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Abstract—Household load forecasting is increasingly essential
since it enables various demand-side management applications.
The federated learning approach is becoming popular for its
advantages in fully using different households’ load data with
privacy preservation. However, due to the non-independent and
identically distributed (non-IID) characteristic of each house-
hold’s local data, the knowledge acquired by local training may
have a strong bias. It can introduce contamination and make
the global model vulnerable if locally trained models are simply
aggregated as traditional FL methods do. To this end, we develop
a novel framework that integrates federated domain separation to
alleviate the negative effects caused by non-IID data. Specifically,
we divide the acquired knowledge into the useful part and
potentially contaminating part. By acquiring the former and re-
moving the latter through a well-designed algorithm, a more anti-
contamination and more personalized FL model can be expected.
Compared to current post-processing personalization methods,
the proposed framework can avoid global knowledge forgetting,
thus achieving more comprehensive knowledge utilization to give
more accurate results. Extensive comparison experiments with
benchmarking methods are conducted on a publicly available
dataset to validate the superiority of the proposed framework,
while a variety of ablation experiments prove the effectiveness of
all inner components.

Index Terms—Household load forecasting, federated learning,
Non-IID data, domain separation, personalization

I. INTRODUCTION

A. Background and Motivations

Accurate short-term load forecasting (STLF) plays an in-
dispensable role in the efficient operation of smart grids [1].
Household-level STLF is a fundamental tool for developing
various demand-side management applications, e.g., electricity
retail pricing and microgrid operation [2]. In recent years,
advanced metering infrastructure coupled with large-scale
smart meter deployments allows utilities to record and collect
accurate historical data from customers, thus enabling a vast
array of data-driven load forecasting approaches [3].

However, household-level STLF is a challenging task. In
the normal course of events, using limited data owned by
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an individual household to train a reliable model that can
effectively capture volatility in load data is extremely hard.
A possible solution is to make full use of load data from
multiple households. For example, in [4], [5], smart meter data
from multiple households are transferred to a central server
to perform joint training, thus achieving a high-performance
forecasting model.

These approaches require full access to each household’s
local data, which can impose security and privacy concerns
and make compliance with strict data regulations (such as the
EU General Data Protection Regulation) difficult [6]. To fully
utilize data resources while preserving privacy, a distributed
training strategy named federated learning (FL) is proposed
[7]. In FL, each client receives a copy of a deep learning-
based model and trains it with the local data. Then, the central
server performs an aggregation of local models to transform
local knowledge into global knowledge. Since the parameters
of the model are transferred rather than each client’s private
data, security and privacy concerns can be avoided.

One of the main concerns of FL-based load forecasting
approaches is the presence of non-independent and identically
distributed (non-IID) household load data [8]. It means that
knowledge acquired by each local training exhibits a certain
bias, which can introduce contamination to the global model
in the server aggregation process [9], [10]. Moreover, because
of the strictly limited data access in the FL scenario, this bias
cannot be easily eliminated by direct knowledge processing,
which makes accurate household STLF even more challenging.

Up to now, how to alleviate the negative effects imposed
by non-IID load data is still under investigation. To address
this issue, current works mainly focus on properly utilizing
personalized knowledge to make the model adapt to each
household’s local distribution (e.g., local fine-tuning in [11]).
However, there are two factors that may limit their accuracy
improvement: unremoved contaminating knowledge caused by
knowledge bias during the FL process and inevitable forgetting
during the personalized knowledge acquisition stage [12].
In other words, there is still room to enhance accuracy by
designing a knowledge utilization method that can tackle these
limitations.

Accordingly, this work is focused on one question: How
to make the FL model achieve more accurate forecasts even
when dealing with non-IID data? We are inspired to answer
this question by introducing a novel knowledge utilization
method: federated domain separation, which can make the
model acquire comprehensive useful knowledge while remov-
ing potentially contaminating knowledge.
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B. Literature Review

Extensive work has been done on household load fore-
casting, which can be mainly classified into statistics-based
methods and deep learning-based methods. Commonly used
statistics-based methods include exponential smoothing mod-
els [13], multiple linear regression [14], autoregressive in-
tegrated moving average (ARIMA) [15]. They have sim-
ple structures and offer operational simplicity. Compared to
statistics-based methods, deep learning-based methods can
utilize more complex networks to capture volatility and non-
stationarity and thus achieve higher accuracy. In [16], a long
short-term memory (LSTM) model is proposed for load fore-
casting, and its superiority has been proven by comprehensive
experiments. In [17], multiple models such as LSTM and
XGBoost are combined together to improve the robustness.

In recent years, an increasing number of studies have
noticed the opportunity to utilize multiple data resources to
achieve more accurate results. FL has been one of the most
popular methods among them for its unique advantages in
cooperation among multiple households, full utilization of data
resources, and privacy preservation. Up to now, according
to distribution characteristics of data in feature and sample
spaces, three FL scenarios have been extensively studied:
horizontal FL (same feature space but different sample spaces),
vertical FL (different feature spaces but same sample space),
and transfer learning FL (different feature spaces and different
sample spaces) [18], [19]. Since this paper aims to explore
the potential for accuracy and reliability improvement by
fully utilizing high-quality samples from different sources,
horizontal FL is used in households’ load forecasting here.

Conventional horizontal FL-based load forecasting methods
can be classified into two categories [20]. The first category is
federated stochastic gradient descent (FedSGD), such as [21],
[22], in which the server receives each client’s gradient to
jointly update a global model. The second category is feder-
ated averaging (FedAvg), in which the server calculates the
weighted average of locally trained model parameters, such as
[9], [23], [24]. However, due to households’ various electricity
consumption habits, load data often exhibits significant non-
IID characteristics. This brings challenges to both conventional
FedSGD and FedAvg methods since their aggregation process
is relatively simple and may introduce contamination (caused
by knowledge bias) to global knowledge. Moreover, this
data imbalance cannot be easily eliminated by household-
to-household communications due to FL privacy-preserving
requirements [25].

As an increasing number of researchers have noticed the
negative effects imposed by non-IID data, many efforts have
been devoted to making full utilization of personalized knowl-
edge to create adaptive FL models. In [11], [26], a local fine-
tuning step is designed to participate in an FL-based load
forecasting task. By retraining the partial model with the local
data, a personalized model that is more applicable to the
local distribution can be created. In [27], a domain adaptation
method that was often adopted in the transfer learning field
[28] is first introduced to the FL-based load forecasting
approach. The authors align each client’s local data distribution

by minimizing the Maximum Mean Discrepancies (MMD)
distance [29] in the local fine-tuning process to alleviate the
non-IID data’s negative influence. A similar method is also
seen in [30], which changes to employ correlation alignment
[31]. In [32], a domain augmentation method is adopted to
improve the model adaptability. In addition, researchers in [33]
abandon the idea of training a single global model and instead
seek an explicit trade-off between the central model and the
personalized model to fit divergent data.

Despite the progress made by the aforementioned methods,
their utilization of knowledge is still relatively simple and
insufficient. Therefore, two aspects can be investigated to
further improve the accuracy. The first one is to remove
the potentially contaminating part of global knowledge. The
authors in [34] point out that not all knowledge acquired
in other households can work for the current household’s
forecasting task. To address this issue, they first employ
alignment-based domain separation networks to realize the
contamination removal in a two-domain scenario. However,
in such an FL load forecasting task with multiple households,
the alignment, which plays an irreplaceable role in domain
separation, is hard to perform. [35] proposes a possible way to
multi-domain alignment, in which the alignment loss is defined
as the summation of the MMD distance between each two
domains, which raises concerns about high communication and
calculation costs. Since current separation-based methods are
not able to work effectively, how to achieve federated domain
separation is one of the keys to tackling the non-IID issue.

Another current limitation is that the post-processing-based
personalization methods (e.g., [11], [27]) suffer from global
knowledge forgetting [12]. This is because the local fine-
tuning rewrites the network parameters and somehow nullifies
part of the learning from the federated process. Although some
of them, like [26], [36], [37] adopt methods such as freezing,
reducing the fine-tuning epochs, and clustering to mitigate the
forgetting, it is still inevitable. Consequently, personalizing the
model while avoiding global knowledge forgetting is also an
untapped potential for improving forecasting performance.

C. Contributions and Organization of This Paper

This paper is therefore strongly incentivized to develop a
load forecasting framework with a federated domain separation
process, aiming at addressing the aforementioned research
gaps: unremoved contaminating knowledge in the FL process
and inevitable forgetting in the personalization process. The
contributions of this work can be concluded as follows:

1) Propose an advanced FL-based household load fore-
casting framework combined with federated domain
separation. It can comprehensively acquire useful knowl-
edge from all households while excluding potentially
contaminating parts, thus giving more accurate forecasts
even in the presence of non-IID load data.

2) Define a knowledge reference block for knowledge inter-
action with other households while avoiding the invasion
of households’ privacy. It also enables a communi-
cationally and computationally efficient multi-domain
alignment method.
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Fig. 1. The load profiles of three different households.

3) Develop a personalization strategy based on a syn-
chronous utilization of information supplement rather
than post-network rewriting (e.g., local fine-tuning) to
avoid any forgetting of knowledge in the FL process. A
personalization module with an attention-based collabo-
ration strategy is additionally constructed to achieve this
objective.

The rest of this paper is organized as follows: Section
II briefly describes the problems to be solved; Section II
introduces the methodology, including a specialized frame-
work and its implementation details; Section IV provides the
experimental results and analysis; and Section V concludes
our work and points out the possible future work.

II. PROBLEM STATEMENT

This section provides a brief overview of the dataset, states
the issues to be addressed, and gives the main objective of this
work.

A. Dataset Description

This work is performed on an open smart meter dataset
in London, which is gathered under the Low Carbon London
project and provided by UK Power Networks [38]. The dataset
mainly collects smart meter data of 5567 households, each
one containing half-hourly data for several months to three
years. As an example, the hourly energy consumption profiles
of three selected households are illustrated in Fig. 1. It is ob-
served that the load patterns and distributions vary significantly
among households, which makes the data exhibit an obvious
non-IID characteristic (especially for load data from the 200-
th to 300-th hour). This makes accurate load forecasting
extremely challenging for traditional FL-based approaches.
In addition to load data, additional hourly data, including
humidity, temperature, precipitation, weather, etc., are also
provided by darksky API [39], which will be considered in
our work.

In the commonly seen FL scenario, each household owns a
limited and insufficient amount of local data [2], which means
the data from other households is also required to train a strong
and reliable model. Besides, to preserve the privacy of the
households, the data owned by each cannot be accessed by
others or the central server throughout the process. In this

Fig. 2. Description of the main objectives in this work: to make the central
module acquire all households’ shared knowledge in the FL process and utilize
a personalization module to supplement the current household’s knowledge.

work, data from September 1 to November 31 was used for
model training and validation, while the data in December was
for performance testing.

B. Main Objective

As the load data are non-IID, the knowledge acquired by the
model in an individual household may not be fully useful for
the others’ load forecasting tasks. Thus, the simple model ag-
gregation in the current FedAVG may introduce contamination
to global knowledge. In view of the above, we separate the
knowledge of each household (i.e., the hidden representations
extracted by the neural network) into two types:

1) Household-shared type: it is distributed similarly so that
it can be generalized to other households and thus help
their load forecasting tasks.

2) Household-specific type: it is distributed discrepantly
from the shared type and is only helpful for local
forecasting tasks. This may introduce contamination to
other households’ forecasting tasks.

On this basis, we aim at building a model for each
household that can acquire the household-shared knowledge
shared among all households and household-specific knowl-
edge only from the current household. A practical technical
strategy is proposed to achieve this, illustrated in Fig. 2:

1) First, we design a FL process in which the knowledge
can be separated through a collaboration of multi-
domain alignment and decoupling. Then, a central mod-
ule is constructed for each household to extract lo-
cal household-shared knowledge. At the end of each
communication round, part of each household’s central
module is transferred to a central server for household-
shared knowledge aggregation.

2) Second, in each local training process, a personalization
module is also constructed to compensate for the filtered



SUBMITTED TO IEEE TRANSACTIONS ON SMART GRID 4

household-specific knowledge and create a more person-
alized model. It is noted that each personalization block
is owned locally, and there is no constraint between the
knowledge produced by it and other blocks; therefore,
it remains relatively more personalized.

III. METHODOLOGY

In response to the aforementioned objectives (as shown
in the caption of Fig. 2), this section provides a practical
framework, as is shown in Fig. 3, and elaborates on its
implementations.

A. Knowledge Extraction

First of all, our approach is directed at the acquired knowl-
edge, which can be reflected in the block’s ability to transform
the original dataset into hidden representations. Therefore,
an effective feature selection strategy and an advanced block
structure are required for knowledge extraction.

Feature selection greatly affects the final accuracy, and there
have been many researches in this investigation. Inspired by
[4] and [1], multiple features highly correlated to electrical
load are taken into account in this work, which can be
categorized into two types: 1) temporal features including
historical load and temperature sequences, which are sampled
by a sliding window; and 2) non-temporal features including
one-hot encoded time index (hour of the day, day of the week,
holiday mark, etc.), precipitation (rain or snow) and weather
(breezy, mostly cloudy, clear, foggy, etc.) at the target time
point.

To deal with both of the two types of features and convert
them into hidden representations, a hybrid-LSTM neural net-
work [40], which has been proven to be a good candidate
for such a load forecasting task, is employed here as the
basic structure of each block. The structure details and the
interfaces to the selected features are shown in Fig. 3 (c).
More specifically, the network consists of an LSTM layer to
establish the complex temporal relationship among multiple
time steps of temporal features and a multi-FC layer to handle
non-temporal features.

Given the domain separation approach in the later section
works only on the distributions of hidden representations, we
extract each type of knowledge using blocks with the same
structure. In addition, they are made separately with different
constraints to intervene in the distributions, which will be
described in the following parts.

B. Federated Domain Separation Network

To realize the domain separation and accurate knowledge
acquisition in Section II-B, a federated domain separation net-
work is proposed here. As shown in Fig. 3, several blocks with
different functions and their corresponding fully connected
(FC) layers are constructed in the network:

1) Knowledge reference block: It serves as a bridge
that allows interaction with other households without
accessing their data.

2) Local alignment and separation blocks: They separate
the original hidden representations into two differently

Fig. 3. Details of the proposed FL-based household load forecasting frame-
work. (a) and (b) show the implementation details of the blocks in the central
module and personalization module, respectively; (c) shows the inner structure
of each block in it.

distributed components (shared and specific) by MMD
loss constraint and Orthogonal loss constraint.

3) Personalization block: It provides a household-specific
information supplement for model personalization.

Note that only part of the framework (knowledge reference
block and local alignment block) is transferred between the
household and the server, so inferring each household’s load
data from it can be hard.

Implementation details of each of them will be illustrated in
the rest of the context in this subsection. Let {Xi}Ni=1 denote
the input set, {Yi}Ni=1 denote the corresponding label set, N
denote the number of households, M(·) denote the mapping
function of each block, and F (·) denote the mapping function
of the FC layer. For a clearer illustration, the i-th household
in the k-th communication round is set as an example here.

1) Knowledge Reference Block: Since only model parame-
ters can be directly accessed by the server or other households
in FL, the knowledge interaction must rely on a block that can
be exchanged between the server and each household, i.e., the
knowledge reference block. Considering the main knowledge
to be interacted with in the FL process is the other households’
shared knowledge, we aggregate all local alignment blocks to
achieve the knowledge reference block. The updating process
of the knowledge reference block parameters W(k)

c at the k-th
communication round can be represented as:

W(k)
c =

N∑
i=1

W
(k−1)
la,i (1)

where W
(k−1)
la,i denotes the parameters of the local alignment

block of the i-th household at the previous communication
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round. Then the hidden representations Hc,i produced by it
can be calculated by

Hc,i = M
(
Xi |W(k)

c

)
(2)

This block only serves as a reference of the global knowl-
edge aggregated from all households’ shared knowledge and
does not participate in load forecasting throughout the whole
process. Thus, its parameters are set as frozen. Based on the
knowledge reference block, we can adjust the parameters of
other blocks to achieve interaction with other households’
shared knowledge.

2) Local Alignment and Separation Blocks: The next step
is to split the knowledge into the desired household-shared and
household-specific types, which can be achieved by constrain-
ing the generation of the output hidden representations of local
alignment and separation blocks, i.e., Hla,i and Hls,i. On the
one hand, we partition a mutually separate subspace for each
of them to remove knowledge coupling; on the other hand,
each household’s Hla,i and Hc,i are expected to be aligned
to ensure that the local alignment block can extract more
generalized household-shared knowledge [41]. The hidden
representations of these two blocks are first calculated by

Hla,i = M
(
Xi |W(k)

la,i

)
(3)

Hls,i = M
(
Xi |W(k)

ls,i

)
(4)

where W
(k)
l,i denotes the parameters of the local separation

block.
Before the official separation, it is essential to ensure the

effectiveness and integrity of the original knowledge (i.e., the
unseparated hidden representations are actually the abstract
features mapped from the original inputs and correlated to
the forecasting task). In [34], a reconstruction loss is defined
to satisfy this requirement. However, it is hard for the pro-
posed framework to reconstruct the input because the input
consists of both temporal and non-temporal components. As
an alternative, this paper turns to only reconstructing hidden
representations and uses them to perform the forecasting task
to satisfy the effectiveness requirement. Therefore, the loss
function L

(k)
eff,i for this constraint can be calculated as:

L
(k)
eff,i =

∥∥∥Yi − F
(
Hla,i +Hls,i | θ(k)

ls,i

)∥∥∥ (5)

where θ(k)
la,i denotes the parameters of the FC layer correspond-

ing to the local alignment block, and ∥·∥ denotes the norm (we
utilize 1-norm in this work to reduce the effects of anomaly).

After satisfying the effectiveness requirement, we encourage
these two blocks to produce more decoupling hidden represen-
tations to separate the knowledge. An orthogonal constraint
loss function L

(k)
ort,i is defined here to guide the generation

process of Hls,i and Hla,i :

L
(k)
ort,i =

∥∥HT
ls,iHla,i

∥∥2
F
/
(
∥Hls,i∥F · ∥Hla,i∥F

)
(6)

where ∥·∥F denotes the Forbenius norm.
After decoupling, we expect all households’ shared knowl-

edge to be acquired by the local alignment block, and its
generalization can be ensured. To achieve this, we encourage

the local alignment block and the knowledge reference block
to produce more aligned hidden representations. In view of
this, an MMD constraint is added here, which measures the
distribution discrepancy between Hla,i and Hc,i. First, a linear
combination of multiple radial basis function (RBF) kernels is
adopted to map the hidden representations to a Reproducing
Kernel Hilbert Space. Then, the calculation of the MMD
constraint loss can be represented as:

L
(k)
MMD,i =

1

N2
h

{
Nh∑

p,q=0

k (hc,p,hc,q) + 2

Nh∑
p,q=0

k (hc,p,hla,q)

+

Nh∑
p,q=0

k (hla,p,hla,q)

}
(7)

where hc,p,hc,q ∈ Hc,i, hla,p,hla,q ∈ Hla,i, Nh denotes
the total number of the vectors in the hidden representation
matrix (often equal to batch size), and k(·, ·) denotes the
combination of kernels, which can be calculated by

k (h∗,p,h∗,q) =

n∑
d=1

exp

(
− 1

2σd
∥h∗,p − h∗,q∥22

)
(8)

where n denotes the number of kernels and σd denotes the
standard deviation of the d-th kernel.

Then, we expect to only utilize household-shared knowledge
to perform the forecasting task, thus removing the contamina-
tion of household-specific knowledge. Therefore, An FC layer
is utilized to transform Hla,i into the forecasted load. The
calculation of the forecasting loss L

(k)
la,for,i can be represented

as:
L
(k)
la,for,i =

∥∥∥Yi − F
(
Hla,i | θ(k)

la,i

)∥∥∥ (9)

where θ(k)
la,i denotes the parameters of the FC layer correspond-

ing to the local alignment block.
3) Personalization Block and Attention-based Collabora-

tion strategy: By using the aforementioned blocks, the fore-
casting model can acquire household-shared knowledge from
all households, but the ultimate objective of this work is to
create a customized model that can better fit the local data
distribution. Therefore, a personalization block is additionally
constructed for each household to compensate for the filtered
household-specific knowledge. The hidden representations and
the forecasting loss function of the personalization block can
be respectively calculated by

Hp,i = M
(
Xi |W(k)

p,i

)
(10)

where W
(k)
p,i denotes the parameters of the personalization

block. To guide the personalization block training, a forecast-
ing loss function is defined here:

L
(k)
p,for,i =

∥∥∥Yi − F
(
Hp,i | θ(k)

p,i

)∥∥∥ (11)

where θ
(k)
p,i denotes the parameters of its corresponding FC

layer.
Then an attention-based collaboration strategy is proposed

to fully utilize the central blocks and the personalization
block. Therefore, the next step is to utilize the self-attention
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mechanism to calculate the attention weights α
(k)
1,i and α

(k)
2,i

based on the hidden representations, which can be represented
as:

α
(k)
1,i = sigmoid

(
F
(
Hp,i | θ(k)

att,i

))
(12)

α
(k)
2,i = 1−α

(k)
1,i (13)

where θ
(k)
att,i denotes the parameters of the FC layer which

calculates the attention weights. Now the ultimate forecasted
load Ŷ

(k)
i which is obtained from both central blocks and

the personalized block and the corresponding forecasting loss
function L

(k)
ul,for,i can be calculated by

Ŷ
(k)
i = α

(k)
1,i ⊙ F

(
Hp,i | θ(k)

p,i

)
+α

(k)
2,i ⊙ F

(
Hla,i | θ(k)

la,i

)
(14)

where ⊙ denotes the element-wise product. To guide the
effective generation of attention weights and achieve accurate
ultimate results, a forecasting loss function is defined:

L
(k)
ul,for,i =

∥∥∥Yi − Ŷ
(k)
i

∥∥∥ (15)

Note that the personalization is synchronous with the FL
process, so it avoids knowledge forgetting in current post-
processing methods, which use local data to rewrite part of
the network.

4) Optimization Objective: Based on the analysis of block
implementations, the loss functions that guide the model train-
ing (which have been clearly visualized in Fig. 3) can mainly
be categorized into three types: 1) effectiveness requirement
satisfaction, i.e., L(k)

eff,i; 2) knowledge generation constraint,
i.e., L(k)

ort,i and L
(k)
MMD,i; and forecasting losses, i.e., L(k)

la,for,i,
L
(k)
p,for,i and L

(k)
ul,for,i. They are required to be minimized in

each local training process. To simplify the illustration, we let
W

(k)
i =

{
W

(k)
la,i,W

(0)
ls,i,W

(k)
p,i ,θ

(k)
la,i,θ

(k)
ls,i,θ

(k)
p,i

}
denote the

set of the parameters to be updated. The optimization objective
can be represented as:

min
W

(k)
i

{
L
(k)
MMD,i + L

(k)
la,for,i + L

(k)
ort,i + L

(k)
eff,i

+L
(k)
p,for,i + L

(k)
ul,for,i

} (16)

It is worth noticing all the components in (16) are calculated
from each household’s local data, and there is no data sharing
throughout the whole process. Therefore, household privacy
can be preserved.

C. Full Algorithm

After introducing the architecture and functions of the
proposed framework, the next thing to be considered is how
to design a practical process for the privacy-preserving dis-
tributed load forecasting task. There are three main challenges
to be tackled: 1) how to initialize the parameters, especially
for the parameters in the knowledge reference block; 2) how to
transfer, preserve, and load the parameters of each component
in the proposed framework; and 3) how the central server
and each household act in each communication round. Taking
into account these concerns, we design the full algorithm

Algorithm 1: Federated Initialization Process

Data: inputs {Xi}Ni=1 and labels {Yi}Ni=1 owned by
the households

1 Server execution:
2 for each household i = 1, 2, · · · do
3 W

(0)
la,i ← LocalInitialize (Xi,Yi)

4 W
(1)
c,i ← 1

N

N∑
i=1

W
(0)
la,i

5 Preserve W
(0)
la,i

6 Household execution:
7 Procedure LocalInitialize (Xi,Yi):
8 Randomly initialize W

(0)
i

9 for each local epoch do
10 W

(0)
la,i ←W

(0)
la,i − η∇

W
(0)
la,i

L
(0)
la,for,i

11 Preserve W
(0)
i locally

12 Return W
(0)
la,i

for the proposed framework, which consists of two parts:
the federated initialization process and the federated training
process.

1) Federated Initialization Process: As shown in Algo-
rithm 1, all the parameters of the model except for W(0)

c are
randomly initialized by the household. Then, the local align-
ment block and its corresponding FC layer of each household
will be instructed to perform a simple training (in this case,
it can be equated to an individual hybrid LSTM forecasting
network). The parameters of local alignment blocks W(0)

la,i will
in turn be transferred and aggregated by the central server and
set as the initial parameters for the knowledge reference block
W

(1)
c .
2) Federated Training Process: As shown in Algorithm

2, all the blocks will be operational to calculate the required
components in the optimization objective. The local alignment
block, which is utilized to extract desirable household-shared
knowledge, will be transferred to a central server after each
communication round. According to each household’s latest
local alignment block, the server will perform knowledge
aggregation. At the same time, the personalization block
can learn how to use local household-specific knowledge to
supplement the forecasting task from the local training. After
multiple federated learning rounds, a forecasting model that is
more adept at non-IID data can be expected.

D. Complexity Analysis

Since current multi-domain alignment methods [35] require
high computational and communicational costs, which makes
them hard to be applied in FL, we investigate the reduction
offered by the proposed framework. Define the controlling
parameters: size of mini-batch Nh, number of local iterations
Q, number of communication rounds G, and proportion of
participants λ.
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Algorithm 2: Federated Training Process

Data: inputs {Xi}Ni=1 and labels {Yi}Ni=1 owned by
the households

1 Server execution:
2 for each communication round k = 1, 2, · · · do
3 Randomly select a percentage of households as

participants
4 for each household i = 1, 2, · · · do
5 if the household is selected then
6 Transfer W(k)

c to the i-th household

7 W
(k)
la,i ← LocalTrain

(
Xi,Yi,W

(k)
c

)
8 else
9 W

(k)
la,i ← local alignment block

parameters preserved by the server

10 Preserve W
(k)
la,i

11 W
(k+1)
c ← 1

N

N∑
i=1

W
(k)
la,i

12 Household execution:
13 Procedure LocalTrain

(
Xi,Yi,W

(k)
c

)
:

14 Load locally preserved parameters as W
(k)
i

15 Load W
(k)
c

16 for each local epoch do
17 W

(k)
i ←W

(k)
i −

η∇
W

(k)
i

{
L
(k)
MMD,i + L

(k)
la,for,i + L

(k)
ort,i+

18 L
(k)
eff,i + L

(k)
p,for,i + L

(k)
ul,for,i

}
19 Return W

(k)
la,i

1) Computational Complexity: The computational cost
mainly results from the floating-point operations (FLOPs) of
each propagation (denoted by T ) and MMD loss computation
(denoted by M ). For the proposed framework, each local
iteration requires 3T for training, T for validation, and M
for MMD loss computation. Therefore, the computational
complexity is O (λNQG (4T +M)). Current methods de-
fine the multi-domain alignment loss function as the av-
erage of the MMD distance between each two domains.
So their computational complexity in FL is calculated as
O (QG(4λNT + (λN)!M)).

2) Communicational Complexity: For the proposed frame-
work, the computational cost mainly results from the burden of
transferring parameters of two blocks. Let P denote the num-
ber of all model parameters. Usually, the deep learning model
parameters are stored in 16-bit floating point format, so each of
them requires 16 bits for communication. Therefore, its com-
municational cost is calculated as O

(
2× 2× 1

4PλNG
)

=
O (λNPG). For current methods, the burden of transferring
hidden representations Hla,i (which are usually stored in 32-
bit format) is also taken into account. Let D denote the
number of hidden nodes, then their communicational cost is
O(λNG(P + 2QNhD)).

TABLE I
CONFIGURATION DETAILS

Parameter Configuration

Dataset

- Provided by UK Power Networks
- Number of households: N = 20
- Training: From Sep. 1 to Nov. 30, 2013
- Test: From Dec. 1 to Dec. 30, 2013
- Validation: 10% of training set
- Width of the sliding window: 168h
- Forecasted period: Ahead 1h

Architecture
- LSTM layers: 1
- Multi-FC layers: 2
- Hidden nodes of each layer: D ∈ {8, 16, 32, 48}

Training

- Maximum communication rounds: 200
- Early stopping patience: 15
- Early stopping minimum delta: 1× 10−4

- Proportion of participants λ ∈ {0.3, 0.4, 0.5}
- Number of local epochs ∈ {3, 4, 5}
- Batch size: Nh = 256
- Initial learning rate: 1× 10−4

- Optimizer: Adam
- Total number of kernels: n ∈ {10, 15, 20}
- Kernel standard deviation: σd = d

IV. EXPERIMENTS

This section mainly conducts comprehensive experiments
to validate the effectiveness of the proposed load forecasting
framework.

A. Experimental Setups

The experiments in this work are all conducted in a virtual
environment with Python 3.8.8 and Pytorch 1.13.1, where the
model is trained on a single NVIDIA GTX 4080 TI GPU with
a computing power of 317656.35 million FLOPs per second
for 32-bit floating-point data. To simulate the FL scenario, this
work assumes that active households in each communication
round can perform training in parallel and all households
share the same communication network with a bandwidth of
1 Mbyte per second.

Considering that the LSTM neural network is sensitive to
the data scale, min-max normalization is adopted for the load
and temperature data, and one-hot encoding is adopted for
other category data. To avoid overfitting, 10% of the training
dataset is set as the validation set, and early stopping is adopted
in the federated learning process.

For hyperparameter selection, this work applies a two-stage
optimization strategy. Firstly, considering the hybrid-LSTM
structure is the basis of our proposed framework, the number
of hidden nodes is selected by evaluating the performance
of a single hybrid-LSTM model. Secondly, the FL-related
hyperparameters (proportion of participants, number of local
epochs, and total number of kernels) are selected by utilizing
a simple grid search method. The values or search spaces of
all crucial parameters are illustrated in the TABLE I, where
the selected hyperparameters are presented in bold font.

To measure the quality of forecasting performance, the mean
absolute error (MAE) and root mean squared error (RMSE)
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are adopted here:

MAE =
1

|T |
∑
j∈T

|yj − ŷj | (17)

RMSE =

√
1

|T |
∑
j∈T

(yj − ŷj)
2 (18)

where T is the set of forecasted data, yi and ŷi denote
the actual and forecasted electrical loads, respectively. The
mean absolute percentage error (MAPE) is not considered for
the reason load values approaching zero occur frequently, as
shown in Fig. 1.

B. Comparison with Benchmarking Methods

To verify the effectiveness of the proposed framework,
several commonly seen methods are set as benchmarking
methods. Brief descriptions of these mentioned methods are
provided as follows:

1) Method 1 (Persistence for an hour) [42]: Hourly loads
are predicted as the loads at the previous hour. This
is a blank control used to validate the effectiveness of
machine learning models.

2) Method 2 (Localized learning) [4]: A separate hybrid-
LSTM model for each household, which is trained in
isolation using only the data available to that household.

3) Method 3 (FedAVG) [6]: A fraction of households are
selected in each communication round to train a model,
and then the parameters are returned to a central server
for aggregation to obtain a joint model.

4) Method 4 (FedAVG with local fine-tuning) [26]: The
trained FedAVG model is sent to each client and per-
forms simple training so that the model can better adapt
to each household’s local distribution.

The model performances over the 20 households are pre-
sented in TABLE II and TABLE III. For a clearer illus-
tration, two examples of Household #1 and Household #2
are visualized in Fig. 4. The results indicate the superiority
of the proposed framework with the best performances in
most cases. Generally, it can reduce average MAE/RMSE
by 4.64% /4.33% when compared to the best benchmarking
method, i.e., Method 4, and 9.75%/8.66% when compared to
the localized learning. It can be seen that localized learning is
insufficient to train a reliable model with a small amount of
data held by each household (Method 2 almost always yields
poorer results, especially around the 400-th hour). In contrast,
FL-based methods are able to fully utilize all households’
data resources, thus improving forecasting accuracy while
preserving their privacy. However, the performance of current
FL-based methods still shows a certain gap compared to the
proposed framework that is more proficient in dealing with
non-IID load data in this work.

C. Effectiveness of Domain Separation

In order to further explore the effectiveness of domain sep-
aration, the performances of several invariants of the proposed

framework, which lack some crucial components, are also
provided. The invariants of the proposed framework are briefly
described as follows:

1) Method 5 (proposed framework without domain sepa-
ration): no decoupling or alignment is adopted in the
proposed framework.

2) Method 6 (proposed framework without alignment): No
alignment is adopted in the proposed framework, but the
original knowledge is still separated into two decoupling
components.

3) Method 7 (proposed framework without decoupling): No
decoupling is adopted in the proposed framework, but
the distribution of the knowledge is still aligned with the
central reference.

The comparison of the forecasting results can be found
in TABLE II and TABLE III. It can be observed that
the removal of any components of domain separation can
contribute to lower forecasting accuracy. More specifically,
the removal of domain separation/alignment/decoupling can
increase the MAE by 5.99%/1.63%/6.93% and RMSE by
5.43%/1.51%/6.30%. According to the results, the removal of
domain separation can contribute to an increase in error to
varying degrees on most household datasets, which indicates
the negative effects of conflicting knowledge. Specifically,
except for household #14, the contaminating knowledge can
increase the forecasting error by 2.84% to 14.43%. To our
surprise, Method 7, which only removes decoupling, performs
even worse than Method 5, which removes the whole domain
separation. This anomaly indicates the alignment is insufficient
to make the model acquire household-shared knowledge, and
the negative effects caused by the knowledge contamination
are still obvious. Compared to them, decoupling the two
components can effectively improve the performance, but a
certain gap is still seen when compared to the proposed frame-
work. Only the collaboration of decoupling and alignment
can both acquire household-shared knowledge and remove the
contamination, thus further improving the accuracy.

D. Effectiveness of the Knowledge Supplement

To investigate the effectiveness of our proposed personaliza-
tion strategy, i.e., household-specific knowledge supplement,
two FL models with different personalization strategies are
considered: Method 8 (proposed framework without knowl-
edge supplement) and Method 2. The comparison results in
terms of MAE and RMSE are presented in TABLE II and
TABLE III, respectively. It can be observed that the knowl-
edge supplement can significantly improve performance. More
specifically, it can reduce the MAE/RMSE by 4.15%/4.66%.
Although the previous context proves that the current local
fine-tuning process can make more accurate results based on
FedAvg, it still performs worse than the proposed framework
on the majority of households.

Another thing worth mentioning is that even though Method
8 fails to achieve the best results on all datasets, it still
outperforms Method 4 on average. This indicates that under
some circumstances, local fine-tuning can obviously improve
accuracy by making the model adapt to the local distribution,
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Fig. 4. The forecasting results given by the proposed framework and benchmarking methods in Household #1.
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Fig. 5. The forecasting results given by the proposed framework and benchmarking methods in Household #2

TABLE II
MODEL PERFORMANCE OF THE PROPOSED FRAMEWORK AND BENCHMARKING METHODS IN TERMS OF MAE [WH]

Household MAE [Wh]

No. Proposed Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10

#1 55.44 89.78 84.70 60.33 58.76 58.08 55.89 58.68 56.57 95.18 111.32
#2 56.38 94.66 86.56 60.71 68.76 60.54 57.92 61.14 59.07 87.74 83.15
#3 145.86 265.69 159.75 165.27 146.75 155.59 148.83 157.00 154.27 203.49 175.04
#4 121.86 223.93 144.78 130.76 135.00 128.24 126.83 129.17 127.39 180.62 138.14
#5 61.39 114.39 67.93 66.58 64.24 65.22 63.09 65.98 65.19 95.69 61.17
#6 120.51 216.68 125.67 135.52 118.45 127.62 125.39 129.93 126.42 156.37 135.89
#7 104.39 175.08 103.71 103.52 103.44 108.78 102.08 111.24 103.29 131.31 102.97
#8 86.22 162.93 94.25 97.07 94.71 92.70 87.81 93.40 92.81 122.49 87.90
#9 103.05 181.77 104.68 108.30 104.57 108.74 102.87 108.27 107.13 107.66 100.03

#10 71.94 127.16 74.39 77.67 72.12 75.61 72.74 76.50 74.90 88.37 71.20
#11 90.60 158.85 109.34 102.85 103.50 98.93 92.34 99.16 98.80 122.78 96.92
#12 34.85 65.89 42.73 37.62 36.91 38.76 36.00 38.92 37.02 42.03 34.62
#13 99.98 174.97 103.73 118.32 106.17 109.68 101.64 111.09 107.21 110.51 94.75
#14 25.30 36.78 22.02 27.98 21.31 26.77 26.23 26.57 22.98 26.17 21.97
#15 96.19 192.07 109.46 113.84 98.06 107.48 99.93 111.03 104.83 130.50 91.08
#16 76.46 136.87 84.81 86.13 84.61 82.64 78.46 83.37 81.31 113.05 78.14
#17 89.03 154.88 91.32 96.43 98.46 92.82 89.92 93.89 91.89 116.23 90.31
#18 34.93 57.89 37.92 38.85 33.78 37.49 35.32 37.36 34.85 39.77 34.34
#19 74.16 132.28 79.14 78.74 83.04 77.89 75.37 77.26 77.03 78.70 74.29
#20 45.31 76.22 43.46 47.60 43.02 45.97 45.46 46.45 43.96 47.58 42.76

Average 79.69 141.94 88.52 87.70 83.78 84.98 81.21 85.82 83.35 104.81 86.30

but the negative effects of knowledge forgetting cannot be
ignored.

E. Comparison with State-of-the-Art Methods

To further present the superiority of the proposed frame-
work, two state-of-the-art methods are investigated, which are
described as:

1) Method 9 (Neural Basis Expansion Analysis for Time
Series) [43]: An interpretable time-series forecasting
method with multiple FC-based stacks and blocks to

continuously learn the hidden knowledge in the residue
from the last unit. The hyperparameters of this method
are set as follows: the number of stacks ∈ {1, 2, 3},
the number of blocks ∈ {1, 2, 3}, and hidden nodes
∈ {8, 16, 32}.

2) Method 10 (Impactnet) [44]: This method includes mul-
tiple residual convolutional units and FC layers to handle
different types of features. The hyperparameters of this
method are set as follows: the number of convolutional
channels ∈ {8, 16, 32} and hidden nodes ∈ {32, 96}.

The performances of these two methods are provided in
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TABLE III
MODEL PERFORMANCE OF THE PROPOSED FRAMEWORK AND BENCHMARKING METHODS IN TERMS OF RMSE [WH]

Household RMSE [Wh]

No. Proposed Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10

#1 86.04 166.48 127.25 90.04 90.34 87.75 87.87 87.81 88.34 130.37 161.65
#2 90.61 170.11 121.62 95.09 97.84 93.66 91.56 94.49 94.07 133.98 136.17
#3 204.50 391.24 221.09 226.11 208.27 217.37 210.32 218.80 217.88 290.18 251.22
#4 170.52 336.22 195.05 179.42 185.46 177.55 175.84 178.38 176.52 243.05 188.56
#5 108.90 224.79 122.22 120.41 118.32 118.75 110.26 119.56 117.85 146.66 111.87
#6 173.41 356.44 179.42 188.87 173.59 180.97 180.70 184.55 181.38 226.54 206.69
#7 162.87 308.59 161.80 163.09 162.86 171.85 164.10 178.53 161.42 233.34 170.34
#8 123.70 244.52 134.50 138.14 134.99 132.53 126.91 133.62 133.59 184.88 125.81
#9 170.56 317.46 173.86 176.97 174.10 177.39 170.47 176.76 176.53 181.06 168.24

#10 124.29 239.57 131.44 133.87 128.73 132.21 124.60 133.33 131.54 144.59 123.28
#11 141.52 272.43 164.16 158.21 157.53 153.17 146.52 153.44 154.45 194.21 159.92
#12 56.19 115.10 65.84 59.56 60.28 60.88 56.58 60.82 59.07 67.33 55.91
#13 155.62 295.86 170.68 182.74 166.67 170.58 160.11 173.77 170.57 183.91 153.73
#14 41.54 76.29 40.63 43.50 39.89 43.59 41.22 43.33 40.45 45.05 39.34
#15 135.45 283.66 156.61 162.29 142.79 155.47 141.41 159.64 151.83 185.25 132.26
#16 129.71 253.86 138.34 143.19 136.92 141.45 133.71 142.16 140.38 185.00 131.44
#17 140.71 255.61 144.81 150.13 151.64 145.96 143.32 146.98 146.01 184.44 144.83
#18 53.48 102.06 57.58 56.95 54.01 56.69 53.07 56.74 54.80 63.87 54.67
#19 114.43 219.98 121.98 120.92 122.97 119.72 114.86 119.12 120.53 123.86 117.85
#20 77.44 149.01 79.31 79.27 78.56 78.22 78.15 78.27 77.52 86.07 77.87

Average 123.07 238.96 135.41 133.44 129.29 130.79 125.58 132.00 129.74 161.68 135.58
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Fig. 6. Comparison of the proposed framework and all aforementioned
methods in terms of (a) MAE and (b) RMSE in each household. The
performance of the proposed framework is indicated by the x-axis, and the
performances of other methods are indicated by the y-axis. The point above
the black dashed line denotes a better performance of the proposed framework.

TABLE II and TABLE III. It can be observed the proposed
framework has a significantly lower average MAE/RMSE
than Method 9 and Method 10. It is worth noticing that
Method 10, as an advanced and effective forecasting model,
outperforms the proposed framework in several households.
However, because of the much lower accuracy on the first
several households, the average error of Method 10 is still

TABLE IV
MODEL PERFORMANCES IN TERMS OF MAE[WH] WITH DIFFERENT NOISE

INJECTIONS

Perturbed Households 25% 50%

Noise Injection 2.5% 10.0% 2.5% 10.0%

Proposed 81.07 86.52 81.04 87.26
Method 2 87.77 92.65 88.94 93.17
Method 3 87.51 89.20 89.47 91.97

obviously higher than the proposed framework.

F. Robustness Investigation

Although the proposed framework has been proven to
perform well in differently distributed load forecasting tasks,
we still wish to explore its performance under a perturbing
environment. Therefore, the robustness of the proposed frame-
work, Method 2, and Method 3. In each test, a proportion of
households’ load data are perturbed by an injected noise. The
results in terms of MAE [Wh] are provided in TABLE IV.
Despite a certain growth in error as the degree of disturbance
increases, the investigated methods can still give relatively ac-
curate results. Moreover, the federated domain separation will
not influence the robustness compared to localized learning
or conventional federated learning methods, which proves its
good usability.

G. Convergence Investigation

The FL-based methods require some communication rounds
for convergence. To investigate the convergence of the pro-
posed framework and other aforementioned FL-based meth-
ods, their validation loss curves are provided in Fig. 7.
Although Method 3 has the fastest convergence rate and the
smoothest convergence curve, it is unable to reduce the value
of the validation loss below 0.007, which contributes to poorer
performance. The proposed framework and its variants (i.e.,
Methods 5, 6, and 7) have relatively lower convergence rates.
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Fig. 7. The convergence curves of validation loss of the proposed framework
and other FL-related methods.
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Fig. 8. The convergence curves of validation MMD constraint loss and
orthogonal constraint loss of the proposed framework.

Specifically, the validation loss of the proposed framework can
converge to the lowest among all of them. It is worth noticing
that the removal of household-specific knowledge supplements
can result in a much lower convergence rate.

Moreover, we have investigated the convergence curves of
the two constraint losses of our proposed framework, which
have been provided in Fig. 8 It can be observed that both of
them can converge to a low level, which indicates households’
local alignment blocks can produce similarly distributed hid-
den states and local separation blocks can effectively separate
the conflicting part.

H. Computational and Communicational Costs Investigation

Lastly, we investigate the computational and communica-
tional costs of the proposed framework and other methods,
which have been provided in Fig. 9 and Fig. 10. Specifically,
our proposed framework consists of 0.05 million parameters
and requires about 2105.62 million FLOPs for propagation
and 100 million FLOPs for an MMD loss computation.
Considering the dataset size and batch size, each local epoch
consists of 8 iterations. According to the complexity analysis
in Subsection III-D and hyperparameters selection in TABLE
I, the whole training process requires 0.5× 20× 40× 103×
(4 × 2105.62 + 100) = 3.46 × 108 million FLOPs and
0.5 × 20 × 0.05 × 103 = 51.50 million communication
bytes. In the 10-household parallelism scenario, the theoretical
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Fig. 9. The computational costs of the methods in this work.
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Fig. 10. The communicational costs of the FL-based methods in this work.

computational cost is 109.89s. It can be observed that the
theoretical costs are consistent with the tested costs.

To validate the real-time usability of the proposed frame-
work, we consider a real-time updating circumstance, i.e.,
retraining the model once before each use. According to Fig.
9 and Fig. 10, it can be seen that the proposed framework
requires about 150 seconds to complete an FL process, which
is acceptable in such an STLF task. Despite a relatively
higher training time in comparison with localized learning,
the forecasting accuracy can be significantly improved. In
addition, Method 6 requires less computational cost (around
110 seconds) and gives relatively accurate forecasting results
(according to TABLE II and III), so it can be used as a
substitute in the case of insufficient computing power.

V. CONCLUSION AND FUTURE WORK

This paper proposes an FL-based load forecasting frame-
work based on federated domain separation, which is more
expertise in dealing with non-IID smart meter data. The
comparison experiments with several benchmarking methods
indicate the superiority of our federated domain separation
strategy. In addition, extensive ablation experiments also prove
the effectiveness of multi-domain alignment, decoupling, and
knowledge supplement, respectively, which are crucial compo-
nents of the proposed framework. Despite a relatively higher
computation cost (which is still acceptable even in an STLF
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scenario), the proposed framework can be a good candidate
for such a privacy-preserving household load forecasting task.

Our proposed framework has many hyperparameters. Al-
though we have utilized a simple grid search for some
hyperparameters selection, there is still room for accuracy
improvement by more refined adjustments. Future work will
be concentrated on combining it with more advanced search
methods.
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[33] F. Hanzely and P. Richtárik, “Federated learning of a mixture of global
and local models,” arXiv preprint arXiv:2002.05516, 2020.

[34] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan,
“Domain separation networks,” Advances in neural information process-
ing systems, vol. 29, 2016.

[35] H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization with
adversarial feature learning,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 5400–5409.

[36] J. Li, C. Zhang, Y. Zhao, W. Qiu, Q. Chen, and X. Zhang, “Feder-
ated learning-based short-term building energy consumption prediction
method for solving the data silos problem,” in Building Simulation,
vol. 15, no. 6. Springer, 2022, pp. 1145–1159.

[37] S. Zhao, J. Liu, G. Ma, J. Yang, D. Liu, and Z. Li, “Two-phased
federated learning with clustering and personalization for natural gas
load forecasting,” in International Workshop on Trustworthy Federated
Learning. Springer, 2022, pp. 130–143.

[38] UK Power Networks. Smartmeter energy consumption data in
london households. [Online]. Available: https://data.london.gov.uk/
dataset/smartmeter-energy-use-data-in-london-households

[39] Weather data for london area. [Online]. Available: https://support.apple.
com/en-us/102594

[40] T.-Y. Ma and S. Faye, “Multistep electric vehicle charging station
occupancy prediction using hybrid LSTM neural networks,” Energy, vol.
244, p. 123217, 2022.

[41] X. Yao, C. Huang, and L. Sun, “Two-stream federated learning: Reduce
the communication costs,” in 2018 IEEE Visual Communications and
Image Processing (VCIP), 2018, pp. 1–4.
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