.58 years) were found to have been infected with 
SARS-CoV-2 based on their primary care (GP) data, hospital records, 
diagnostic antigen test results identified through record linkage to the 
Public Health datasets in England, Wales and Scotland, or two concor-
dant antibody-based home lateral flow kit positive results. Three hun-
dred fourteen adult participants (44.90 % men; aged 59.43 ± 3.48 
years) were healthy controls. The resting-state fMRI data are acquired 
using a 3 Tesla Siemens Skyra scanner. Resting-state fMRI data are 
recorded with an EPI sequence (TR 735 ms, TE 39 ms, flip angle 52∘, 
spatial resolution 2.4 * 2.4 * 2.4 mm). Each participant underwent a six 
minute, eyes-open acquisition. All images are obtained with informed 
consent, following established human participant research procedures. 
The follow-up data of 613 participants are included in this study. 
Detailed information is found at https://www.ukbiobank.ac.uk. 

2.3. Data pre-processing 

The resting-state functional volumes underwent data pre-processing 
using the Data Processing & Analysis for Brain Imaging (DPABI) v3.1 
toolbox (http://rfmri.org/DPABI) toolbox, which involved form trans-
formation, slice timing, head motion correction, spatial normalization to 
the Montreal Neurological Institute (MNI) space at a re-sampling reso-
lution of 3 × 3 × 3 mm3 spatial smoothing (6 × 6 × 6mm3 full width at 
half maximum), linear detrending to reduce low-frequency drift and 
physiological high-frequency respiratory and cardiac noise, and 
temporally bandpass filtered (0.01–0.1 Hz). The Friston 24-parameter 
model was used to regress out head motion effects. A participant with ≥
1.5 mm maximum translation in x, y, or z directions and/or ≥ 1.5◦ of 
motion rotation was removed. Linear regression was applied to remove 
the global mean signal, white matter, and cerebrospinal fluid signal. The 
registered fMRI volumes were partitioned using the Dosenbach 160 ROIs 
template. 

2.4. Network construction 

We used a sliding window approach with a window length of 30 TRs 
and a step length of 3 TRs to ensure a good temporal resolution of AFC 
while maintaining statistical reliability, as indicated in Supplementary 
Table 1–3. The resulting AFC values were then used to construct the 
activation network. To build the HAN and LAN, we applied sparsities of 
10 % (ASD) and 25 % (COVID-19) to each slide of the activation network 
to include connections with top or bottom activation values. We also 
used time-varying FC to construct the DFN for comparison and applied 
the same sparsities to the corresponding dataset. 

2.5. Graph theoretical analysis 

Graph theory provides a mathematical framework to measure the 
complex topology of the brain network quantitatively. Both the obtained 
adjacent matrices (activation network and DFN) are binarized to 
represent the existence or nonexistence of connections. We use graph 

theory to evaluate the topological reorganization of networks. Detailed, 
the mean clustering coefficient (C), characteristic path length (L), local 
efficiency (El), and global efficiency (Eg) are used as the parameters of 
spatial topology (Bullmore and Sporns, 2009). Meanwhile, C and El 
measure the information transmission ability on a local scale, and L and 
Eg measure the information transmission ability on a global scale. All of 
them are measurements of brain functions of local segregation and 
global integration. 

2.6. Classification 

The ASD and COVID-19 datasets are classified based on cross-subject 
graph properties (C, L, El, Eg) extracted from HAN, LAN, and DFN. We 
extract graph properties from each time window and mix them for each 
subject to achieve cross-subject classification. We compared the classi-
fication performances of three groups: activation network (HAN and 
LAN), DFN, and their combination. To ensure robust evaluation, we 
employ a 10-fold cross-validation approach within each group to split 
training and testing data. In order to prevent information leakage be-
tween the training and testing data during the classification process, we 
strictly perform feature selection exclusively on the training data within 
each fold of the cross-validation process. First, we included the top 100 
features based on the first 100 different mean values among the different 
classes within the training data. Secondly, we evaluated the importance 
of each feature using the F value and composed the feature subsets of 
these features. The feature subsets are formed by progressively selecting 
1 to 100 features according to their importance, resulting in 100 distinct 
subsets with varying numbers of features. Then, a preliminary classifi-
cation is conducted solely on the training data by a support vector ma-
chine (SVM) to determine the most important feature subset. We then 
applied the selected features from the training data to the testing data 
using the feature indices derived from the feature selection to ensure 
consistency between them. After feature selection, four mainstream 
classification strategies are used, including support vector machine 
(SVM), random forest (RF), Adaboost, and naive Bayes (NB). We applied 
the linear kernel in SVM and used sequential minimal optimization 
(SMO) as the learning method. The best c is selected by cross-validation 
in the parameter space of 10− 4,…,10− 1. 

2.7. Statistical testing 

Paired t-test is applied to compare the difference between time- 
varying FC and background correlation, as well as AFC and ΔFC. An 
independent t-test is applied to compare the temporal similarity of 
network between the activation network and DFN, respectively. 
Furthermore, to show the different temporal reorganization processes of 
different network, the independent t-test is applied to compare graph 
parameters (C and L) between HAN, LAN, and DFN, respectively. We 
measured the redundancy of network communication efficiency by 
lesioning the network and removing inter- or intra-regional connections. 
We then used an independent t-test to compare the damage levels 
calculated by C and L on the HAN, LAN, and DFN. To select the most 
sensitive network to mental state alteration, we calculated the graph 
parameters (C, L, El, and Eg) of HAN, LAN, and DFN for each. We used an 
independent t-test to compare the difference in graph parameters be-
tween patients and healthy controls datasets. We employed a signifi-
cance level of p < 0.05 and applied correction for multiple 
comparisons with the false discovery rate (FDR) at q = 0.05. All p- 
values were calculated as two-tailed p-values. 

3. Results 

3.1. Dynamic detection ability of AFC and FC 

We apply the AFC method to simulated resting-state BOLD-fMRI data 
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to validate its performance with known "ground truth". As BOLD-fMRI 
signals record neural fluctuations based on spontaneous activity, we 
use simulated dynamic and background data to simulate this process. 
The window and step lengths are set to 30 and 30 points, respectively. 
We measure the dynamic of functional connectivity by the change level 
in background correlation (ΔFC) after combining dynamic data with 
background data. The performance of the proposed method is then 
validated by correlating it with ΔFC. 

Fig. 2a reflects that FC is highly correlated (r = 1,p = 0.950) with 
the background correlation across 5000 samples. Fig. 2b depicts a 
randomly selected sample to facilitate illustration. These results suggest 
that FC is more indicative of the background correlation than the dy-
namic correlation and that the trajectory of time-varying FC is largely 
influenced by components that provide the dominant dependencies 
(Supplementary Fig. 2). Thus, FC may not be suitable for directly 
detecting neural dynamics. We then calculate AFC and ΔFC to validate 
the proposed method’s communication dynamic detection ability. Re-
sults show that AFC exhibits a significant difference with ΔFC (t4999 =

127.674, p < 0.001; Fig. 2c). However, Fig. 2d also demonstrates a 
significant positive correlation (r = 0.966, p < 0.001) between them, 
indicating that the proposed AFC is sensitive to dynamic fluctuations 
under the influence of background correlation. Furthermore, these 
findings suggest that AFC is applicable for constructing the dynamic 
communication of the human brain. 

3.2. The activation network describes richer network variation and 
different reorganization modes than DFN in the time domain 

We applied the proposed method to two distinct resting-state fMRI 
datasets (ASD and COVID-19), which involve different populations and 
data recording settings. This utilization of diverse datasets aims to 
demonstrate the robustness, reliability, and replicability of the proposed 
method. Specifically, we applied AFC and time-varying FC to resting- 
state fMRI data to construct the activation network and DFN. The 
communication patterns in the human brain result in a complex process 
of network reorganization. A dynamic network should capture rich in-
formation about network reorganization within the entire time series. 
To evaluate this, we compared the spatial correlation between temporal 
averaged and windowed fully connected matrices for each participant. A 
lower correlation indicates greater network variation over time, which 
suggests richer information about topological reorganization. Graph 
parameters of clustering coefficient (C) and characteristic path length 
(L) are applied to quantitatively evaluate the spatial topology of the 
network within each time window. The healthy controls from the two 
datasets are selected for analysis, respectively. For each dataset, the 

distributions of graph properties across selected participants and time 
windows indicate unique temporal reorganization processes of each 
network. The temporal evolutions of different network topologies are 
evaluated in the aspects of local segregation and global integration. 

First, AFC matrices provide more information on network variations 
than DFN during the communication processes of the human brain. The 
windowed AFC matrices show significantly lower averaged correlations 
(ASD: t108 = − 66.106, p < 0.001, COVID-19: t626 = − 84.604,
p < 0.001) with their temporal averaged matrices (Fig. 3a,f; Supple-

mentary Figs. 3, 4). In contrast, the connectivity pattern of DFN is 
relatively stable over time, consistent with the results of previous studies 
(Mostame and Sadaghiani, 2021; Krienen et al., 2014). Therefore, the 
extracted activation network from AFC presents a richer variation of 
network pattern over time, with a higher potential for extracting the 
communication dynamic of brain activity. Secondly, as shown in Fig. 3b, 
c,g and h, HAN, LAN, and DFN show different distributions of graph 
parameters, suggesting a unique evolution process for each network 
during the same period (Supplementary Fig. 5–8). Specifically, Fig. 3d,e, 
i and j show that the topologies of HAN, LAN, and DFN differ in their 
local segregation and global integration functions, where graph pa-
rameters of C and L significantly differ (p < 0.001, FDR − corrected). 
These outcomes imply distinct topological organization modes of the 
activation network and DFN during communication (Fig. 1d). In sum-
mary, the activation network describes richer connectivity pattern var-
iations of the brain network, exhibiting a different reorganization mode 
in the time domain compared to DFN. However, to better understand the 
spatiotemporal properties of the activation network, we need to analyze 
its details and validate the reliability of the provided information by the 
activation network. 

3.3. The activation network focuses on inter-regional connections of 
function-specific subnetworks 

Temporal averaged networks of the activation network and DFN are 
calculated to present their connectivity patterns in the spatial dimen-
sion. Healthy controls from both datasets are selected. HAN, LAN, and 
DFN are averaged over time windows and participants. To better illus-
trate the connectivity pattern, we summarize the proportion of con-
nections located in the six specific subnetworks, namely the Cingulo- 
opercular network (CON), Sensorimotor network (SMN), Occipital 
network (ON), Fronto-parietal network (FPN), Default mode network 
(DMN), and Cerebellum network (CN). 

As shown in Fig. 4, spatial distributions between HAN, LAN, and DFN 
differ. HAN and LAN are related to function-specific subnetworks: HAN 
connections are primarily related to SMN (ASD: 11.635 %; COVID-19: 

Fig. 2. The validation of the dynamic detection power of FC and AFC. (a) A box plot of time-varying FC and background correlation across 5000 samples. Time- 
varying FC does not differ significantly from background correlation. (b) Example of time-varying FC and background correlation. It is randomly selected from 5000 
samples. These results suggest the time-varying FC trajectory highly relates to background correlation, which provides dominant correlations to obscure the un-
derlying dynamic information. (c) A box plot of AFC, and ΔFC across 5000 samples. AFC and ΔFC are significantly different. (d) A scatter plot of AFC andΔFC. They 
show a significant positive correlation with each other, indicating the high dynamic detection power of AFC. ΔFC refers to the strengthening and weakening level of 
the background correlation influenced by dynamic. **: p < 0.001.
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6.761 %), whereas LAN connections are mostly related to DMN (ASD: 
16.981 %; COVID-19: 12.107 %) indicating that a high proportion of 
connections are located within these regions (Supplementary Fig. 9, 10). 
In contrast, DFN adheres stronger to the predefined structure of the 
human brain that shows a balanced connection distribution of each 
subnetwork (Fig. 4c and g). Furthermore, the significant subnetworks of 
HAN and LAN tend to communicate with other regions that there is a 
high proportion of connections between SMN in HAN (ASD: 24.175 %; 
COVID-19: 30.236 %) and DMN in LAN (ASD: 25.590 %; COVID-19: 
15.739 %) to other regions. Additionally, as shown in Fig. 4d and h, 
significant inter-regional connections are included in HAN (ASD: 
79.874 %; COVID-19: 92.233 %) and LAN (ASD: 74.057 %; COVID-19: 
64.780 %). Conversely, DFN does not include sufficient inter-regional 
connections (ASD: 29.088 %; COVID-19: 51.258 %). It suggests the 
activation network and DFN are distinct architecture that focus on 
opposite communication modes (inter- or intra-regional communica-
tion) of the brain network. 

3.4. The connectivity pattern of the activation network is efficient and 
economical to achieve its reorganization in the time domain 

We evaluate the connectivity patterns of HAN, LAN, and DFN in the 
spatial dimension concerning natural selection criteria: stable commu-
nication efficiency and low wiring cost. To assess communication effi-

ciency, we simulate damage to the network’s connections by 
respectively removing inter-regional and intra-regional connections to 
determine the impact on communication efficiency (Supplementary 
Fig. 11). We use graph parameters (C and L) from the non-damaged 
network as the baseline and calculate the damage level of each graph 
parameter. The healthy controls from two datasets are selected for 
analysis. 

As shown in Fig. 5, only removing inter-regional connections causes 
more significant damages on C (p < 0.001, FDR − corrected) in both 
HAN and LAN, suggesting a significant impact on the brain function of 
local segregation. However, the connectivity pattern of DFN has low 
redundancy of damage as removing inter-regional connections signifi-
cantly influences L (p < 0.001, FDR − corrected) and removing intra- 
regional connections shows significant impacts on both C and L 
(p < 0.001, FDR − corrected). This indicates a relatively high redun-
dancy of the activation network connectivity pattern, which could 
maintain a relatively stable communication efficiency during its reor-
ganization. Furthermore, it shows the importance of inter-regional 
connections in the activation network, as removing more inter- 
regional connections causes greater damage to C (ASD: r = 0.556,
p < 0.001; COVID-19: r = 0.643, p < 0.001). Nevertheless, results 

in the DFN highlight the importance of intra-regional connections. On 
the one hand, damages on L are negative correlation (ASD: r = −

0.795, p < 0.001; COVID-19: r = − 0.527, p < 0.001) to the 

Fig. 3. Temporal reorganization of activation network in ASD (top panels) and COVID-19 (Bottom panels). (a, f) The temporal similarity of AFC and FC 
matrices in (a) ASD and (f) COVID-19. To evaluate the similarity of each participant’s network, we compare the spatial correlation between temporal averaged and 
windowed fully connected matrices. The AFC matrices exhibit greater variability in the time domain and a higher potential to capture the communication dynamics 
of brain activity. (b, c, g, h) Probability distributions of graph parameters of HAN, LAN, and DFN in (b, c) ASD and (g, h) COVID-19. Graph parameters (C and L) are 
calculated from each time window to represent network topology at one-time step. Mixed graph parameters across participants indicate the temporal reorganization 
processes of corresponding networks. (d, e, i, j) Box plot of graph parameters of HAN, LAN, and DFN in (d, e) ASD and (i, j) COVID-19. Combined with their 
probability distributions, HAN, LAN, and DFN shows a significant difference in temporal reorganization and network topology. Noteworthy, the activation network 
and DFN are extracted to describe different aspects of brain activity. Every aspect includes critical information. Therefore, their graph parameters are not directly 
comparable to suggest which is better, and the statistical results indicate the significant difference. *: p < 0.05; **: p < 0.001, FDR − corrected. 
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proportion of inter-regional connections be removed. On the other hand, 
damages on both C and L are positive correlation (C: ASD: r = 0.775, p 
< 0.001; COVID-19: r = 0.758, p < 0.001; L: ASD: r = 0.447, p 
< 0.001; COVID-19: r = 0.494, p < 0.001) to the proportion of 
intra-regional connections be removed. It suggests that the activation 
network and DFN focus on the different aspects of the communication 
processes by focusing on inter- and intra-regional connections. Mean-
while, simulation results prove fluctuation of FC is significantly con-
strained by background correlation (Fig. 2a and b). The change of DNF’s 
connection must overcome the impact of background correlation with 
higher cost. The experimental results suggest that its network exhibits a 
high temporal correlation in the real condition (Fig. 3a and f) and prove 
its connectivity pattern is stable while maintaining stable communica-
tion efficiency. Therefore, the connectivity pattern described by the 
activation network has a relatively low wiring cost and stable commu-
nication efficiency to achieve its temporal evolution. 

3.5. HAN and LAN play different roles in the activation network 

The advantage of the activation network in the spatiotemporal 

domain has been presented previously. However, the correlation be-
tween HAN and LAN remains unclear. According to the activity level, 
the activation network segments two different connectivity patterns 
with opposite high and low activity, significantly different from DFN. As 
shown in Fig. 3, HAN and LAN display different distributions of graph 
parameters during the brain communication process. Specifically, HAN 
exhibits significantly higher C (ASD: t108 = 71.980, p < 0.001, 
COVID-19: t626 = 113.866, p < 0.001, FDR − corrected) and L (ASD: 
t108 = 2.588, p = 0.011, COVID-19: t626 = 18.608, p < 0.001,
FDR − corrected) than LAN, indicating different reorganization modes 

during communication. Furthermore, Fig. 4 shows that HAN and LAN 
separately correlate to some function-specific subnetworks, and their 
combination creates a comprehensive map of the brain network. These 
findings show that HAN and LAN have distinct topological reorganiza-
tion processes that coordinate to display activities of various functional 
systems during the communication process. Therefore, both HAN and 
LAN are critical for analyzing the communication dynamics of the 
human brain. 

Fig. 4. Averaged network of HAN, LAN, and DFN and their connection distributions in ASD (top panels) and COVID-19 (bottom panels). The networks are 
averaged across all participants from healthy controls of each dataset. (a-c, e-g) The connection distributions of HAN, LAN, and DFN, which are the percentages of 
connections located intra- or inter-subnetworks with total connections. HAN and LAN are related to function-specific subnetworks, with HAN connections mostly 
related to SMN and LAN connections mostly related to DMN. However, DFN is more about the predefined structure of the human brain, showing a balanced 
connection distribution of each subnetwork. Particularly, HAN and LAN tend to communicate with other regions. (d, h) the proportions of inter- and intra-regional 
connections. It suggests the activation network and DFN are distinct architecture, focusing on the opposite communication modes (inter- or intra-regional 
communication). CON: Cingulo-opercular network, SMN: Sensorimotor network, ON: Occipital network, FPN: Fronto-parietal network, DMN: Default mode 
network, and CN: Cerebellum network. The color bar serves to represent the proportion of existing connections to the total potential connections within 
each subnetwork. 
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Fig. 5. Damages of (a) HAN, (b) LAN, and (c) DFN in ASD (Top panels) and COVID-19 (Bottom panels) under different types of attacks. Networks are selected 
from healthy controls of each dataset. The upper subplots show the damage levels of HAN, LAN, and DFN under corresponding damage types, such as removing inter- 
or intra-regional connections, while the lower subplots show the correlation between the damage level from the most damaged network and the proportion of 
connection be removed. (a, b, e, f) damages caused by removing inter-regional connections on C and L. (c, d, g, h) damages caused by removing inter-regional 
connections on C and L. These results indicate the high redundancy of the activation network connectivity pattern in the face of damage, and the DFN connec-
tivity pattern is relatively fragile to both damage types. The activation network shows the importance of inter-regional connections, as evidenced by the positive 
correlation between the damage level on C and the proportion of inter-regional connections being removed. DFN shows the importance of intra-regional connections 
by the negative correlation between the damage level on L to the proportion of inter-regional connections being removed and by the positive correlation between the 
damage level on both C and L to the proportion of inter-regional connections being removed. **: p < 0.001, FDR − corrected. 

Table 2 
Graph properties of HAN, LAN, and DFN between patients and healthy controls.   

HAN LAN DFN 

Patients Healthy controls p-value Patients Healthy controls p-value Patients Healthy controls p-value 

ASD C 0.536(0.190) 0.609(0.092) 0.011 0.317(0.094) 0.297(0.089) 0.261 0.464(0.031) 0.472(0.035) 0.230 
L 2.020(0.081) 1.989(0.055) 0.020 2.114(0.073) 2.126(0.058) 0.339 2.599(0.147) 2.555(0.109) 0.073 
El 0.677(0.165) 0.744(0.069) 0.006 0.478(0.081) 0.461(0.077) 0.268 0.652(0.034) 0.666(0.029) 0.016 
Eg 0.533(0.013) 0.538(0.009) 0.013 0.524(0.015) 0.521(0.011) 0.289 0.453(0.014) 0.456(0.013) 0.307 

COVID-19 C 0.559(0.059) 0.569(0.065) 0.043 0.519(0.034) 0.516(0.045) 0.452 0.586(0.038) 0.589(0.036) 0.300 
L 1.754(0.006) 1.753(0.004) 0.021 1.795(0.019) 1.793(0.019) 0.103 1.898(0.075) 1.901(0.062) 0.689 
El 0.778(0.031) 0.783(0.034) 0.037 0.731(0.020) 0.727(0.026) 0.076 0.782(0.019) 0.782(0.017) 0.623 
Eg 0.624(0.001) 0.625(0.001) 0.046 0.621(0.005) 0.621(0.006) 0.036 0.602(0.011) 0.602(0.010) 0.621 

Significant statistical differences (p < 0.05) are highlighted. Data are presented as mean(std).  
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3.6. HAN is more sensitive to mental state alteration than DFN 

Towards real applications, graph theoretical analysis is applied to 
compare the performance of networks to reveal mental state alteration. 
HAN, LAN, and DFN of each participant are averaged along the time 
window and then used to calculate graph properties (clustering coeffi-
cient (C), characteristic path length (L), local efficiency (El), and global 
efficiency (Eg)). Table 2 compares the differences in graph properties 
between healthy controls and patients with ASD and COVID-19, respec-
tively. For ASD, HAN shows a significant difference (C : t108 = − 2.572,
p = 0.011; L : t108 = 2.359, p = 0.020; El : t108 = − 2.799, p = 0.006;
Eg : t108 = − 2.513, p = 0.013) in all graph properties between patients 
(C : 0.536±0.190; L: 2.020±0.081;El: 0.677±0.165;Eg : 0.533±0.013,
mean±std) and healthy controls (C : 0.609±0.092;L : 1.989±0.055;
El: 0.744±0.069;Eg : 0.538±0.009); DFN only shows a significant 
decrease (t108 = − 2.450, p = 0.016) in El between patients 
(0.652±0.034) and healthy controls (0.666±0.029). For COVID-19, 
HAN still shows a significant difference (C: t611 = − 2.033, p = 0.043;L:
t611 = 2.312, p= 0.021;El: t611 = − 2.090, p= 0.037;Eg: t611 = − 1.996,
p= 0.046) in all graph properties between patients (C:0.559±
0.059;L:1.754±0.006;El:0.778±0.031;Eg:0.624±0.001)and healthy 
controls (C:0.569±0.065;L:1.753±0.004;El:0.783±0.034;Eg:0.625±
0.001). However, there is no significant difference (p >0.05) between 
patients and healthy controls using DFN. The theoretical graph analysis 
demonstrates that the topology of HAN is more related to brain mental 
state alteration and better at revealing the underlying dynamics of brain 
activity. Furthermore, results indicate a decrease in patients’ brain in-
formation processing ability on global and local scales. 

3.7. The activation network and DFN coordinate to provide more 
comprehensive information about the brain network 

A data-driven method is applied to evaluate the practical applica-
tions of the activation network and DFN. We extract graph properties (C, 
L, El, Eg) within each time window as features used in feature selection 
and classification. For better comparison, we arrange features into three 
data groups according to network types: activation network (HAN and 
LAN), DFN, and a combination of the two networks. A data-driven 
feature selection method is applied to the training data to extract 
discriminative features of each group. Finally, these features are vali-
dated by various machine-learning classifiers (SVM, RF, Adaboost, NB). 
SVM with mixed features achieves the best classification accuracies 
(Table 3) in both datasets (ASD: 83.636 % ± 11.969 %; COVID-19: 
67.333 % ± 5.398 %). The selected features effectively distinguish 

different mental states between patients and healthy controls. Notably, 
mixed features do not significantly increase classification accuracy when 
they do not add new, non-redundant information. The best classification 
performances are achieved by combining the activation network (AN) 
and dynamic functional network (DFN) features. We summarize all 
selected features across the 10-fold classification process. In the case of 
ASD, the HAN, LAN, and DFN contribute 25.641 %, 19.231 %, and 
55.128 % of the total features (Supplementary Fig. 12), respectively. On 
the other hand, for COVID-19 classification, the HAN, LAN, and DFN 
contribute 58.108 %, 28.378 %, and 13.514 % of the total features 
(Supplementary Fig. 13), respectively. This result indicates that the 
activation network contains critical information representing other as-
pects of the brain communication process. Additionally, the DFN ach-
ieves the lowest classification accuracy, indicating the topology of the 
DFN is less sensitive to brain dynamics than the activation network. 
Combining the two networks provides a more comprehensive under-
standing of the brain network. 

4. Discussion 

This study proposed a new framework for segregating activity and 
background components in functional connectivity to distinguish FC’s 
communication dynamic and non-dynamic dependencies. To capture 
the topological reorganization of the brain network, we propose the 
activation network as a spatiotemporal framework. We first validate the 
dynamic detection ability of AFC through simulation. The activation 
network is then applied to empirical datasets, revealing its advantage in 
extracting inter-regional connections between function-specific systems 
and establishing an efficient economic connectivity pattern that pro-
vides richer information about the reorganization of the network. 
Furthermore, both HAN and LAN are critical and play different roles in 
the activation network. HAN is particularly sensitive to changes in 
mental state, and when combined with LAN and DFN, they describe a 
more comprehensive picture of the communication process. Further 
detailed discussions are presented below. 

BOLD-fMRI data are simulated using a combination of predefined 
temporal correlation and a first-order VAR model. We apply them to 
compose the background and dynamic components of correlation, 
respectively. Various models are used to generate dynamics of func-
tional connectivity, such as large-scale dynamical models, neural field 
models, and neural network model (Demirtas et al., 2019; Honey et al., 
2007). Since the underlying dynamics are unknown, the choice of model 
is arbitrary based on certain assumptions of physiological properties 
(Breakspear, 2017). Additionally, it varies according to the issue at 

Table 3 
Classification performances (%) of ASD and COVID-19.   

AN DFN MIXED 

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy 

ASD SVM 76.536 
(19.149) 

84.087 
(12.236) 

79.091 
(11.379) 

69.000 
(18.760) 

83.889 
(17.656) 

77.273 
(7.726) 

77.905 
(25.166) 

86.167 
(19.052) 

83.636 
(11.969) 

RF 81.024 
(17.601) 

70.024 
(18.387) 

76.364 
(10.671) 

74.262 
(22.922) 

75.476 
(18.009) 

74.546 
(18.581) 

83.750 
(17.174) 

73.905 
(28.607) 

80.000 
(20.009) 

AB 77.353 
(31.601) 

70.833 
(26.932) 

73.636 
(23.648) 

62.048 
(22.847) 

83.631 
(15.305) 

70.909 
(15.920) 

85.167 
(16.744) 

79.472 
(20.423) 

79.091 
(12.159) 

NB 41.393 
(23.253) 

94.571 
(8.878) 

69.091 
(10.671) 

41.214 
(24.769) 

89.524 
(13.756) 

63.636 
(12.856) 

61.639 
(23.775) 

83.083 
(21.531) 

72.727 
(18.182) 

COVID-19 SVM 69.878 
(8.702) 

62.420 
(8.335) 

66.333 
(5.317) 

61.916 
(8.822) 

58.027 (8.809) 60.000 
(3.685) 

70.461 
(8.644) 

64.627 
(8.469) 

67.333 
(5.398) 

RF 52.006 
(13.091) 

66.473 
(8.876) 

59.833 
(5.355) 

54.312 
(11.861) 

55.906 
(15.348) 

54.500 
(7.073) 

52.016 
(12.886) 

65.415 
(8.291) 

59.333 
(5.731) 

AB 55.659 
(9.327) 

63.014 
(8.414) 

59.167 
(3.948) 

55.925 
(10.445) 

55.447 
(10.771) 

55.500 
(5.614) 

57.465 
(10.048) 

60.724 
(11.347) 

59.167 
(4.321) 

NB 71.412 
(25.554) 

37.798 
(25.328) 

55.500 
(3.518) 

61.487 
(18.879) 

47.219 
(19.284) 

54.167 
(4.462) 

78.579 
(7.232) 

32.760 
(9.118) 

55.167 
(6.500) 

AN: activation network; DFN: dynamic functional network; MIXED: mixed features from both activation network and DFN; SVM: support vector machine; RF: random 
forest; AB: Adaboost; NB: naive bayes. The highest classification accuracy in each dataset is highlighted. Data are presented as mean(std). 
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hand. The current study is interested in the background and activity 
parts of functional connectivity. The experimental result indicates that 
predefined temporal correlation and the first-order VAR model are 
appropriate to simulate corresponding data in this study. Therefore, the 
selected simulation model is suitable for the current question. 

The simulation results indicate that the calculated time-varying 
functional connectivity (FC) primarily reflects the background correla-
tion trajectory, and the imputed dynamic data has minimal impact on 
the background correlation (Fig. 2a,b). The crucial question in practical 
applications is whether the non-dynamic dependency dominates func-
tional connectivity. If detected BOLD-fMRI mainly reflects neural ac-
tivity, the time-varying FC can efficiently capture the communication 
process, and any weak noise will not affect its dynamic detection ability. 
However, BOLD-fMRI signals are an indirect measure of brain activity 
and the neural dynamic is not the only property involved. Therefore, the 
calculated statistical correlation is constrained by the non-dynamic de-
pendency of time series, and only a portion of its fluctuation is attrib-
utable to neural dynamics. This is supported by studies showing that the 
topography of BOLD-fMRI correlation still exists during slow-wave sleep 
and anaesthesia, where cognitive processes are absent or declined 
(Palanca et al., 2015; Mitra et al., 2015). Furthermore, patterns of FC are 
quite similar across the task-rest states, and over time (Li et al., 2020), 
indicating a predefined level of dependency within FC that is not sen-
sitive to underlying neural fluctuations, and therefore cannot describe 
complex communication processes during brain activity. Consequently, 
FC is dominated by its non-dynamic dependency. These findings support 
the use of dynamic properties to evaluate connection rather than cor-
relation strength. Simulation results from Fig. 2c,d show the ability of 
AFC to extract the ground truth of FC, indicating its reliability in 
modelling the dynamics of neural activity. 

We applied the proposed method to two datasets (ASD and COVID- 
19). Notably, there are notable differences between the datasets: 1) 
participant populations: The ASD dataset comprises 100 children, while 
the COVID-19 dataset includes 613 adults; 2) data recording settings: 
The ASD data are recorded using an EPI sequence (TR 2 s, TE 30 ms, flip 
angle 90∘, spatial resolution 3.4 * 3.4 * 3.0 mm) during a 10-minute 
eyes-open scan and COVID-19 data are recorded using an EPI 
sequence (TR 735 ms, TE 39 ms, flip angle 52∘, spatial resolution 2.4 * 
2.4 * 2.4 mm) during a 6-minute eyes-open scan. Despite the differences 
between the datasets, the experimental results of the activation network 
reveal similar spatiotemporal properties of healthy controls.  This sug-
gests that the activation network effectively captures the inherent 
properties of brain dynamics in diverse contexts, validating its robust-
ness, reliability, and replicability. Heuristically, the differences between 
the two datasets suggest the activation network may explore age-related 
differences and the impact of recording settings on brain dynamics. 
Then, the experimental results of two datasets are discussed to reveal the 
performance of the activation network in the spatial and temporal 
domain. 

The brain dynamic causes the complex reorganization of the brain 
network in the time dimension. In the experiments, DFN is hard to 
describe the reorganization processes due to the constrained network 
alteration in the time domain. This observation aligns with previous 
literature, highlighting the stable connectivity pattern during brain ac-
tivity across various tasks and rest-task conditions (Finn et al., 2017; 
Gratton et al., 2016). Gratton et al. (Gratton et al., 2018) suggested that 
common organizational principles and individual features dominate the 
functional network. Rest-task and day-to-day variability are not the 
main factors in a functional network. However, extracting underlying 
temporal information is fundamental to a spatiotemporal network. It 
must be sensitive enough to describe the reconfiguration of the con-
nectivity pattern during the communication process. From experimental 
results, the activation network exhibits richer network variations and 
different reorganization modes compared to DFN (Figs. 1d and 3). This 
suggests the potential of the activation network to extract dynamic of 
the brain activity. The reliability of the proposed method is further 

explored and validated in terms of the spatial and temporal properties of 
the activation network. 

Network architecture helps us understand, predict and optimize the 
behavior of dynamic systems (Holme and Saramaki, 2012). We 
construct averaged spatial network of HAN, LAN, and DFN. From the 
results, they focus on the different communication modes. As shown in 
Fig. 4, DFN almost describes the outline of each functional system. Its 
connections are mainly located within the functional systems, showing 
significant intra-regional connections. For the activation network, it 
eliminates the constraint on the network reorganization and highlights 
the importance of inter-regional connection. Cole et al. (Cole et al., 
2014) suggested cognitive tasks lead to complex changes from 
resting-state functional networks with increased multi-regional in-
teractions and decreased within-network connectivity. Moreover, HAN 
and LAN are respectively associated with some function-specific sub-
networks. HAN is more related to the inter-regional communications of 
SMN, while LAN is more related to the inter-regional communications of 
DMN. SMN is relatively more active in communicating with others. It is 
important to coordinate with CON in the function of sensory and 
behavior during the resting state and related to top-down control over 
the sensory region (Sadaghiani and D’Esposito, 2015; Crottaz-Herbette 
and Menon, 2006). Conversely, DMN appears to have significantly low 
activity during the resting state. This finding links previous results that 
DMN is not active with the functional demand of the human brain 
(Dosenbach et al., 2007; Singh and Fawcett, 2008). 

We also need to validate whether the connectivity pattern of the 
activation network meets the basic requirements of most natural systems 
from the natural selection perspective. According to this theory, the 
dynamics of large-scale brain communication are expected to exhibit 
stability in communication efficiency and low wiring costs. From the 
aspect of wiring cost, as discussed in the simulation part, FC is not easily 
modified due to the strong impact of non-dynamic dependency. How-
ever, the AFC breaks this limitation isolating the dynamic dependency 
from FC, allowing for relatively free fluctuations. Cajal’s law describes 
the optimization principles for conserving space, cytoplasm, and con-
duction time in neural circuitry (y Cajal, 1995). Based on the con-
strained network reorganization, optimization of operations on DFN 
cannot rebuild its connection from scratch for optimality (Avena-Koe-
nigsberger et al., 2018). The activation network is not subject to this 
limitation, and the diversity of its connectivity pattern in the time 
domain also proves its low wiring cost. Furthermore, stable communi-
cation efficiency is another aspect of natural selection. C and L are 
applied to analyze the impact of lesion damage on communication 
ability at both global and local scales. The activation network demon-
strates a higher redundancy of communication efficiency and empha-
sizes the significance of inter-regional connections. Its connectivity 
pattern is highly adaptable, enabling network reorganization during 
communication. In contrast, the DFN demonstrates the opposite 
behavior. These findings are in line with previous experimental results 
that have shown high spatial similarity in the connectivity pattern of 
DFN. The small-worldness of brain network topology is characterized by 
a balance between local segregation and global integration (Watts and 
Strogatz, 1998; Bassett and Bullmore, 2017; Cohen and D’Esposito, 
2016; Wig, 2017), which is essential for maintaining optimal brain 
functioning. Redundant interactions during communication improve 
efficiency, robustness, and resilience to brain damage (Kaiser et al., 
2007). Considering the low wiring cost of the activation network, the 
natural selection in network construction highlights the importance of 
the activation network in the time domain. 

After exploring spatial and temporal activation properties, discussing 
the correlation between HAN and LAN is necessary. Even though both 
describe the activity of the brain network, the distributions of their 
graph parameters are different, indicating each network’s unique reor-
ganization process (Figs. 1d and 3). Moreover, the activation network 
exhibits stronger associations with specific function-specific sub-
networks. HAN and LAN each highlight their respective functional 
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systems, leading to distinct information extracted by them. As a result, 
combining HAN and LAN composes a complete view of the activation 
network. The application of HAN and LAN depends on the aspect we 
want to analyze: dynamic communication between highly active func-
tional systems or neural activity irrelative connectivity patterns during 
the communication process. 

To apply the activation network to real-world scenarios, we assessed 
its reliability by utilizing graph properties to compare network topol-
ogies between healthy controls and patients. Our experimental results 
indicate that HAN reveals a marked contrast in network topologies be-
tween the two groups. In both ASD and COVID-19, HAN is the best to 
describe the decrement of brain processing ability (Table 2). The acti-
vation network is sensitive to mental state alteration. Furthermore, 
classification results also show the good performance of the activation 
network that the combination of features across HAN, LAN, and DFN 
acquires the best classification performance in both ASD and COVID-19. 
In particular, features from the activation network significantly improve 
the classification performance of the DFN. It not only suggests the reli-
ability of the activation network but also indicates that both the acti-
vation network and DFN include critical and discriminative information 
about mental state alteration. In previous literature, a broad contribu-
tion of DFN demonstrated its capability in extracting cognitive contents 
(Rosenberg et al., 2016; Salehi et al., 2020). The activation network 
extends the contents of the brain network, making their combination 
better suited to reveal the properties of the brain network. Specifically, 
the DFN primarily characterizes the interactions among different brain 
regions, which may undergo minor changes during communication, 
leading to a relatively stable spatiotemporal connectivity pattern. On the 
other hand, the activation network focuses on the time-resolved activity 
of these interactions and is more sensitive to brain dynamics. The further 
applications of DFN and activation network depend on the specific 
research goals and objectives. 

When interpreting our proposed activation network, certain aspects 
of the study require special consideration. Firstly, selecting a statistical 
method is the primary problem of activation network calculation. 
Numerous model-based and model-free computational methods exist for 
calculating directional or non-directional connectivity, such as mutual 
information, coherence analysis, transfer entropy, and others (Valdes--
Sosa et al., 2011; Hassan and Wendling, 2018). In BOLD-fMRI studies, 
Pearson’s correlation is the most frequently used method, with the linear 
correlation being the simplest way to combine time-invariant and 
time-specific properties of time series. Furthermore, the activity and 
background of functional connectivity is a general idea that could be 
applied to various statistical correlation methods. Integrating their 
time-invariant and time-specific features is a crucial challenge for using 
the activation network, particularly for nonlinear and directional cor-
relation techniques, which is an area that requires further exploration. 
Secondly, the activation network does not describe the functional 
network but its activity in the time domain. Current dynamic brain 
network studies focused on the temporal alteration of the DFN based on 
statistical correlation. However, both the previous studies and experi-
mental results in this paper indicate the limitation of DFN to extracting 
dynamic reorganization of the brain network. We extend a new view to 
establishing the brain network. The network construction is no longer 
limited to statistical correlations but also the non-correlation de-
pendency within them. Thirdly, the proposed activation network is 
potentially applicable in EEG and fNIRS studies. Since EEG offers higher 
temporal resolution, it becomes particularly suitable for analyzing brain 
dynamics using the activation network. Our future work will apply and 
validate the proposed method, specifically in EEG-based mental tasks. 
Lastly, despite the good performance of the activation network, it is 
important to acknowledge its limitations. One notable area for 
improvement is its potential unsuitability for real-time analysis. This is 
primarily due to the requirement of utilizing the entire period data to 
obtain the time-invariant properties for calculating the BFC. Future 
research should also focus on addressing this problem. 

5. Conclusion 

This study proposes a spatiotemporal framework to describe the 
dynamic reorganization of the brain network. The temporal stability of 
DFN limits current studies. We apply AFC to extract dynamic fluctuation 
of statistical correlation and establish the activation network. Experi-
mental results suggest that AFC shows a high correlation with under-
lying dynamics. Furthermore, the activation network spatially displays 
more multi-regional interactions with high sensitivity to mental state 
alteration. It temporally reveals more information about large-scale 
brain network communication with stable communication efficacy and 
low cost. The proposed method is validated by the application to achieve 
disorder classification. The activation network is an essential framework 
for understanding the brain network. Our research provides new in-
sights into brain network construction and highlights the potential to 
employ the activation network in network neuroscience studies. 
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