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Abstract

Nanofiltration (NF) is widely used to treat highly saline textile waters, but its efficiency
in dye recovery is limited by low permeance. This study presents a novel class of Co-based
metal-organic framework (Co-MOF) nanosheet membranes for efficient and selective dye
recovery. The Co-MOF membranes have precisely regulated in-plane pore sizes and exhibit
superior permeance and selectivity compared to non-porous nanosheet membranes. By
adjusting the length of the ligand, the in-plane pore size was precisely tuned from 1.01x0.63 to
1.43 x0.64 nm?. The Co-MOF membranes exhibited high selectivity for salts over dye in both
diffusion and pressure-driven filtration modes, along with excellent and tunable pure water
permeance and high rejection of the dye OIl. The remarkable permeability and selectivity of
the Co-MOF membranes were attributed to the in-plane pores on the nanosheets, which serve
as extra fast “lifts” for water and salts while exhibiting high rejection to the dye molecules.
Long-term filtration performance and Co leaching tests demonstrated the stability of the Co-
MOF membranes, making them promising candidates for practical dye recovery applications.
Overall, this work provides a new approach for the development of high-performance
membranes for textile wastewater treatment.
Keywords: 2D Co-MOF; porous nanosheet; layer-stacked membrane; dye recovery; high

permeance
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1. Introduction

The textile industry in China generates an enormous amount of wastewater, more than 3
billion tons annually [1]. This wastewater is not only highly saline but also poses significant
environmental hazards. Discharging it without proper treatment results in a waste of valuable
resources [2]. Conventional methods such as adsorption, chemical degradation, and
coagulation have proven inadequate for the selective separation and recovery of dyes from
saline solutions [3]. However, membrane technology has made significant progress in the
treatment of textile wastewater, primarily due to its high energy efficiency and environmentally
friendly characteristics [4]. Despite these advantages, commercial polyamide-based
nanofiltration (NF) membranes pose a challenge for dye recovery due to their low permeance,
typically ~ 10 L m2 h™* bar ™%, which limits the efficiency of the process [5-8].

Currently, two-dimensional (2D) layer-stacked membranes utilizing materials such as
graphene oxide (GO), molybdenum disulfide (MoS2), and MXene nanosheets have shown
promise in enhancing permselectivity in dye recovery [5, 9-18]. Ma et al. demonstrated a
MoS2/GO membrane that achieved a 5-fold increase in dye/salt selectivity over a commercial
loose NF membrane [11]. However, this improvement in selectivity came at the cost of reduced
water permeance in these nonporous nanosheet membranes. In layer-stacked membranes, water
transport occurs primarily through narrow channels between neighboring nanosheets, leading
to increased resistance and reduced water permeance. To address this issue, researchers have
attempted to improve water permeance by introducing pores into the nanosheets [19, 20]. For
example, Sapkota, et al. observed significant enhancements in water fluxes when intrinsic
pores were introduced into the nanosheets of MoS2 membranes using probe sonication [20].
However, methods such as probe sonication and plasma etching cannot precisely control the

pore size and often require high energy consumption.
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Metal-organic frameworks (MOFs), as a class of porous nanomaterials with a well-
ordered microporous structure, have gained considerable research interest and found diverse
applications [21-25]. In membrane separation, extensive research has focused on MOF-based
mixed matrix composite membranes for gas separation [26, 27]. By precisely tuning the pore
size and structure in MOFs, the composite membranes can achieve excellent permeance and
selectivity [28]. However, previous studies have predominantly employed MOFs as bulk
particles or hybrids within polymer matrices, resulting in potential pore blockage. Additionally,
bulk particles are unsuitable for the fabrication of layer-stacked membranes [29, 30]. In contrast,
2D MOF nanosheet membranes are more promising for agueous membrane separation due to
their thin structure and free spacing, which allows for fast molecular transport with reduced
resistance [31]. More importantly, the precisely regulatable in-plane pores within the MOF
nanosheets can endow the 2D MOF membrane with both improved permeability and high
selectivity [32]. The primary strength of the MOF nanosheet membranes, in contrast to
alternative porous nanosheet membranes, lies in the straightforward preparation of the MOF
nanosheets themselves. In the case of other porous nanosheet membranes, like the porous
GO/MXene membranes, additional procedures such as plasma etching, laser etching, or radical
oxidation are necessary to establish the intra-plane pores [19, 33, 34]. These methods often
entail the use of aggressive chemicals or result in high energy consumption. In sharp contrast,
the intra-plane pores are inherently present during the synthesis of the MOF. Despite these
outstanding advantages, research on MOF nanosheet membranes for dye wastewater treatment
remains limited.

In this study, we report on the facile fabrication of 2D Co-MOF nanosheet membranes
with precisely tuned in-plane pore sizes (Fig. 1), which exhibit superior performance in dye
recovery. We performed a comprehensive characterization of the Co-MOF membrane

structures and accurately calculated their pore sizes. By employing ligands with varying lengths,
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we precisely tuned the in-plane pore size of Co-MOFs. We systematically tested and evaluated
the dye recovery performance of the resulting Co-MOF membranes. We proposed and
validated a "lift" transport hypothesis to explain the observed effects. Moreover, we conducted
a long-term stability test to demonstrate the excellent durability of Co-MOF membranes,

highlighting their great potential for textile wastewater treatment.

2. Materials and methods

2.1. Chemicals

Cobalt chloride hexahydrate (CoCl2-6H20, >99.99%), benzenedicarboxylic acid (BDC,
>98%), 2,6-naphthalenedicarboxylic acid (NDC, >99%), 4,4'-biphenyldicarbonyl acid (BPDC,
>97%), tricthylamine (TEA, >99%) were obtained from Sigma-Aldrich Co. Ltd, America.
Poly(vinyl alcohol) (PVA, 67000 Da, AR), sodium chloride (NaCl, >99.5%), anhydrous
sodium sulfate (Na2SOas, >99%), magnesium chloride (MgClz, >99%), magnesium sulfate
(MgSO0s, >99%), glucose (>98%), sucrose (>99%), dextran (1000 & 2000 Da, AR), orange 1l
sodium salt (Oll, >85%), Direct Red 80 (DR 80, AR), dimethylformamide (DMF, >99.5%)
were purchased from McLin Co. Ltd., China. Ultrafiltration (UF) membrane (nylon, 200 nm)
was purchased from Jinteng Co. Ltd., China. All chemicals were analytical grade and were
used as received without further purification. All solutions were prepared with ultrapure water

(Direct 8, Millipore, America).

2.2. Synthesis of the Co-MOFs and the Co-MOF membranes

The Co-MOFs were synthesized following the procedure shown in Fig. 1. Firstly, a
mixture of 0.75 mmol of CoCl2:6H20 and 0.75 mmol of BDC, NDC or BPDC ligands, 2 mL
ethanol, 2 mL ultrapure water, and 30 mL DMF were prepared. Next, 0.8 mL of TEA was
added and the solution was stirred for 5 min. The mixture was then sonicated in an ultrasonic
bath (KQ-300DA, Kunshan, China) at room temperature for 4 h. The resulting bulk Co-MOFs

were collected by centrifugation, washed three times with ethanol, and dried at 80 °C in a
4
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vacuum oven (DZF-6092, Yiheng, China) for 12 h. Subsequently, 10-50 mg of the bulk Co-
MOFs were exfoliated in 50 mL of ultrapure water using probe sonication (Scientz-11D, Xinzhi,
China) for 30 min. The resulting nanosheet solution was then poured into a custom-made steel
cell (Fig. S1) and deposited onto a UF membrane substrate with a nominal pore size of 200 nm
by vacuum filtration under a pressure of 1 bar. The in-plane pore size of the Co-MOFs was
precisely tuned by using ligands with different lengths. The resulting Co-MOF membranes
were designated as Co-MOF-BDC, Co-MOF-NDC, and Co-MOF-BPDC, corresponding to the

respective ligands used in their synthesis.
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Fig. 1. Schematic illustration of the fabrication process of Co-MOF nanosheets and membranes,
including the synthesis of bulk Co-MOF (a), the exfoliation of bulk Co-MOF to obtain Co-
MOF nanosheets (b), and the fabrication of the Co-MOF membrane.
2.3. Characterization of Co-MOF nanosheets and membranes

The nanostructure of the Co-MOF nanosheets was obtained by transmission electron
microscopy (TEM; Talos F200X G2, Thermo Fisher). The crystal structure information of the
Co-MOF nanosheets were obtained by X-ray diffraction (XRD; Smartlab, Rigaku, Japan) with

5
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Cu Ka radiation (A = 1.5406 A). X-ray photoelectron spectroscopy (XPS) analysis of the Co-
MOF nanosheets was performed with a PHI 5000 Versaprobe III instrument. Fourier transform
infrared (FTIR) spectra of the Co-MOF nanosheets were measured using a Nicolet iS50
instrument (Thermo Fisher). The lateral size distribution and zeta potential of the Co-MOF
nanosheets were characterized using a Zetasizer Nano ZS instrument (NanoBrook Omini,
Brookhaven). The surface morphology and cross-sectional structure of the as-prepared Co-
MOF membranes were characterized by scanning electron microscopy (SEM; Merlin, ZEISS,
Germany), and the surface roughness was determined by atomic force microscopy (AFM;
MFP-3D Stand Alone, Asylum Research).
2.4. Calculation of the pore size of the Co-MOFs

The pore sizes and interlayer spacings of the Co-MOFs were determined by applying
Bragg’s law (2d sin & = nA) [35], where d is the distance between the adjacent lattice planes,
0 is the scattering angle, n is an integer determining the reflection order, and A is the
wavelength, which is 1.5406 A. The sizes for the long side and short side of the in-plane pores
were calculated from the scattering angle of the (100) and (010) lattice planes, respectively.
Similarly, the interlayer spacings were determined using the scattering angle associated with
the (001) lattice planes of both the Co-MOFs and the Co-MOF membranes.
2.5. Membrane performance tests
2.5.1. Pure water permeance test

The pure water permeance of the Co-MOF membranes with various loading amounts (10,
20, 30, and 50 mg) was measured under different pressures ranging from 0.2 to 0.8 bar in a
cross-flow cell (Fig. S1). Prior to testing, the Co-MOF membranes were preconditioned for 30
min at the corresponding pressure. Three membrane samples were tested simultaneously, and
the error bars were calculated based on the three measurements. The pure water flux was

calculated using Equation (1) [36],
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T AtxA

where Jw (L m2 h™) is the pure water flux; A4V (L) is the permeate volume; A (m?) is the

active membrane area; and 4¢ (h) is the sampling time.

2.5.2. Salt and neutral molecule diffusion test

In the diffusion test, a U-shaped cell with a volume of 100 mL was used. The Co-MOF
membrane was placed in the center of the cell and fixed with two clips (Fig. S2). Subsequently,
60 mL of salt solution (NaCl, Na2SO4, MgClz, or MgSOs) with a concentration of 0.25 mol L™
was added to the draw side, while an equal volume of ultrapure water was added to the feed
side. The cell was then placed in a water bath at 30 °C and stirred for 6 h. At predetermined
time intervals, the salt concentration in the feed solution was determined using a conductivity
meter (FE38, FiveEasy plus, Mettler, US). For the neutral molecule diffusion test, 60 mL of 4
g L™* solution of glucose (MW 180.1 Da), sucrose (MW 342.2 Da), dextran 1000 (MW 1000
Da) or dextran 2000 (MW 2000 Da) was added to the draw side, while 60 mL of ultrapure
water was added to the feed side. The neutral molecule concentration was measured by a total
organic carbon analyzer (TOC, Multi N/C 3100, Analytik Jena AG, Germany). Three
membrane samples were tested in parallel for each salt or neutral molecule, and the mean
squared error was calculated. Both the salt flux and neutral molecule flux were calculated

using Equation (2) [37],

J ACFXV
T AtxA

)
where J (mol m2h™) is the salt or neutral molecule flux; ACs (mol L™1) is the salt or neutral

molecule concentration change in the feed side during the test time; V' (L) is the initial volume

of the feed side; A (m?) is the active membrane area; and 4¢ (h) is the test time.
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2.5.3. Salt/dye selective separation performance test
To test the salt/dye selectivity in diffusion, 60 mL of mixed solution containing 1000 mg
L~* of NaCl, 1000 mg L* of Na2SQ4, and 50 mg L of Oll was added to the draw side, and 60

mL of ultrapure water was added to the feed side. The dye/salt permeance ratio Ry sq1r Was

calculated by Equation (3),

_ Jsait
Rsalt,dye - ]Z‘;e (3)

where Js,;¢ and J4y. are the permeances for dye and salt, respectively.

To investigate the pressure-dependent performance of the Co-MOF membranes, we tested
the salt/dye selectivity under pressure using crosslinked Co-MOF membranes in the crossflow
cell. Specifically, 0.2 % PVA was added to a 50 mL Co-MOF nanosheet dispersion and stirred
for 30 min to crosslink prior to deposition onto the UF substrate. For the test, the feed solution
contained 1000 mg L™ NaCl, 1000 mg L * Na2S04, and 50 mg L™ OlI/DR 80. The system was
allowed to run for 2 h without pressure to reach adsorption equilibrium, and then

preconditioned at 0.5 bar for 30 min. The dye/salt selectivity Ssq; 4y Was calculated using the

following Equation (4) [38],

_ 1-Rgqit
Ssalt,dye - 1-Raye (4)

where R (%) is the dye or salt rejection. The dye and salt rejection was calculated by Equation
(5) [36],

R=< —%)x100% (5)

where C,, (g L™) and Cf (g L™) are the concentrations of the dye and salt in the permeate and
feed, respectively.
2.5.4. Stability tests

The long-term filtration stability of the Co-MOF membranes was assessed by conducting

a 72-hour cross-flow filtration test under 0.5 bar at pH from 10 to 3, and the water flux was
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continuously monitored during the test. To evaluate the leaching of Co ions from the
membranes, Co-MOF membranes with a loading of 50 mg were immersed in 50 mL of
ultrapure water and shaken at 30°C for 72 h. The concentration of Co ions released from the
membranes was then determined using ICP-OES (iCAP 7000 SERIES, Thermo Fisher
Scientific, US). Three membrane coupons were tested for each type of Co-MOF membrane at
each sampling time, and the average Co leaching value and the root mean square error were
calculated.
3. Results and discussion
3.1. Characterization of the Co-MOF nanosheets

After exfoliation of the bulk MOF materials, we characterized the structure, surface
properties and chemical components of the Co-MOF nanosheets. TEM images (Fig. 2(a-c))
show rectangular flake profiles of Co-MOF nanosheets with an estimated lateral size of a few
hundred nanometers. The AFM images (Fig. 2d-f) reveal the Co-MOF nanosheets to possess
an average thickness of about 3 nm. Meanwhile, DLS measurements showed that Co-MOF-
BDC, Co-MOF-NDC, and Co-MOF-BPDC had similar hydrodynamic sizes of 1080.00 +
120.72, 1030.95 + 85.24 and 897.98 £ 96.60 nm, respectively (Table S1). Additionally, all Co-
MOFs exhibited a similar trend in the pH-dependent variation of the zeta potentials (Fig. S3)
and showed negative charges in neutral and alkaline solutions due to the residual carboxyl

groups in the Co-MOFs [39, 40].
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Fig. 2. TEM and AFM images of the Co-MOF-BDC (a, d), Co-MOF-NDC (b, e), and Co-
MOF-BPDC (c, f) nanosheets.

XPS survey scans were performed to analyze the O, C, and Co elements in the three Co-
MOF nanosheets, as shown in Fig. S5. The concentrations of the O, C and Co were calculated
from the survey scan results, and the values are presented in Table S2. Among the Co-MOFs,
the Co-MOF-BPDC exhibited the highest concentration of C (69.91%), while the Co-MOF-
BDC showed the lowest (59.62%). The high-resolution C 1s XPS spectra of the Co-MOF
nanosheets (Fig. 3(a, d, g)) were analyzed, and three major peaks with binding energies at
~284.6, 286.1, and 288.4 eV were identified and assigned to the aromatic ring backbone [34],
C-0O, and O-C=0 groups, respectively [36]. The ratio of the main carbon peaks varied slightly
among the three Co-MOFs, which was attributed to the differences in the ligand structures
(Table S3 & Fig. S4). The Co 2p XPS spectra (Fig. 3(b, e, h)) showed two main peaks at around
781.0 and 797.1 eV, corresponding to the Co 2psi2 and Co 2pu2 of Co?*, respectively [41, 42],
as well as satellite peaks located at 785.6 and 803.2 eV, also attributed to the Co?" in the three
Co-MOFs [43]. In the O 1s XPS spectra (Fig. 3(c, f, 1)), the peak at 531.7 eV was assigned to
the Co-O-Co coordination bond in the three Co-MOFs, while the peak at 533.0 eV

corresponded to the -COOH group of the three ligands (BDC, NDC, and BPDC) [44].
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Fig. 3. High-resolution and deconvolution of C 1s, Co 2p and O 1s XPS spectra of the Co-
MOF-BDC (a-c), Co-MOF-NDC (d-f), and Co-MOF-BPDC (g-i).

3.2. Characterization of the Co-MOF membranes

The Co-MOF membranes were fabricated by restacking Co-MOF nanosheets onto a UF
substrate under an external pressure. The structure of the Co-MOF membranes was analyzed
using XRD patterns, and the specific peak positions were determined based on the XRD
simulation performed by VESTA, as depicted in Fig. S6. The XRD patterns shown in Fig. 4
indicate that as the ligand length increased from short (BDC) to long (BPDC), the peak for the
(100) plane shifted from 8.73° to 6.18°, suggesting an increase in in-plane length from 1.01 nm
to 1.43 nm for Co-MOF-BDC and Co-MOF-BPDC, respectively. Furthermore, the peak for
the (010) plane was shifted from 14.05° to 13.76°, indicating an increase in in-plane width from
0.63 nm to 0.64 nm for Co-MOF-BDC and Co-MOF-BPDC, respectively, in agreement with
previous studies [39, 45]. By adjusting the length of the ligand, the in-plane pore size was

precisely tuned from 1.01x0.63 to 1.43x0.64 nm?. Importantly, the peak for the (001) plane at

11



243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

28.5° demonstrated similar interlayer spacings of ~0.31 nm for Co-MOF-BDC, Co-MOF-NDC,
and Co-MOF-BPDC membranes. These characterizations collectively confirm that Co-MOF
membranes with similar interlayer spacing and surface properties have been synthesized,

allowing the effect of in-plane size on permselectivity to be investigated.
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Fig. 4. XRD patterns of the Co-MOF membranes.

The surface morphology and roughness of the Co-MOF membranes were analyzed by
AFM. The results, shown in Fig. 5a-c, revealed that the surface roughness of the Co-MOF
membranes increased with the length of the ligand, from BDC to BPDC. Specifically, the Co-
MOF-BDC membrane had the lowest roughness of 62.0 £ 1.1 nm, while the Co-MOF-BPDC
membrane had the highest roughness of 82.3 + 2.8 nm. This observation could be attributed to
the difficulty in exfoliating the Co-MOF-BPDC, which has two aromatic rings, as compared to
the other two ligands (Fig. S4). The stronger - interaction between adjacent stacked BPDC
linkers results in the formation of few-layer nanosheets, leading to more difficult exfoliation
and a rougher surface [46-48]. These results suggest that the length of the ligand can influence
the surface morphology of the Co-MOF membranes.

The roughness of the Co-MOF membranes may also be influenced by their hydrophilicity.

The Co-MOF-BPDC membrane exhibited higher wetting ability with a water contact angle of
12
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51.5°, which was smaller than that of the Co-MOF-NDC membrane at 67.9° (Fig. S7). This
may have favored the dispersion of the Co-MOF-BPDC nanosheets in water, resulting in more
voids and wrinkles in the orientation of the stacked nanosheets, as reported in previous work
[49]. The SEM topographic views of the Co-MOF membranes in Fig. 5(d-f) show an increase
in surface roughness from the Co-MOF-BDC to the Co-MOF-BPDC membrane, which is
consistent with the observation in the AFM images. The cross-section of the Co-MOF
membranes in Fig. 5(g-i) illustrates their well-ordered laminar structure. From the SEM cross-
sectional views, the Co-MOF-BDC, Co-MOF-NDC, and Co-MOF-BPDC membranes exhibit
estimated thickness values of 7.42 um, 7.60 um, and 7.50 pm, respectively. Moreover, the
cross-section of the Co-MOF-BDC and Co-MOF-BPDC membranes exhibited more macro
voids, which may be due to the collective effect of the exfoliation efficiency and the
hydrophilicity of the nanosheets, as discussed above. Fig. 5(j-1) shows the digital photographs
of the three Co-MOFs, demonstrating that these membranes were as robust and flexible as other
2D laminar MXene and GO membranes [50-52].
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Fig. 5. Surface morphology characterized by AFM images (a-c), surface topography detected
by SEM images (d-f), cross-sectional view of the membranes (g-i), and digital photographs (j-
I) of the Co-MOF membranes. The thickness of the Co-MOF membranes is marked in the
cross-sectional images.

3.3. Performance of the Co-MOF membranes

3.3.1. Effects of loading mass and pressure on water permeance

Fig. 6a presents the measurement of pure water permeance as a function of the deposition
amount of Co-MOF nanosheets, ranging from 10 to 50 mg. At a deposition amount of 10 mg,
all Co-MOF membranes displayed the highest pure water permeance, with values of 1052 +
32.0,541.3+20.8, 368.3 + 19.8 L m2 h™* bar for Co-MOF-BPDC, Co-MOF-NDC, and Co-
MOF-BDC membranes, respectively. As the deposition amount increased up to 30 mg, there
was a sharp decline in pure water permeance due to the increased membrane thickness and
correspondingly higher resistance to water flow. However, further increases in the deposition
amount caused only marginal reductions in the pure water permeance. This trend is consistent
with the behavior typically observed in 2D membranes, where water permeance decreases with
increasing membrane mass or thickness [40, 53, 54]. This phenomenon can be attributed to the
highly ordered membrane structure resulting from the complementary stacking of the
nanosheets, leading to a stable water permeance. We hypothesize that the stacking structure of
the Co-MOF membranes became sufficiently stable at a deposition mass of 30 mg. Therefore,
a deposition amount of 30 mg was selected for all subsequent investigations of the Co-MOF
membranes.

In Fig. 6, we observed that, at the same loading mass, the pure water permeance of the
Co-MOF membranes increased in the order of Co-MOF-BDC < Co-MOF-NDC < Co-MOF-
BPDC. This trend, where the pure water permeance increased with the increase of the in-plane
pore size (Table S1), highlights the significant role played by the in-plane pores of the Co-MOF

nanosheets. By adjusting the length of the ligands (Fig. S4), the in-plane pore size of the Co-

MOF membranes can be modulated to increase the effective proportion of the water channels
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and thus to reduce the resistance for water molecules to pass through. In nanosheet-stacked
membranes, larger in-plane pore sizes also lead to shortened pathways. By reducing the
transport distance and the resistance for solvents to pass through the membranes, the membrane
permeance can be significantly increased [55, 56]. Furthermore, the pure water flux of the Co-
MOF membranes was also measured under varying transmembrane pressure (Fig. 6b). As the
pressure increased from 0.2 bar to 0.8 bar, all three Co-MOF membranes displayed a four-fold
increase in pure water flux. The linear increase in pure water flux with increasing driving
pressure for the three Co-MOF membranes indicates their structural stability [57, 58]. Co-MOF
membranes with different loading mass also showed a similar linear trend in pure water flux
with increasing driving pressure, as shown in Fig. S8. To determine the average pore size of
the Co-MOF membranes, we employed MWCO method, which describes the molecular weight
corresponding to a 90% rejection [59]. Accordingly, from the results shown in Fig. S9, it is
evident that the MWCO of Co-MOF-BDC, Co-MOF-NDC, and Co-MOF-BPDC were

identified as ~1000 Da, ~1600 Da, and ~2000 Da, respectively.
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Fig. 6. The pure water permeance of Co-MOF membranes fabricated with varied masses (a)
and pure water flux under different transmembrane pressure (b)

3.3.2. Salt/dye selective separation performance of the Co-MOF membranes

The Co-MOF membranes were tested for their separation performance in both diffusion

mode and pressure-driven mode, as shown in Fig. 7. Four different salts, NaCl, MgClz, Na2SOa,
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and MgSOa4, were used to evaluate the salt diffusion performance of the Co-MOF membranes.
The diffusion permeance was found to follow the order of NaCl > MgClz2 > Na2SO4 > MgSO4
for all three Co-MOF membranes (Fig. 7a). This order is likely due to the combined effect of
steric hindrance and Donnan exclusion. Due to its larger hydrated ion radius (Na*: 0.358 nm,
Mg?*: 0.428 nm), Mg?" encountered greater steric hindrance when entering and diffusing
through the pores of the Co-MOF membranes, while the Co-MOF membranes were negatively
charged around neutral pH (Fig. S3), leading to stronger repulsion toward higher valence
anions (i.e., SO4*~ > CI") [20]. Notably, the salt permeance generally increased with the in-
plane pore size of the Co-MOF membranes, with Co-MOF-BPDC membrane showing the
highest salt diffusion permeance among the three membranes for all four salts tested, at 2.9 £
0.2, 1.5+0.1,1.3+ 0.1 and 1.0 = 0.1 mol m h* for NaCl, MgCl2, Na2SOa, and MgSOs,
respectively. In comparison, the reported permeances of GO membranes were only 2.7 x 1072,
2.3 x 102and 1.7 x 102mol m=2 h™* for NaCl, MgCl2 and CaClz, respectively [60]. The high
salt permeance of the Co-MOF membranes was attributed to the extra "lifts" in the nanosheets,
which shortened the transport distance and resistance for salts passing through the membranes.

The Co-MOF membranes were also evaluated for their organic solute separation
performance using four neutral molecules with distinct molecular weights (Table S4) [61]. The
diffusion permeance of these molecules, including glucose, sucrose, dextran 1000, and dextran
2000, generally increased with the in-plane pore size of the Co-MOF membranes (Fig. 7b). In
particular, the Co-MOF-BPDC membrane with the largest in-plane pore size exhibited the
highest diffusion permeance for all four molecules. Additionally, for a specific Co-MOF
membrane, the diffusion permeance of neutral molecules followed the sequence of glucose >
sucrose > dextran 1000 > dextran 2000, as larger molecules experienced greater steric

hindrance in passing through the membranes.
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To evaluate the potential of Co-MOFs in dye recovery applications, their salt/dye
separation performance was investigated using both diffusion- and pressure-driven filtration
modes (Fig. 7c and Fig. 7d, respectively). In the diffusion mode, all the Co-MOF membranes
exhibited high selectivity for salts over dyes. Specifically, the Co-MOF-BDC membrane
showed permeance ratios of 74.0 = 6.1 and 43.7 = 3.3 for NaCl/Oll and Na2SO4/Oll,
respectively. These ratios increased to 81.4 + 3.1 and 58.6 + 1.5, respectively, for the Co-MOF-
BPDC membrane with the largest in-plane pore size. The higher salt/dye permeance ratio
observed in the Co-MOF-BPDC membrane can be attributed to the increased in-plane pore size
and decreased negative charge density, which allowed for reduced rejection to salts while
maintaining a similarly large steric hindrance to the dye. Therefore, the salt/dye permeance
ratio increased with the enlarged in-plane pore size of the Co-MOF membranes.

To evaluate the dye recovery performance under pressure, the Co-MOF membranes were
tested as shown in Fig. 7d. The Co-MOF-BDC membrane with the smallest in-plane pore size
exhibited the highest rejections against salts and dye, with rejection values of 9.07 £ 0.2 %,
18.9 + 2.1 %, and 95.8 + 3.2 % for NaCl, NazSO4, and Oll, respectively. This resulted in
selectivity values of 21.9 and 19.5 for NaCl/Oll and Na2SO4/Oll, respectively. Given the
pronounced selectivity our Co-MOF membranes demonstrated between salts and smaller dyes,
it is reasonable to anticipate an even greater selectivity between salts and dyes with larger
molecular weight. To verify this hypothesis, we performed an additional test using a dye with
a higher molecular weight (DR 80, 1373.07 Da). Notably, as depicted in Fig. S10, our Co-
MOF-BDC membrane showed high selectivity values of 54.7 and 48.6 for NaCI/DR 80 and
Na2SO04/DR 80, respectively. However, the selectivity values decreased with the increased in-
plane pore size of the Co-MOF membranes. A discernible disparity emerges in in dye/salt
selectivity of the Co-MOF membranes when tested through diffusion and pressure-driven

modes. This intriguing variation can be potentially attributed to the distinctive dominating
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effect. In the context of diffusion, the mass transfer of dye molecules was dominated by the
steric hindrance effect and Donnan exclusion provided by the pores of the Co-MOFs. In
contrast, the pressure-driven process instigates a contrasting dynamic, particularly in Co-MOF
membranes with larger pore sizes. Dye molecules could be more easily compelled to traverse
through the large pores by the pressure. As a result, the dye/salt permeance ratio exhibits an
increase in the pressure-driven mode, particularly in comparison with the diffusion mode,

leading to a reduction in the selectivity for Co-MOF membranes with larger pores.
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Fig. 7. Diffusion performance for salts and neutral molecules, and dye recovery of the three
Co-MOF membranes: salt diffusion performance (a), neutral molecule diffusion (b), dye
recovery in diffusion (c), and dye recovery under pressure (d).

The dye recovery performance of the Co-MOF membranes was compared with that of
other laminar membranes reported in the literature (Table 1). The Co-MOF membranes
demonstrated excellent and tunable pure water permeance in the range of 186.7 + 11.5t0 615.8
+ 26.4 L m2 h! bar?, which was 2 — 60 times higher than that of non-porous laminar

membranes. Meanwhile, the Co-MOF membranes exhibited the highest rejection against OlI

of 95.8 + 3.2 % with a low rejection to NaCl at 5.4 + 0.3 %, which is comparable to the
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previously reported performance (Table 1). Therefore, our Co-MOF membranes exhibit great
potential for dye recovery with high efficiency.

The porous Co-MOF nanosheet membranes exhibit significantly higher permeance than
that of the non-porous nanosheet membranes as reported in previous studies [11, 16, 45]. A
schematic figure (Fig. 8) illustrates the transport mechanism underlying the exceptional
permeance and selectivity of the porous Co-MOF membranes with precisely regulated in-plane
pore sizes. In non-porous membranes such as GO membranes, water molecules and salts are
transported transversely through the confined nanochannels between adjacent nanosheets [62,
63]. This results in limited permeance due to significant transport resistance and distance [64].
In contrast, the in-plane pores in our Co-MOF membranes with precisely tuned pore sizes act
as “lifts” with low transport resistance, allowing water and salts to pass through more
straightforwardly. Regarding the “lifts”, denoting the intra-plane pores, their hydrophilic and
negatively charged surface properties confer them the capacity to selectivity differentiate
between the negatively charged dye molecules and water molecules, resulting in excellent dye
rejection and enhanced water permeability. Taking advantage of this, the pure water permeance
of the Co-MOF membranes is at least 3 times higher than that of non-porous nanosheet
membranes with a comparable thickness (up to 200 L m™2 h™* bar?) [16]. Furthermore, by
adjusting the length of the ligands for the Co-MOFs, the in-plane pore size can be tuned to
fabricate a wider range of Co-MOF membranes with excellent water permeance and precise

selectivity.
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Non-porous nanosheets Co-MOF-BDC Co-MOF-BPDC
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412 y 2

413  Fig. 8. The separation mechanism of stacked membranes prepared with (a) non-porous
414  nanosheet membrane, Co-MOF membranes with small (b) and large (c) in-plane pores.
415

416  Table 1. Comparison of membrane performance of this study with literature work.

Permeance
Membrane Dye/salt Salt/dye selectivity Ref.
(Lm2h*bar?)
NaCl/Oll 21.9+0.1
Na2S04/Oll 195+0.2
Co-MOF-BDC 186.7 £ 11.5 This work
NaCl/ DR 80 54.7+0.1
Na2SO4/DR 80 48.6 +0.2
NaCl/Oll 18.1+0.2
Na2S04/Oll 16.0+0.2
Co-MOF-NDC 313.8+25.1 This work
NaCl/ DR 80 458 +£0.3
Na2SO4/DR 80 42.3+0.3
NaCl/Oll 15.0+£0.3
Na2S04/Oll 13.6+0.2
Co-MOF-BPDC 615.8 + 26.4 This work
NaCl/ DR 80 426 +0.3
Na2SO4/DR 80 39.4+0.3
MXene NaCl/CR 25.1 195.3+£6.5 [5]

MoS2/GO Na2S04/CR” 110 48.27 [11]
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c-GO/PAN Na2SO4/DR 80 54 112

[38]
rGO Na2SO4/MB >38.0 80 [65]
PRGO Na2SO4/RB 5 40.8 11.3 [66]

“ Data interpreted from literature.
3.4. The long-term stability of the Co-MOF membranes
To evaluate the long-term stability of the Co-MOF membranes for practical applications,

we conducted a 72-h assessment of their filtration performance under different pH conditions.
As is evident in Fig. 9, the water permeance for the Co-MOF-BDC, Co-MOF-NDC, and Co-
MOF-BPDC membranes remained steady, maintaining at ~180, ~320, and ~620 L m2h™* bar?,
respectively, across the pH range from 5 to 10. Meanwhile, the rejection for the Co-MOF-BDC,
Co-MOF-NDC, and Co-MOF-BPDC membranes also exhibited a persistent trend at 96.7%,
95.8%, and 94.5%, respectively. This noteworthy constancy across the three Co-MOF
membranes stands out as a testament to their excellent stability. However, when the pH value

decreased to 3, a significant increase in water permeance was observed, accompanied with a

dramatic decrease in rejection across all three Co-MOF membranes.
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Fig. 9. Water permeance (a, b, and c) and rejection (d, e, and f) against Oll for the Co-MOF-
BDC, Co-MOF-NDC and Co-MOF-BPDC membranes, respectively.
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To investigate the structural stability of the Co-MOF membranes, the XRD patterns were
examined after 72-h of filtration under distinct pH conditions. The results, illustrated in Fig.
S11, bear testimony to the endurance of the peaks corresponding to (100), (010), and (001)
planes for the three Co-MOF membranes when exposed to pH 7 and 10, thereby demonstrating
the structural stability of the Co-MOF membranes under these pH conditions. However, these
peaks exhibited weakened or became vanishing at pH 3, underscoring the structural damage
under a harsh acidic condition.

Furthermore, XPS survey scans were performed after 72-h, as shown in Fig. S12 and
Table S(5-7). The initial atomic percentage of Co was 11.95%, 9.18%, and 7.14% for Co-MOF-
BDC, Co-MOF-NDC, and Co-MOF-BPDC membranes, respectively. After 72-h filtration,
these atomic percentages of Co displayed minimal change at pH 7 and 10, indicating the
stability of the Co-MOF membranes. Notably, at pH 3, these percentages decreased to 6.87%,
3.37%, and 2.36%, respectively, because of the Co leaching from the surface fragments of the
Co-MOF nanosheets under acidic conditions. High-resolution O 1s XPS spectra were
examined for the three Co-MOF membranes after 72-h filtration (Fig. 10), and the content of
the O-Co-O coordination bond was calculated as detailed in Table S8 for the purpose of
comparison. The initial contents of the O-Co-O coordination bond were 89.85%, 83.68%, and
78.81% for Co-MOF-BDC, Co-MOF-NDC and Co-MOF-BPDC membrane, respectively.
After 72-h, these values did not change significantly at pH 7 and 10. For instance, the content
of O-Co-O coordination bond exhibited similar values at 88.83%, 82.79%, and 78.78% at pH
7, respectively, indicating the stability of the Co-MOF membranes. However, at pH 3, these
values decreased to 45.67%, 34.84%, and 28.59%, respectively, due to the inherent instability

of the coordination bond (O-Co-O) under such harsh pH conditions.
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Fig. 10. High-resolution O 1s XPS spectra of the Co-MOF-BDC (a, d, g), Co-MOF-NDC (b,
e, h), and Co-MOF-BPDC (c, f, i) membranes after 72-h filtration under different pH conditions.

TEM images were examined to observe the variation in morphology of the Co-MOF
nanosheets after 72-h filtration under different pH conditions, as shown in Fig. 11. Evidently,
the profiles of nanosheets for three Co-MOF membranes remained unchanged at pH 7 and 10,
indicating their structural stability. However, a slight decline in the lateral size of the
nanosheets and a blurred profile were observed at pH 3, attributable to the rupture of the O-

Co-0O coordination bonds at this condition.
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Fig. 11. TEM images of the Co-MOF-BDC (a, d, g), Co-MOF-NDC (b, e, h), and Co-MOF-
BPDC (c, f, i) nanosheets after 72-h filtration under different pH conditions.

During the exfoliation process, fragments were generated by ultrasonic energy at the edge
of the Co-MOF nanosheets. This process leads to the potential leaching of a small amount of
Co from the remaining fragments during the filtration process. As such, a 72-h assessment of
the Co leaching was conducted. As shown in Fig. S13, it plateaued within the first 36 hours at
approximately 0.8 mg L%, which is below the wastewater effluent standard of 1 mg L™ [67].
After 72 hours, the Co leaching only accounted for 2.11 + 0.03 %, 1.49 £ 0.02 %, and 2.19 +
0.03 % of the total Co mass for Co-MOF-BDC, Co-MOF-NDC, and Co-MOF-BPDC
membranes, respectively. These results demonstrate the exceptional long-term stability of our
Co-MOF membranes in both filtration performance and structure, indicating their potential for

practical applications.

4. Conclusions
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In summary, we have successfully fabricated a series of Co-MOF nanosheet membranes
with precisely regulated in-plane pore sizes and evaluated their potential for dye recovery
application. The Co-MOF membranes exhibited excellent water permeance and selectivity, as
well as high rejections to OIl while maintaining low rejections to NaCl and Na2SOa.
Particularly, the Co-MOF-BPDC membrane with the largest in-plane pore size showed the
highest pure water permeance of 615.8 + 26.4 L m™2 h™* bar ! and excellent selectivity for
NaCl/Oll and NazSO4/Oll at 15.0 and 13.6, respectively. Compared to the non-porous 2D
nanosheet membranes in which the molecular transport follows tortuous nanochannel pathways
between the adjacent nanosheets, the porous Co-MOF membranes contain in-plane pores with
tunable sizes as additional “lifts” for water and salt permeance. Consequently, the Co-MOF-
BPDC membrane exhibited excellent water permeance (at least 3 times higher than that of the
non-porous nanosheet membranes and 60 times higher than the commercial NFO0 membrane)
and comparative salt/dye selectivity. Moreover, the Co-MOF membranes showed long-term
stability in both filtration performance and structure, as well as low Co leaching rate. These
results demonstrate that our Co-MOF membranes have great potential for practical dye
recovery applications, and the precisely regulated in-plane pore sizes provide a promising
strategy for the design and fabrication of advanced separation membranes with superior

performance.
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