

1 **Guanidinium Manipulated Interfacial Polymerization for Polyamide**
2 **Nanofiltration Membranes with Ultra-high Permselectivity**

3

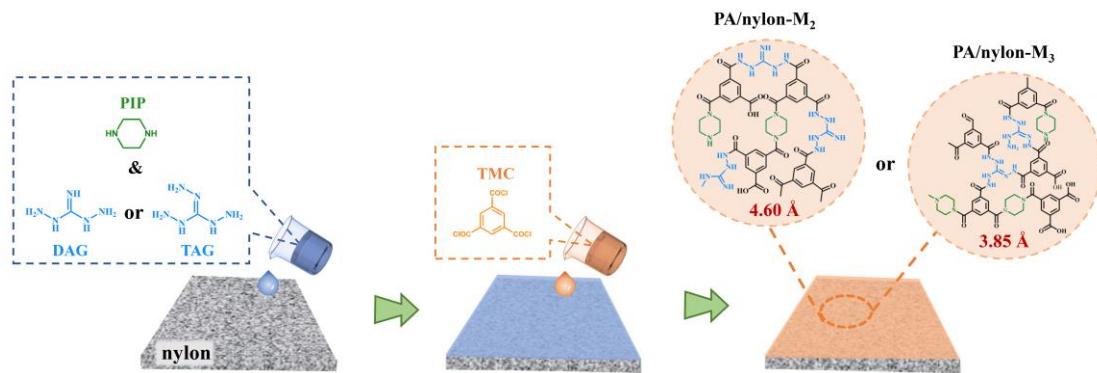
4 **Shuting Xu ^{a,b}, Jiahuan Liu ^{a,c}, Jianqiang Wang ^{a,b}, Haibo Lin ^{a,b}, Qiu Han ^{a,b}, Fu**
5 **Liu ^{a,b*}, Chuyang Y. Tang ^{d*}**

6 ^a Zhejiang International Joint Laboratory of Advanced Membrane Materials &
7 Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy
8 of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, China

9 ^b Ningbo College of Materials Technology & Engineering, University of Chinese
10 Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China

11 ^c School of Materials Science and Chemical Engineering, Ningbo University, No. 818
12 Fenghua Rd, Ningbo 315211, China

13 ^d Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong
14 Kong 999077, China


15 * Corresponding author at:

16 Prof. Fu Liu, Ningbo Institute of Materials Technology & Engineering, Chinese
17 Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, China, E-mail
18 address: fu.liu@nimte.ac.cn

19 Prof. Chuyang Y. Tang, Department of Civil Engineering, The University of Hong Kong,
20 Pokfulam, Hong Kong 999077, China, E-mail address: tangc@hku.hk

21

Graphical abstract

22 **Abstract**

23 Polyamide (PA) nanofiltration (NF) membranes with excellent permeability and
24 selectivity have always been the ultimate pursuit of desalination technology. Herein,
25 we present a guanidinium manipulated interfacial polymerization strategy to develop
26 guanidyl-integrated PA NF membranes with ultra-high permselectivity. A nylon
27 microfiltration membrane is utilized as the support to conduct spatial-temporal
28 regulation of amine monomers along with controllable diffusion reaction. Through
29 introducing 1,3-diaminoguanidine (DAG) or triaminoguanidine (TAG) into the aqueous
30 piperazine solution, the free volumes of PA membranes could be well modulated at the
31 sub-angstrom scale. Consequently, the TAG-integrated PA membrane exhibited high
32 water permeance of $33.1 \text{ LMH}\cdot\text{bar}^{-1}$ and superior Na_2SO_4 rejection of 99.2%.
33 Meanwhile, this membrane achieved outstanding anion sieving capability ($\text{Cl}/\text{SO}_4^{2-} \sim$
34 343) and nearly 100% tetracycline removal, which is superior to the “state-of-the-art”
35 PA NF membranes. The DAG-integrated PA membrane attained ultra-high water
36 permeance of $46.5 \text{ LMH}\cdot\text{bar}^{-1}$ due to its relatively large free volume. In addition, the
37 nylon composite PA membranes displayed desirable anti-pressure and organic solvent-
38 resistant abilities. This study provides a convenient and scalable preparation strategy
39 for highly permselective NF membranes, which holds great application potential in
40 desalination and resource recovery.

41 **Keywords:** polyamide membrane, nanofiltration, guanidinium, free volume,
42 permselectivity.

43

44 **1. Introduction**

45 One third to nearly half of global urban population may face water scarcity in 2050
46 [1, 2]. Nanofiltration (NF) is a green, clean, and efficient membrane separation
47 technology, which could play an important role in desalination, water softening, and
48 resource recovery [3, 4]. The polyamide (PA) selective layer with highly crosslinked
49 structure and negatively charged surface is created by the fast and elusive interfacial
50 polymerization (IP) between the amine monomers in aqueous phase and the acyl
51 chloride monomers in oil phase [5, 6]. The PA layer is conductive to intercepting high-
52 valent ions and micropollutants according to size exclusion and Donnan effect [7].
53 However, the inherent physicochemical properties of PA polymer face arduous
54 challenges of simultaneously enhancing water permeance and ion selectivity due to the
55 “trade-off” effect [8-11].

56 In order to break through the “trade-off” limitation, researchers constantly devote
57 to optimizing IP diffusion kinetics to acquire thin and dense PA layers, showing critical
58 concerns about the spatial-temporal regulation of aqueous monomers [12-16]. The
59 interface polymerization of highly reactive amine and acyl chloride monomers is less
60 controlled due to instantaneous reaction. Ideally, spatial uniform distribution of amine
61 monomers is beneficial to interface crosslinking for satisfying selectivity [17]. In
62 addition, temporal manipulation could retard amine monomers diffusion to acquire
63 relatively thin film for high flux [18-21]. The surface micro-nano structure, pore size,
64 porosity, wettability, affinity and surface potential of the support critically influence the
65 spatial-temporal process, generating divergent morphologies and performances of PA
66 layers [22-24].

67 Usually, the conventional polysulfone (PSf) or polyethersulfone (PES)
68 ultrafiltration support membrane induces the rapid diffusion and uneven distribution of

69 amine monomers due to heterogeneous surface pore sizes and poor affinity. Diverse
70 nano-materials have been applied as the interlayer to acquire ultra-thin selective layer,
71 including carbon nanotubes (CNTs) [25-28], microporous organic nanotube (MONs)
72 [20], graphitic carbon nitride (g-C₃N₄) [21], covalent organic frameworks (COFs) [29-
73 31], metal organic frameworks (MOFs) [32, 33], MXenes [34], zeolites [35], cellulose
74 nanocrystal (CNC) [36] and hydroxides [13, 37] etc. However, the aggregation and
75 exfoliation of interlayer largely obstruct its scalable production and none of above
76 candidates has been actually commercialized. Furthermore, PSf/PES ultrafiltration
77 support membranes generally suffer from poor solvent stability, small pore size and
78 high pore tortuosity, which increases the water transport pathway. Some studies utilize
79 porous microfiltration membranes as the supports, such as polypropylene (PP) [38, 39],
80 polyethylene (PE) [40], poly(vinylidene fluoride) (PVDF) [41], and
81 polytetrafluoroethylene (PTFE) [42]. However, the hydrophobic essence of polymer
82 materials is difficult to conduct IP reaction due to the uneven spread of the amine
83 solution. These supports need further complicated hydrophilic modifications to enhance
84 the interactions between the amine monomer and the substrate surface.

85 Meanwhile, the diffusion and reactivity of two-phase monomers will directly
86 determine the crosslinking chemistry of PA layer. The utilization of typical piperazine
87 (PIP) and 1,3,5-benzenetricarbonyl trichloride (TMC) leaves little manipulation room
88 for improving separation performance due to restricted free volume and surface charged
89 property [4, 43-50]. Guanidinium with primary amine groups was used to modify PA
90 membranes for enhanced antifouling and antibacterial properties [51, 52]. Besides, the
91 triaminoguanidine (TAG) molecule was applied as the single aqueous monomer to react
92 with TMC to prepare positively charged PA membrane, which exhibited promising
93 Li⁺/Mg²⁺ sieving capability [53]. Molecular dynamics simulation validated that the

94 TAG molecule displayed a higher reactivity and a lower diffusivity than PIP [54].
95 Herein, we propose a facile and compelling strategy to prepare guanidyl-integrated
96 PA NF membrane on the nylon porous support. The nylon microfiltration membrane is
97 a highly suitable candidate as the support for IP owing to its large aperture, excellent
98 wettability and solvent resistance. The favorable electrostatic interaction between the
99 nylon substrate and amine monomers along with sufficient and even aqueous solution
100 spread better manipulate IP process quest for high performance NF membranes. The
101 second amine monomer, 1,3-diaminoguanidine (DAG) or TAG with divergent
102 molecular structures and amino numbers, creates appropriate free volumes (equivalent
103 radii of 4.60 Å and 3.85 Å) for fast water permeance without sacrificing molecules and
104 ions selectivity, which breaks through the “trade-off” effect to some extent.

105 **2. Methods**

106 **2.1. Materials and chemicals**

107 Nylon porous supports (0.22 μm) were purchased from Shanghai Peninsula
108 Industrial Co., Ltd. Purification Equipment Factory. The commercial polyether sulfone
109 (PES), cellulose acetate (CA), hydrophilic modified polyvinylidene fluoride (PVDF)
110 membranes with the average pore size of 0.22 μm were bought from Haiyan New
111 Oriental Plastic Technology Co., Ltd. Piperazine (PIP, 99%), 1,3,5-Benzenetricarbonyl
112 trichloride (TMC, 98%), triaminoguanidine hydrochloride (TAG·HCl, 97%), 1,3-
113 diaminoguanidine hydrochloride (DAG·HCl, 97%), and polyethylene glycol (PEG)
114 with a series of molecular weights were all purchased from Shanghai Aladdin
115 Biochemical Technology Co., Ltd. n-hexane (97%) was from Shanghai Macklin
116 Biochemical Co., Ltd. Inorganic salts including Na₂SO₄, MgSO₄, CaCl₂, MgCl₂, and
117 NaCl (chemical pure) were from Sinopharm Chemical Reagent Co., Ltd (China). n-
118 Hexane (97%) was from Shanghai Macklin Biochemical Co., Ltd. All the chemicals

119 were used without further purification.

120 **2.2. Characterizations**

121 The surface morphologies and the cross-section thickness of a series of membranes
122 were investigated by scanning electron microscopy (FESEM, S4800, Hitachi) and
123 transmission electron microscopy (TEM, JEOL2100, Japan). The membrane samples
124 were embedded in cured epoxy and the ion beam apparatus (MODEL1, Gatan 695) was
125 utilized to sectioning. Scanning probe microscope (Dimension ICON SPM, Bruker) in
126 tapping mode were utilized to analyze the roughness of different as-prepared
127 membranes as well as the atomic-scale interactions between PIP monomers and
128 substrate surfaces. The detector tip was immersed in the PIP solution, meanwhile the
129 tip adsorbed a certain amount of PIP molecules. When the tip approached and retracted
130 away the surfaces of diverse substrates, the PIP-substrate interaction was built up.

131 The chemical components analysis and atomic concentrations of as-prepared
132 membranes were characterized by X-ray photoelectron spectroscopy (XPS, Axis Ultra
133 DLD, Kratos). Fourier transform infrared spectrometer (FTIR, NICOLET 6700) was
134 applied to further characterize the chemical components of membranes. The
135 hydrophilicity and wettability were measured using contact angle goniometer (OCA 25,
136 Dataphysics). Zeta potentials for solid surface were evaluated by the electrolyte
137 analyzer (SurPASS Anton Paar, GmbH) with 1 mM KCl solutions as electrolyte
138 solution over a pH value range of 3-10. Total organic carbon analyzer (TOC, multi
139 N/C2100) was used to reveal PEG concentrations in feed solution and filtrate. UV-vis
140 spectroscopy was utilized to evaluate the maximum absorption peaks and absorbance
141 of tetracycline. Besides, the concentrations of single-salt feed solution and filtrate were
142 determined by electrical conductivity, obtained from electrical conductivity meter
143 (DDSJ-308F, Shanghai leici instruments). Single-ion (such as Cl^- or SO_4^{2-})

144 concentration in the mixture was calculated from ion chromatography (IC, ICS1100,
145 Thremo).

146 **2.3. Preparation of guanidyl-integrated PA NF membranes**

147 We chose the nylon, PES, CA or hydrophilic modified PVDF with the average
148 aperture of 0.22 μm as the support membrane for IP. Taking DAG-incorporated PA
149 membrane as an example, the nylon membrane with a diameter of 5 cm was placed on
150 the sand core of the suction filter. 10 mL mixed aqueous solution containing PIP (0.2
151 w/v%) and DAG (12% of PIP content) was evenly poured onto the surface of nylon
152 membrane. After two minutes, the redundant aqueous solution was removed and blotted
153 with filter papers. 5 mL n-hexane solution of TMC with 0.1 w/v% was added onto the
154 nylon support to initiate the IP reaction. After reacting 1 min, the oil phase solution was
155 immediately poured away. The prepared PA NF membrane was thoroughly washed with
156 n-hexane and was finally dried in an oven at 60 $^{\circ}\text{C}$ for 10 min. PA/nylon-M₁ represents
157 the contrast PA NF membrane solely involving with PIP. PA/nylon-M₂ represents the
158 PA NF membrane using DAG and PIP. PA/nylon-M₃ represents the PA NF membrane
159 using TAG and PIP. The NF membrane was scaled up to 20*20 cm according to the
160 same preparation methods (Fig. S1).

161 **2.4. Desalination performance characterizations**

162 Desalination performance of various PA NF membranes was evaluated by a cross-
163 flow apparatus driven by pressure at room temperature. Effective filtration area of the
164 cell was 3.14 cm^2 . All as-prepared membranes were pre-compactated at 6.0 bar at least
165 one hour using deionized water to reach stable permeance, then were tested at 5.0 bar.
166 Feed solution permeance (P , $\text{LMH}\cdot\text{bar}^{-1}$) was calculated by the following equation:

$$167 P = V / (Atp) \quad (1)$$

168 Where V (L) is the volume of collected filtrate, A (m^2) is the effective filtration

169 area, t is the measurement time interval (h) and p is the test pressure (bar).

170 The single-salt rejection (R) of as-prepared NF membranes with a series of saline
171 solutions (Na_2SO_4 , MgSO_4 , CaCl_2 , MgCl_2 , and NaCl) were calculated by the formula
172 as follows:

$$173 \quad R = (C_f - C_p)/C_f \times 100\% \quad (2)$$

174 Where C_f is the solute concentration of feed solution and C_p is the solute
175 concentration of filtrate. The solute concentrations were detected using the electrical
176 conductivity meter due to the linear correlation between solute concentration and the
177 conductivity.

178 The molecular weight cut off (MWCO) is identified by the rejection of 90% for
179 spherical neutral solutes. Retention of the neutral solute represented by PEG with the
180 molecular weights of 200, 300, 400, 600, 800, and 1000 Da was characterized by TOC.
181 This calculation is consistent with formula (2), which C_f is the TOC concentration of
182 feed solution and C_p is the TOC concentration of filtrate. The equivalent radius of free
183 volume was calculated based on formula (3).

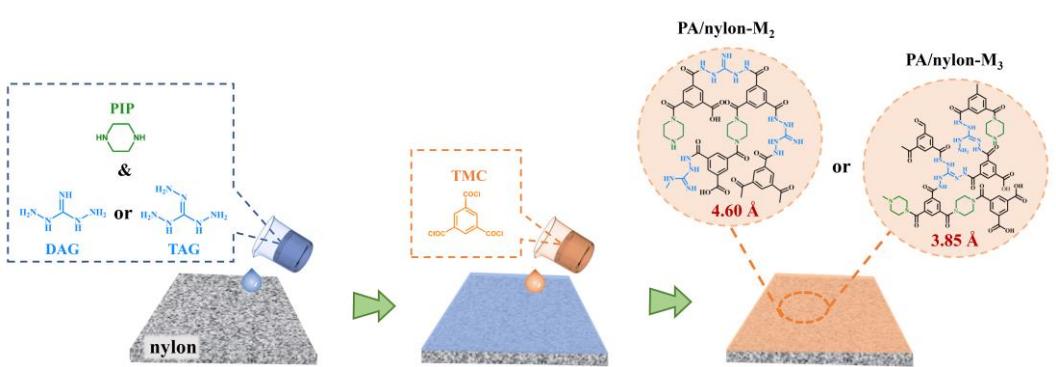
$$184 \quad r_s = 16.73 \times 10^{-12} \times M_w^{0.557} \quad (3)$$

185 Where r_s (m) is the Stokes radius of PEG molecule and M_w is the MWCO of PEG
186 molecule.

187 The single salt separation factor ($S_{\text{NaCl}/\text{Na}_2\text{SO}_4}$) and mixed ion separation factor
188 ($S_{\text{Cl}^-/\text{SO}_4^{2-}}$) were applied to evaluate the monovalent/divalent ion selectivity, which can
189 be calculated from equation (4) and (5):

$$190 \quad S_{\text{NaCl}/\text{Na}_2\text{SO}_4} = (1 - R_{\text{NaCl}}) / (1 - R_{\text{Na}_2\text{SO}_4}) \quad (4)$$

$$191 \quad S_{\text{Cl}^-/\text{SO}_4^{2-}} = (1 - R_{\text{Cl}^-}) / (1 - R_{\text{SO}_4^{2-}}) \quad (5)$$

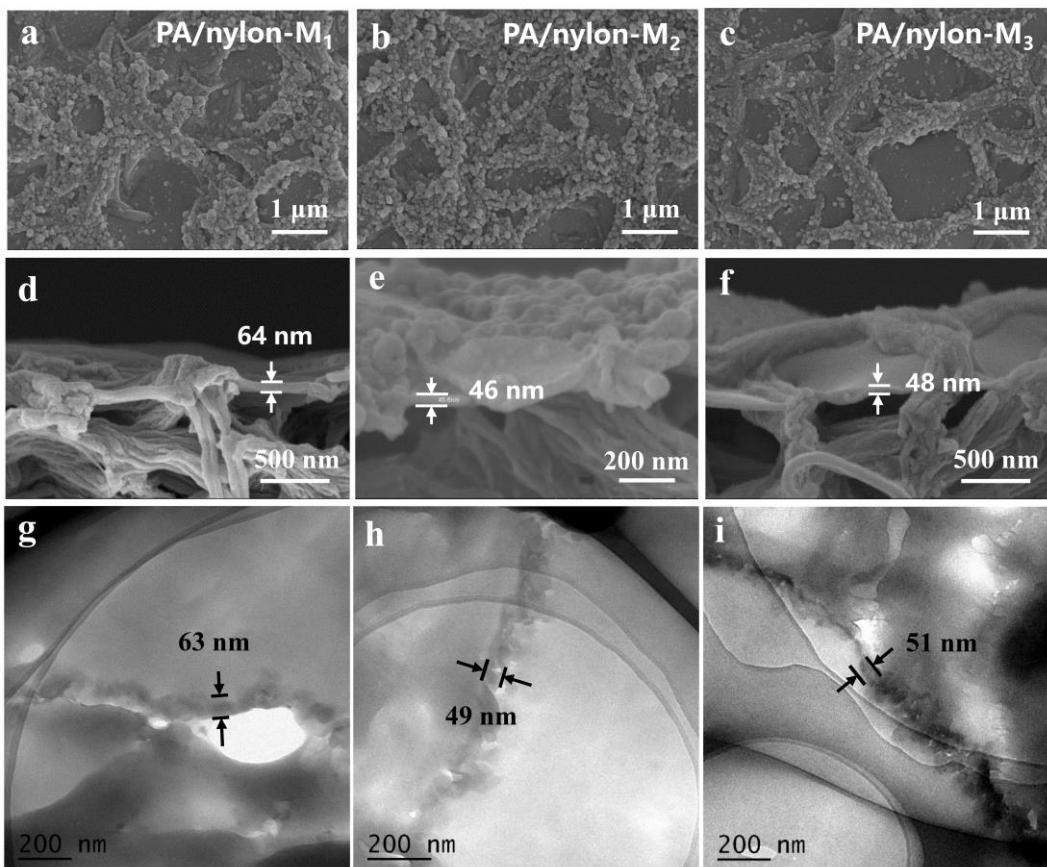

192 Where R_{NaCl} and $R_{\text{Na}_2\text{SO}_4}$ separately represent the rejections of single NaCl and

193 Na_2SO_4 . R_{Cl^-} and $R_{\text{SO}_4^{2-}}$ represent the rejections of Cl^- and SO_4^{2-} in $\text{NaCl}/\text{Na}_2\text{SO}_4$ binary
194 saline solution. The single salt concentration of NaCl or Na_2SO_4 was 1000 ppm. The
195 total concentration of mixed saline solution was 2000 ppm and the mass ratio of NaCl
196 to Na_2SO_4 was 1:1.

197 **3. Results and discussion**

198 **3.1. Guanidyl-integrated PA NF membranes**

199 **3.1.1. Surface morphology of PA/nylon- M_x**

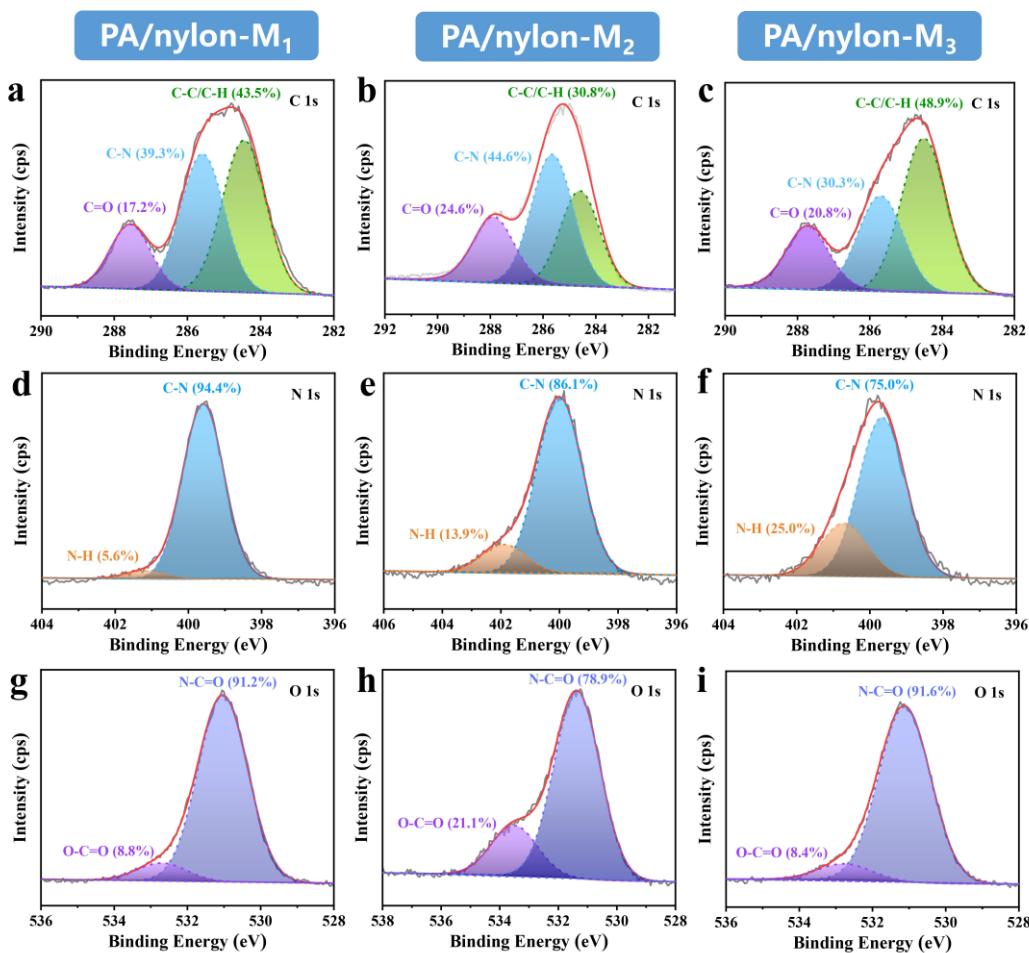


200
201 Scheme 1. Preparation process of PA/nylon- M_x NF membrane. DAG and TAG involved
202 NF membranes were termed as PA/nylon- M_2 and PA/nylon- M_3 , respectively. PA/nylon-
203 M_1 was used as a control sample without guanidinium.

204 In contrast to the binary PIP and TMC in the IP reaction, guanidyl-integrated PA
205 NF membranes were created by introducing the second amine monomer (DAG or TAG)
206 as shown in Scheme 1. DAG and TAG molecules own diverse molecular structures and
207 active amino groups. The PA network structure could be manipulated by DAG or TAG
208 at sub-angstrom scale. All PA/nylon membranes displayed similar surface
209 morphologies featuring smooth and nodular structure like “calm sea and raised island”
210 (Fig. 1a-1c). The morphologies were mainly caused by the heat releasing effect in the
211 process of IP, especially at the relatively large pore support. The beneath macropores
212 create free liquid-liquid interface that allows degassed nanobubbles created during IP
213 process to easily escape, thus generating the “calm sea”. Meanwhile, the “raised island”

214 part was created by the confinement interface between the substrate and PA film in view
215 that the resulting microbubbles cannot well escape from the solid-liquid interface [23,
216 55]. The free interfacial part of large pore fairly shortened the transverse transfer
217 distance and declined the transfer resistance between the PA layer and the nylon support,
218 thus facilitating the fast water transport.

219 The thickness of PA films of PA/nylon-M₂ and PA/nylon-M₃ were both less than
220 50 nm that were thinner than PA/nylon-M₁ (Fig. 1d-1i). The diffusion rate of DAG or
221 TAG was slowed down to acquire relatively thinner PA layer possibly due to the
222 stronger interaction of multiple amino groups with the negatively charged nylon
223 substrate. (The selection and spatial-temporal regulation of the nylon substrate will be
224 discussed in Section 3.2 in detail). The AFM results showed the roughness of PA/nylon-
225 M₂ and PA/nylon-M₃ were lower than PA/nylon-M₁, implying that guanidinium
226 involved IP process were more controllable (Fig. S2).


227

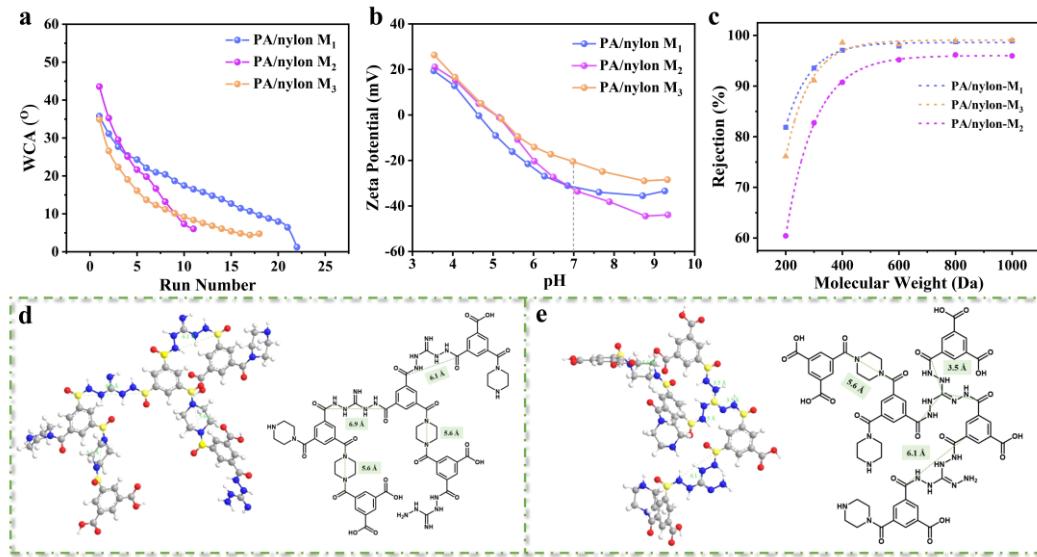
228 Fig. 1. Surface morphologies and thickness of PA/nylon-M_x. (a-c) SEM images of
229 PA/nylon-M₁, PA/nylon-M₂, and PA/nylon-M₃. (d-f) Cross-section SEM images of
230 PA/nylon-M₁, PA/nylon-M₂, and PA/nylon-M₃. (g-i) TEM images of PA/nylon-M₁,
231 PA/nylon-M₂, and PA/nylon-M₃.

232 **3.1.2 Physicochemical properties of PA/nylon-M_x**

233 The chemical compositions of diverse PA NF membranes were intensively
234 characterized by XPS and FTIR. From Fig. 2, the high-resolution C 1s deconvolution
235 spectra showed that three peaks respectively associated with C-C/C-H at 284.6 eV, C-
236 N at 285.7 eV, and C=O at 287.6 eV further confirmed the formation of PA film. The N
237 1s spectra exhibited that the PA active layers of PA/nylon-M₂ and PA/nylon-M₃ still
238 retained more amino groups present in DAG and TAG molecules. The N-H peak
239 contents of PA/nylon-M₂ and PA/nylon-M₃ were respectively 13.9% and 25.0% (Fig.
240 2e, and 2f). The density of amine group present in PA/nylon-M₃ was higher than
241 PA/nylon-M₂, indicating TAG had a greater reaction and crosslinking extent. The same
242 peak content present in PA/nylon-M₁ was only 5.6% (Fig. 2d). Moreover, the
243 atomic/mass concentrations of element N of PA/nylon-M₂ and PA/nylon-M₃ were
244 higher than PA/nylon-M₁, suggesting that the guanidinium were involved in the IP
245 reaction (see Table S1). The O 1s deconvolution spectra showed the similar peak-
246 splitting situations of the three membranes. The carboxyl content arising from the
247 hydrolysis of underreacted acyl chloride in PA/nylon-M₂ was the highest, which
248 indicated the lower reaction degree of TMC. (Fig. 2g-2i). The functional group of the
249 nylon substrate is amido bond, -CONH-, which is consistent with the major
250 composition of PA layer. The peak located at 3296 cm⁻¹ was attributed to the stretching
251 vibration of N-H. The obvious peaks located at 1634 cm⁻¹ and 1540 cm⁻¹ were the amide
252 □ band (the stretching vibration of C=O) and amide □ band (the bending vibration of

253 N-H). The distinction was the range of $3200\text{ cm}^{-1}\sim3600\text{ cm}^{-1}$ which was due to the
 254 occurrence of amino and carboxyl, especially present in PA membranes. The new peak
 255 at 1440 cm^{-1} was originated from the aromatic ring present in aromatic polyamide (Fig.
 256 S3). In addition, the elements C/N/O were uniformly distributed on the surfaces of
 257 PA/nylon- M_x (Fig. S4).

258

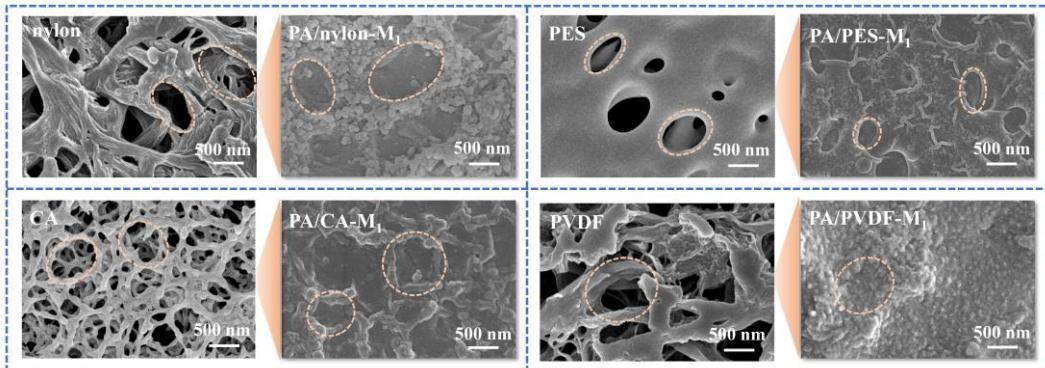

259 Fig. 2. XPS analysis of PA/nylon- M_x . (a-c) High-resolution XPS spectra of C 1s with
 260 PA/nylon- M_1 , PA/nylon- M_2 , and PA/nylon- M_3 . (d-f) High-resolution XPS spectra of N
 261 1s with PA/nylon- M_1 , PA/nylon- M_2 , and PA/nylon- M_3 . (g-i) High-resolution XPS
 262 spectra of O 1s with PA/nylon- M_1 , PA/nylon- M_2 , and PA/nylon- M_3 .

263 Size exclusion and Donnan effect are usually accepted mechanisms in the field of
 264 nanofiltration desalination. The hydrophilicity, surface charged property and transfer

265 pore size of selective layer play pivotal roles in NF process. As shown in WCA
266 characterization, the water wettability of PA/nylon-M₂ and PA/nylon-M₃ was improved.
267 PA/nylon-M₂ expressed better hydrophilicity than other two membranes (Fig. 3a),
268 favoring the fast water diffusion and transport through the membrane. From Fig. 3b,
269 we can see that PA/nylon-M₂ and PA/nylon-M₃ showed relatively higher zeta potentials
270 than PA/nylon-M₁ at pH<7. It was because the more amine groups present in PA/nylon-
271 M₂ and PA/nylon-M₃ occurred protonation in the acidic solution. At pH>7, PA/nylon-
272 M₂ showed the strongly negatively charged surface property due to the deprotonation
273 of carboxyl groups, consistent with the results of O 1s spectrum (Fig. 3b). The higher
274 content of carboxyl group on the surface caused more negative surface. The
275 underreacted acyl chloride groups were attributed to the molecular structure of DAG.

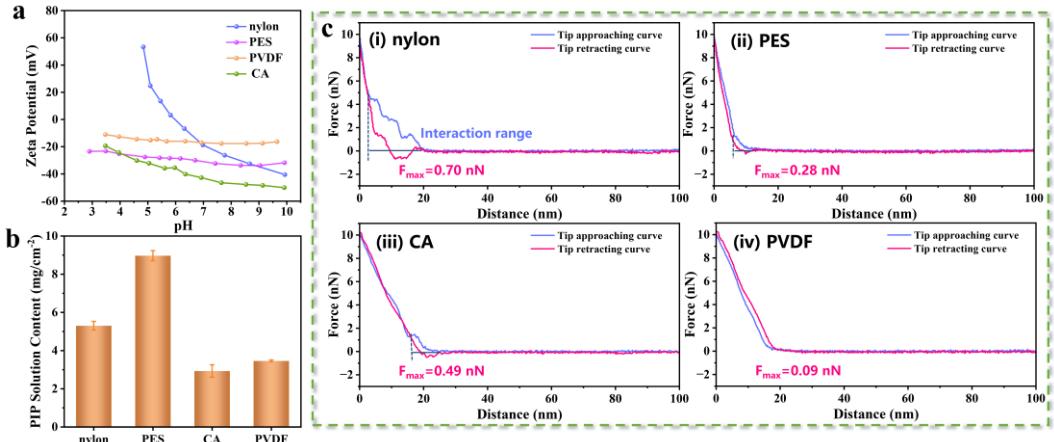
276 DAG monomer with two-arm primary amine groups shows larger molecular
277 dimension than PIP as shown in the-ball-and-stick model and molecular formula of
278 sectional structure unit (Fig. 3d). The distance between the carbons of two acyl chloride
279 monomers is 6.9 Å or 6.1 Å due to the various configuration of DAG monomer, which
280 is longer than PIP with 5.6 Å. Likewise, TAG as a three-arms molecule holds 3 reaction
281 sites with shorter distance (3.5 Å) and larger crosslinking degree (Fig. 3e). Therefore,
282 the free volume of polyamide can be changed at sub-angstrom scale by introducing
283 DAG/TAG molecules. Besides, “two-arms” DAG molecule has lower contact and
284 reaction probability than “three arms” TAG molecule, resulting in insufficient
285 utilization of acyl chloride groups of TMC and loose crosslinking structure of
286 PA/nylon-M₂. The MWCO (383 Da) of PA/nylon-M₂ was higher than that of PA/nylon-
287 M₁ (256 Da) and PA/nylon-M₃ (279 Da) as illustrated in Fig. 3c. We further calculated
288 the equivalent aperture radii of PA/nylon-M_x according to the formula (3). The
289 equivalent radii of free volume of PA/nylon-M₁, PA/nylon-M₂ and PA/nylon-M₃ are

290 respectively 3.67 Å, 4.60 Å and 3.85 Å. Thus, the free volume of PA NF membranes
 291 could be precisely manipulated at sub-angstrom scale by guanidinium involved
 292 interfacial polymerization.


293

294 Fig. 3. (a) Water contact angles of PA/nylon-M_x. (b) Zeta potentials for solid surfaces
 295 of PA/nylon-M_x. (c) Molecular weight cut off (MWCO) of PA/nylon-M_x. (d) Molecular
 296 formula and the-ball-and-stick model of crosslinking structural fragment of PA/nylon-
 297 M₂. (e) Molecular formula and the-ball-and-stick model of crosslinking structural
 298 fragment of PA/nylon-M₃.

299 3.2 Role of nylon microfiltration support membrane


300 The pore sizes, porosity, wettability, and exterior physicochemical properties of
 301 support membranes provide a pivotal link to the formation of PA active layer by IP
 302 along with desalination performance of PA NF membrane. We further selected four
 303 substrates containing nylon, PES, CA and hydrophilic modified PVDF membranes with
 304 average aperture of 0.22 μm to investigate the roles of the microporous substrate on NF
 305 performance (Fig. S5). The formed PA layers displayed similar surface morphologies
 306 combining smooth and nodular constructions, which was ascribed to the free interface
 307 and confinement interface effects (Fig.4). Meanwhile, DAG/TAG-incorporated

308 composite PA NF membranes were characterized by SEM and AFM. The morphologies
309 of guanidyl-integrated PA layers with different polymer substrates are similar to
310 conventional PA layers formed by TMC and PIP (Fig. S6 and S7).

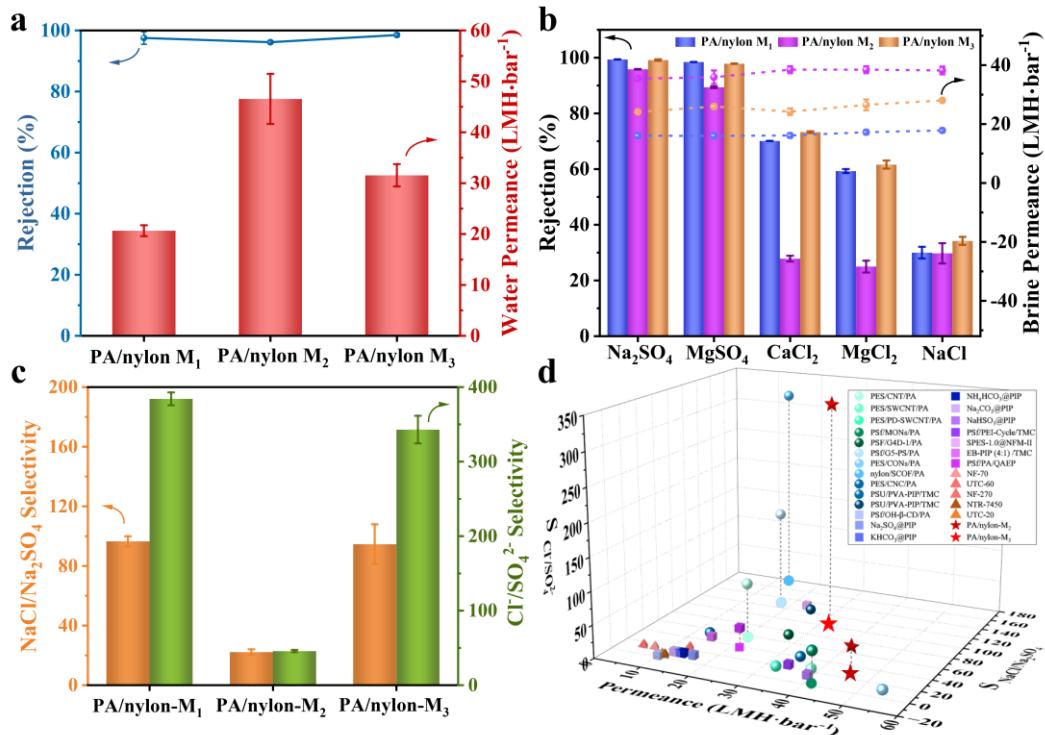
311
312 Fig. 4. SEM images of four substrates, respectively containing nylon, PES, CA, and
313 PVDF membranes as well as SEM images of the conventional PA membranes with
314 above four substrates that were named as PA/nylon-M₁, PA/PES-M₁, PA/CA-M₁, and
315 PA/ PVDF-M₁ membranes.

316 Spatial-temporal distribution and diffusion of aqueous monomers are of vital
317 significance to realize highly perm-selective NF membranes. Positively charged PIP
318 molecules can adequately adsorbed and evenly distributed on the electronegative
319 support surface through long-range electrostatic interaction for controllable diffusion
320 and reaction (Fig. 5a). The hydrophilic and highly porous substrate is favorable to
321 absorb and store sufficient PIP solution for subsequent reaction (Fig. 5b). We further
322 investigated the atomic-scale interaction force between PIP molecules and substrate
323 surface by AFM. As shown in Fig. 5c, the force-distance curves quantitatively showed
324 the magnitude of interactions between PIP molecules and different substrates. The
325 nylon membrane showed the highest drag force ($F_{\max}=0.70$ nN) and interaction range
326 compared to other membranes.

327

328 Fig. 5. (a) Zeta potentials for solid surface of four support membranes. (b) Adsorption
 329 content of the PIP solution of different support membranes. (c) Force-distance curves
 330 of PIP monomers with diverse wetting substrate surfaces of nylon (i), PES (ii), CA (iii),
 331 and PVDF (iv). The atomic-scale interaction force was evaluated.

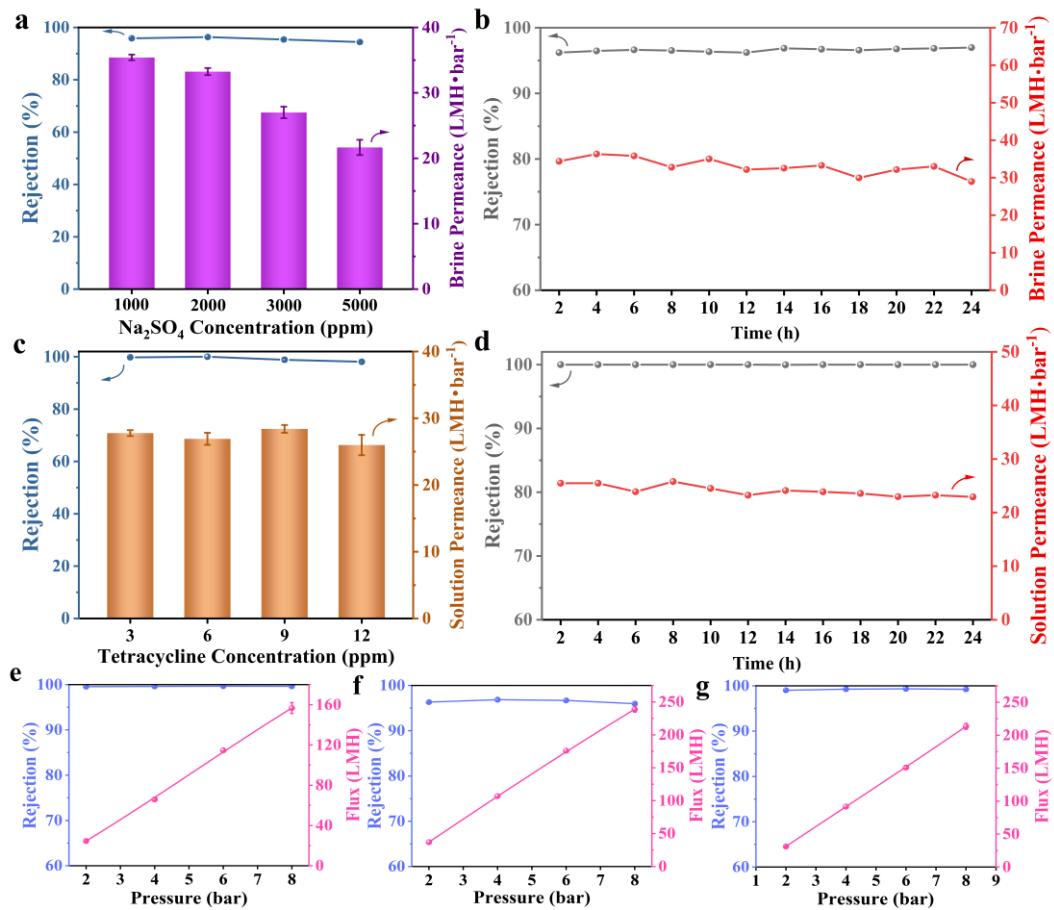
332 Hence, PA/nylon-M₁ showed outstanding permselectivity compared with other PA
 333 composite membranes with divergent supports. The rejection of Na₂SO₄ could reach
 334 over 99% (Fig. S8). Also, the water permeance of PA/nylon-M₂ greatly increased to
 335 twice of PA/nylon-M₁, which is higher than other composite membranes as depicted in
 336 Fig. S8b.


337 3.3 Desalination performance of PA/nylon-M_x

338 In order to validate the permselectivity of guanidyl-integrated NF membranes, we
 339 performed a series of single salt and mixed ions separation measurements. All as-
 340 prepared membranes were operated under the cross-flow condition driven by pressure
 341 of 5 bar. Firstly, the preparation condition of PA/nylon-M₂ were optimized by varying
 342 contents of DAG monomers. In case of DAG (12% of PIP content) involved in IP, the
 343 water permeance of PA/nylon-M₂ could reach 46.5 LHM·bar⁻¹ and the rejection of
 344 Na₂SO₄ was up to 95% (Fig. S9). Likewise, the water permeance of PA/nylon-M₃ was
 345 enhanced to 33.1 LHM·bar⁻¹. Therefore, the permeance of two guanidyl-integrated NF
 346 membranes were strongly improved. Moreover, given that PA/nylon-M₃ reserved

347 smaller pore size than PA/nylon-M₂, the rejection of Na₂SO₄ was increased to 99.2%,
348 which had almost no attenuation than PA/nylon-M₁ (Fig. 6a).

349 We further examined the rejection of diverse salts, including Na₂SO₄, MgSO₄,
350 CaCl₂, MgCl₂, and NaCl to evaluate the desalination capabilities of three PA NF
351 membranes (Fig. 6b). PA/nylon-M₁ and PA/nylon-M₃ showed outstanding interception
352 abilities of divalent anionic salts according to size exclusion and Donnan effect.
353 Theoretically, the hydrated radii of SO₄²⁻ and Cl⁻ are respectively 3.79 Å and 3.32 Å.
354 The size of SO₄²⁻ and Cl⁻ is only sub-angstrom difference, but SO₄²⁻ owns more negative
355 charges than Cl⁻ in the feed solution. Therefore, PA/nylon-M₁ (3.67 Å) can effectively
356 sieve SO₄²⁻ and Cl⁻. Although the equivalent radius of free volume of PA/nylon-M₃
357 (3.85 Å) is a little larger than the hydrated radius of SO₄²⁻, the negatively charged
358 surface is beneficial to reject high-valence co-ions, meanwhile screening corresponding
359 counterions. Therefore, the synergistic effects of steric and charged exclusion guarantee
360 the rejection of high-valent anionic salts, such as Na₂SO₄ and MgSO₄. The Na₂SO₄
361 rejections of PA/nylon-M₁ and PA/nylon-M₃ were 99.4% and 99.2%. The MgSO₄
362 rejections of PA/nylon-M₁ and PA/nylon-M₃ were 98.4% and 97.8%. In addition, the
363 rejection of CaCl₂, MgCl₂, or NaCl of PA/nylon-M₃ was a little higher than PA/nylon-
364 M₁ on account that the slightly acidic condition in saline solution protonated part of
365 amino groups, which led to the rejection of cations. Although the Na₂SO₄ rejection of
366 PA/nylon-M₂ was relatively weak, the saline permeance of PA/nylon-M₂ was greatly
367 improved than the contrast sample, PA/nylon-M₁. Therefore, PA/nylon-M₂ is
368 conductive to efficiently removing larger molecules and high-valence heavy metal ions
369 in pursuit of high flux (Table S2). Further, we conducted the single salt selectivity as
370 well as mixed anions selectivity of PA/nylon-M_x. As demonstrated in Fig. 6c, the
371 PA/nylon-M₃ shows the comprehensive outstanding permselectivity in terms of NaCl/


372 Na₂SO₄ selectivity, Cl⁻/SO₄²⁻ selectivity and permeance, surpassing the state-of-the-art
 373 PA NF membranes (Fig. 6d).

374
 375 Fig. 6. (a) Na₂SO₄ rejection and water permeance of PA/nylon-M_x. (b) Different saline
 376 rejection and permeance of PA/nylon-M_x; (c) Single salt (NaCl/ Na₂SO₄) selectivity and
 377 mixed salts (Cl⁻/SO₄²⁻) selectivity of PA/nylon-M_x. (d) Comparison of separation
 378 performances of reported typical NF membranes and this work. Circular legends
 379 represent NF membranes with interlayers; rectangle legends represent that PA layers
 380 created by IP reaction system with multiple monomers or components; triangle legends
 381 represent commercial NF membranes (detail statistics are shown in Table S3).

382 The DAG-regulated IP reaction creates the thin and loose PA layer, which
 383 contributes to certain selectivity and high permeance of PA/nylon-M₂. With the
 384 increasing concentration of Na₂SO₄ solution from 1000 ppm to 5000 ppm, the salt
 385 rejection of PA/nylon-M₂ remained stable. The decline of permeance was attributed to
 386 concentration polarization, but the permeance maintained more than 20 LHM·bar⁻¹ (Fig.
 387 7a). From the above discussion, the PA/nylon-M₃ showed splendid permselectivity and

388 mono/divalent anions sieving capability. Apart from that, the PA/nylon-M₃ can achieve
 389 effective tetracycline interception. The rejection ratios of a series of tetracycline
 390 solutions from 3 ppm to 12 ppm were 100%, which provides a satisfactory removal and
 391 recovery of antibiotics (Fig. 7c).

392 Fig. 7. (a) Na₂SO₄ rejection and permeance of PA/nylon-M₂ with the increasing salt
 393 concentrations. (b) Long-term operational stability of PA/nylon-M₂ with 1000 ppm
 394 Na₂SO₄ solution as the feed solution. (c) Tetracycline rejection and permeance of
 395 PA/nylon-M₃ with the different tetracycline concentrations. (d) Long-term operational
 396 stability of PA/nylon-M₃ with 3 ppm tetracycline solution as the feed solution. (e-g)
 397 The anti-pressure performances under cross-flow condition with the linearly increased
 398 pressure of PA/nylon-M₁ (e), PA/nylon-M₂ (f), and PA/nylon-M₃ (g).

400 To further explore the operational stability, we tested the guanidyl-integrated PA NF

401 membranes for consecutive 24 h. As shown in Fig. 7b and 7d, PA/nylon-M₂ showed a
402 quite stable rejection of Na₂SO₄ around 96% and high permeance. Similarly, the
403 PA/nylon-M₃ maintained high removal efficiency (100%) of tetracycline over 24 h. The
404 excellent interface compatibility between the PA selective layer and nylon substrate
405 offers long-term operational stability.

406 In addition, we studied the pressure resistance of NF membranes with nylon
407 support. The flux of PA/nylon-M_x enhanced linearly with increasing the operational
408 pressure up to 8 bar, meanwhile the rejection of Na₂SO₄ was almost constant (Fig. 7e-
409 g). More attractively, the nylon based composite PA membrane showed good resistance
410 to different polar and non-polar organic solvents. The result displayed that the
411 permeance of polar solvents by PA/nylon-M₂ was related to the molecular sizes and the
412 non-polar solvents remained impenetrable under pressure. The permeances of polar
413 solvents containing methanol, ethanol, and acetonitrile are respectively 21.4, 6.3, and
414 11.1 LHM·bar⁻¹ (Fig. S10), which displaying the desirable potential of separating
415 polar/non-polar organic solvents.

416 **4. Conclusion**

417 In summary, we provided a facile and scalable strategy to construct high-
418 permselectivity PA NF membranes by directly introducing guanidinium (DAG or TAG)
419 into amine aqueous solution for interfacial polymerization. The nylon microfiltration
420 membrane was used as the support due to the desirable negatively charged surface, high
421 monomer storage and the favorable interactions. DAG and TAG with divergent
422 molecular sizes and amino structures created various free volumes (pore sizes) of
423 PA/nylon-M₂ and PA/nylon-M₃. By contrast to the PA/nylon-M₁, the water permeance
424 of PA/nylon-M₂ got extreme increment to 46.5 LHM·bar⁻¹ and the rejection of Na₂SO₄
425 was higher than 95%. The permeance of PA/nylon-M₃ increased up to 30 LHM·bar⁻¹,

426 meanwhile maintaining prominent rejection of Na_2SO_4 (99.2%), surpassing most of the
427 “state-of-the-art” PA NF membranes. In addition, PA/nylon-M₃ showed splendid
428 mono/divalent anion sieving and 100% tetracycline removal capabilities. The guanidyl-
429 integrated nylon composite NF membranes open a new avenue for effective
430 desalination, water advanced treatment and organic solvent nanofiltration.

431

432 **Author contribution statement**

433 Shuting Xu: Conceptualization, Data curation, Experimental investigation,
434 Methodology, Writing – original draft.

435 Jiahuan Liu: Data curation, Experimental investigation.

436 Jianqiang Wang: Methodology, Project administration.

437 Haibo Lin: Experimental guidance, Formal analysis.

438 Qiu Han: Experimental guidance, Formal analysis.

439 Fu Liu: Supervision, Methodology, Writing-review & editing, Funding acquisition,
440 Project administration, Resources.

441 Chuyang Y. Tang: Methodology, Writing-review & editing.

442

443 **Declaration of competing interest**

444 The authors declare that they have no known competing financial interests or
445 personal relationships that could have appeared to influence the work reported in this
446 paper.

447 **Data availability**

448 Data will be made available on request

449

450 **Acknowledgments**

451 This work is financially supported by Ningbo International R&D Collaboration
452 Project (2023H001), International Partnership Program of Chinese Academy of
453 Sciences-Grand Challenges (No. 181GJHZ2022038GC), National Natural Science
454 Foundation of China (No. 51973230), Distinguished Young Scholars of Zhejiang
455 Province (LR20E030002), Ten Thousand Plan-high Level Talents Special Support Plan
456 of Zhejiang province, China (ZJWR0108020).

457

458 **References:**

459 [1] C. He, Z. Liu, J. Wu, X. Pan, Z. Fang, J. Li, B. A. Bryan, Future global urban water
460 scarcity and potential solutions, Nat. Commun. 12 (2021) 4667.
461 <http://doi.org/10.1038/s41467-021-25026-3>

462 [2] M. Elimelech, W. A. Phillip, The future of seawater desalination energy technology
463 and the environment, Science 333 (2011) 712-717.
464 <https://www.science.org/doi/10.1126/science.1200488>.

465 [3] A. W. Mohammad, Y. H. Teow, W. L. Ang, Y. T. Chung, D. L. Oatley-Radcliffe, N.
466 Hilal, Nanofiltration membranes review: Recent advances and future prospects,
467 Desalination 356 (2015) 226-254. <http://doi.org/10.1016/j.desal.2014.10.043>

468 [4] W. Fang, L. Shi, R. Wang, Mixed polyamide-based composite nanofiltration hollow
469 fiber membranes with improved low-pressure water softening capability, J. Membr. Sci.
470 468 (2014) 52-61. <http://doi.org/10.1016/j.memsci.2014.05.047>

471 [5] E. L. Wittbecker, P. W. Morgan, Interfacial polycondensation. I., J. Polym. Sci. 40
472 (1959) 289-297. <http://doi.org/10.1002/pol.1959.1204013701>

473 [6] L. Shen, R. Cheng, M. Yi, W. S. Hung, S. Japip, L. Tian, X. Zhang, S. Jiang, S. Li,
474 Y. Wang, Polyamide-based membranes with structural homogeneity for ultrafast
475 molecular sieving, Nat. Commun. 13 (2022) 500. <http://doi.org/10.1038/s41467-022->

476 [28183-1](https://doi.org/10.1007/s11705-021-2103-5)

477 [7] H. Guo, X. Li, W. Yang, Z. Yao, Y. Mei, L. E. Peng, Z. Yang, S. Shao, C. Y. Tang,
478 Nanofiltration for drinking water treatment: A review, *Front. Chem. Sci. Eng.* 16 (2022)
479 681-698. <http://doi.org/10.1007/s11705-021-2103-5>

480 [8] Z. Yang, H. Guo, C. Y. Tang, The upper bound of thin-film composite (TFC)
481 polyamide membranes for desalination, *J. Membr. Sci.* 590 (2019) 117297.
482 <http://doi.org/10.1016/j.memsci.2019.117297>

483 [9] G. M. Geise, H. B. Park, A. C. Sagle, B. D. Freeman, J. E. McGrath, Water
484 permeability and water/salt selectivity tradeoff in polymers for desalination, *J. Membr.*
485 *Sci.* 369 (2011) 130-138. <http://doi.org/10.1016/j.memsci.2010.11.054>

486 [10] G. M. Geise, D. R. Paul, B. D. Freeman, Fundamental water and salt transport
487 properties of polymeric materials, *Prog. Polym. Sci.* 39 (2014) 1-42.
488 <http://doi.org/10.1016/j.progpolymsci.2013.07.001>

489 [11] Z. Yang, L. Long, C. Wu, C. Y. Tang, High permeance or high selectivity?
490 Optimization of system-scale nanofiltration performance constrained by the upper
491 bound, *ACS ES&T Eng.* 2 (2021) 377-390. <http://doi.org/10.1021/acsestengg.1c00237>

492 [12] B. Yuan, S. Zhao, P. Hu, J. Cui, Q. J. Niu, Asymmetric polyamide nanofilms with
493 highly ordered nanovoids for water purification, *Nat. Commun.* 11 (2020) 6102.
494 <http://doi.org/10.1038/s41467-020-19809-3>

495 [13] S. Karan, Z. Jiang, A. G. Livingston, Sub-10 nm polyamide nanofilms with
496 ultrafast solvent transport for molecular separation, *Science* 348 (2015) 1347-1351.

497 [14] C. Jiang, L. Tian, Z. Zhai, Y. Shen, W. Dong, M. He, Y. Hou, Q. J. Niu, Thin-film
498 composite membranes with aqueous template-induced surface nanostructures for
499 enhanced nanofiltration, *J. Membr. Sci.* 589 (2019).
500 <http://doi.org/10.1016/j.memsci.2019.117244>

501 [15] Y. Liang, Y. Zhu, C. Liu, K. R. Lee, W. S. Hung, Z. Wang, Y. Li, M. Elimelech, J.
502 Jin, S. Lin, Polyamide nanofiltration membrane with highly uniform sub-nanometre
503 pores for sub-1 a precision separation, *Nat. Commun.* 11 (2020) 2015.
504 <http://doi.org/10.1038/s41467-020-15771-2>

505 [16] Z. Tan, S. Chen, X. Peng, L. Zhang, C. Gao, Polyamide membranes with nanoscale
506 turing structures for water purification, *Science* 360 (2018) 518-521.
507 <https://www.science.org/doi/10.1126/science.aar6308>

508 [17] H. Zhang, Q. He, J. Luo, Y. Wan, S. B. Darling, Sharpening nanofiltration:
509 Strategies for enhanced membrane selectivity, *ACS Appl. Mater. Interfaces* 12 (2020)
510 39948-39966. <http://doi.org/10.1021/acsami.0c11136>

511 [18] Z. Yang, Z. W. Zhou, H. Guo, Z. Yao, X. H. Ma, X. Song, S. P. Feng, C. Y. Tang,
512 Tannic acid/Fe(3+) nanoscaffold for interfacial polymerization: Toward enhanced
513 nanofiltration performance, *Environ. Sci. Technol.* 52 (2018) 9341-9349.
514 <http://doi.org/10.1021/acs.est.8b02425>

515 [19] X. You, K. Xiao, H. Wu, Y. Li, R. Li, J. Yuan, R. Zhang, Z. Zhang, X. Liang, J.
516 Shen, Z. Jiang, Electrostatic-modulated interfacial polymerization toward ultra-
517 permselective nanofiltration membranes, *iScience* 24 (2021) 102369.
518 <http://doi.org/10.1016/j.isci.2021.102369>

519 [20] S. Han, J. Zhu, A. A. Uliana, D. Li, Y. Zhang, L. Zhang, Y. Wang, T. He, M.
520 Elimelech, Microporous organic nanotube assisted design of high performance
521 nanofiltration membranes, *Nat. Commun.* 13 (2022) 7954.
522 <http://doi.org/10.1038/s41467-022-35681-9>

523 [21] C. Zhao, Y. Zhang, Y. Jia, B. Li, W. Tang, C. Shang, R. Mo, P. Li, S. Liu, S. Zhang,
524 Polyamide membranes with nanoscale ordered structures for fast permeation and highly
525 selective ion-ion separation, *Nat. Commun.* 14 (2023) 1112.

526 <http://doi.org/10.1038/s41467-023-36848-8>

527 [22] X. Li, Q. Li, W. Fang, R. Wang, W. B. Krantz, Effects of the support on the
528 characteristics and permselectivity of thin film composite membranes, *J. Membr. Sci.*
529 580 (2019) 12-23. <http://doi.org/10.1016/j.memsci.2019.03.003>

530 [23] L. E. Peng, Z. Yao, Z. Yang, H. Guo, C. Y. Tang, Dissecting the role of substrate
531 on the morphology and separation properties of thin film composite polyamide
532 membranes: Seeing is believing, *Environ. Sci. Technol.* 54 (2020) 6978-6986.
533 <http://doi.org/10.1021/acs.est.0c01427>

534 [24] R. Dai, Z. Yang, Z. Qiu, L. Long, C. Y. Tang, Z. Wang, Distinct impact of substrate
535 hydrophilicity on performance and structure of TFC NF and RO polyamide membranes,
536 *J. Membr. Sci.* 662 (2022) 120966. <http://doi.org/10.1016/j.memsci.2022.120966>

537 [25] Y. Zhu, W. Xie, S. Gao, F. Zhang, W. Zhang, Z. Liu, J. Jin, Single-walled carbon
538 nanotube film supported nanofiltration membrane with a nearly 10 nm thick polyamide
539 selective layer for high-flux and high-rejection desalination, *Small* 12 (2016) 5034-
540 5041. <http://doi.org/10.1002/smll.201601253>

541 [26] Z. Zhou, Y. Hu, C. Boo, Z. Liu, J. Li, L. Deng, X. An, High-performance thin-film
542 composite membrane with an ultrathin spray-coated carbon nanotube interlayer,
543 *Environ. Sci. Technol. Lett.* 5 (2018) 243-248.
544 <http://doi.org/10.1021/acs.estlett.8b00169>

545 [27] S. Gao, Y. Zhu, Y. Gong, Z. Wang, W. Fang, J. Jin, Ultrathin polyamide
546 nanofiltration membrane fabricated on brush-painted single-walled carbon nanotube
547 network support for ion sieving, *ACS Nano* 13 (2019) 5278-5290.
548 <http://doi.org/10.1021/acsnano.8b09761>

549 [28] G. Gong, P. Wang, Z. Zhou, Y. Hu, New insights into the role of an interlayer for
550 the fabrication of highly selective and permeable thin-film composite nanofiltration

551 membrane, ACS Appl. Mater. Interfaces 11 (2019) 7349-7356.

552 <http://doi.org/10.1021/acسامي.8b18719>

553 [29] J. Yuan, M. Wu, H. Wu, Y. Liu, X. You, R. Zhang, Y. Su, H. Yang, J. Shen, Z. Jiang,

554 Covalent organic framework-modulated interfacial polymerization for ultrathin

555 desalination membranes, J. Mater. Chem. A 7 (2019) 25641-25649.

556 <http://doi.org/10.1039/c9ta08163a>

557 [30] Z. Zhang, X. Shi, R. Wang, A. Xiao, Y. Wang, Ultra-permeable polyamide

558 membranes harvested by covalent organic framework nanofiber scaffolds: A two-in-

559 one strategy, Chem. Sci. 10 (2019) 9077-9083. <http://doi.org/10.1039/c9sc03088c>

560 [31] S. Xu, H. Lin, G. Li, J. Wang, Q. Han, F. Liu, Anionic covalent organic framework

561 as an interlayer to fabricate negatively charged polyamide composite nanofiltration

562 membrane featuring ions sieving, Chem. Eng. J. 427 (2022).

563 <http://doi.org/10.1016/j.cej.2021.132009>

564 [32] Z. Wang, Z. Wang, S. Lin, H. Jin, S. Gao, Y. Zhu, J. Jin, Nanoparticle-templated

565 nanofiltration membranes for ultrahigh performance desalination, Nat. Commun. 9

566 (2018) 2004. <http://doi.org/10.1038/s41467-018-04467-3>

567 [33] S. Han, Z. Wang, S. Cong, J. Zhu, X. Zhang, Y. Zhang, Root-like polyamide

568 membranes with fast water transport for high-performance nanofiltration, J. Mater.

569 Chem. A 8 (2020) 25028-25034. <http://doi.org/10.1039/d0ta06520j>

570 [34] Q. Li, T. Zhang, Z. Dai, F. Su, X. Xia, P. Dong, J. Zhang, A novel positively charged

571 nanofiltration membrane stimulated by amino-functionalized MXene $Ti_3C_2T_x$ for high

572 rejection of water hardness ions, J. Membr. Sci. 671 (2023) 121385.

573 <http://doi.org/10.1016/j.memsci.2023.121385>

574 [35] D. Wang, M. Tian, S. Han, K. Ding, L. Yin, J. Zhu, Y. Zhang, L. Han, Enhanced

575 performance of thin-film nanocomposite membranes achieved by hierarchical zeolites

576 for nanofiltration, J. Membr. Sci. 671 (2023) 121405.
577 <http://doi.org/10.1016/j.memsci.2023.121405>

578 [36] J.-J. Wang, H.-C. Yang, M.-B. Wu, X. Zhang, Z.-K. Xu, Nanofiltration membranes
579 with cellulose nanocrystals as an interlayer for unprecedented performance, J. Mater.
580 Chem. A 5 (2017) 16289-16295. <http://doi.org/10.1039/c7ta00501f>

581 [37] P. Li, B. Wei, Z. Yao, P. Li, Y. Hou, Y. Yang, Q. J. Niu, Nanorod-interlayered thin
582 film composite membranes for ultrafast nanofiltration, Desalination 548 (2023) 116255.
583 <http://doi.org/10.1016/j.desal.2022.116255>

584 [38] H. I. Kim, S. S. Kim, Plasma treatment of polypropylene and polysulfone supports
585 for thin film composite reverse osmosis membrane, J. Membr. Sci. 286 (2006) 193-201.
586 <http://doi.org/10.1016/j.memsci.2006.09.037>

587 [39] A. P. Korikov, P. B. Kosaraju, K. K. Sirkar, Interfacially polymerized hydrophilic
588 microporous thin film composite membranes on porous polypropylene hollow fibers
589 and flat films, J. Membr. Sci. 279 (2006) 588-600.
590 <http://doi.org/10.1016/j.memsci.2005.12.051>

591 [40] S. H. Park, Y. J. Kim, S. J. Kwon, M. G. Shin, S. E. Nam, Y. H. Cho, Y. I. Park, J.
592 F. Kim, J. H. Lee, Polyethylene battery separator as a porous support for thin film
593 composite organic solvent nanofiltration membranes, ACS Appl. Mater. Interfaces. 10
594 (2018) 44050-44058. <http://doi.org/10.1021/acsami.8b16403>

595 [41] E.-S. Kim, Y. J. Kim, Q. Yu, B. Deng, Preparation and characterization of
596 polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene
597 fluoride (PVDF), J. Membr. Sci. 344 (2009) 71-81.
598 <http://doi.org/10.1016/j.memsci.2009.07.036>

599 [42] X. Zhang, T. Li, Z. Wang, J. Wang, S. Zhao, Polar aprotic solvent-resistant
600 nanofiltration membranes generated by flexible-chain binding interfacial

601 polymerization onto PTFE substrate, J. Membr. Sci. 668 (2023) 121294.
602 <http://doi.org/10.1016/j.memsci.2022.121294>

603 [43] K. Tiwari, P. Sarkar, S. Modak, H. Singh, S. K. Pramanik, S. Karan, A. Das, Large
604 area self-assembled ultrathin polyimine nanofilms formed at the liquid-liquid interface
605 used for molecular separation, Adv. Mater. 32 (2020) e1905621.
606 <http://doi.org/10.1002/adma.201905621>

607 [44] N. A. Khan, J. Yuan, H. Wu, T. Huang, X. You, A. U. Rahman, C. S. Azad, M. A.
608 Olson, Z. Jiang, Covalent organic framework nanosheets as reactive fillers to fabricate
609 free-standing polyamide membranes for efficient desalination, ACS Appl. Mater.
610 Interfaces 12 (2020) 27777-27785. <http://doi.org/10.1021/acsami.0c06417>

611 [45] X. Cheng, Y. Qin, Y. Ye, X. Chen, K. Wang, Y. Zhang, A. Figoli, E. Drioli, Finely
612 tailored pore structure of polyamide nanofiltration membranes for highly-efficient
613 application in water treatment, Chem. Eng. J. 417 (2021) 127976.
614 <http://doi.org/10.1016/j.cej.2020.127976>

615 [46] Z. L. Qiu, L. F. Fang, Y. J. Shen, W. H. Yu, B. K. Zhu, C. Helix-Nielsen, W. Zhang,
616 Ionic dendrimer based polyamide membranes for ion separation, ACS Nano 15 (2021)
617 7522-7535. <http://doi.org/10.1021/acsnano.1c00936>

618 [47] Z. Jiang, R. Dong, A. M. Evans, N. Biere, M. A. Ebrahim, S. Li, D. Anselmetti, W.
619 R. Dichtel, A. G. Livingston, Aligned macrocycle pores in ultrathin films for accurate
620 molecular sieving, Nature 609 (2022) 58-64. <http://doi.org/10.1038/s41586-022-05032-1>

622 [48] W. Lai, L. Liu, J. Bai, L. Xiao, Y. Jiao, Y. Yang, L. Shan, S. Luo, Highly permeable
623 benzene-trisulfonyl chloride-based polysulfonamide membranes fabricated by
624 interfacial polymerization for acid-resistant nanofiltration, Chem. Eng. J. 460 (2023)
625 141708. <http://doi.org/10.1016/j.cej.2023.141708>

626 [49] Z. Liu, Z. Mi, L. Meng, Y. Huang, D. Zhang, J. Wang, K. Zhang, J. Xiao, P. Liu,
627 Z. Rao, H. He, S. Wang, Quaternary ammonium salts modification preparing charged
628 janus nanofiltration membrane for the simultaneous separation of divalent anions and
629 cations, J. Membr. Sci. 672 (2023) 121440.
630 <http://doi.org/10.1016/j.memsci.2023.121440>

631 [50] H. Zheng, Z. Mou, Y. J. Lim, B. Liu, R. Wang, W. Zhang, K. Zhou, Incorporating
632 ionic carbon dots in polyamide nanofiltration membranes for high perm-selectivity and
633 antifouling performance, J. Membr. Sci. 672 (2023) 121401.
634 <http://doi.org/10.1016/j.memsci.2023.121401>

635 [51] H.-L. Zhang, Y.-B. Gao, J.-G. Gai, Guanidinium-functionalized nanofiltration
636 membranes integrating anti-fouling and antimicrobial effects, J. Mater. Chem. A 6
637 (2018) 6442-6454. <http://doi.org/10.1039/c8ta00342d>

638 [52] Y. Gao, S. Zhao, Z. Qiao, Y. Zhou, B. Song, Z. Wang, J. Wang, Reverse osmosis
639 membranes with guanidine and amine enriched surface for biofouling and organic
640 fouling control, Desalination 430 (2018) 74-85.
641 <http://doi.org/10.1016/j.desal.2017.12.055>

642 [53] S. Zhang, R. Zhang, R. Li, Z. Zhang, Y. Li, H. Deng, J. Zhao, T. Gu, M. Long, X.
643 Wang, S. Zhang, Z. Jiang, Guanidyl-incorporated nanofiltration membranes toward
644 superior $\text{Li}^+/\text{Mg}^{2+}$ selectivity under weakly alkaline environment, J. Membr. Sci. 663
645 (2022) 121063. <http://doi.org/10.1016/j.memsci.2022.121063>

646 [54] Z. Hao, X. Tian, V. Mankol, Q. Li, J. Wang, Z. Wang, S. Zhao, Polyamide
647 nanofiltration membrane fabricated with ultra-low concentration triaminoguanidine
648 showing efficient desalination performance, J. Membr. Sci. 672 (2023) 121449.
649 <http://doi.org/10.1016/j.memsci.2023.121449>

650 [55] X.-H. Ma, Z.-K. Yao, Z. Yang, H. Guo, Z.-L. Xu, C. Y. Tang, M. Elimelech,

651 Nanofoaming of polyamide desalination membranes to tune permeability and
652 selectivity, Environ. Sci. Technol. Lett. 5 (2018) 123-130.

653 <http://doi.org/10.1021/acs.estlett.8b00016>

654