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Abstract—Renewable-based standalone systems are widely de-
veloped worldwide with the decentralization of power and energy
systems. However, challenges are posed due to the intermittent
nature of renewable resources and the lack of inertia. Small
modular reactors (SMRs), a clean but also flexible and control-
lable energy, can be deployed to provide flexibility and inertia
support to standalone energy systems with high penetration of
renewable energy. In this paper, we propose a novel standalone
net-zero energy system planning scheme that coordinates SMRs
with other distributed energy resources, where both steady-state
operation constraints and dynamic frequency security constraints
are considered to guarantee the operational feasibility of the plan.
Since the dynamics of SMR are very complex, the planning model
becomes a complex and unanalytical optimization problem.
To this end, we first develop a physics-informed data-driven
approach to model the dynamic frequency characteristics of
SMRs with high accuracy. On this basis, we propose a “checking
and adjusting” heuristic approach to iteratively solve a series
of MILP problems without the non-linear and unanalytical
frequency constraint and then check whether the constraint can
be satisfied. In this way, we can get a feasible and suboptimal
solution in a tractable manner. Comprehensive case studies have
been conducted, and results show that the inclusion of SMRs
can substantially increase the flexibility and frequency security
of standalone net-zero energy systems.

Index Terms—Small modular reactor, net-zero energy system,
optimal planning, frequency security constraints

I. INTRODUCTION

STANDALONE energy systems, also known as off-grid
energy systems, have emerged as a critical solution for

providing electricity in areas far from the utility grid. These
systems have been deployed for a wide range of applications
worldwide, including remote communities, industrial facilities,
mining operations, etc. As a significant part of the power
and energy system, standalone energy systems have become
even more important in the transition to net-zero emissions
[1]. In net-zero transition, integrating a high penetration of
renewable energy is an inevitable development trend [2]. How-
ever, renewable energy integration will bring two challenges
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that should be carefully considered when designing a net-
zero standalone energy system: 1) the availability of renewable
energy resources varies significantly with weather and seasons,
which challenges the supply-demand balance [3]; 2) renewable
energy resources are connected to the system through power
electronics devices with no rotating inertia, which challenges
the frequency security [4]. Therefore, there remains a need
for clean and controllable sources to promote the net-zero
development of standalone energy systems.

The most common solution is to incorporate renewable en-
ergy resources with a sizeable energy storage system, thereby
helping to meet the supply-demand balance [5]. However,
large energy storage systems can be relatively expensive.
Furthermore, energy storage systems could not tackle the
lack of inertia. In this case, additional clean energy resources
with inertia support are needed. A potential option is to use
solar thermal energy [6], which is dispatchable and involves a
synchronous generator providing the necessary inertia to help
maintain frequency security. Unfortunately, the sites of solar
thermal plants are strictly restricted (usually in the desert) [7].

Small modular reactors (SMRs), an emerging and promising
nuclear technology, can be deployed to provide both flexibility
and inertia support [3]. The technical and economic char-
acteristics of SMR have been reported by the International
Atomic Energy Agency (IAEA) [8]. The dynamic process
of SMR is consistent with large-scale nuclear power plants
since they follow the same physical principles and opera-
tion modes, including pressurized water reactors, gas-cooled
reactors, liquid metal reactors, etc. The differences between
SMRs and classical large-scale nuclear power plants lie in the
following three aspects [3]. 1) Modular design with a small
generation scale, which allows for standardization, factory-
based manufacturing, and simplified on-site installation. 2)
Flexibility in power output. Unlike classical nuclear power
plants, which typically operate at or near rated power levels,
SMRs could adjust their power output flexibly. 3) Secure
operation and transportation environment. SMRs are designed
as sealed and transportable units, which reduces operational
complexity, particularly for deployments at remote sites. The
power management options of SMRs are threefold: multi-
modular operation, reactor power maneuvering, and steam
valve bypassing, which could be utilized for supply-demand
balance in different time frames. In addition, the rotating
inertia and frequency regulation support from SMR can help
sustain frequency security. The design targets of SMRs in-
clude the power supply for remote areas, district heating, and
industrial applications. Although most SMRs are still under
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design or construction, there are technical projects proposed
for the SMR-integrated net-zero microgrids [9], [10], [11]. For
example, the potential utilization of SMRs in Canada has been
analyzed with detailed roadmaps [12].

In the literature, the integration of SMRs into the energy sys-
tem has been investigated from different perspectives. In terms
of modeling, the detailed dynamic process of the reactor was
analyzed and integrated with the turbine-governor system in
[13], with which the contribution of SMR dynamics in power
system frequency response was evaluated. In terms of con-
trol, feedback controllers for reactor power adjustment were
designed to ensure the system frequency was well-regulated
during load disturbances [14]. In terms of scheduling, the
power output of a single SMR was dispatched to compensate
for the wind generation variations in [15]. Besides, heating
extraction and reactor maneuvring were coordinated in [16] for
optimal load following in a hybrid energy system. In terms of
simulation, the operation of a nuclear-renewable hybrid energy
system under different scenarios was demonstrated through
real-time simulators [17].

Even though much work has been done on the modeling,
control, scheduling, and simulation of SMRs, the planning
issue of SMRs has rarely been touched. In standalone sys-
tem planning with SMRs, the operational characteristics and
regulation constraints of SMRs need to be analyzed and in-
cluded. On this basis, SMRs and other available resources are
coordinated to provide a reliable power supply for a given de-
ployment scenario. Apart from the coordination of steady-state
power output for power-supply balance, the coordination of
dynamic frequency response also needs to be integrated, which
is essential for maintaining frequency security under sudden
power imbalances [18]. Although the dynamic response of
SMRs in providing frequency regulation services has been
preliminarily investigated in the literature, the coordination
of SMRs with the power electronic interfaced sources for
frequency regulation is still an open question. In particular,
the investment capacity of SMRs and other resources needs to
be determined to ensure the frequency security of the SMR-
renewable integrated energy system.

The mainstream to incorporate dynamic frequency secu-
rity issues in steady-state operation/planning is to formulate
frequency security requirements as constraints in the opti-
mization model. However, integrating non-linear frequency
security constraints leads to high computational complexity
[19]. Different methodologies have been proposed to overcome
the challenge, including linearization, non-linear optimization,
and heuristic methods. In [20], the limitation on Rate-of-
change-of-Frequency (RoCoF), steady-state deviation, and fre-
quency nadir were linearized with piecewise linearization and
integrated into the unit commitment (UC) problem. Thereby,
the mixed-integer linear formulation of the UC model was pre-
served. A similar idea was introduced in [21], where deep neu-
ral networks were trained to represent the frequency nadir as
linear constraints and incorporated into the UC problem. Non-
linear optimization could be adopted in case the constraints
were converted into specific forms. For example, the frequency
constraints were derived and formulated into a second-order
cone form. In this case, the frequency-constrained microgrid

scheduling problem could be solved analytically [22]. A three-
stage tractable heuristic solution method was proposed in [23]
for the frequency-constrained microgrid planning, where the
dynamic frequency security of microgrids was guaranteed by
iteratively tightening the bounds.

There are two challenges to the frequency-constrained
planning of SMR-integrated energy systems. Firstly, from
the modeling perspective, the frequency response dynamics
of SMR are complex with high-order differential equations,
which are challenging to represent accurately through model-
based methods. Secondly, from the solution perspective, the
frequency security constraints are highly nonlinear and cannot
be expressed analytically, which makes it challenging to solve
the frequency-constrained planning problem effectively. By
addressing these two challenges, this paper makes the follow-
ing contributions:

1) Establish an optimal planning model of standalone net-
zero energy systems with SMRs, where SMRs, PV,
battery energy storage, and seasonal energy storage are
coordinated to supply local load demand. In the planning
model, the dynamic frequency security constraints are
represented as requirements on frequency reserves of
different resources and incorporated into the steady-state
operation constraints.

2) Propose a physics-informed neural network (PINN)-
based approach to capture the complex dynamic re-
sponse of SMR as a transfer function model. The
dynamic model is aggregated with other resources in
the system to derive the frequency security constraints
subjected to sudden power imbalances.

3) Develop an iterative algorithm to solve the planning
model with nonlinear frequency security constraints and
decision-dependent PV generation, where the nonlinear
frequency nadir constraint is gradually satisfied through
fast frequency response expansion at each iteration step.

The rest of this paper is organized as follows. Section
II introduces the problem studied in this paper; Section III
models the dynamic response of SMR in a data-driven way;
Section IV formulates the optimal planning model; Section V
proposes a two-level iterative solution method; case studies
are conducted in Section VI; Section VII concludes the paper.

II. PROBLEM STATEMENT

Fig. 1 illustrates a standalone net-zero energy system that
integrates SMRs, PV, battery energy storage (BESS), and
seasonal energy storage (SESS, including electrolyzer, fuel
cell, and hydrogen storage) to supply local demand. In such a
standalone operation mode, the locally available sources need
to be coordinated to satisfy the supply-demand balance and
sustain system frequency within the required limits.

We aim to determine the portfolio of the net-zero energy
system with minimized costs. The problem can be stated as
follows: Given: (1) the load data and normalized PV output;
(2) investment and operation costs of the distributed energy
resources (DERs); (3) operation characteristics of DERs. De-
termine: (1) the capacity of DERs to be invested; (2) the
optimal operating status (including power output, frequency
reserve, etc.).
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Fig. 1. System diagram of a net-zero energy system with SMRs.

Typical days will be first selected to represent the future
operational status of DERs in the planning years. On each
typical day, SMRs, PV, BESS, and SESS are coordinated to
balance the supply and demand on an hourly basis. Meanwhile,
the frequency security in a shorter time scale needs to be
guaranteed under a power imbalance contingency. In the faster
dynamic process, the inertia and frequency regulation supports
from the resources are coordinated.

The net-zero planning of the SMR-integrated energy sys-
tem in this paper differs from the traditional energy system
planning problem in two ways: 1) the unique characteristics
of SMR are incorporated; 2) the dynamic frequency security
requirements are integrated. The challenges and research tasks
are threefold:

1) Complex dynamics: A data-driven method is employed
to identify the dynamic response of SMR for frequency
regulation analysis.

2) Multi-time-scale constraints: The investment constraints,
steady-state operation constraints, and dynamic fre-
quency security constraints are derived and incorporated
into the planning model.

3) High unanalytical model: A two-level tractable iterative
method is proposed to find the solution heuristically.

III. DATA-DRIVEN SMR DYNAMICS MODELING

Fig. 2 shows the balance-of-plant system of SMR. Inside
the reactor vessel, the control rods are used to regulate the
reactivity in the reactor core and thus adjust the reactor power
level Pth, which is transferred to the steam generator. The
steam then drives the steam turbine to generate mechanical
power Pmech, which is transmitted to a synchronous generator
and produces electrical power Pe. The steam from the turbine
outlet is condensed and pumped back to the steam generator.

Basically, SMR can operate in either reactor-led or turbine-
led mode. In reactor-led operations, the mechanical power
output Pmech follows the change of reactor power output Pth,
which is specified by tuning the control rods. In turbine-led
operations, the mechanical power output Pmech is adjusted
directly by tuning the steam valve. The two operation modes
are employed in different time frames. Pth is scheduled hourly
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Fig. 2. Simplified structure of a small modular reactor.
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Fig. 3. Dynamic process of SMR in turbine-led operation mode.

for the balance of supply and demand, while Pmech is adjusted
in a faster time scale for frequency regulation [15], [16].

Fig. 3 shows the dynamic process of SMR in turbine-led
mode, which includes the physical dynamics of the com-
ponents and the digital dynamics of the control loops. It
should be noted that the transient dynamic response of SMR
for frequency regulation is separated from the steady-state
operation for hourly supply-demand balance. Compared with
the steady-state power output, the dynamic response of SMR
for frequency regulation is a small scale deviation denoted as
∆Pmech. The input of the dynamic process is the set point
∆Pset required for the power output deviation. Denotes the
dynamic variables in the whole process as ∆x. ∆x includes
the deviation variables in the reactor core, the fuel-coolant
heat transfer process, the pressurizer, the steam generator, and
the governor-turbine system. Each dynamic variable involves
one or more differential equations governed by the physical
or digital process. The dynamic process of SMR is finally
represented as a 23rd-order state-space model.

Since we focus on the dynamic response of the mechanical
power output Pmech subjected to the given set point ∆Pset,
we denote the set point ∆Pset as the system input and the
mechanical power Pmech as the system output. The dynamic
process can be transformed into an input-output transfer func-
tion model

SMR(s) =
∆Pmech (s)

∆Pset (s)
=

bqs
q + bq−1s

q−1 + . . .+ b0
apsp + ap−1sp−1 + . . .+ a0

(1)
where s denotes the Laplacian operator. p and q denote the
model order. The model parameters ai (i = 0, . . . , p) and
bj (j = 0, . . . , q) are associated with SMR dynamics.
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Fig. 4. The schematics of PINN-based SMR dynamic response identification.

However, the derivation of the system model relies on
detailed and accurate parameters of the physical components
and control loops, which are hard to obtain. Operational data
are collected and used to identify the model parameters. Data-
driven parameter estimation can be achieved by traditional
system identification methods, such as the System Identifi-
cation Toolbox in MATLAB. However, the input signal ∆Pset

is required to be time-varying within the dynamic process
(usually a few seconds). Since the input signal ∆Pset is set
by the Energy Management System (EMS) according to the
variation of load, it could not change frequently in the seconds
time scale. In real-time operation, ∆Pset is usually adjusted
after the system returns to steady-state, which forms multiple
sets of step responses.

In this case, an emerging data-driven method, PINN, is
adopted to estimate the model parameters [24], [25]. In the
PINN sets, neural networks are used to approximate the system
output, where the physical model (1) is incorporated into
the training procedure [26]. In the following, the detailed
application of PINN to the SMR dynamic identification is
explained.

For simplicity, denote ∆Pset and ∆Pmech as x and y,
respectively, the transfer function model (1) can be rewritten
in the time-domain formulation of a differential equation

apy
(p) (τ) + ap−1y

(p−1) (τ) + . . .+ a0y (τ) =

bqx
(q) (τ) + bq−1x

(q−1) (τ) + . . .+ b0x (τ) ,
(2)

where τ represents the time in the dynamic process. We aim to
estimate the model parameters ai (i = 0, . . . , p) and bj (j =
0, . . . , q) through the collected data.

Multiple sets of step response data are collected as the
input of the PINN training process. When there is a change
∆Pset (x) in the set point of SMR’s power output, the
dynamic response of the SMR’s power output ∆Pmech (y)
in the following time horizon τ is recorded. Multiple such
trajectories formulate the training dataset. To integrate (2) into
the PINN training process with multiple sets of step responses,
the time derivatives of the input x (τ) need to be transformed.
An auxiliary variable u (τ) is introduced and (2) is rewritten
as

apu
(p) (τ) + ap−1u

(p−1) (τ) + . . .+ a0u (τ) = x (τ) , (3a)

bqu
(q) (τ) + bq−1u

(q−1) (τ) + . . .+ b0u (τ) = y (τ) . (3b)

The schematics of PINN-based SMR dynamic identification
are illustrated in Fig. 4. System input x and the transient time
point τ are the inputs of the neural networks. The output of

neural network û is the estimate of the auxiliary variable u at
time τ . For each input data x and τ , the auxiliary variable u
is calculated as

[x, τ ]
T
= z0,

zl+1 = g (W lzl + σl) , ∀l = 0, . . . , ln − 1,

û = W lnzln + σln ,

(4)

where zl is the output variable of the network at layer l. W l
and σl are the weight matrix and bias vector of the neural
network at layer l, respectively. g (·) is the activation function
of the neural network. ln is the number of the network layers.
Apart from the neural network-related variables W and σ, the
unknown system parameters ai and bj are treated as additional
parameters θ. In the training process, W , σ and θ are
estimated that yield the best agreement of the underlying two
physical equations in (3). This forms the following physics-
informed loss functions{

F [·] = âpû
(p) (τ) + â(p−1)û

p−1 (τ) + . . .+ â0û (τ)− x (τ)

G [·] = b̂qû
(q) (τ) + b̂q−1û

(q−1) (τ) + . . .+ b̂0û (τ)− y (τ),
(5)

where the derivatives of û are obtained through the auto-
differentiation function. Given Nc as the number of training
data, the total loss function Loss is formulated as

Loss =
1

Nc

Nc∑
c=1

(
F [ûc, xc,θ]2 + G[ûc, yc,θ]2

)
. (6)

By minimizing the total loss function Loss over the neural
network related variables W , σ and system parameters θ, the
estimates the of the system parameters can be obtained

θ∗ = argmin
W ,σ,θ

Loss. (7)

Problem (7) can be solved by using Adam optimizer [27],
a stochastic optimization method. The Adam optimizer is
widely used for training neural networks due to its ability
to adapt learning rates during training, which often leads to
faster convergence and better optimization results. Through
the PINN-based identification process, the model parameters
in (1) can be obtained.

Remark 1: Different from the existing studies that primarily
focus on modeling nuclear generation dynamics and stability
analysis, we employ a data-driven approach to capture the
dynamics of SMRs as a reduced-order model. In this case,
we simplify the dynamic coordination of SMRs with power
electronics interfaced resources, facilitating the integration
of frequency security constraints into the capacity planning
problem. Furthermore, the proposed data-driven modeling
framework is also adaptable to large-scale nuclear power
plants, which could be utilized in capacity planning of nuclear-
renewable energy systems.

IV. OPTIMAL PLANNING MODEL

This section mathematically formulates the planning model,
including the objective function, investment constraints,
steady-state operation constraints, and dynamic frequency se-
curity constraints.
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A. Objective Function
The objective is to minimize the overall cost π, including

the investment cost πI and operation cost πO of the DERs

min π = πI + πO. (8)

Specifically, the πI and πO are represented as

πI =
∑M

m=1 I
SMRCSMRXm + IPVCPV + IBCB

+ISCS + ISECSE

πO =
∑W

w=1

∑T
t=1

∑M
m=1 ψwO

SMRP SMR
m,t,w

(9)

where ISMR, IPV, and IB are the annualized investment
costs of the SMR, PV, and BESS, respectively. For SMR,
the investment cost ISMR includes the construction cost and
several other parts specified for the operation of nuclear
power plants, e.g. the security cost, decommissioning cost, and
insurance cost. For example, the security cost is considered as
the installation of multiple security monitoring stations [8].
For SESS, the capabilities of charging/discharging and energy
storage are realized by the electrolyzer/fuel cell and hydrogen
(H2) storage, respectively, as shown in Fig. 1. Thus, the invest-
ment costs of SESS include the cost of charging/discharging
technology IS and the cost of energy storage technology
ISE. CPV, CB, CS, and CSE denote the invested capacity
of PV, BESS, SESS, and H2 storage. For SMR, CSMR is
the capacity of an SMR module and M is the number of
SMR modular candidates. The investment decision of SMR is
a binary variable Xm ∈ {0, 1} that represents whether SMR
modular candidate m is selected. In the planning model, the
investment decisions of SMRs are based on whether to invest
in a modular candidate. For PV, BESS, SESS, and H2 storage,
given the development of the technologies, the base capacity of
such units can be small-scale. We relax the decision variables
as continuous variables [28].

The operation cost πO is the sum of the variable cost of the
invested SMR in the whole year, where OSMR is the variable
cost of SMR. The variable cost OSMR is a combination of fuel
costs and operation and maintenance (O&M) costs. Here we
use the concept of “Levelised Cost of Electricity (LCOE)” to
represent the variable cost of SMR, which is estimated from
large-scale economic analysis of SMRs [29]. P SMR

m,t,w is the
power output of SMR m at time step t on typical day w.
ψw denotes the number of days that the w-th typical day can
represent and the sum of ψw is equal to 365 days (an entire
year). T and W denote the number of time periods (24h) and
typical days, respectively.

B. Investment Constraints
The investment capacities of DERs are limited by the locally

available resources:

0 ≤ CPV ≤ CPV
lim (10a)

0 ≤ CB ≤ CB
lim (10b)

0 ≤ CS ≤ CS
lim (10c)

0 ≤ CSE ≤ CSE
lim (10d)

where CPV
lim , CB

lim, CS
lim and CSE

lim denote the maximum capac-
ity of PV, BESS, SESS and H2 storage that can be invested.

C. Steady-State Operation Constraints

The operation characteristics of DERs and supply-demand
balance on an hourly basis are represented as steady-state
operation constraints in this part, which must be satisfied at
each time step t on each typical day w.

1) PV: PV is considered to operate at de-loading mode with
power reserve for frequency regulation [30].

PPV
t,w +RPV

t,w ≤ λPV
t,wC

PV (11a)

PPV
t,w −RPV

t,w ≥ 0 (11b)

0 ≤ RPV
t,w ≤ rPV

maxλ
PV
t,wC

PV (11c)

Constraints (11a)-(11b) are the power output limits of PV,
where RPV

t,w represents the frequency reserve and λPV
t,w denotes

the normalized available output of PV. Constraint (11c) re-
stricts the maximum frequency reserve of PV within rPV

max of
the maximum output.

2) SMR: The operation of SMR is constrained by design-
specific requirements:

P SMR
m,t,w +RSMR

m,t,w ≤ CSMRXm (12a)

P SMR
m,t,w −RSMR

m,t,w ≥ λSMR
min CSMRXm (12b)

0 ≤ RSMR
m,t,w ≤ rSMR

max C
SMRXm (12c)

P SMR
m,t,w − P SMR

m,t−1,w ≤ αRuCSMR (12d)

P SMR
m,t−1,w − P SMR

m,t,w ≤ αRdCSMR (12e)∣∣P SMR
m,t,w − P SMR

m,t−1,w

∣∣ ≤ zm,t,wΠ (12f)∣∣P SMR
m,t,w − P SMR

m,t−1,w

∣∣ ≥ (zm,t,w − 1)Π + Θ (12g)
T∑

t=1

zm,t,w ≤ Zlim. (12h)

Constraints (12a)-(12b) are the power output limits of SMR
[3], where RSMR

m,t,w is the reserve for frequency regulation
[31]. λSMR

min is the minimum rate of power output. Constraint
(12c) ensures that the frequency reserve of SMR remains
within rSMR

max of the rated power [32]. Constraints (12d)-(12e)
formulates the ramp limits [15], where αRu and αRd represent
the ramp-up/down rates. Since the thermal and operational
cycling caused by reactor power maneuvering will result in
the degradation of components and lower module availability,
the changes in reactor output in one day are restricted [16].
Constraints (12f)-(12h) guarantee the number of changes of
reactor power in one day is no more than Zlim, where zm,t,w ∈
{0, 1} is a binary variable representing the adjustment action
of reactor power. Π/Θ is an auxiliary large/small number.

It should be noted that the power output P SMR
m,t,w is scheduled

on an hourly basis to satisfy the supply-demand balance
through the control rod adjustment. P SMR

m,t,w is restricted by
(12a)-(12b) to reserve power output RSMR

m,t,w for frequency
regulation. For the transient frequency regulation process, the
power output of SMR can be changed through the turbine-led
mode with a maximum value of RSMR

m,t,w.
3) BESS: BESS works as a flexible resource to compensate

for daily load and renewable variations. Meanwhile, taking
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Fig. 5. Chronological SoC of SESS with inter-day coupling.

advantage of the fast dynamics, BESS could be employed to
provide frequency reserve [33].

0 ≤ PB+
t,w ≤ xB+

t,w(C
B −RB

t,w) (13a)

0 ≤ PB−
t,w ≤ xB−

t,w(C
B −RB

t,w) (13b)

xB+
t,w + xB−

t,w ≤ 1, xB+
t,w ∈ {0, 1}, xB−

t,w ∈ {0, 1} (13c)

0 ≤ RB
t,w ≤ rBmaxC

B (13d)

EB
t,w = (1− γB)EB

t−1,w + PB+
t,w η

B+ − PB−
t,w /η

B− (13e)

EB
0,w = EB

T,w = λBiniκ
BCB (13f)

EB
min ≤ EB

t,w ≤ κBCB (13g)

Constraints (13a)-(13c) limit the charging/discharging power
PB+
t,w /PB−

t,w of BESS, where xB+
t,w and xB−

t,w are binary variables
that represent the charging/discharging state. Constraint (13d)
restricts the frequency reserve rate of BESS within rBmax of
rated power. Constraint (13e) represents the energy balance
of BESS, where EB

t,w, γB, and ηB+/ηB− denote the SoC,
self-discharging rate and charging/discharging efficiency. Con-
straint (13f) ensures that SoC at the final time step of one
day is equal to the initial SoC [28], where κB is the energy
capacity coefficient and λBini is the initial SoC rate. Constraint
(13g) imposes the upper (energy capacity κBCB) and lower
(EB

min) limits on the SoC.

4) SESS: Compared with BESS, SEES can compensate
for the inter-day supply-demand balance. In this case, the
sequence of different typical days in one year needs to be
adopted [34]. As shown in Fig. 5, the 365 days of a year
are separated into N periods (indexed as n) according to the
typical days and their sequence. The days in each period n
can be represented by the same typical day w = C(n). The
number of days in period n is denoted as dn. We employ
the method in [35] to separate the SoC of SESS with intra-
day state ES,intra

t,w and inter-day state ES,inter
n to derive the

coupling of SoC among different typical days.

0 ≤ P S+
t,w ≤ xS+t,wCS (14a)

0 ≤ P S−
t,w ≤ xS−t,wCS (14b)

xS+t,w + xS−t,w ≤ 1, xS+t,w ∈ {0, 1}, xS−t,w ∈ {0, 1} (14c)

ES
t,d,n = ES,inter

n−1 + (d− 1)ES,intra
T,w=C(n) + ES,intra

t,w=C(n) (14d)

ES,intra
0,w = 0, ES,inter

0 = ES,inter
N = λSiniC

SE (14e)

ES,intra
t,w = ES,intra

t−1,w + P S+
t,wη

S+ − P S−
t,w/η

S− (14f)

ES,inter
n = ES,inter

n−1 + dnES,intra
T,w=C(n) (14g)

0 ≤ ES
t,d,n ≤ CSE (14h)

Constraints (14a)-(14c) represents the charging/discharging
P S+
t,w /P S−

t,w limitations of SESS, where xS+t,w and xS−t,w are
binary variables that represent the charging/discharging state.
Constraint (14d) indicates the SoC ES

t,d,n includes the inter-
day SoC ES,inter

n−1 , the SoC change of the previous d− 1 days,
and the intra-day ES,intra

t,w=C(n) at time t on day d. The initial
intra-day SoC is assumed to be 0 and constraint (14e) ensures
the SoC at the end of the year returns to the initial value, where
λSini denotes the initial SoC rate. Constraint (14f) represents the
intra-day energy balance of SESS, where ηS+/ηS+ denote the
charging/discharging efficiency. Constraint (14g) represents
the SoC change in the whole period n, which is also illustrated
in Fig. 5. Constraint (14h) limits the SoC at each time step
within the capacity. The frequency support from SESS is not
considered in this study.

5) Demand-supply Balance:
M∑

m=1

P SMR
m,t,w+PPV

t,w +PB−
t,w +P S−

t,w = Lt,w+PB+
t,w +P S+

t,w (15)

Constraint (15) ensures the balance between the supply and
load demand Lt,w at each time step.

6) System Capacity Reserve: The system is required to
provide capacity reserves for unexpected contingencies during
operation. For example, the uncertainty of load/PV generation,
or the outage of a power plant. The maximum available
generation needs to be more than the sum of the load demand
plus the required reserve at each time step. Considering the
uncertainty of load and PV generation, the capacity reserve
constraint is formulated as

M∑
m=1

CSMRXm + λPV
t,wC

PV + CB + CS

≥
(
1 + eL

)
Lt,w + ePVλPV

t,wC
PV,

(16)

where eL and ePV represent the uncertainty level of load and
PV generation, respectively. Note that the required reserve is
designed by the system operator, which can be set much larger
to withstand outages of power plants or BESS.

D. Dynamic Frequency Security Constraints

Apart from the steady-state operation constraints, the system
frequency is required to be sustained within specific limits
under sudden power imbalances. With this aim, sufficient
system inertia and frequency regulation support need to be
guaranteed. In this part, the frequency security constraints are
derived through the transfer function model and represented
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Fig. 6. P-f droop characteristics of frequency regulation.

as requirements on frequency reserves, through which the
dynamic performance of frequency is guaranteed.

The frequency dynamics after a sudden contingency (power
imbalance) ∆Pim is presented as:

2H
d∆f (τ)

dτ
+D∆f (τ) = ∆Pg (τ)−∆Pim (τ) , (17)

where τ represents the time in the frequency dynamic pro-
cess; H and D are the system inertia and load-damping
constant; ∆f is the deviations of frequency. ∆Pg is the
primary frequency response from the frequency support re-
sources SMR, PV, and BESS. Typically, for each resource, a
power-frequency (P-f) droop controller is adopted for primary
frequency regulation. Take SMR as an example, the character-
istics of the P-f droop controller are illustrated in Fig. 6. The
frequency control dead bound ∆fdb is set to avoid unnecessary
frequency response. After the frequency deviation surpasses
the frequency control dead bound, the primary frequency
response is activated, and the frequency response ∆P changes
proportionally to the frequency deviation ∆f . Here the value
of the frequency control dead bound is chosen as 0.016Hz,
which is commonly used in the literature [36].

The dynamic frequency security requirements include the
limitation on the maximum RoCoF |∆f ′|max, the steady-state
frequency deviation |∆fss| and frequency nadir |∆f |max. The
frequency responses ∆Pg (τ) from SMR, PV, and BESS are
provided through the droop controller KSMR, KPV, and KB,
respectively. The dynamic response of SMR is identified as
SMR(s) through the method in Section III. PV and BESS are
connected to the system through power electronic devices and
the dynamic responses are represented as first-order transfer
functions with specific time constants T PV and T B [19].
The detailed transfer function model of frequency dynamic
is shown in Fig. 7.

The capability of frequency regulation supports from DERs
is associated with the frequency reserve [18]. Specifically,
SMR provides inherent inertia and droop gain for the system

HSMR =

M∑
m=1

CSMRHmXm/f0 (18a)

KSMR
t,w =

M∑
m=1

RSMR
m,t,w/ |∆f |max,lim (18b)

1

2𝐻𝑠 + 𝐷

1

𝒯PV𝑠 + 1

SMR response
dynamic

1

𝒯B𝑠 + 1

−𝐾SMR

−𝐾PV

−𝐾B

−Δ𝑃im Δ𝑓

+

+Δ𝑃𝑔

+

+

SMR

PV

BESS

PV 𝑠

BESS 𝑠

SMR 𝑠

Fig. 7. Transfer function model of system frequency response.

where HSMR denotes the inertia support from SMRs. Hm

is the inertia constant of a single SMR module. f0 is the
nominal value of system frequency. The droop gain KSMR

t,w

is determined by the sum of frequency reserve RSMR
m,t,w and

the maximum acceptable frequency deviation |∆f |max,lim. It
should be noted that since the frequency control dead bound
(0.016Hz) is relatively small compared with the maximum
acceptable frequency deviation |∆f |max,lim (0.8Hz), we relax
the impact of frequency control dead bound on droop gain and
use (18b) to calculate the droop gain.

The power electronic interfaced resources PV and BESS
are considered to provide both synthetic inertial and primary
frequency responses [37]

2HPV
t,w |∆f ′|max,lim +KPV

t,w |∆f |max,lim = RPV
t,w, (19a)

2HB
t,w |∆f ′|max,lim +KB

t,w |∆f |max,lim = RB
t,w, (19b)

where the synthetic inertia and droop gain are associated with
the maximum acceptable RoCoF |∆f ′|max,lim and maximum
acceptable frequency deviation |∆f |max,lim, respectively.

In the following, the three frequency security constraints
associated with the planning/operation decisions are derived.

1) Rate of Change of Frequency Constraint:

|∆f ′|max =

∣∣∣∣−∆Pim

2Ht,w

∣∣∣∣ ≤ |∆f ′|max,lim (20)

where the system inertia Ht,w includes the inherent inertia
from SMR and the real-time synthetic inertia from the fre-
quency reserve of PV and BESS

Ht,w = HSMR +HPV
t,w +HB

t,w. (21)

2) Steady-state Frequency Deviation Constraint:

|∆fss| =
∣∣∣∣ ∆Pim

D +Kt,w

∣∣∣∣ ≤ |∆fss|lim (22)

The quasi-steady-state frequency is obtained by assuming that
the Laplacian operator s of the transfer function model is zero.
The damping coefficient D is assumed a constant irrespective
of the load level [19]. The aggregated droop gain K is the
sum of droop gains from SMR, PV, and BESS:

Kt,w = KSMR
t,w +KPV

t,w +KB
t,w. (23)
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3) Frequency Nadir Constraint:

|∆f |max ≤ |∆f |max,lim (24)

The nadir point of system frequency |∆f |max represents the
maximum deviation of the nominal value. As in Fig. 7, the
time response of ∆f after a load disturbance ∆Pim can be
derived through inverse-Laplace transformation as

∆f (τ) = L−1

{
∆Pim (s)

2Ht,ws+D + PFRt,w (s)

}
, (25)

where the PFRt,w (s) is represented as

PFRt,w (s) = KSMR
t,w SMR(s)+KPV

t,wPV (s)+KB
t,wBESS (s) .

(26)
The analytical expression of the time-domain frequency evolu-
tion ∆f (τ) can be derived through symbolic computation in
MATLAB. The frequency nadir |∆f |max is the absolute value
of the extreme point of the time response ∆f (τ).

Equations (18)-(26) formulate the frequency security con-
straints as requirements on system inertia and frequency
regulation support, which are associated with the frequency
reserve of different resources. It can be seen that all three
frequency security constraints are determined by the pre-
defined power imbalance ∆Pim. In practice, the unexpected
power imbalance contingency includes load uncertainty, PV
generation uncertainty, and the outages of power plants/BESS.
In this case, the pre-defined power imbalance ∆Pim can be
set artificially to guarantee frequency security for specific
scenarios. Different from the work in [18], which assumed
a fixed rate of frequency reserve (10% of rated power), the
frequency reserves in this study are variables that could be
optimized. In this case, the operation flexibility could be
improved.

E. Complexity Analysis

The planning model (8) with steady-state operation con-
straints (9)-(15) is an MILP problem, which could be solved
by commercial solvers. The frequency security constraints
(20)-(23) are linear constraints that could be integrated into
the MILP problem. However, the time response of ∆f (τ)
derived from (25) is highly nonlinear and it is challenging
to get the analytical solution of frequency nadir |∆f |max.
Thus, the planning model can not be solved directly with the
nonlinear constraint (24). Linearization method such as piece-
wise linearization is proposed in the literature to integrate
the frequency nadir constraint into the MILP planning model.
However, the frequency response model is simplified and the
computational complexity would increase with the associated
linearization parameters. To this end, a heuristic solution
algorithm is proposed in the following section.

V. SOLUTION ALGORITHM

This section proposes a heuristic approach to solve the
above planning model with two iteration loops, as shown
in Fig. 8. The first iteration loop (inner iteration) adapts a
“checking and adjusting” strategy to consider the nonlinear
frequency nadir constraint (24); the second iteration loop

K-means clustering

No

∆𝑓 max evaluation: Algorithm 1 → Ω𝜑

Ω𝜑 = ∅ ? Stop inner iteration

Yes

Add modified constraints 26

Net-load: Load − PV

Stop outer iteration

Capacity converged?

No

Initialize: Load data

Inner iteration loop

Outer iteration loop

𝒫1:min 7
𝑠. 𝑡. 8 − 14 , 18 − 21

𝜑 = 1

𝜑 = 𝜑 + 1

Yes

Φ = 1

Φ = Φ+ 1

Fig. 8. Proposed two-level iteration solution scheme for the planning model.

(outer iteration) is used to guarantee the representativeness
of the typical daily net load profile considering decision-
dependent PV generation. The details are presented in the
following.

A. MILP Planning Problem Solution

Initially, load data of the year is used to get the typical
days through the k-means method. The load and normalized
available PV output of the typical days form the inputs of the
inner iteration process. At the first stage of inner iteration, the
objective function (8) together with investment constraints (9)-
(10), steady-state operation constraints (12)-(15), and linear
frequency security constraints (20)-(23) is formulated as an
MILP problem

P1 : min (8)

s.t. (9)− (15), (20)− (23),
(27)

which could be easily solved by mature commercial solvers
such as Gurobi. The outputs include the investment decisions
(the capacities of SMR, PV, BESS, SESS, and H2 storage) and
the operation decisions (the hourly power output and frequency
reserve) of different resources at each time step t, w.

B. Frequency Nadir Constraint Checking

The operation decisions of the first-stage planning model
are used to evaluate the frequency nadir constraint (24). Based
on the inertia (21) and frequency response (26) of the DERs,
the frequency nadir |∆f |max is estimated through (25) and
Newton iteration. The process is shown in Algorithm 1. In
this study, the tolerance ϵ is 10−6.

The frequency nadir at each time step of the planning
horizon is checked. Each time step t, w that the frequency
nadir violates the constraint (24) is included in set Ωφ, where
φ denotes the inner iteration step.

C. Fast Frequency Response Adjustment

As constraints (20) and (22) pose requirements for the sys-
tem inertia Ht,w and aggregated droop gain Kt,w, the possible
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Algorithm 1 Newton iteration for frequency nadir
Input: Tolerance ϵ

1: Initialize ∆f (0)← 0, ξ ← 0
2: repeat
3: ξ ← ξ + 1
4: ∆f (ξ)← ∆f (ξ − 1)−∆f

′
(ξ − 1) /∆f

′′
(ξ − 1)

5: until |∆f (ξ)−∆f (ξ − 1)| < ϵ
6: ∆f∗ ← ∆f (ξ)

Output: Frequency nadir |∆f |max ← |∆f∗|

TABLE I
SENSITIVITY ANALYSIS OF SYSTEM PARAMETERS TO FREQUENCY NADIR

Parameter ϑ
Inertia (MWs/Hz) Droop gain (MW/Hz)

H KSMR KPV KB

min value* 0.5 0 0 0
max value* 0.9 1.25 0.75 0.5

|∆f |max/∆ϑ -0.025 -0.043 -0.113 -0.131
* Parameters values are based on Case Study in Section VI.

reason that leads to the violation of frequency nadir constraint
in Ωφ is the lacking of frequency response before the nadir
time. That is, the fast frequency response is insufficient. As
SMR is a turbine-based source with a larger time constant,
the faster frequency response from power electronic interfaced
resources in Ωφ need to be enhanced. Besides, sensitivity
analysis is conducted based on Monte Carlo simulation to
confirm the dominant factor that would affect the frequency
nadir. The results of sensitivity analysis are shown in Table I.

From the sensitivity analysis result, the power electronic
interfaced resources with faster response time have a greater
impact on the frequency nadir. Thus, it is reasonable to expand
the droop gains of PV and BESS in Ωφ in the next iteration
step φ+ 1 to improve the frequency response performance[

KPV
t,w +KB

t,w

]
φ+1
≥ (1 + µ)

[
KPV

t,w +KB
t,w

]
φ
∀t, w ∈ Ωφ[

KPV
t,w +KB

t,w

]
φ+1
≥

[
KPV

t,w +KB
t,w

]
φ
∀t, w /∈ Ωφ[

KSMR
t,w

]
φ+1
≥

[
KSMR

t,w

]
φ
∀t, w

[Ht,w]φ+1 ≥ [Ht,w]φ ∀t, w
(28)

where µ is the scaling factor used to expand the fast frequency
response from PV and BESS. In this work, µ is heuristically
selected as 0.02 in our studies to balance the computational
efficiency and the optimality. With the modified frequency
response requirement (28), the original planning problem P1

is resolved to improve the frequency performance in Ωφ where
the frequency nadir constraint (24) is violated. In this case, the
frequency nadir |∆f |max in Ωφ will gradually converge within
the security limit after several iterations. The inner iteration
process is also presented in Algorithm 2.

The convergence of Algorithm 2 can be guaranteed theoret-
ically. As in (28), in case there exist frequency nadir constraint
violations, the fast frequency reserve from PV and BESS is
expanded. Other frequency supports like system inertia and
frequency regulation service from SMR are maintained at

Algorithm 2 Three-stage solution for the frequency-security
constrained planning problem
Input: Load and normalized PV output of typical days.

1: Iteration step: φ← 1
2: Initialize the investment decisions

{
Xm, C

β
}
φ

, operation
decisions

{
P SMR
m,t,w

}
φ

,
{
Pχ
t,w

}
φ

,
{
Rϖ

t,w

}
φ

1 by solving P1

3: repeat
4: Derive |∆f |max via (25), (26) and Algorithm 1 at each

time step t, w
5: if |∆f |max > |∆f |max,lim then
6: Ωφ ← Ωφ ∪ (t, w)
7: end if
8: φ← φ+ 1
9: Update investment decisions

{
Xm, C

β
}
φ

, operation
decisions

{
P SMR
m,t,w

}
φ

,
{
Pχ
t,w

}
φ

,
{
Rϖ

t,w

}
φ

by resolving
P1 with additional constraints (28)

10: until Ωφ = ∅
Output: Optimal investment decisions

{
Xm, C

β
}
φ

, opera-
tion decisions

{
P SMR
m,t,w

}
φ

,
{
Pχ
t,w

}
φ

,
{
Rϖ

t,w

}
φ

Algorithm 3 Typical days iteration
Input: Load data of the whole year, tolerance δ

1: Iteration step: Φ← 1
2: Cluster load data to get typical days.
3: Get the initial investment decisions

{
Xm, C

β
}
Φ

through
Algorithm 2

4: repeat
5: Based on load data, normalized PV output and PV

capacity
{
CP

}
Φ

, cluster net load to get typical days.
6: Φ← Φ+ 1
7: Get the investment decisions

{
Xm, C

β
}
Φ

through Al-
gorithm 2

8: until
∣∣∣{Cβ

}
Φ
−

{
Cβ

}
Φ−1

∣∣∣ ≤ δ
Output: Optimal investment decisions

{
Xm, C

β
}
Φ

least the same. Thus, the frequency nadir is monotonically
decreasing at each iteration step of Algorithm 2. The fast
frequency reserve from BESS and PV are associated with
their investment capacity, which is supposed to be sufficient.
Thereby, in the end, the frequency nadir constraint will be
satisfied at all time steps.

D. Typical Days Adjustment

The inner iteration loop solves the frequency-constrained
planning problem with the given typical days. The selection of
typical days needs to consider the capacity decision-dependent
PV generation to guarantee the representativeness of the
typical daily net load profile. However, only the normalized
PV output is available before planning. In this case, an outer
iteration loop is proposed to iteratively use the difference
between load and PV generation as net load for typical days
selection. The outer iteration loop is given in Algorithm 3.

1β ∈ {PV,B, S,SE}, χ ∈ {PV,B+,B−, S+,S−}, ϖ ∈
{SMR,PV,B}
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TABLE II
RESOURCE PARAMETERS [18], [32], [28], [38]

Parameters SMR PV BESS SESS H2

Investment cost (k$-yr/MW) 1200 110 100 120 0.13
Operation cost ($/MWh) 24 – – – –

Maximum capacity (MW) 10 10 2 6 104

Inertia constant 4.5 – – – –
Minimum output 40% 0 0 0 –
Maximum reserve 10% 10% 20% – –

Fig. 9. (a) The dynamic trajectory of SMR’s power output with a specific
set point 0.08 p.u. (b) Dynamic trajectories of SMR’s power output under
different set points.

VI. CASE STUDIES

A. Experimental Setups

Case studies are conducted to verify the effectiveness of
the proposed method. A net-zero energy system is planned
to supply a remote standalone industrial/commercial load,
for example, a data center in North China. The investment
candidates include a set of identical SMRs (each modular rated
at 0.5MW), PV, BESS, SESS, and H2 storage. Load data and
normalized available PV output of the entire year are estimated
from historical data [18]. In our case, the load level is 10MW.
All the generation units and storage devices are invested from
scratch. The information of the resources is presented in Table.
II. In terms of the frequency security requirements, the limits
of RoCoF, steady-state deviation, and frequency nadir are
set as: 0.5Hz/s, 0.5Hz, and 0.8Hz, respectively. The power
imbalance Pim is considered as potential load variation, i.e.,
5% of the load Lt,w [30].

B. Dynamic Model Identification of SMR

1) Source Data: The dynamic model identification of SMR
is based on the time-variant data of SMR’s power output after
a change in the set point from the EMS. Specifically, after the
set point (input ∆Pset) of the SMR is changed, the dynamic
response of the SMR’s power output ∆Pmech is recorded.
As shown in Fig. 4, the inputs for PINN training include

TABLE III
PINN CONFIGURATIONS

Parameter Value

Optimizer Adam
Activation function Tanh

Hidden layers 5
Neurons per layer 10

Batch size 10,000
Training samples 400,000
Model parameters b2, b1, b0, a2, a1, a0

0 10 20 30 40 50 60 70 80 90 100

Epoch

0

0.05
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0.2

L
o

ss

90 92 94 96 98 100

6
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10
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Fig. 10. PINN training process.

the set point ∆Pset and the time stamp τ . The output is the
corresponding dynamic response ∆Pmech. In practice, the data
can be recorded by the instrumentation systems of SMR. As
SMR is still an emerging technology, we use simulation [13],
[17] to obtain the dynamic response of SMR.

Since the dynamic response of SMR’s power output ∆Pmech

for frequency regulation is a small-scale deviation from the
steady-state power output P SMR

m,t,w, we normalize the response
of ∆Pmech by the steady-state power output P SMR

m,t,w. In this
process, the input ∆Pset ranges from ±10% of the rated
power, which is the upper limit for SMR’s frequency reserve.
Take an example of the set point as ∆Pset = 0.08 p.u., the
trajectory (time-variant data) of SMR’s power output is shown
in Fig. 9 (a). The trajectory of the dynamic response consists
of 5,000 samples from τ = 0 to τ = 100s with the time
step size 0.02s. Each sample includes the input (∆Pset), the
time stamp (τ ), and the power output (∆Pmech). We generate
100 trajectories through simulation by randomly selecting the
set point ∆Pset from its range [−0.1, 0.1] pu. The three-
dimensional data include an arbitrary input and its time-variant
output in the time interval [0, 100] s, as shown in Fig. 9 (b).
As a result, the entire dataset consists of 500, 000 samples.
80% of the samples (400, 000) are used for training and the
other 20% samples (100, 000) are used for testing.

Generally, data cleaning needs to be conducted before the
training process to address the possible missing values. Since
the data we used is sourced from simulation, there are no
missing values. In real applications, linear interpolation can
be used to address the missing values [39].

2) PINN Configurations and Training Process: Based on
the simulated data, PINN is adopted for the dynamic model
identification of SMR, implemented using PyTorch. System
order is determined as a balance between estimation accuracy
and model complexity, which is selected from 1 to higher until
the physics-informed Loss converges below 10−3. Note that
the Loss 10−3 is chosen by experiment results, which indicates
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Fig. 11. Validation on the trajectory of the estimated model with a specific
set point.

TABLE IV
PERFORMANCE OF THE ESTIMATED MODEL IN FITTING THE DATASET

Dataset Training Testing

MAPE 1.17% 1.21%

that the mean squared error (MSE) between the training dataset
and the estimated output of PINN has converged below 10−3.
In this study, we find that a second-order model is enough
to approximate the complex high-order model with satisfied
accuracy. Our aim is to estimate the model parameters b2,
b1, b0, and a2, a1, a0. Based on the methodology in Section
III, the detailed PINN architecture is shown in Table III. The
training process is shown in Fig. 10. From the results, the
physics-informed loss function decreases with the number of
epochs and converges below 10−3 after 100 epochs.

The PINN training is carried out on Intel (R) Xeon (R)
W-3335 CPU @ 3.40GHz and NVIDIA GeForce RTX3080Ti
with 188 GB installed RAM. The training time is influenced
by the size of the network, the number of samples, and the
batching strategy. In our PINN setting as shown in Table III,
the training time required for each epoch is approximately 25
seconds and the whole training process takes 2382.08 seconds.

3) Model Validation: Through PINN training, the parame-
ters of a second-order differential model are estimated, which
is used to represent the dynamics of SMR in frequency
regulation. The accuracy performance of the estimated model
is validated concerning (1) training and testing datasets, and
(2) frequency nadir approximation.

Accuracy on training and testing datasets: The time-variant
output of the estimated model is compared with the output
of the real SMR model recorded in the dataset to evaluate its
performance. Take the input ∆Pset = 0.08 p.u. as an example,
the dynamic response of the estimated model tracks well with
the real SMR model within the whole time horizon as shown
in Fig. 11.

To quantitatively evaluate the accuracy performance of the
estimated model on the dataset, the mean absolute percentage
error (MAPE) is calculated as follows

MAPE =
1

Nc

Nc∑
c=1

∣∣∣∣∣∆Pmech,c −∆P̂mech,c

∆Pmech,c

∣∣∣∣∣, (29)

where Nc is the number of samples in the dataset. ∆Pmech,c is
the power output of the real SMR model recorded in sample c

Exact (∆𝑃im = 0.25MW, SMR)

Estimated (∆𝑃im = 0.25MW, SMR)

Exact (∆𝑃im = 0.3MW, SMR with BESS)

Estimated (∆𝑃im = 0.3MW, SMR with BESS)

(a) (b)

Fig. 12. Performance of the estimated SMR dynamic model in (a) frequency
response and (b) frequency trajectory approximation under different scenarios.

TABLE V
PERFORMANCE OF THE ESTIMATED MODEL IN APPROXIMATING THE

FREQUENCY NADIR

Scenarios Case I Case II Case III Case IV

MAPE 1.57% 0.92% 1.59% 0.94%

of the dataset. ∆P̂mech,c is the power output derived from the
estimated model with the same input ∆Pset and time stamp
τ of sample c. Results in Table IV show that the MAPE for
both training and testing datasets is below 2%, which indicates
the high accuracy level of the estimated model in fitting the
dataset of the real SMR model.

Accuracy on frequency nadir approximation: In our plan-
ning model, the estimated dynamic model of SMR is used
to derive the frequency nadir, which is then integrated into
the planning model as frequency security constraints. The
performance of the estimated model obtained through PINN
is evaluated in terms of frequency nadir estimation in this
part. In case the estimated model is implemented for frequency
regulation as shown in Fig. 7, the dynamic power output of
SMR and system frequency trajectory approximation under
different scenarios is presented in Fig. 12. From the results,
the dynamic response of SMR’s output and system frequency
obtained from the estimated model fit well with the response
of the real SMR model.

Similarly, MAPE is used to quantitatively evaluate the
performance of the estimated model on frequency nadir
approximation under different operation scenarios. Denote
the frequency nadir (maximum deviation of frequency) as
∆fnadir = |∆f |max, MAPE is calculated as

MAPE =
1

Ne

Ne∑
e=1

∣∣∣∣∣∆fnadir,e −∆f̂nadir,e
∆fnadir,e

∣∣∣∣∣, (30)

where Ne is the number of validation experiments. ∆fnadir,e
is the frequency nadir obtained through simulation of the real
SMR model in experiment e. ∆f̂nadir,e is the frequency nadir
obtained through the estimated model in experiment e. We
conduct the validation experiments based on our load level
(10MW) under four different scenarios: 1) Case I: ∆Pim

chosen as 5% load change, which ranges from -0.5MW to
0.5MW, SMR works alone to provide frequency response;
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Fig. 13. Normalized load and PV output at different outer iteration steps.

2) Case II: ∆Pim chosen as 5% load change, SMR coordi-
nates with the power electronics interfaced devices (BESS)
to provide frequency response; 3) Case III: ∆Pim chosen as
15% load change, which ranges from -1.5MW to 1.5MW,
SMR works alone to provide frequency response; 4) Case
IV: ∆Pim chosen as 15% load change, SMR coordinates with
the power electronics interfaced devices (BESS) to provide
frequency response. For each case, we conduct 100 validation
experiments by randomly selecting ∆Pim within the power
imbalance range. From the results in Table V. The MAPE
of the frequency nadir under different operation scenarios is
below 2%. In particular, in Case II and Case IV when the SMR
is coordinated with the power electronics interfaced devices
(BESS), the MAPE of the frequency nadir estimation is below
1%. Therefore, the dynamic model obtained from PINN can be
used to estimate the frequency nadir accurately during system
operation.

C. Planning Results

1) Single Node System: At first, the capacity of PV is not
determined and eight typical days are obtained through load
clustering. After the investment capacity of PV is obtained
at outer iteration step Φ, the difference between load and
PV output is used as net load for typical days clustering at
stage Φ+1. In this process, the operation scenarios are better
represented. The load and PV output at the first step and
last step of each typical day are shown in Fig. 13, which
indicates that through outer iteration, the typical days will
be more representative. In the end, the investment capacity
of the DERs converges within a difference of 0.05MW. The
final investment decisions and costs at different outer iteration
stages are presented in Table. VI. The results show that the
investment decision changes with the invested PV capacity and
the final investment capacity of PV converges to 8.47MW.

At the first step of the inner iteration process, the MILP
planning model P1 is solved. The investment and operation
decisions are used to evaluate the frequency nadir performance

TABLE VI
INVESTEMNT DECISIONS AND COSTS AT DIFFERENT OUTER ITERATION

STAGES

Outer iteration stage SMR PV BESS SESS Cost

Φ = 1
Cap (MW) 5.5 6.24 2 2.79

9.07
Cost (M$) 7.73 0.69 0.2 0.45

Φ = End
Cap (MW) 5.5 8.47 2 2.44

9.33
Cost (M$) 7.67 0.93 0.2 0.53
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Fig. 14. The frequency nadir performance in the inner iteration process.

with Algorithm 1. Fig. 14 showcases the metrics describing
the frequency nadir performance in the inner iteration process,
where the number of time steps that violate the frequency
nadir constraint (saved in Ωφ) is counted. It can be seen
that number is decreasing with the inner iteration step φ
as the faster frequency responses from PV and BESS are
enhanced. Meanwhile, the maximum value of the frequency
nadir converges to the security range, i.e., less than 0.8Hz at
the end of the inner iteration process. In the end, the frequency
nadir constraint is satisfied at all the time steps.

For the time step in Ωφ when the frequency nadir constraint
is violated, the frequency dynamics at the first and last inner
iteration step is presented in Fig. 15. The two linear frequency
constraints, i.e., the maximum RoCoF constraint and the maxi-
mum steady-state frequency deviation constraint are inherently
satisfied as they are integrated into the MILP planning model
P1. For the non-linear frequency nadir constraint, through
faster frequency response adjustment, the frequency nadir
finally converges to the security range. In this process, more
frequency reserves from BESS and PV are allocated.

The dispatched power outputs of DERs on certain typical
days are shown in Fig. 16, where the intra-day and inter-day
coordination of the invested resources are demonstrated. From
the result in Fig. 16, SMRs operate at the nearly rated level.
In typical day 3 when there is abundant PV generation, SMRs
could adjust their outputs to promote the consumption of PV.
BESS and SESS work as flexible resources to help satisfy
the power balance under different load and PV generation
scenarios. The results of typical day 1 and day 2 show
the intra-day coordination of the resources, where the power
output from SMRs and PV at lower load levels are charged
in BESS and SESS devices and then discharged to supply for
larger load levels at night. While the results of typical day 3
and day 4 show the inter-day coordination realized by SESS.
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Fig. 15. Frequency response at the first and last inner iteration step.
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Fig. 16. The operation of different resources at certain representative days.

The excessive power output on day 3 is stored in SESS and
discharged on day 4 when the generation level of PV is lower.
In such a system configuration, there is no curtailment of PV,
and energy efficiency is improved.

Since the planning horizon of 8760 hours is represented by
several typical days through the clustering method, the number
of representative days has a direct impact on the solution of the
planning model. The planning results under different numbers
of typical days are presented in Table. VII. With the increase of
typical days, the operation scenarios in the whole year can be
better represented, and the results will be more accurate. Table.
VII shows that the investment capacity of SMR increases with
the number of typical days since SMRs are more effective
for balancing net-load fluctuations and providing frequency
support.

From the results, the contributions of SMRs in the operation
of net-zero energy systems are summarized: 1) SMRs provide
base-load support for the system and the output can be adjusted
in some operation scenarios for net load following. 2) The
operation flexibility of BESS and SESS can be better utilized
through SMR for intra-day and inter-day power balance. 3)
SMRs provide both inertia and frequency regulation support
for dynamic frequency security, which could improve the
dynamic performance under a power imbalance contingency.

TABLE VII
RESULTS UNDER DIFFERENT NUMBER OF REPRESENTATIVE DAYS

Cluster Num
Cap (MW)

Cost (M$)
SMR PV BESS SESS

4 5.5 7.31 2 1.97 9.26
8 5.5 8.47 2 2.44 9.33

12 6 4.90 2 2.32 9.48
16 6 6.53 2 2.32 9.62

20
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19 21 22
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Fig. 17. Modified IEEE 33-bus network system.

2) Multi-node System: To illustrate the scalability of the
proposed method, case studies based on a multi-node (bus)
system are conducted. We apply the proposed model to a
modified IEEE 33-bus low-voltage network as shown in Fig.
17. The investment candidates include SMR modules (Bus 1),
five PV plants (Bus 5, 12, 18, 20, 28), BESS (Bus 8), and SESS
(Bus 15). The system load is distributed to all the buses. The
system parameters are the same as in Table II. Different from
the single-node system, the supply-demand balance needs to
be satisfied at each node of the system. Meanwhile, the power
flow model and distribution line capacity constraints also need
to be satisfied. The additional network associated constraints
are represented the same as [28]. The investment decisions
include the capacity of the generation units at each bus.

The planning results under 12 typical days are shown in
Table VIII. Compared with the results of the single-node
system in Table VII, the invested capacities of SMR, BESS,
and SESS are consistent while more PV generation is invested.
Moreover, the distribution of PV’s investment is impacted by
the network structure and the line flow constraints. Since SMR
in Bus 1 could provide sufficient generation for the system,
there are no PV investments in Bus 5 and Bus 20. More PV
generation is needed in Bus 12, Bus 18, and Bus 28 due to
the limited capacity of the distribution line from Bus 9 to
Bus 10 and the distribution line from Bus 6 to Bus 26. For
SESS, the capacity of the H2 storage is also increased to help
accommodate the PV generation in Bus 12 and Bus 18.

Additionally, the computational time for different numbers
of typical days of the planning model with the network model
is provided in Table IX. All case studies have been per-
formed on Intel (R) Xeon (R) W-3335 CPU @ 3.40GHz and
NVIDIA GeForce RTX3080Ti. Intuitively, the computational
time increases with the number of typical days since more
decision variables and constraints are introduced. The increase
in the computational time between the MILP planning problem
solution and the three-stage solution method indicates that the
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TABLE VIII
PLANNING RESULTS WITH NETWORK MODEL INTEGRATED

SMR PV-2 PV-3 PV-5 BESS SESS

Cap (MW) 6 2.66 1.22 2.65 2 2.33

Cost (M$) 8.27 0.29 0.13 0.29 0.2 0.43

TABLE IX
COMPUTATIONAL TIME OF THE MULTI-NODE SYSTEM UNDER DIFFERENT

TYPICAL DAYS

No. of typical days 4 8 12 16

Computation time (s)
of MILP planning 576.34 650.81 777.98 815.15

Computation time (s)
of three-stage strategy 1762.7 2857.24 3983.17 4775.18

proposed method could get a feasible solution after a few
iterations efficiently.

D. Comparative Analysis

1) Ablation Analysis on Frequency Reserve: The proposed
model is compared with other two cases to verify its effec-
tiveness:

Case1: Microgrid planning with no frequency security con-
straints.

Case2: Microgrid planning with fixed frequency reserve
(10% of rated power output) for dynamic frequency security.

Case3 (Our Method): Microgrid planning with variable
frequency reserve.

The final planning decisions under the three cases are
presented in Table X. Compared with the results of Case1
and Case2, the proposed method can guarantee the frequency
security constraints with less increased cost (1%). The op-
eration flexibility from SMR and energy storage devices is
better utilized and coordinated to satisfy the steady operation
constraints and dynamic frequency security constraints.

2) Comparison with Coal-fired Generator Based Systems:
The proposed SMR-renewable energy system is compared
with other system configurations to illustrate its feasibility
in net-zero design. The planning model is actually a multi-
objective optimization problem with economic, low-carbon,
and security considerations. From an environmental perspec-
tive, renewable energy resources could be coordinated with
energy storage systems as a net-zero solution. However, these
resources are all connected to the system through power
electronics interfaces, which challenges frequency security due
to the lack of inertia [40]. Thus, such a system configuration
is infeasible for security requirements. Traditional coal-fired
thermal generators could be used to help satisfy frequency
security requirements. However, there will be inherent carbon
emissions. With the low-carbon development of energy sys-
tems, there will be additional environmental costs for carbon
emissions, e.g. carbon tax, or carbon capture costs [41].
Although SMR is currently costly, it can be economically
competitive with the requirement of low carbon emission. To

TABLE X
RESULTS OF DIFFERENT PLANNING MODELS

Cases SMR PV BESS SESS Cost

Case1
Cap (MW) 5.5 7.37 1.84 2.19

9.24
Cost (M$) 7.69 0.81 0.18 0.56

Case2
Cap (MW) 6 9.17 2 2.25

10.06
Cost (M$) 8.28 1.01 0.2 0.57

Case3
Cap (MW) 5.5 8.47 2 2.44

9.33
Cost (M$) 7.67 0.93 0.2 0.53
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Fig. 18. Cost of coal-fired thermal generator based system configuration under
different values of carbon tax.

illustrate the economic feasibility of SMRs compared with
coal-fired thermal generators under low carbon development,
we conduct a sensitivity analysis on the impact of carbon tax
[42].

The system configuration of coal-fired generators is similar
to Fig. 1 where SMRs are replaced by coal-fired generators.
The overall cost π includes investment cost πI , operation cost
πO, and the additional environment cost πC associated with
carbon emission as

πC = ι · ϑ
W∑

w=1

T∑
t=1

ψwP
Coal
t,w , (31)

where ι is the carbon emission intensity (tonCO2/MWh). ϑ
represents the carbon tax ($/tonCO2). PCoal

t,w is the power
output of coal-fired generators. The objective function of the
planning model is reformulated as

min π = πI + πO + πC . (32)

The cost parameters and constraints of coal-fired generators
associated with planning and operations are from [28]. The
values of carbon emission intensity and carbon tax are sourced
from [42]. Currently, the carbon tax ranges from 20 $/tonCO2

to 70 $/tonCO2 [41] in different countries. With 12 typical
days chosen as the planning scenarios, the planning results
are shown in Fig. 18. It can be seen that the invested capacity
of coal-fired generators (Gen) remains the same with the
increase of the carbon tax, which is constrained by the inertia
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requirement for frequency security. There is a decrease in the
total generation of coal-fired generators, which is posed by
the increased carbon tax. In this case, the operating hours and
utilization efficiency of coal-fired generators are reduced. PV’s
investment capacity increases with the carbon tax as PV is a
clean energy source that could compensate for the reduced
supply from coal-fired generators.

The overall costs of coal-fired generators based system
and our proposed SMR-based system configurations are also
shown in Fig. 18. As SMR is a clean energy source, the en-
vironmental cost πC of our proposed SMR-renewable energy
system is zero and the overall cost remains unchanged with
carbon tax. In this case, the overall cost of the planned SMR-
renewable system in Table VII is represented as the base value.
For coal-fired generators integrated systems, the overall cost
increases with the carbon tax. It can be seen that when the
carbon tax is less than 60 $/tonCO2, it is more economical to
select the coal-fired generators as the base-load support for the
standalone energy system. However, with the decarbonization
development of energy systems, the carbon tax will be higher.
In the cases when the carbon tax is equal or higher than 60
$/tonCO2, SMRs become more economically competitive. In
addition, the costs of SMRs will decrease with the technical
development [11], which will enhance the feasibility of SMRs
for net-zero energy systems.

E. Sensitivity Analysis

The system designed in this work is able to sustain fre-
quency security under a sudden power imbalance contingency.
As shown in (18)-(25), the frequency security constraints
are determined by the predefined power imbalance ∆Pim,
which would impact the requirements on frequency reserve
of different resources and thus result in different system
configurations. Apart from the 5% load change considered in
the previous cases, we conduct sensitivity analysis on different
power imbalance scenarios in this part. Two different cases are
considered:

Case1: Power imbalance ∆Pim from different levels of load
uncertainty;

Case2: Power imbalance ∆Pim from different levels of load
and PV uncertainty.

Since BESS works as a flexible resource with faster fre-
quency response, it can be used to provide both virtual inertia
and frequency regulation support. In particular, more faster
frequency response from BESS is needed to satisfy frequency
nadir constraints. To guarantee the feasibility of the planning
model under larger power imbalance scenarios, we enlarge
the capacity limit of BESS to 3MW in the cases of this part.
The results of the frequency reserve requirements in the worst
scenario (maximum power imbalance ∆Pim) are shown in
Fig. 19. The planning results under different scenarios are
shown in Table XI. From both cases, it can be seen that
SMRs’ maximum frequency reserve (10% of rated power) is
fully activated in the worst scenario under different uncertainty
levels. The required frequency reserve from BESS increases
with the uncertainty level. When the flexible resource BESS
is sufficient to provide frequency regulation service (Case1),
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Fig. 19. Frequency reserve of DERs in the worst power imbalance scenario
under different uncertainty levels.

TABLE XI
PLANNING RESULTS UNDER DIFFERENT POWER IMBALANCE CASES WITH

DIFFERENT UNCERTAINTY LEVELS

Uncertainty level SMR PV BESS SESS

5%
Case1 (MW) 5 10 3 3.53
Case2 (MW) 5 10 3 3.61

7.5%
Case1 (MW) 5 10 3 3.53
Case2 (MW) 5 10 3 3.73

10%
Case1 (MW) 5 10 3 3.53
Case2 (MW) 5.5 7.55 2.85 2.84

12.5%
Case1 (MW) 5.5 7.42 3 3.21
Case2 (MW) 5.5 7.74 3 3.21

there are fewer requirements on frequency reserve from PV.
When the power imbalance is larger (Case2), PV’s frequency
reserve is also activated to help sustain frequency security.

From the planning results, it can be seen that the planning
results from 5% to 10% load uncertainty (Case1) remain
unchanged. The reason is that the frequency reserve from
BESS is sufficient and the reserve could be optimized to
guarantee frequency security under different scenarios. With
the increase in uncertainty level, there will be more investment
in SMRs, which indicates that BESS’s flexibility could not
sustain a larger system imbalance alone and more inertia and
frequency regulation support from the SMR is needed. On the
contrary, there is a decrease in PV’s invested capacity since
the added SMRs could help supply the demand, and less PV
generation is needed.

VII. CONCLUSIONS

This paper proposes a net-zero planning approach for stan-
dalone energy systems with SMRs. which could provide a
feasible solution to the decarbonization of energy systems.
Both steady-state operation constraints and dynamic frequency
security constraints are considered. Specifically, the dynamic
response of SMR is identified as a transfer function model
through a data-driven method. The dynamic responses of
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different resources are aggregated to derive the frequency
security constraints and introduced to the planning model.
Furthermore, to address the nonlinearity caused by frequency
nadir constraint, a heuristic solution method is proposed with
fast frequency reserve adjustment. The results suggest that: 1)
SMR could work as low-carbon flexible resources to support
the development of net-zero energy systems. 2) SMR could
help to provide inertia and frequency regulation service to
ensure the reliability of operation under a sudden contingency.
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[30] T. Baškarad, I. Kuzle, and N. Holjevac, “Photovoltaic system power
reserve determination using parabolic approximation of frequency re-
sponse,” IEEE Trans. Smart Grid, vol. 12, no. 4, pp. 3175–3184, 2021.

[31] Y. Wu, G. J. Lim, and J. Shi, “Stability-constrained microgrid operation
scheduling incorporating frequency control reserve,” IEEE Transactions
on Smart Grid, vol. 11, no. 2, pp. 1007–1017, 2019.

[32] W. Mark, Z. Ali, T. Don, B. Jacopo, and S. Koroush, “Techno-economic
assessment for generation iii+ small modular reactor deployments in the
pacific northwest,” 2021.

[33] Y. Ma, Z. Hu, and Y. Song, “Hour-ahead optimization strategy for shared
energy storage of renewable energy power stations to provide frequency
regulation service,” IEEE Trans. Sustainable Energy, vol. 13, no. 4, pp.
2331–2342, 2022.

[34] L. Kotzur, P. Markewitz, M. Robinius, and D. Stolten, “Time series
aggregation for energy system design: Modeling seasonal storage,”
Applied Energy, vol. 213, pp. 123–135, 2018.

[35] J. Tan, Q. Wu, and X. Zhang, “Optimal planning of integrated electricity
and heat system considering seasonal and short-term thermal energy
storage,” IEEE Trans. Smart Grid, 2022.

[36] Y. Yuan, Y. Zhang, J. Wang, Z. Liu, and Z. Chen, “Enhanced frequency-
constrained unit commitment considering variable-droop frequency con-
trol from converter-based generator,” IEEE Transactions on Power
Systems, vol. 38, no. 2, pp. 1094–1110, 2022.

[37] Z. Chu, U. Markovic, G. Hug, and F. Teng, “Towards optimal system
scheduling with synthetic inertia provision from wind turbines,” IEEE
Trans. Power Systems, vol. 35, no. 5, pp. 4056–4066, 2020.

[38] P. Gabrielli, M. Gazzani, E. Martelli, and M. Mazzotti, “Optimal design
of multi-energy systems with seasonal storage,” Applied Energy, vol.
219, pp. 408–424, 2018.

[39] K. Usman and M. Ramdhani, “Comparison of classical interpolation
methods and compressive sensing for missing data reconstruction,” in
2019 IEEE International Conference on Signals and Systems (ICSigSys).
IEEE, 2019, pp. 29–33.

[40] B. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P. Denholm, B.-M.
Hodge, and B. Hannegan, “Achieving a 100% renewable grid: Operating
electric power systems with extremely high levels of variable renewable
energy,” IEEE Power and Energy Magazine, vol. 15, no. 2, pp. 61–73,
2017.

[41] M. Santikarn, A. N. Churie Kallhauge, M. O. Bozcaga, L. Sattler, M. S.
Mccormick, A. Ferran Torres, D. Conway, L. Mongendre, C. Inclan,
S. Mikolajczyk et al., “State and trends of carbon pricing 2021,” 2021.

[42] Y. Cheng, N. Zhang, B. Zhang, C. Kang, W. Xi, and M. Feng, “Low-
carbon operation of multiple energy systems based on energy-carbon
integrated prices,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp.
1307–1318, 2019.



ACCEPTED BY IEEE TRANS. SMART GRID 17

Mingyu Huang received her B.S. degree in au-
tomation in 2019 and her M.S. degree in control
science and engineering in 2022, both from Wuhan
University, Wuhan, China. She is currently pursuing
her Ph.D. degree in the Department of Electrical and
Electronic Engineering at the University of Hong
Kong. Her research interests include dynamic virtual
power plants and ancillary services.

Xueyuan Cui received the B.E. and M.S. degrees
from Zhejiang University, Hangzhou, China, in June
2019 and March 2022, respectively, both in elec-
trical engineering. He is currently a Ph.D. student
with the Department of Electrical and Electronic
Engineering, The University of Hong Kong. His
research interests include power system operation
and network balancing technologies.

Ning Zhang (S’10, M’12, SM’18) received both
B.S. and Ph.D. from the Electrical Engineering De-
partment of Tsinghua University in China in 2007
and 2012, respectively.

He is now Tenured Associate Professor at the
same university. His research interests include re-
newable energy, and low carbon power system plan-
ning and operation, multi-energy systems integra-
tion.

Mengshuo Jia (S’18 M’21) received the B.E. degree
in electrical engineering from North China Electric
Power University in 2016, and the Ph.D. degree
in electrical engineering from Tsinghua University
in 2021. From 2021 to 2023, He was a Postdoc-
toral Researcher with the Department of Information
Technology and Electrical Engineering, ETH Zürich,
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