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Abstract 
With the emergence of large amount of single-cell RNA sequencing (scRNA-seq) data, the exploration of computational methods has 
become critical in revealing biological mechanisms. Clustering is a representative for deciphering cellular heterogeneity embedded in 
scRNA-seq data. However, due to the diversity of datasets, none of the existing single-cell clustering methods shows overwhelming 
performance on all datasets. Weighted ensemble methods are proposed to integrate multiple results to improve heterogeneity analysis 
performance. These methods are usually weighted by considering the reliability of the base clustering results, ignoring the performance 
difference of the same base clustering on different cells. In this paper, we propose a high-order element-wise weighting strategy based 
self-representative ensemble learning framework: scEWE. By assigning different base clustering weights to individual cells, we construct 
and optimize the consensus matrix in a careful and exquisite way. In addition, we extracted the high-order information between cells, 
which enhanced the ability to represent the similarity relationship between cells. scEWE is experimentally shown to significantly 
outperform the state-of-the-art methods, which strongly demonstrates the effectiveness of the method and supports the potential 
applications in complex single-cell data analytical problems. 
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INTRODUCTION 
Single-cell RNA sequencing (scRNA-seq) technology has rapidly 
gained attention since the first release in 2009. With the emer-
gence of large amount of scRNA-seq data, the exploration of 
data analysis methods has become critical in revealing biologi-
cal mechanisms. Among them, heterogeneity analysis of scRNA-
seq data builds the basis for downstream analysis by revealing 
cellular complexity, including cell type heterogeneity and the 
transcriptomic signatures. 

In recent years, a great number of algorithms have been pro-
posed [1–4] for addressing the problems of single-cell hetero-
geneity analysis. pcaReduce [5] presents an agglomerative clus-
tering framework by combining principal component analysis 
(PCA) and k-means methods for inferring cellular hierarchies. [6] 
applies PCA algorithm and Laplacian transformation for dimen-
sion reduction of scRNA-seq data, and then employs cluster-based 

similarity partitioning algorithm (CSPA) to robustly analyze the 
heterogeneity embedded in scRNA-seq data. RaceID [7] assumes 
that different cell types robustly express some specific ‘outlier’ 
genes, achieving efficient identification of rare cell types in com-
plex cell mixtures. Among the graph-based algorithms, CIDR [8] 
uses a simple implicit imputation method to mitigate the impact 
of data loss in single-cell transcriptome data, and then performs 
clustering based on the first few major coordinates with principal 
coordinates analysis. Celltree [9] is based on a powerful Bayesian 
statistical framework that represents cells as a statistical mixture 
of classes, allowing the capture of subtle evolutionary features 
along a continuum of soma and handling heterogeneous groups 
well. SCENIC [10] uses GENIE3 and GRNBoost (Gradient Boosting) 
to infer co-expression modules between transcription factors and 
candidate target genes, thereby providing a clearer data structure 
for downstream clustering. SIMLR [11] combines multiple kernels
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to learn the stable distance measure most suitable for the data 
structure to perform spectral clustering. SNN-Cliq as a graph 
based method [12] proposes a cluster-based clustering algorithm 
with a similarity measure based on shared nearest neighbors 
between cells, which can identify cell clusters of different den-
sities and shapes. [2] proposed a hierarchical clustering frame-
work based on new similarity measure using cell–pair correlation, 
showing robustness in cellular heterogeneity analysis for small 
scRNA-seq data sets. A kernel non-negative matrix factorization 
framework was further developed for dealing with relatively large 
size of scRNA-seq data in [4]. 

With the rapid development of deep learning, a lot of methods 
based on neural networks have been studied in recent years. 
ScDeepcluster [13] uses an autoencoder network to simultane-
ously learn low-dimensional feature representation and cluster 
assignment. ScDCC [3] encodes prior knowledge into constraints 
based on scDeepcluster method and integrated into the clustering 
process through a new loss function. scGNN [14] proposed a left-
truncated mixture Gaussian model to evaluate heterogeneous 
gene expression patterns and aggregate cell relationships with 
graph neural networks. scSemiGAN [15] builds a semi-supervised 
cell type annotation and dimensionality reduction framework 
based on the generative adversarial network. 

Different methods yielded different results even for the same 
problems, as no existing method outperforms all the other com-
petitors in all scenarios. Hence it is of great challenge to select the 
optimal method in single-cell heterogeneity analysis. Therefore, 
the idea of integrated learning offers a compelling alternative. A 
lot of works have been done based on weighted fusion of single-
cell clustering results. SAFE [16] uses hyper-graph partitioning 
algorithm to integrate multiple clustering methods to build the 
final consensus partition. SAME [17] developed a mixture model 
ensemble clustering method to robustly analyze the cellular het-
erogeneity in scRNA-seq data. sc-GPE [18] calculates the Adjusted 
Rand Index (ARI) between the base clustering results, assigning 
greater weight to base clusterings that are more similar to other 
results. However, the weight strategy in the above ensemble rep-
resentatives mainly considers base clustering as a whole, while 
neglects the element-wise contribution inside base-clustering. 
Besides, most existing methods ignore the high-order connection 
information between cells which may encode comprehensive 
structure information. In this paper, we propose a novel element-
wise weighted ensemble method: scEWE, which introduces the 
first-order and second-order similarity in element-wise weight 
matrix construction and adaptively optimize to construct the 
final consensus co-association matrix to capture the high-order 
similarity relationship between cells as well as guarantee a robust 
reflection on the relationship between base clusterings. Finally, 
the obtained weighted consensus matrix is incorporated into the 
spectral clustering framework with low rank representation to 
indicate the stable heterogeneity result for scRNA-seq data. 

METHODS 
We proposed a high-order Element-wise Weighted Ensemble 
learning model for single-cell data analysis(scEWE). The archi-
tecture of scEWE is shown in Figure 1. 

scRNA-seq data usually have tens of thousands of genes in 
attribute space, with a large number of genes in low expression or 
undetected, which interferes with the correct identification of cell 
populations. Based on the characteristics of high-spasity, high-
noise and high-dimensionality in scRNA-seq data, we assume 
a large number of attributes will make little contribution to 

the clear data representation of the data. On the other hand, 
highly variable genes are generally considered important for dis-
tinguishing cellular heterogeneity. We therefore select the top few 
highly variable genes with the largest variance to extract the rich 
information contained in the scRNA-seq data. In data prepro-
cessing stage, we filtered the top 10% of genes with the largest 
variance. 

Weighted co-association matrix 
We let X = {x1, · · ·  , xN} be a dataset with N cells, where xi 

represents the i-th cell. We use P = {
π1, · · ·  , πM

}
to represent the M 

base clusterings in the ensemble, where the M-th base clustering 
contains nm clusters. Moreover, clsm(xi) denotes the cluster to 
which the i-th cell belongs in the m-th clustering. 

The co-occurrence matrix Am for m−th base clustering is con-
structed as 

Am 
ij =

{
1, if clsm(xi) = clsm(xj) 
0, if clsm(xi) �= clsm(xj) 

(1) 

Traditional co-association matrix A is constructed by averaging 
Am, i = 1, 2, . . . M: 

A = 
1 
M 

M∑
m=1 

Am . (2)  

One way to improve the representation ability of A is to assign 
weights βm to Am: 

A = 
M∑

m=1 

βmAm , 

m∑
i=1 

βm = 1, βm ≥ 0. (3) 

However, due to the diversity of cell clusters, base clusterings 
that perform well on some cells may perform poorly on other 
cells. In order to better exploit the strength of base clusterings, 
we weight the base clusterings at the cell scale. 

Specifically, we first construct the initial co-association matrix 
A according to Eq. (2), and then improve the representation of the 
co-association matrix by iterative weighting. Given the initial co-
association matrix A, we construct the τ -nearest neighborhood 
set of cell i as follows: 

ui = {xi1 , · · ·  , xiτ }, (4)  

where i1, · · ·  , iτ denote the column numbers corresponding to 
the τ largest elements in row i of A. Note that we base our 
framework on co-association matrix when constructing the cell 
neighborhood, which can make full use of global information. 

Intuitively, with the increasing of the similarity between the τ -
nearest neighbor set of a cell and the cluster to which the cell 
belongs, the clustered cell becomes more reliable. We use the 
Jaccard coefficient as a similarity measure between sets, and the 
weight matrix W(1) is constructed as follows: 

W(1) 
ij = Jaccard(ui, clsj(xi)), (5)  

where 

Jaccard(Q1, Q2) = 
|Q1 ∩ Q2| 
|Q1 ∪ Q2| . (6)
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Figure 1. Flowchart for scEWE. 

Here Q1 and Q2 represent two arbitrary sets, and | · |  denotes the 
number of elements in the set. The larger W(1) 

ij , the better the 
clustering effect of the j-th base clustering on the i-th cell. 

To explore multi-scale associations between cells, we construct 
a second-order co-association matrix to describe the higher order 
similarity between cells. In real-world scenarios, if two people 
have many mutual friends, there is a high probability that the two 
people are acquainted. Inspired by this phenomenon, two cells 
that are very similar to each other should also belong to the same 
type. Therefore, the similarity information in the co-association 
matrix is regarded as a highly condensed sample feature. The 
Gaussian radial basis function is used to calculate the similarity 

between cells: 

Simil(xi, xj) = exp

(
−||x̂i − x̂j||2 

2σ 2

)
, (7)  

where x̂i represents the i-th row data of the initial co-association 
matrix A (Eq. (2)), σ 2 = 1 

N−1

∑N 
i=1 ||x̂i − x||2 

2, x = 1 
N

∑N 
i=1 x̂i. Then, 

we obtain the second-order co-association matrix A(2)according 
to the cell similarity: 

A(2) 
ij = Simil(xi, xj). (8)

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/3/bbae203/7663427 by guest on 11 Septem

ber 2024



4 | Huang et al.

Denote 

u′
i = {xi′1 

, · · ·  , xi′τ }, (9)  

where i′1, · · ·  , i′τ denote the column numbers corresponding to the 
τ largest elements in row i of A(2). The second-order weight matrix 
W(2) is constructed accordingly: 

W(2) 
ij = Jaccard(u′

i, clsj(xi)). (10) 

We express the final weight matrix W as a linear combination of 
the first-order and second-order weight matrices: 

W = λ · W(1) + (1 − λ) · W(2) . (11) 

The parameter λ balances the proportion of the first-order and 
second-order weight matrices. For the convenience of calculation, 
the matrix W was represented in the form of column vectors 
W = {w1, w2, · · ·  , wM}, where  wi is the i-th column vector of W. 
The weighted co-association matrix S is computed as 

S = 
M∑

m=1 

(wmwT 
m)γ � Am , (12) 

where � denotes the matrix dot product, and(·)γ represents 
element-wise exponentiation. The scale parameter γ ∈ [0, ∞) 
measures the importance of the weighting method in the 
ensemble process. If we want to enhance the influence of cell 
weights on the weighted co-association matrix S, we should set a 
larger γ . 

We iteratively update the weighting matrix as represented by 
W = {w1, w2, · · ·  , wM} to ensure a stable S. Specifically, for Si we 
follow the steps of Eqs. (4)–(11) to generate updated weight matrix 
Ŵ = {ŵ1, ŵ2, · · ·  , ŵM} and corresponding Si+1 = ∑M 

m=1( ŵm ŵT 
m)γ �

Am until μ <  10−3, where  

μ = 
||Si+1 − Si||F 

||Si||F 
. (13) 

Optimization framework 
After obtaining the weighted co-association matrix S, a common 
practice is to use the spectral clustering algorithm to output the 
clustering results, since S can be viewed as the similarity matrix 
of the cells: 

minF tr(FT LSF) 

s.t. FT F = I. (14) 

where LS stands for the normalized Laplacian matrix of S, and  F 
represents the clustering result matrix. 

However, noise in single-cell data often disrupts the data struc-
ture, making the clustering results significantly different from 
the real cell clusters. We regard attribute matrix for each cluster 
form a subspace of the feature space, and introduce the idea of 
subspace clustering for low-rank recovery. Here, the cells polluted 
by noise are considered outliers. In order to make the weighted 
co-association matrix S have a clearer structure for more accurate 
clustering results, we iteratively generate a block-diagonal matrix 
YN×N based on robust spectral ensemble clustering [19]. Given 
S, a self-representation SY on a low-rank subspace is used to 
approximately reconstruct S with reconstruction error R. Y is a 

dictionary coefficient matrix, which is used to extract important 
features of S. It is worth mentioning that the existing theory has 
proved that when S is used as the dictionary of S itself, the dictio-
nary coefficient matrix Y has excellent properties to facilitate the 
subsequent clustering. These properties include low rank, block 
diagonal and approximate symmetry. The optimization function 
is as follows: 

minF,Y,R tr(FT LYF) + σ1||Y||∗ + σ2||R||2,1 

s.t. FT F = I, S = SY + R, (15) 

where 

LY = I − D
− 1 

2 
Y ((Y + YT )/2 + FFT )D

− 1 
2 

Y . (16) 

Here, DY stands for the degree matrix of (Y + YT)/2 + FFT. The  
purpose of constructing the Laplacian matrix using (Y+YT)/2+FFT 

instead of S is to strengthen the block diagonal structure of the cell 
similarity matrix during optimization. 

Optimization of cluster number k 
It is of critical significance to give an accurate estimation of 
cluster number. Inspired by [2], we determined the number of 
clusters k based on variance analysis. Variance analysis describes 
the contribution of variation from different sources to the total 
variation. We regarded the inter-cluster difference after clustering 
as the inherent difference of different cell clusters (SSW) and 
regarded the difference between intra-cluster as SSB. 

Suppose that cells are clustered into K clusters, where the k-th 
cluster has nk cells. As before, we used cls(xi) to indicate the cluster 
to which the i-th cell belongs. Define the k-th cluster center as 
follows: 

xk = 
1 
nk 

N∑
i=1 

xi · 1(cls(xi) = k), (17) 

where 1(·) is an indicator function. Therefore, accordingly, 

SSB = 
K∑

k=1 

nk(xk − x)2 , 

SSW = 
N∑

i=1 

K∑
k=1 

(xi − xk)
2 · 1(cls(xi) = k), 

SST = 
N∑

i=1 

(xi − x)2 . 

(18) 

An effective cluster partition usually results in large inter-
cluster distance and small intra-cluster distance. Therefore, we 
attempt to obtain better cluster partitions by making Rate = SSB 

SST 
as large as possible. However, as the number of cell clusters 
increases, the Rate value usually increases monotonically. We 
therefore used the growth rate as a criterion and the optimal 
cluster number is achieved by solving the following optimization 
problem: 

k∗ = argmink

∑q′
i=1 Ratei(k + 1) − Ratei(k)∑q′
i=1 Ratei(k) − Ratei(k − 1) 

, (19) 

where Ratei(k) denotes the Rate value of the i-th feature when the 
number of clusters is specified as k. 

The value of q′ in the above equation represents the number of 
top differentially expressed genes.
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Algorithm 1 scEWE 
Input: Base clusterings π1, · · ·  , πM , parameters γ , σ1, σ2 

Output: Final clustering result 
1: Generate A1 · · · AM and calculate A, set  μ = 1. 
2: while μ >  1e − 3 do 
3: Calculate weight matrix W by Eq. (11). 
4: Calculate consensus matrix S by Eq. (12). 
5: Calculate μ by Eq. (13). 
6: end while 
7: Obtain F by optimize Eq. (14). 
8: Perform spectral clustering on FFT to get the final result. 

Finally, F learns the cluster partition of cells, and we perform 
spectral clustering on FFT to get the final clustering result. We 
summarize the procedure details in Algorithm 1. 

RESULTS 
Performance evaluation 
We use two common indicators, ARI and Nomalized Mutual Infor-
mation (NMI), to evaluate the performance of scEWE and com-
pared methods. Suppose P = {P1 · · · Ps} represents the predicted 
label set and T = {T1 · · · Tr} represents the real label set, nij = 
|Pi ∩ Tj|. 

Then the ARI is calculated as follows: 

ARI(P, T) =
∑

ij

(nij 
2

) − [
∑

i

(ai 
2

) ∑
j

(bj 
2

)
]/

(n 
2

)
1 
2 [

∑
i

(ai 
2

) + ∑
j

(bj 
2

)
]/

(n 
2

) − [
∑

i

(ai 
2

)∑
j

(bj 
2

)
]/

(n 
2

) , (20) 

where ai is the number of cells labeled Pi, bj is the number of cells 
labeled Tj. The range of ARI is [−1, 1], and a larger value indicates 
a better clustering result. 

NMI uses information entropy theory to describe the similarity 
of label set distribution, which is calculated as follows: 

NMI(P, T) =
∑

ij 
nij 
N log Nnij 

aibj 

−
(∑

i 
ai 
N log ai 

N +
∑

j 
bj 
N log bj 

N

)
/2 

. (21) 

The range of NMI is [0, 1], and a larger value indicates a better 
clustering result. 

Compared methods 
SHARP 
As an algorithm for processing large-scale single-cell data, the 
SHARP method [20] consists of three steps: dividing the cells 
into different groups, using a random projection algorithm for 
dimensionality reduction for each group and weighting the results 
after dimensionality reduction. Finally, SHARP obtains the final 
clustering result according to the similarity relationship between 
cells in the consensus matrix. 

SIMLR 
SIMLR [11] uses different distance metrics to construct a nuclear 
similarity matrix for cells, determines the weight by visualizing 
each nucleus and then uses spectral clustering to learn cell 
partitions. 

CIDR 
CIDR [8] uses a simple implicit imputation method to mitigate the 
impact of dropout in scRNA-seq data, followed by clustering based 
on the first few principal coordinates. 

Table 1: Datasets information 

Datasets Cells Genes Clusters 

Biase [23] 49 25 737 3 
Brain [24] 420 22 085 8 
Deng [25] 268 22 431 10 
Goolam [26] 124 41 480 5 
Treulein [27] 80 23 271 3 
Usoskin [28] 622 17 772 4 

SC3 
SC3 [21] uses PCA and Laplacian transformation for dimension 
reduction processing, and then uses CSPA to partition the consen-
sus matrix. Despite the slow speed when integrating large-scale 
data sets, SC3 is still one of the mainstream algorithms for single-
cell clustering due to its superior performance. 

Seurat 
Seurat [22] first calculates the Euclidean distance of the k nearest 
cells to each cell in the space after PCA dimensionality reduction, 
and constructs a k-NN graph. It then refines the edge weights 
between any two cells based on their shared overlap in their 
local neighborhood, attempts to partition the graph into highly 
interconnected communities and finally applies a modular opti-
mization technique (Louvain) to group cells. 

SAFE 
SAFE [16] is an ensemble clustering method for scRNA-seq data. 
It embeds four state-of-the-art methods, SC3, CIDR, Seurat and t-
SNE+k-means for ensemble learning, and used three hypergraph-
based partitioning algorithms for final clustering result integra-
tion. 

SAME 
SAME [17] is a mixture model-based approach for scRNA-seq data 
clustering. SC3, CIDR, Seurat, t-SNE + k-means and SIMLR are the 
five base clustering algorithms. Normalization and transforma-
tion of scRNA-seq data are executed in the initial stage. A subset 
of four diverse sets of clustering solutions are then combined for 
final cluster ensemble. 

Experiments 
We used publicly available datasets from published papers to test 
the performance of scEWE, and the details of the datasets are 
shown in Table 1. In data preprocessing stage, we first filtered the 
top 10% of genes with the largest variance. 

In the following text, the five single-cell clustering algorithms: 
SHARP, SIMLR, CIDR, SC3 and Seurat were used to generate base 
clusterings for our ensemble learning framework. We generated 
a candidate clustering pool(composed of 50 base clusterings) by 
constructing 10 base clusterings for each of the five clustering 
algorithms, through perturbation on the top 10% selected genes 
with 10 genes taken as intervals, and the parameters are set as γ = 
0.5, σ1 = 1000, σ2 = 100 and the maximum number of iterations 
to 50. Specifically, the 10 base clustering results are generated 
as follows. Assuming the number of genes in the scRNA-seq 
dataset is m, the base clustering results were generated on the 
filtered dataset with a number of selected variable genes, where 
the top variable gene is measured with largest variance in gene 
expression across all the cells. The number of selected variable 
genes ng(i) in the i-th base clustering result can be represented in
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the following formula: 

ng(i) = 10(i − 5) + [m/10], i = 1, 2, ..10, (22) 

where [m/10] is the nearest integer around m/10. The intuition 
behind the generation process is as follows. The scRNA-seq data 
set is sparse and noisy. Hence for each dataset, we use vari-
able gene expression to represent the characteristics of the cells; 
however, usually different clustering results will be obtained by 
taking different numbers of variable genes. It is unclear what is 
the appropriate number of genes that should be involved in the 
clustering. Therefore, we generate 10 base clustering results for 
the given dataset with varying numbers of variable genes, which 
are used for further ensemble learning and may lead to better and 
more robust results. It is worth mentioning that we take the seed 
number of 5 for all the random parts in the algorithm, and still 
take this seed number for comparing methods when comparing 
the results with the base clustering method. 

The parameter λ in Eq. (11) plays an important role in balancing 
the first-order weight matrix and the second-order weight matrix. 
Motivated by variance analysis, we introduce the measure below 
to decide an optimal λ: 

λ∗ = argmaxλ 
SSB(λ) 
SST(λ) 

. (23) 

Assume there are c cell sub-populations and each cell belongs to 
one and only one subpopulation. Treating each cell subpopulation 
as a treatment group, we can define SSB(λ) and SST(λ) analogously 
as Eq. (18). If c cell populations are well separated, SSB(λ) 

SST(λ) is likely to 
be large. Therefore, the optimal parameter λ∗ is determined when 
SSB(λ) 
SST(λ) achieves the maximum. 

In order to reduce the computational complexity, when using 
high-order information, we first filter the base clustering instead 
of using all the base clustering for ensemble. We preliminarily 
ran our ensemble algorithm and summed the weight matrix W 
to evaluate the importance of the base clustering by scorej =∑N 

i=1 Wij, j = 1 · · · 50. The top five base clusterings with the largest 
score are finally determined and integrated to get the final clus-
tering result. Regarding the parameter τ , the optimal choice of the 
number of neighbors for each cell is the number of cells in the 
cluster to which it belongs. We selected larger τ for the dataset 
with more genes to better utilize the rich information of cell-to-
cell relationships. Therefore, we set the value of τ according to the 
following formula τ = �α N·(2000+f [q−15000]) 

k+1 �, where 

f (x) =
{

x, x > 0 
0, x ≤ 0 

. 

Here N is the number of cells in the dataset, q is the number 
of genes and k is the cluster number of cells. α is the data scale 
parameter, since more cells in large-scale datasets should be 
selected to construct cell neighborhoods, so we set 

α =
{

1 
10000 , N < 400 

1 
3600 , N ≥ 400 

. 

We compared our method with seven state-of-the-art single-
cell clustering methods. Among them, SAFE and SAME are ensem-
ble clustering algorithms developed for single cell. For the five 
base clustering algorithms, we use the default parameters in both 
individual setting and ensemble learning. For SAFE and SAME, 
we also use the default parameters of the methods. It should 

be noted that cluster number is a critical parameter for the 
algorithms. In SAFE, SAME and our proposed scEWE where the 
number of clusters can be determined adaptively, we take the 
number of clusters determined by the algorithm as input. For 
the five base clustering methods as comparison methods, we use 
the real number of clusters for them. Seurat method relies on 
resolution to determine the number of clusters, and we set the 
resolution to 1.5. In the SHARP and SC3 method, the seed number 
is set to 5 uniformly. For the other parameters in Seurat, we 
specify scale.factor = 10 000, nfeatures=1000, npcs=40 and dims 
in FindNeighbors=1:10. The results are shown in Tables 2 and 3. 
SAFE as an ensemble clustering method for scRNA-seq data can 
demonstrate superiority to SHARP, SIMLR, CIDR and Seurat. In the 
ensemble comparison partners, SAFE shows better performance 
in Goolam data, compared with SC3 and SAME. There are no 
dominant methods that can show best performances in SAFE, 
SAME and SC3. These methods cannot compete with scEWE in 
the considered datasets. 

In order to compare the embedding capability of the feature 
space extracted by different methods, we performed t-stochastic 
neighborhood embedding(tSNE) to visualize the data on a two-
dimensional space. For methods that perform clustering based 
on the consensus matrix (SIMLR, SC3 and scEWE), we use the 
consensus matrix as input for the tSNE visualization. For meth-
ods (CIDR, SHARP and Seurat), we use the embedding matrix 
obtained for input. Since the SAME and SAFE directly outputs 
the clustering results, it is hard to evaluate the embedding or 
modeling capability of the methods and hence incapable for us 
to show tSNE visualizations for these methods. To visualize the 
clustering results, we provided UMAP visualizations for all the 
clustering results by the considered methods. We directly reduce 
the dimensionality of all datasets by UMAP, and then color the 
cells according to clustering results of different methods. They are 
attached in the supplementary file. It can be shown that scEWE 
helps provide a better clustering result compared with other 
methods. Besides, we provided the UMAP visualization results 
of our method and the five base clustering methods for all the 
datasets in the embedding capabilities and the results were also 
attached in the supplementary file. 

The tSNE visualizations for all the six datasets are included in 
the supplementary file, where four representative datasets (see 
Figures 2 to 5) are shown for illustration purpose. 

In the Usoskin dataset (Figure 2), CIDR does not capture cellular 
heterogeneity where different cell types are mixed together. For 
SHARP, cells of the same type are tightly scattered. Although 
SIMLR clearly separates cells in different clusters, certain type 
of cells are divided into two distinct clusters. SC3, Seurat and 
scEWE showed relatively better descriptions of cellular relation-
ships. In particular, scEWE best captures the relationship between 
cells, where the same type of cells are tightly clustered and 
different cell types are well separated. Similar results can be 
revealed in Figures 3 to 5 that scEWE is among the best method 
for deciphering the heterogeneity in the considered scRNA-seq 
data sets. 

We showed the number of clusters predicted by our method 
in the six datasets, as shown in Figure 6. It is clear that our 
estimation of the number of cell clusters is relatively robust. 

For the single-cell heterogeneity analysis, we used five methods 
(SHARP, SIMLR, CIDR, SC3 and Seurat) as base clustering, and 
got an ensemble clustering result (scEWE) with excellent perfor-
mance. In addition, we proposed a method for estimating the 
number of cell clusters based on the variance analysis. Experi-
ments have proved that our estimation is very consistent with the
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Table 2: Performance comparison of different methods in ARI on the considered datasets (the best score in each row is highlighted 
in bold) 

Methods 

Datasets SHARP SIMLR CIDR SC3 Seurat SAFE SAME scEWE 

Biase 1.0000 1.0000 1.0000 1.0000 0.2706 1.0000 1.0000 1.0000 
Brain 0.7264 0.5829 0.0815 0.7850 0.5791 0.7580 0.7761 0.8761 
Deng 0.3868 0.4125 0.4391 0.6620 0.3565 0.4312 0.4024 0.6713 
Goolam 0.6084 0.5441 0.4006 0.5441 0.2330 0.6189 0.4639 0.8429 
Treulein 0.1418 -0.077 0.0600 0.4672 0.1501 − 0.1487 0.5531 
Usoskin 0.2745 0.6602 0.0289 0.8583 0.4473 0.6377 0.6543 0.8862 

Table 3: Performance comparison of different methods in NMI on the considered datasets (the best score in each row is highlighted 
in bold) 

Methods 

Datasets SHARP SIMLR CIDR SC3 Seurat SAFE SAME scEWE 

Biase 1.0000 1.0000 1.0000 1.0000 0.3804 1.0000 1.0000 1.0000 
Brain 0.7301 0.7137 0.1748 0.8382 0.6570 0.6804 0.7050 0.8422 
Deng 0.4764 0.6625 0.6082 0.8171 0.5475 0.5577 0.5295 0.8377 
Goolam 0.5373 0.6637 0.6207 0.6637 0.3447 0.4996 0.5489 0.7957 
Treulein 0.1279 0.1318 0.0642 0.5168 0.2653 − 0.0546 0.6401 
Usoskin 0.2892 0.7202 0.0567 0.8279 0.5392 0.5820 0.5991 0.8854 

Figure 2. tSNE visualization of embedding capability for the Usoskin dataset. Subfigures correspond to SHARP, SIMLR, CIDR, SC3, Seurat and scEWE. 
The different colors represent different clusters in true labels. 

real number of cell clusters under the premise that the number 
of clusters in the base clusterings is accurate. 

Some widely used base clustering methods such as CIDR 
showed unsatisfactory performance on some datasets, hence we 
tried to analyze the special properties in the considered data 
sets. We performed tSNE to visualize the original scRNA-seq 

data to have a understanding on the data distributions, shown 
in Figure 7(A). It can be seen that most of the data sets were 
quite noisy where different cell types mixed together, bringing 
difficulties in correct distinction of cellular heterogeneity. We 
also evaluated the sparsity of the data by computing the 
nonzero ratio in each attribute, and see that a number of the
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Figure 3. tSNE visualization of embedding capability for the Goolam dataset. Subfigures correspond to SHARP, SIMLR, CIDR, SC3, Seurat and scEWE. The 
different colors represent different clusters in true labels. 

Figure 4. tSNE visualization of embedding capability for the Deng dataset. Subfigures correspond to SHARP, SIMLR, CIDR, SC3, Seurat and scEWE. The 
different colors represent different clusters in true labels. 

attributes are sparsely distributed, shown in Figure 7(B). In  
particular, the attribute sparsity was clearly shown in Brain, 
Treulein and Usoskin data. We found that CIDR showed poor 
performance in these datasets, the possible explanations might 
be that CIDR was quite sensitive to the sparsity of the data. 

SHARP, SIMLR and Seurat were less sensitive to the data sparsity 
compared with CIDR; however, we can see that in Treulein 
data when almost all the attributes were sparsely distributed, 
these methods failed to capture the inherent relationship in 
the data.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/3/bbae203/7663427 by guest on 11 Septem

ber 2024



Element-wise Weighted Ensemble | 9

Figure 5. tSNE visualization of embedding capability for the Treulein dataset. Subfigures correspond to SHARP, SIMLR, CIDR, SC3, Seurat and scEWE. 
The different colors represent different clusters in true labels. 

Figure 6. Optimal cluster number determination in different datasets. 

DISCUSSION 
Parameter sensitivity analysis 
Aiming at investigating the impact of parameters on the perfor-
mances of the proposed algorithms, we performed a sensitivity 
analysis on the parameters γ , σ1 and σ2. γ is the weighting 
scale parameter in the element-wise weighting module, which 

lies in the range [0, +∞). As  γ approaches 0, the cell weights 
play a negligible role in the construction of the co-association 
matrix, and vice versa. In fact, by adjusting γ , we can ensure 
a proper influence on the co-association matrix. σ1 and σ2 are 
the parameters in the optimization module, which represent the 
contribution of the regularization term in each iteration. In the
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Figure 7. Data distributions in the considered data sets. The upper figures correspond to the tSNE plots in the original data sets; the lower figures 
correspond to the nonzero ratio distribution of attributes in the data sets. 

Figure 8. Performance evaluation of scEWE with varied γ (σ1 = 1000 and 
σ2 = 100). 

experiments, the scale parameters γ ∈ [0, 10], σ1 ∈ [10−6, 106] 
and σ2 ∈ [10−6, 106] are tested. We show the performance of 
the model in Figures 8 and 9 as these parameters vary. It is 
observed that our algorithm exhibits sufficient robustness to the 
parameter selection. For applications, the parameters γ between 
[0.5, 1] and σi (i = 1, 2) between [10−3, 103] are preferable as tested 
to ensure stability and acceptable performance on all the involved 
datasets. 

Table 4: Performance comparison of scEWE with and without 
high-order information 

Datasets scEWE-with scEWE-without 

Biase 1/1 1/1 
Brain 0.8761/0.8422 0.8154/0.7999 
Deng 0.6713/0.8377 0.4219/0.6729 
Goolam 0.8429/0.7957 0.5128/0.6205 
Treulein 0.5531/0.6401 0.5370/0.6361 
Usoskin 0.8862/0.8854 0.6474/0.7371 

(./.) represents the ARI and NMI value, respectively 

High-order information in scEWE 
To check the influence of high-order information, we conducted 
ablation study to our proposed model. We compared the per-
formance of scEWE with and without high-order information in 
weight matrix construction. In scEWE with high-order informa-
tion, we first adaptively determine the optimal λ ∈ (0, 1), and  
then use the integrated weight matrix for ensemble learning. The 
results are shown in the table below. It can be seen that high-order 
information contribute to the performance in a positive manner. 

In addition, we check the performance of the model when the 
value of λ varies. The results are shown in Figure 10, where  the  
adaptively selected optimal λ for each data set is marked by a 
bullet. In Figure 10, λ = 1 and λ = 0 indicate the cases where 
only first-order information and only second-order information 
is used, respectively. It is shown that the determined λ can help 
achieve optimal or near-optimal performance on the considered 
datasets. For Deng, Goolam and Usoskin datasets, the model using 
only first-order information (λ = 1) performs a significant reduc-
tion compared with those cases using high-order information 
(λ <  1). These observations are consistent with the results shown 
in Table 4 that integration of second-order information would 
make positive contribution to the model performance. Besides, 
more observation can be indicated from Figure 10. Particularly, if 
only second-order information is used (corresponding to λ = 0), 
the performance of the model is better than that using only first-
order information for most datasets. Possible reasons might be 
that using high-order information can generally capture deep 
geometric connections between cells. However, an exception 
is observed for the Goolam dataset, where the clustering 
performance of the case using only second-order information 
is inferior to that of other cases where lower order information is 
used. Therefore, it is beneficial to integrate the first-order and
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Figure 9. Performance evaluation of scEWE with varied σ (γ = 0.5). 

second-order information in a weight-adaptive manner. This 
observation confirms the reasonability of our model. 

Computational complexity 
In order to check the practical applicability of scEWE in diverse 
scenarios, we conducted analysis detailing the runtime and mem-
ory demands. This will help provide a guidance to choose the 
appropriate base clustering methods for ensemble learning in the 
real application. We recorded the computational time and mem-
ory required to run the base clustering algorithms; the algorithms 
were run on Windows 10 system with 128GB memory, Inter(R) 
Xeon(R) Gold 5218 CPU 2.30GHz, and the results were reported in 
the Tables 5 and 6. 

We now analyze the time complexity in the ensemble learning. 
Assume that the number of cells is n and the number of base 
clustering methods is m. The co-association matrix initialization 

takes O(n2) time. High-order information extraction involving 
Gaussian kernel construction has a time complexity of O(n2). 
The time complexity of generating a weighted co-association 
matrix by weight matrix is O(mn2). Assuming that the process 
takes t1 iterations, the time complexity in the weighted co-
association matrix construction can be represented as O([t1(m + 
1)]n2 +2t1τmn). Assuming spectral ensemble clustering algorithm 
takes t2 iterations to converge, the time complexity of the 
ensemble learning part can be roughly represented as O(t2n3). 
The computational time and memory requirement for scEWE 
were shown in Tables 5 and 6. From a computational efficiency 
perspective, scEWE is efficient when the number of cells in the 
scRNA-seq dataset is small. However, when the number of cells 
is relatively large, scEWE shows limited improvement as the 
ensemble learning sacrifices the computational time to ensure 
better heterogeneity analysis.
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Table 5: Runtime comparison on the considered datasets 

Methods 

Datasets SHARP SIMLR CIDR SC3 Seurat scEWE 

Biase 5.9883 s 11.9106 s 2.1936 s 36.3095 s 2.8102 s 1.6778 s 
Brain 15.7061 s 1.6748 m 12.8761 s 1.0250 m 3.1865 s 1.3238 m 
Deng 21.4311 s 43.9545 s 7.8914 s 43.2246 s 2.9762 s 25.4687 s 
Goolam 9.0592 s 21.1300 s 4.5119 s 36.8681 s 3.9533 s 6.9423 s 
Treulein 5.6504 s 15.0118 s 1.6802 s 39.6056 s 1.1788 s 2.7709 s 
Usoskin 16.5261 s 3.7770 m 16.0483 s 1.3412 m 2.8122 s 3.3159 m 

s represents second, m represents minute 

Table 6: Memory (MB) requirement comparison on the considered datasets 

Methods 

Datasets SHARP SIMLR CIDR SC3 Seurat scEWE 

Biase 11.1984 11.1994 37.9880 38.5894 31.4230 9.6484 
Brain 72.1460 72.1469 250.9865 222.8073 121.0729 82.1680 
Deng 47.2535 47.2544 161.1996 146.9821 109.9423 45.9570 
Goolam 41.7846 41.7855 113.9804 133.5275 89.6461 39.3242 
Treulein 15.6319 15.6327 37.5795 51.4776 26.3005 14.2578 
Usoskin 85.4646 85.4656 304.6056 264.3179 151.3077 84.5781 

Cluster number in scEWE 
Cluster number is a critical parameter which may influence the 
model performance. When the estimated number of cell clusters 
deviates from the ground truth, we conducted experiments to 
check how the ensemble clustering results will be affected. We 
varied the number of clusters from 2 to 15 to report the model 
performance. The results are presented in Tables 7 and 8. We  
use bold font to indicate the ARI and NMI values correspond-
ing to scEWE with predicted cluster numbers, and underlines 
to indicate the results with real cluster number. Through the 
experiments, we have the following interesting discoveries. First 
of all, scEWE is relatively robust to the number variations in the 
three datasets Brain, Deng and Goolam. In Brain data, the real 
cluster number is 8. We can see from Tables 7 and 8 that the 
performance of scEWE is stable when cluster number is at the 
neighborhood of 8. In Goolam dataset, similarly, the performance 
of scEWE is stable when cluster number is at the neighborhood 
of the real cluster number 5. When the estimated number of 
cell clusters deviates from the ground truth, we can still get 
good clustering results with our predicted cluster number. For 
the other three datasets, the model performance is sensitive to 
the cluster number. It is therefore of critical significance to give 
a good estimation on the cluster number. When we compare 
the performance of scEWE with predicted cluster number to 
scEWE with real cluster number, we have the following findings. 
Our proposed variance-analysis-based cluster number estimation 
method can well capture the distribution characteristics of the 
dataset. For the Treulein dataset, the true number of clusters 
is three, while the cluster number estimated by our prediction 
method is four. The ARI and NMI values of scEWE corresponding 
to the predicted cluster number though are not globally opti-
mal; they are higher than the corresponding performances under 
the true number of clusters. For Biase data and Usoskin data, 
where the real cluster numbers are three and four, respectively, 
our method can provide accurate cluster number estimations. 
The performances of scEWE with the predicted cluster number 

are also the best among the other candidate cluster numbers. 
These findings suggest the effectiveness of our cluster number 
method. 

Generalization ability 
It is necessary to have a clear picture on the property of scEWE if it 
is robust when the base clustering showed bad performances. We 
therefore analyzed the impact of base clustering on our ensemble 
model. On the one hand, we tested whether dropping the worst 
base clustering result can further improve the ensemble perfor-
mances. On the other hand, we analyzed whether good base clus-
tering would contribute to the better performance of the ensem-
ble model. ‘Good base clustering’ is denoted if 5% of the cells are 
wrongly labeled, and ‘perfect base clustering’ is denoted if all the 
cells are accurately labeled. We therefore replaced the worst base 
clustering respectively with ‘good base clustering’ and ‘perfect 
base clustering’ in turn, respectively, to check the influence of 
them to scEWE. The results for the two scenarios of replacement 
are reported in Tables 9 and 10, respectively. It is interesting to see 
that scEWE is robust when the base clustering showed bad perfor-
mance. When we dropped the worst base clustering, the ensemble 
model remained stable in Biase, Brain, Goolam and Usoskin data. 
In Deng and Treulein data however, the ensemble model showed 
degraded performance. Possible explanations might be that the 
worst base clustering still contains useful information where the 
ensemble model scEWE can extract. On the other hand, when we 
replaced the worst base clustering with ‘good base clustering’ and 
‘perfect base clustering’, respectively, scEWE can benefit from the 
clustering results and showed improved performances. 

The rapid advancement of scRNA-seq technologies enables the 
generation of more and more large-scale datasets, bringing new 
challenges in computational cost and effectiveness. scEWE as 
an element-wise weighted ensemble clustering fully considers 
the neighborhood relationship between cells, and improves the 
clustering accuracy at the cost of computational complexity. The 
advantage of scEWE lies in that it is a very flexible framework in
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Table 7: Performance of scEWE in ARI with varied cluster number 

Cluster number 

Datasets 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Biase 0.70 1.00 0.68 0.61 0.49 0.27 0.36 0.34 0.27 0.30 0.25 0.17 0.21 0.18 
Brain 0.03 0.34 0.59 0.37 0.57 0.78 0.88 0.85 0.85 0.57 0.64 0.48 0.55 0.55 
Deng 0.10 0.26 0.31 0.37 0.38 0.38 0.39 0.58 0.67 0.64 0.33 0.33 0.33 0.33 
Goolam 0.46 0.85 0.85 0.84 0.84 0.35 0.32 0.26 0.29 0.29 0.23 0.22 0.27 0.21 
Treulein 0.30 0.50 0.55 0.31 0.18 0.21 0.18 0.17 0.17 0.18 0.16 0.14 0.15 0.14 
Usoskin 0.47 0.67 0.89 0.69 0.63 0.54 0.45 0.44 0.44 0.43 0.42 0.42 0.42 0.42 

Table 8: Performance of scEWE in NMI with varied cluster number 

Cluster number 

Datasets 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Biase 0.79 1.00 0.77 0.76 0.70 0.49 0.64 0.60 0.55 0.61 0.55 0.42 0.52 0.47 
Brain 0.07 0.47 0.62 0.46 0.63 0.79 0.84 0.83 0.82 0.70 0.73 0.70 0.70 0.70 
Deng 0.22 0.39 0.45 0.52 0.57 0.57 0.60 0.77 0.84 0.82 0.62 0.62 0.62 0.63 
Goolam 0.41 0.82 0.84 0.80 0.79 0.65 0.63 0.60 0.60 0.58 0.57 0.56 0.55 0.53 
Treulein 0.34 0.55 0.64 0.54 0.40 0.45 0.43 0.43 0.43 0.45 0.42 0.39 0.42 0.41 
Usoskin 0.53 0.66 0.89 0.81 0.77 0.69 0.65 0.64 0.64 0.64 0.63 0.63 0.63 0.63 

Table 9: Impact of base clustering to scEWE in ARI 

Methods 

Datasets Drop worst scEWE Replace worst as good Replace worst as perfect 

Biase 1.0000 1.0000 1.0000 1.0000 
Brain 0.8761 0.8761 0.8761 0.8761 
Deng 0.6713 0.6713 0.6713 0.6747 
Goolam 0.8429 0.8429 0.9485 1.0000 
Treulein 0.5531 0.5531 0.5531 0.5531 
Usoskin 0.8827 0.8862 0.9972 1.0000 

Table 10: Impact of base clustering to scEWE in NMI 

Methods 

Datasets Drop worst scEWE Replace worst as good Replace worst as perfect 

Biase 1.0000 1.0000 1.0000 1.0000 
Brain 0.8422 0.8422 0.8422 0.8422 
Deng 0.8377 0.8377 0.8377 0.8392 
Goolam 0.7956 0.7957 0.8853 1.0000 
Treulein 0.6401 0.6401 0.6401 0.6401 
Usoskin 0.8785 0.8804 0.9931 1.0000 

adopting different base clustering methods for ensemble learning, 
and hence can be properly extended for dealing with scRNA-seq 
data on a relatively large scale. For the large-scale version, scEWE 
adopted base clusterings with reasonable computational cost, 
and used first-order information to guarantee efficient element-
wise weight matrix learning and hierarchical clustering. For a 
dataset of more than 1000 cells, we adopted the extended version 
of the model. In the base clustering generation stage, SIMLR due 
its inefficiency was removed. The model was tested on the Klein 
dataset [ 29] and Baronh dataset [30], which contains 2717 and 
8569 cells, respectively, with detailed data information in Table 11 
and the performances were shown in Tables 12 and 13. Compared  

with the state-of-the-art methods, scEWE still demonstrates good 
performances. Regarding the time complexity, the extended large-
scale version of scEWE has a time complexity of O(n3). The  com-
putational time and memory occupation comparison in large-
scale data was shown in the Tables 14 and 15. It can be seen that 
efficient element-wise weight matrix learning without incorpo-
rating high-order information guarantees efficiency and makes 
the applications to large-scale scRNA-seq data analysis possible. 
Furthermore, we would like to check whether high-order infor-
mation incorporation can help improve clustering performance 
for relatively large-scale data. Table 16 therefore recorded per-
formance of scEWE with and without high-order information for
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Figure 10. Performance Evaluation of scEWE with varied λ. 

Table 11: Large-scale datasets information 

Datasets Cells Genes Clusters 

Klein [29] 2717 24 175 4 
Baronh [30] 8569 20 125 14 

the two considered datasets. Our experiments demonstrated that 
scEWE incorporating high-order information shows limited better 
performance for large-scale data with a sacrifice of significant 
computation burden. Comparing the results for small- and large-
scale data, we have the following findings. If the scale of scRNA-
seq data is small, the first-order information provides consider-
ably limited understanding for data relationship, and thus, the 
integration of high-order information is necessary to learn a deep 
geometric relationship. This reveals the inherent principle of the 
proposed method. However, if the scale of scRNA-seq data is 
relatively large, incorporating high-order information can only 
make limited performance improvement because the first-order 
information can provide sufficient understanding for establish-
ing an appropriate element-wise weighted co-association matrix. 
Considering the high computation cost and limited performance 
improvement for the proposed scheme incorporating high-order 
information, element-wise weighted ensemble clustering with 
first-order information might be preferable for the scenario of 
large-scale scRNA-seq data. 

As an ensemble algorithm, our method has good scalability and 
generalization ability. Users can specify any of the five clustering 
methods for integration. For the clustering results generated by 
other single-cell methods, we can also input them as base clus-
terings into our ensemble framework. To verify the effectiveness 
of our algorithm, we applied scEWE to five additional clustering 
tasks. The five datasets including Glass, IS, MNIST, Texture and 
Ionosphere (Table 17) are publicly available and can be obtained 
from [31]. Following [31], we constructed a large pool of candidate 
base clusterings, and each base clustering was generated by the 
k-means algorithm, and the number of clusterings was randomly 
selected in the range [2,

√
N], where  N is the number of samples. 

We generated 100 base clusterings for each dataset to form 
the base clustering pool. In each experiment, 10 base clusterings 
were chosen in a perfectly equally probable manner. Compared 
with five methods [31], [32] and  [33], we provided the mean 
performance (NMI and ARI) and standard deviation and marked 
the best score for each dataset in bold. Similar to the above, we 
set λ = 1, τ = 5, γ = 0.5. After sample weighting by our method 
to get the consensus matrix, we used hierarchical clustering to 
generate the final clustering results. The results were shown in 
Tables 18 and 19, and it can be seen that our method exhibits 
excellent performance in this challenging test. 

Comparison with deep learning algorithms 
To better demonstrate the superiority of scEWE, we compared 
scEWE with efficient deep learning methods scDeepCluster and 
scGNN. Since scDeepCluster and scGNN allow only count data 
for processing, if the dataset was not count data, necessary pre-
processing was conducted to ensure the implementation of the 
algorithms. Besides, deep clustering methods such as SDCN [34] 
and DFCN [35], which integrate high-order structural information 
into clustering processes, were also introduced for method com-
parison. For scDeepCluster, we set the number of clusters to the 
actual number of clusters, the number of pre-trained epochs to 
700, the maximum number of iterations to 5000 and the remain-
ing parameters to the default values. For scGNN, we use ‘Do not 
infer LTMG mode’ with default parameters. In the construction 
of k-nearest neighbor graph, k is set to 100 and the maximum 
number of iterations of the model is set to 2000. For SDCN, we set 
the number of input nodes to the number of genes in the dataset, 
the number of clusters to the number of real classes, the training 
batches to 800, the k value in the k-nearest neighbor map to 50 
and the remaining parameters to their default values. For DFCN, 
we set the training epoch to 7000, set the number of clusters to the 
number of real classes, set the number of input nodes to 100 and 
use the default values for the rest of the parameters. The results 
were shown in Table 20. scDeepCluster demonstrated better per-
formances among the considered deep learning methods. When 
the number of cells was relatively small, most of the deep learning 
methods seemed to perform in an unsatisfactory manner. In 
Klein or Baronh data set, where the number of cells was 2717 
and 8569, respectively, scGNN and scDeepCluster showed good 
performances in capturing the heterogeneity embedded in the 
single-cell data. In comparison, SDCN and DFCN cannot compete 
with scGNN and scDeepCluster that are particularly designed for 
scRNA-seq data. From the results we can see that scEWE can 
still demonstrate its superiority and effectiveness in dealing with 
noisy scRNA-seq data. 

Biomarker identification 
We further hope to dissect the biomarker identification results 
provided by scEWE. For the brain data set which contains 420 cells

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/3/bbae203/7663427 by guest on 11 Septem

ber 2024



Element-wise Weighted Ensemble | 15

Table 12: Performance comparison in Klein dataset for each method 

Methods 

Index SHARP CIDR SC3 Seurat SAFE SAME scEWE 

ARI 0.5067 0.1770 0.8669 0.3904 0.7583 0.5485 0.8587 
NMI 0.5152 0.2790 0.8302 0.4928 0.7419 0.6057 0.8890 

Table 13: Performance comparison in Baronh dataset for each method 

Methods 

Index SHARP CIDR SC3 Seurat SAFE SAME scEWE 

ARI 0.7844 0.3574 0.5708 0.4046 − 0.5942 0.9044 
NMI 0.6788 0.5092 0.7021 0.5850 − 0.7037 0.8508 

Table 14: Runtime comparison for large-scale datasets 

Methods 

Datasets SHARP SIMLR CIDR SC3 Seurat scEWE 

Klein 1.1547 m − 1.8740 m 7.4862 m 12.0647 s 12.4229 s 
Baronh 1.2820 m − 29.9062 m 1.9363 h 15.3685 s 1.5925 m 

s represents second, m represents minute, h represents hour 

Table 15: Memory (MB) requirement comparison on large-scale datasets 

Methods 

Datasets SHARP SIMLR CIDR SC3 Seurat scEWE 

Klein 502.7797 − 1843.2014 1593.7275 1049.7111 502.1133 
Baronh 659.6358 − 3854.8459 2911.0148 1117.0372 1318.2852 

Table 16: Performance comparison of scEWE in large datasets 
with and without high-order information 

Datasets scEWE-with scEWE-without 

Klein 0.8592/0.8900 0.8587/0.8890 
Baronh 0.9053/0.8545 0.9044/0.8508 

(./.) represents the ARI and NMI value, respectively 

Table 17: Datasets information 

Datasets Samples Features Clusters 

IS 2310 19 7 
Texture 5500 40 11 
MNIST 5000 784 10 
Ionosphere 351 34 2 
Glass 214 9 6 

in total, we conducted scEWE to get a heterogeneity analysis result 
for the cells. We further conducted statistical analysis to compare 
the differences between specific cluster and the remaining 
clusters by scEWE, to investigate the potential of scEWE in cellular 
state identification. We performed t-test of the hypothesis that 
the two independent samples generated by the specific cluster 
and the remaining clusters come from distributions with equal 
means, and returns the result of the test in H. Here  H = 0 indicates 

that the null hypothesis (‘means are equal’) cannot be rejected 
at the 5% significance level. Here H = 1 indicates that the null 
hypothesis can be rejected at the 5% level. The top identified 
markers for the eight clusters in brain data are as follows: 
cluster 1:‘ADCY8’, ‘A2M’, ‘ACADL’, ‘AGBL5’, ‘ADIPOR1’; cluster 
2:‘ADAMTSL4’, ‘ACTN2’, ‘AADAT’, ‘ADCK2’, ‘ABCA11P’ ; cluster 
3: ‘ADIPOQ’, ‘ADH1C’, ‘ACSM1’, ‘ADAM29’, ‘ACTR6’ ; cluster 4: 
‘ADRA1B’, ‘ADAM19’, ‘ACAN’, ‘ADRB1’, ‘ADM’ ; cluster 5: ‘A4GALT’, 
‘ACLY’, ‘ABCA5’, ‘ABCB8’, ‘ACVRL1’ ; cluster 6: ‘ACADSB’, ‘ACRBP’, 
‘ACP5’, ‘ACOT4’, ‘AASDH’; cluster 7: ‘ACTN3’,‘ACTRT1‘; cluster 
8:‘ABI3BP’. For example, in cluster 2, the identified biomarkers 
include ‘ADAMTSL4’, ‘ACTN2’, ‘AADAT’, ‘ADCK2’, ‘ABCA11P’. And 
we found that ADAMTSL4 as a secreted glycoprotein may become 
a novel immune-related biomarker for primary glioblastoma 
multiforme (GBM) [36]. AADAT is the enzyme responsible for 
the formation of the majority of neuroactive kynurenic acid 
in the brain [37]. ADCK2 is necessary for cell proliferation of 
GBM, a fatal primary brain tumor containing countless genetic 
and epigenetic alterations. These findings further support the 
capability of scEWE in biomarker identification. 

Understanding biological process 
To further explore the capability of scEWE in revealing biological 
process, we investigated on the biological role of the marker 
genes that scEWE extracted. We performed heterogeneity 
analysis on the dataset obtained from [38] containing 124
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Table 18: Performance evaluated in ARI on extended datasets (the best score in each row is highlighted in bold) 

Methods 

Datasets LWEA LWGP ECPCS-MC ECPCS-HC LRTA-EA scEWE 

IS 0.509 ± 0.036 0.536 ± 0.037 0.513 ± 0.049 0.504 ± 0.042 0.178 ± 0.238 0.514 ± 0.022 
Glass 0.261 ± 0.012 0.266 ± 0.005 0.262 ± 0.015 0.260 ± 0.016 0.011 ± 0.020 0.272 ± 0.023 
Ionosphere 0.144 ± 0.063 0.163 ± 0.007 0.115 ± 0.060 0.095 ± 0.096 0.025 ± 0.033 0.308 ± 0.213 
MNIST 0.539 ± 0.025 0.496 ± 0.020 0.514 ± 0.046 0.483 ± 0.036 0.549 ± 0.015 0.557 ± 0.030 
Texture 0.668 ± 0.033 0.632 ± 0.032 0.595 ± 0.068 0.589 ± 0.046 0.664 ± 0.036 0.677 ± 0.062 

Table 19: Performance evaluated in NMI on extended datasets (the best score in each row is highlighted in bold) 

Methods 

Datasets LWEA LWGP ECPCS-MC ECPCS-HC LRTA-EA scEWE 

IS 0.616 ± 0.029 0.642 ± 0.026 0.612 ± 0.028 0.598 ± 0.025 0.245 ± 0.312 0.662 ± 0.021 
Glass 0.375 ± 0.019 0.383 ± 0.014 0.364 ± 0.021 0.369 ± 0.035 0.410 ± 0.017 0.428 ± 0.033 
Ionosphere 0.117 ± 0.016 0.116 ± 0.006 0.081 ± 0.042 0.097 ± 0.034 0.219 ± 0.034 0.243 ± 0.174 
MNIST 0.638 ± 0.016 0.623 ± 0.019 0.624 ± 0.032 0.589 ± 0.035 0.642 ± 0.017 0.668 ± 0.015 
Texture 0.764 ± 0.021 0.749 ± 0.019 0.723 ± 0.038 0.717 ± 0.031 0.781 ± 0.024 0.811 ± 0.029 

Table 20: Performance comparison with deep learning methods 

Methods 

Datasets scGNN scDeepCluster SDCN DFCN scEWE 

Biase 0.8116/0.7915 1.0000/1.0000 0.7151/0.7604 0.8590/0.8705 1.0000/1.0000 
Brain 0.5231/0.6266 0.5780/0.7035 0.5128/0.6429 0.4609/0.5687 0.8761/0.8422 
Deng 0.3867/0.5821 0.3719/0.5988 0.4227/0.6147 0.1864/0.4343 0.6713/0.8377 
Goolam 0.3997/0.5494 0.4411/0.5892 0.6046/0.5193 0.6903/0.7101 0.8429/0.7957 
Treulein 0.2913/0.2830 0.0197/0.0338 0.0424/0.1351 0.3440/0.3991 0.5531/0.6401 
Usoskin 0.3039/0.3923 0.3808/0.4335 0.6041/0.6146 0.0292/0.1599 0.8862/0.8804 
Klein 0.7629/0.7901 0.8084/0.8351 0.6735/0.7021 0.6849/0.6637 0.8587/0.8890 
Baronh 0.8219/0.7043 0.8743/0.7842 0.5384/0.5839 0.6323/0.6519 0.9044/0.8508 

Figure 11. Top biological process item in [38] by Metascape. 

individual cells in various developmental stages from human 
preimplantation embryos. The major type of cells identified 
by scEWE was used for further marker gene analysis. The top 
10 differentially expressed genes are ‘TERF1’, ‘HESRG’, ‘CD24’, 
‘PRDX6’, ‘AASS’, ‘SEPHS1’, ‘NUCKS1’, ‘M6PR’, ‘PHF17’, ‘TUBB’. 
We performed functional enrichment analysis with Metascape 
(https: //metascape.org). Pathway and process enrichment 
analysis has been carried out with Gene Ontology Biologi-
cal Processes. The top extracted biological process is shown 
in Figure 11. 

Take a further look at the marker genes, through Genecards 
(https:/www.genecards.org/) we found that ‘TERF1’ as Telomeric 
Repeat-Binding Factor 1 involves in the biological processes of cell 
cycle, cell division and mitosis. ‘HESRG’ is Embryonic Stem Cell 
Related Protein, and ‘CD24’ has a pivotal role in cell differenti-
ation of different cell types. These findings suggest the roles of 
genes involving in cell development such as DNA replication, cell 
differentiation, etc. 

CONCLUSIONS 
In this paper, we have proposed a high-order element-wise 
weighted ensemble method of heterogeneity analysis for scRNA-
seq data: scEWE. Different from traditional weight strategy in 
ensemble clustering, scEWE novelly incorporates element-wise 
contribution in each base clustering for weighted co-association 
matrix construction. A low-rank self-representation framework is 
incorporated for generating final heterogeneity results. Compared 
with state-of-the-art methods for scRNA-seq data analysis, scEWE 
shows robustness as well as superiority in performance. Due to 
the high complexity of the algorithm, it is worth noting that our 
method has limited capacity for datasets involving very large 
number of cells. How to optimize the algorithm to improve the 
computational efficiency is the work we will consider in the 
future. 

Key Points 
• We developed a novel ensemble learning framework: 

scEWE to deal with heterogeneity analysis problem for 
scRNA-seq data. 

• A high-order element-wise weighting strategy was pro-
posed for building the ensemble learning framework. 
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• Variance-analysis-based low-rank self-representation 
optimization model was applied for latent embedding 
and heterogeneity analysis. 

• The effectiveness of scEWE was demonstrated through 
extensive experiments in real-world datasets. 
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