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BTC: A Binary and Triangle Combined Descriptor for 3D Place
Recognition

Chongjian Yuan'>*, Jiarong Lin!*, Zheng Liu!, Hairuo Wei'!, Xiaoping Hong?, and Fu Zhang'

Abstract—Accurate and robust place recognition is essential
for robot navigation, yet achieving full pose invariance and
high performance across diverse scenes remains challenging.
In this work, we propose a novel global and local combined
descriptor named Binary Triangle Combined (BTC) descriptor.
We first extract the keypoints of a point cloud by projecting
the points to planes extracted therein. Any three keypoints form
a unique triangle, with the lengths of its sides constituting a
triangle descriptor that captures the global appearance of the
point cloud. Thanks to the distinct shape of a triangle given
three side lengths, the similarity between two triangles and
their vertices (i.e., keypoints) correspondence can be naturally
determined from the side lengths of the triangle descriptors.
The matched triangle pairs evaluate the appearance similarity
between two point clouds, while the vertices’ correspondence
enables accurate estimation of their relative pose; both are crucial
for the place recognition task. To enhance the accuracy of triangle
matching, BTC introduces a binary descriptor, which describes
the point distribution neighboring each keypoint. The local
geometry information encoded by the binary descriptor augments
descriptiveness and discriminativeness to the triangle descriptor.
Collectively, the two descriptors achieve both global and local
descriptions of the environment with high accuracy, efficiency,
and robustness. We extensively compare the proposed BTC
descriptor against state-of-the-art methods (e.g., Scan Context,
LCD-Net) on a wide range of datasets collected using different
types of LiDAR sensors (spinning LiDARs and non-repetitive
scanning LiDARs) in various environments (urban, campus,
forest, park, mountain). The quantitative results demonstrate that
BTC exhibits greater adaptability and significant improvement in
precision compared to its counterparts, especially in challenging
cases with large viewpoint variations (e.g., reverse direction, large
translation and/or rotation). To share our findings and con-
tribute to the community, we open-source our code on GitHub:
https://github.com/hku-mars/btc_descriptor,

Index Terms—SLAM, Recognition, Localization, Mapping

I. INTRODUCTION

LACE recognition, also known as loop closure detection,

is a process that identifies and matches a robot’s current
location to previously visited places within a known envi-
ronment. By reducing drift in pose estimation and enabling
relocalization, it proves indispensable in robotic applications,
particularly within Simultaneous Localization and Mapping
(SLAM) systems such as visual SLAM [1}[2] and LiDAR
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SLAM [3L4], where accurate and reliable navigation is nec-
essary. As robots traverse large, complex environments, the
demand for robust and efficient place recognition becomes in-
creasingly crucial to ensure precise localization and consistent
map generation [5]. Furthermore, place recognition facilitates
rapid and exact relocalization, allowing robots to operate
within pre-built maps, which avoids redundant or inconsistent
mapping results [[6]. As a consequence, loop detection and
relocalization have drawn consistent research interests in this
field, as evidenced by numerous recent works [[7H11].

For the task of place recognition and relocalization, two
mainstream methods have emerged, primarily distinguished by
the type of sensor utilized. One approach relies on images
captured by visual cameras, such as FAB-MAP [12], DBoW2
[13], and SeqSLAM [14]]. The alternative method employs
3D point clouds, often acquired by LiDAR sensors. Camera-
based methods offer certain advantages, such as lower cost and
widespread availability. However, they also exhibit limitations
and often struggle to handle challenging situations character-
ized by significant variations in illumination, appearance, or
sensor viewpoint. In contrast, LIDAR-based methods provide
several potential benefits due to their three-dimensional mea-
surements: less sensitivity to sensor viewpoint changes and
higher robustness to changes in illumination and texture of
environments. This paper investigates the problem of place
recognition and relocalization using LiDAR sensors.

Despite the potential benefits of LiDAR sensors for place
recognition and relocalization, several challenges remain. First,
achieving invariance to viewpoint changes remains a difficult
task, as the point cloud representation can vary significantly
depending on the sensor’s position and orientation. Second, the
point cloud acquired by LiDAR is spatially sparse, with non-
uniform density at different distances, presenting additional
complexities when processing and analyzing the point data
for place recognition. This issue is further compounded by
the diversity of LiDAR types, as different LiDAR types ex-
hibit considerable differences in scanning patterns, resolution,
and noise characteristics. Lastly, the use of various carrying
platforms (handheld [[15], vehicle-mounted [16], aerial [17])
and the wide range of environments (urban [16], campus [18]],
unstructured [[19]]) result in significant variations in point cloud
distribution, scale, and appearance, which further complicates
the place recognition problem.

In response to these challenges, this paper introduces the
Binary Triangle Combined (BTC) descriptor, a novel place
recognition descriptor for 3D point clouds. Inspired by [20],
we employ point cloud accumulation to mitigate the issue
of non-uniform point cloud density resulting from varying
distances or LiDAR types. To achieve viewpoint invariance,
we devise a global triangle descriptor composed of three side
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lengths of a triangle formed by three keypionts extracted
from the accumulated point cloud. The triangle descriptor
inherently exhibits viewpoint invariance, as the side lengths
remain unchanged regardless of viewpoint or direction. While
the triangle descriptor captures the global appearance of the
point cloud, to further enhance its descriptive and discrimina-
tive capabilities, we develop a local descriptor called binary
descriptor that encodes the local geometric information of
each keypoint forming the triangle. This combination of global
and local descriptors allows for accurate and robust place
recognition, even in large-scale unstructured environments.
The main contributions of this work are as follows:

e We design a triangle descriptor to capture the global
appearance of point clouds. This descriptor is entirely
invariant to rotation and translation and naturally provides
vertices association for full 6D relative pose estimation.

o To enhance the descriptiveness and discrimination of the
triangle descriptor especially in large complex scenes, we
design a local descriptor, called binary descriptor, which
encodes the local geometric information of each triangle
vertex in the triangle descriptor.

o We propose a loop retrieval strategy that leverages the
binary and triangle combined descriptor. This strategy
enhances the matching process by considering the global
appearance and local geometric information, allowing
for robust and precise place recognition in diverse and
challenging environments.

o Our binary and triangle-combined approach, termed BTC,
is assessed on numerous datasets encompassing a variety
of LiDAR types, carrying platforms, sequence lengths,
and environments. It demonstrates superior performance
over other state-of-the-art methods in terms of robustness,
scalability, and computational efficiency.

o We integrate BTC into a SLAM system and verify its
ability to improve the accuracy of the odometry. Building
upon this, we further develop a multi-map fusion system
that enables the fusion of multiple indoor and outdoor
point cloud maps collected at different times. The entire
BTC implementation code, the map fusion system, and
the complete SLAM system are open-sourced on GitHub:
github.com/hku-mars/bt c_descriptorﬂ

This paper is an extension of the previous conference paper
[11], which proposed the original idea of triangle descriptor.
Compared to [11]], this paper extends in four critical aspects:
1) the introduction of the binary descriptor, which provides a
more detailed and discriminative local representation of the
point cloud geometry; 2) an improved keypoint extraction
strategy tailored for the binary descriptor, mitigating dis-
cretization issues caused by point cloud voxelization; 3) the
loop retrieval strategy that incorporates both the triangle and
binary descriptor; 4) a more extensive and detailed experimen-
tal evaluation, which demonstrates the superior performance of
BTC in terms of robustness, accuracy, and efficiency across a
wide range of challenging scenarios and applications.

'0ur codes will be released once this work is accepted.
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II. RELATED WORKS

In this section, we provide a literature review on both vision-
based and LiDAR-based place recognition methods, focusing
on global and local descriptions.

A. Vision-based Place Recognition Methods

In the past, handcrafted local features such as SIFT [21]],
SURF [22]], and ORB [23]] were popular choices for image
matching due to their invariance to multiple transformations.
FAB-MAP [[12] leveraged these local descriptors to construct
a probabilistic model and achieved place recognition by com-
puting likelihood scores for each candidate location. DBoW2
[13] used a bag of binary words approach based on BRIEF
[24] to enable real-time loop retrieval.

Handcrafted features were typically sensitive to appearance
changes (e.g., varying lighting conditions, seasonal variations,
and weather conditions) and noise. In complex and dynamic
environments, relying solely on local descriptors might be
insufficient. Global descriptors capture the overall appearance
of an image or a region of interest without depending on
specific local feature points. For example, the GIST Descriptor
[25]] captures the global structure of a scene by computing the
spatial envelope. SeqSLAM [14] uses a downsized version of
the input images for place recognition. Although these whole-
image global descriptors are more robust to local noise and
outperform local feature descriptors when lighting conditions
change [26]], they still struggle with pose invariance due to the
projection of 3D scenes onto the 2D image planes. Recently,
Mo and Sattar [27] adapted LiDAR descriptors for 3D points
obtained from stereo-visual odometry to achieve high accu-
racy and robustness against visual appearance changes. This
work verified the advantages of the 3D point cloud in place
recognition compared to appearance-only visual images.

B. LiDAR-based Place Recognition Methods

LiDAR-based place recognition methods have been devel-
oped in recent years as an alternative approach to vision-
based methods. In the early days of LiDAR development,
researchers extract local features from 2D range image [28]
or directly from 3D point clouds (e.g., 3D SIFT [29], PFH
[30], SHOT [31]), as these techniques were already well-
established in the field of computer vision. Bosse and Zlot [32]]
further use a 3D adaptation of the Gestalt Descriptor [33] to
encode the neighborhood of keypoints as a vector to enhance
the descriptiveness of local keypoints. These local descriptors
capture fine-grained geometric details, making them highly
discriminative for matching and recognition tasks. However,
these methods exhibit sensitivity to the density and resolution
of 3D point clouds, as well as viewpoint changes. In real-world
applications, LiDAR naturally collects sparse point clouds
at a distance and denser point clouds up close, resulting in
inconsistent densities across the point cloud. This variability
can lead to fluctuations in feature extraction and matching,
degrading the performance and accuracy of place recognition.

In recent years, researchers have gained interest in global
descriptors for LiDAR-based place recognition since global
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descriptors are more robust to local noise and point cloud
density. Unlike local descriptors, global descriptors capture
the overall appearance of the scene, such as the distribution
of certain features or objects in the scene. One commonly
used approach to achieve a global description is voxelization.
Magnusson et al. [34]] voxelizes the 3D point clouds and calcu-
lates a histogram matrix through normal distribution transform.
VBRL [35] divides a 3D point cloud input into voxels and uses
multi-modal features extracted from these voxels to perform
place recognition. MinkLoc3D [36] creates a 3D voxel grid
representation through sparse voxelization and a 3D convolu-
tional neural network (CNN). Although voxelization can help
reduce the impact of noise and outliers, thereby making the
recognition process more robust, voxelization methods are lim-
ited by their lack of viewpoint invariance and the artifacts and
aliasing introduced by discretization. Combining voxel-based
approaches with octree methods [37] or Adaptive Receptive
Fields [38]] may help alleviate the impact of discretization, but
the challenge of viewpoint invariance still remains.

Another popular global description approach is through
projection. M2DP [39] generates the signature vector by
projecting the raw point cloud into multiple 2D planes.
Inspired by [40], Giseop Kim and Ayoung Kim develop
a novel global descriptor called Scan Context [8]], which
combines projection and space partitioning to encode the
2.5-D information within an image. Their follow-up work,
Scan Context++ [9], introduced a new spatial division strategy
to achieve lateral invariance and utilized a sub-descriptor to
speed up loop retrieval, showing promising results in urban
environments. More recently, some methods [41,/42]] generate
Bird’s Eye View (BEV) images through projection and then
perform place recognition using these BEV images. Building
on this idea, several methods [43-45] have been developed
that extract descriptors in the frequency domain from the BEV
images, achieving roto-translational invariance. Compared to
voxel-based methods, projection methods are not affected by
discretization and can provide some level of invariance to
viewpoint changes (e.g., yaw angle [8]]). However, these meth-
ods are still sensitive to viewpoint changes, as the resulting 2D
or 2.5D representations can vary significantly if the sensor’s
position and orientation change. This can lead to recognition
challenges when the sensor undergoes significant motion.
Moreover, many of these methods often rely on registration
algorithms like Generalized ICP [46] and TEASER [47] for
pose correction.

Since both voxelization and projection have limitations
in achieving invariance to pose changes, some approaches
employ local features (e.g., point-wise features [48,149], plane
features [50], and semantic features [20]) for global descrip-
tor encoding and local matching. BoW3D extracts keypoints
through Link3D [51]] and adopts the BoW (Bag of Words)
for loop retrieval. V. Nardari et al. [49] propose a polygon
descriptor constructed with 2D landmarks to achieve place
recognition in forests. Lip-Match [50] formulates each submap
as a fully-connected graph with nodes representing planes
and achieves place recognition through geometric constraints.
SegMatch [20] extracts semantic features to accomplish global
localization. Recently, some DNN-based methods have inte-

grated deep neural networks into the process of local features
extraction (e.g., LCD-Net [10], Logg3D-Net [52]]) and global
descriptor encoding (e.g., LocNet [53], OverlapNet [54]).
These methods aim to capture both the local details and
the overall structure of the environment and may be more
robust to viewpoint changes when compared with voxelization
and projection-based methods. However, these methods are
sensitive to local feature extraction since the performance
of global descriptors generated by encoding local features
is highly dependent on the quality and robustness of the
local features. Besides, extracting local features and encoding
them into global descriptors can be computationally expensive.
DNN-based methods usually require GPU acceleration to
achieve real-time performance.

Our BTC (Binary Triangle Combined) descriptor is designed
to leverage both local and global descriptors to respectively
preserve the local geometry and global appearance of a scene.
In contrast, existing methods often focus on either local
or global descriptions, struggling to balance the two and
could lead to issues in large-scale environments or real-time
applications. Moreover, the design of our local and global
descriptions also differs significantly from existing methods.
When compared to local description methods, such as 3D
SIFT[29]], PFH[30], SHOT[31], and the Gestalt Descriptor
[33], the binary descriptor of BTC offers notable advantages
in terms of pose invariance and computational efficiency. For
global description, when compared to voxelization-based [34-
36], and projection-based [89L/39] techniques, the triangle
descriptor of BTC demonstrates strong viewpoint invariance
across all six degrees of freedom, while when compared to
local feature-based global description methods [|10}20,148}-
50.[52H54]], our triangle descriptor has a more concise and
efficient encoding process while preserving the full 6-DoF
pose invariance. Lastly, when compared to DNN-based meth-
ods [[104/361/52H54f], BTC offers better adaptability to various
LiDAR types, equipment types, and environmental conditions.

III. SYSTEM OVERVIEW

The proposed BTC (Binary Triangle Combined) descriptor
aims to achieve efficient and accurate loop detection, a cru-
cial component of Simultaneous Localization and Mapping
(SLAM) systems. By introducing binary descriptors, our ap-
proach provides a compact and efficient local representation of
the environment. Meanwhile, the triangle descriptors capture
the high-level structure and exhibit strong viewpoint invari-
ance, enabling fast and robust loop retrieval.

Fig. [I] provides an overview of our system. The input
consists of a sequence of registered LiDAR scans, which are
first accumulated into submaps. Then, keypoints are extracted
from the submap and encoded into both binary descriptors and
triangle descriptors. The two descriptors are combined to form
the Binary Triangle-Combined (BTC) descriptors, which are
queried from the descriptor database to retrieve a fixed number
of candidate submaps. From the candidate pool, the most
suitable one is selected through binary descriptor matching
and geometrical verification and the 6 DoF pose is calculated.
Once the results are obtained, the current BTC descriptor is
added to the database for future use.
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Fig. 1: System overview of the Binary Triangle Combined (BTC) descriptor for place recognition in a SLAM system.

In the following sections, we present the proposed BTC
descriptor in Section database construction in Section |V}
and loop detection in Section

IV. DESCRIPTION

In this section, we present our approach to attaining both
local and global descriptions of a 3D point cloud. The pipeline
commences with the construction of submaps and extraction
of keypoints from the submap. We then present our Binary
Triangle-Combined (BTC) descriptor, a novel representation
that captures the essential local geometry and global appear-
ance necessary for efficient place recognition.

A. Submap Construction

Inspired by [20], we mitigate the effects of uneven point
cloud density and various scanning patterns by performing
loop detection on submaps, which is an accumulation of cer-
tain recent LiDAR scans. This submap accumulation strategy
is particularly helpful for low-resolution LiDARSs (e.g., 16-ray
spinning LiDARSs) or non-repetitive scanning LiDARs (e.g.,
Livox series LIDARs), where accumulation increases the point
cloud density irrespective of LiDAR scanning patterns.

A submap can be constructed from a LiDAR(-inertial)
odometer [4], which registers each new incoming LiDAR
scan into the current submap in accumulation. Each submap
consists of points accumulated from ng consecutive scans,
leading to a denser point cloud representation.

B. Keypoints Extraction

1) Plane Detection: When given a point cloud submap, we
first perform plane detection by region growing. Specifically,
we divide the entire point cloud into voxels of a given size AL
(e.g., AL =1 ~ 2m). Each voxel contains a group of points
p; (¢ = 1,...,N). We then calculate the point covariance
matrix X for each voxel:

Ly Ly "
==)> pP; X=—+=)> (Pi—DP)(P:i—D); )]
N =1 N 1=1

Perform the eigenvalue decomposition of matrix ¥ to obtain
its eigenvalues A1, A2, A3 (with Ay > A3 > A3) and corre-
sponding eigenvectors uj, us, us. Then the plane criterion is
defined by two pre-set thresholds, o1 and o2, such that a voxel
is classified as a plane if A\3 < o1 and \s > 09. A plane
voxel is represented as 7r, which contains the plane normal
vector ug, center point p, number of points N, and point

el

covariance matrix 3. Applying this criterion to all voxels,
we obtain a list of planes denoted by IT = (my, s, ..., Tg).

Fig. [2] illustrates the plane detection result obtained through
voxelization on the first submap of the KITTIOO dataset. The
plane points are colored according to their voxel ID. These
planes, encapsulating key geometric information of the scene,
will be used for the following keypoint extraction and also the
geometrical verification shown in Section

I-B

Fig. 2: Plane detection using voxelization on the first keyframe of
the KITTIOO dataset with a voxel size of 2m. Points form a plane
are collored based on their Voxel ID.

2) Reference Plane Generation: Upon acquiring the list
of planes II, we proceed to generate reference planes. This
involves merging adjacent planes to yield larger planes. Specif-
ically, the plane merging begins by selecting an initial plane
voxel and progressively examining the planes in neighboring
voxels. If the plane in neighboring voxels has a similar normal
vector and a near-to-zero distance, it is merged with the
initial plane. Specifically, if the initial plane voxel 7r; and the
neighboring plane voxel 7; have centers p;, p;, and normals
ug;, ug;, the merging criteria is

max (ug;(P; — P;), uz;(P; — Pi)) < 04
arccos(us; - ug;) < oy
where 04,0, are two thresholds. The merged plane 7, has

a points number N,,, center point p,, and point covariance
matrix 3, as follows:

2)

Nipi + N;p,
Np=N;+Nj, Pm= %,
m
o . 3
NS +ppl) + N,(S; +p80) g O
Y= N — PmPy,-

In addition, the normal vector u,, of the merged plane is
calculated through the eigenvalue decomposition of 3J,,. This
merging process continues in a region-growing manner until
neighboring voxels have no planes.
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We sort the merged planes in descending order according
to the number of contained points. Then, the first M planes
with the most points are selected as reference planes. Most
of the time, selecting one reference plane (M = 1) is suffi-
cient. In certain cases characterized by uneven terrain (e.g.,
mountainous regions, urban environments with tall buildings,
or areas with significant changes in elevation), the selection
of two or more reference planes (M > 2) may be necessary
to account for the complexity of the landscape. Fig. (3| shows
the generation of three reference planes (i.e., M = 3) in an
urban environment. Despite different voxel sizes, the generated
reference plane remains consistent.

3) Height-encode Image Generation: After obtaining the
reference planes, we project the 3D point cloud onto each
reference plane, creating M height-encoded images with a
pixel area 7 x 7 m2. The choice of r is a trade-off between
computational efficiency and the ability to capture sufficient
detail in the height-encoded image.

To encode the height information, as depicted in Fig. 4] we
select a maximum height h,,,, above each pixel on the plane
and divide it into m layers with a fixed resolution Ah. For
each pixel, we compute a binary string b composed of m bits,
where each bit is set to one if the corresponding layer contains
any points at this height range or else set to zero. Summing
all the m bit values leads to the pixel intensity, which is saved
to each pixel along with the binary string. A height-encoded
image example is depicted in Fig. 5(b)l

4) Keypoints Extraction: With the M height-encoded im-
ages in hand, we proceed to extract keypoints on each image,
a process demonstrated in Fig. Keypoints are determined
by identifying pixels with the maximum intensity in their local
5 x 5 area. These local maxima represent areas with high
points population, hence retaining the most information of the
original 3D point cloud. To suppress the number of keypoints,
we set a threshold o on the local maximum intensity. Only
above this threshold, a pixel with the local maximum intensity
is selected as a keypoint. Once a keypoint is identified in the
height-encoded image, we determine its 3D coordinates within
the submap. To do this, we first determine the point location
on the reference plane by averaging the 2D coordinates of
all points above the pixel used for height encoding. This in-
plane location is then used to calculate the full 3D location
of the keypoint based on the plane parameter. By utilizing
the average 2D coordinates of projected points rather than the
pixel’s center, we attain sub-pixel conversion accuracy. Fig.
illustrates the extracted keypoints (depicted as yellow
squares) and the attached binary string.

C. Binary Triangle-Combined (BTC) Descriptor

In this section, we present the formulation of the Binary
Triangle-Combined (BTC) descriptor, which consists of the
binary descriptor and the triangle descriptor.

1) Binary Descriptor: The binary descriptor is the binary
string in height-encode image generation, which provides a
compact yet effective representation of the local geometry of
the extracted keypoint. The formal definition of the binary
descriptor is detailed in Data Structure [T} which encompasses:

e b: the binary string of the keypoint, encapsulating the
vertical distribution of points above the keypoint.

o p: the 3D location of the keypoint. While the 3D location
does not constitute a descriptor attribute due to its lack
of pose invariance, it is included in the data structure to
provide essential information for subsequent geometric
verification and relative pose estimation.

Remark 1: Since the keypoints and binary descriptors are
extracted from the reference plane detected from the point
cloud itself, instead of a fixed projection plane (e.g., M2DP
[39], Scan Context [8]] and BEVPlace [41]), they are invariant
to pose transformations. That is, transforming the point cloud
from one frame to another leads to the same keypoint (with
coordinates transformed accordingly) and binary descriptor.

2) Triangle Descriptor: To encapsulate the geometric re-
lation among keypoints and develop a global representation
of the scene, we introduce a triangle descriptor. The rationale
behind this choice lies in the inherent properties of triangles.
First, triangle shapes are completely invariant to rigid trans-
formations, meaning that at different poses, a triangle has the
same side lengths. Second, as the simplest polygons, a triangle
is a stable shape, meaning that once the side lengths are
determined, the shape of the triangle is uniquely determined.
Additionally, if the three side lengths are distinct, the triangle
vertices’ correspondence can also be determined uniquely.
Such properties make them very suitable for representing
spatial configurations formed by groups of keypoints.

The formal definition of the triangle descriptor is shown in
Data Structure [2| which has the following elements:

e 14, 15, 13: the lengths of the three sides of a triangle, in
the convention that 1, is the side between vertices p; and
P2, 1o is the side between p, and p3, and 13 is the side
between p, and p3. Moreover, the side lengths are sorted
in ascending order (i.e., 1; < 15 < 13).
The ascending (or descending) side lengths order ensures that
all triangles with the same side lengths (i.e., they are the same
shape) will have a unique triangle descriptor T = (14, 15, 13).
In return, if two descriptors have the same sorted side lengths,
they are of the same triangle shape and their vertices p;’s
would naturally correspond.

3) Binary Triangle-Combined Descriptor: The Binary
Triangle-Combined (BTC) descriptor integrates the strengths
of both binary and triangle descriptors. The BTC descriptor
consists of a triangle descriptor and three binary descriptors
corresponding to the three keypoints (i.e., vertices) that form
the triangle. This combination allows the triangle descriptor to
provide pose invariance and correspondence between vertices,
while the binary descriptor offers local point cloud distribution
further enhancing the matching accuracy. The BTC descriptor,
as shown in Data Structure [3| and visually illustrated in Fig.
[l comprises the following elements:

o T: a triangle descriptor.

e By, By, Bj: three binary descriptors corresponding to three
vertices of the triangle descriptor.

o f: the ID of the submap.

To build the BTC descriptors of a submap, we begin by
constructing a 3-dimensional k-D tree using the 3D locations
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Fig. 3: Comparison of all merged planes and the selected M (M = 3) reference
planes, at different voxel sizes. The left subfigures show the results of all merged
planes (colored by plane normals, whereas non-plane points are depicted in yellow),
and the right subfigures display the selected M reference planes (with size determined
by the largest and second largest eigenvalues of the covariance matrix X, of the
merged planes). (a) Voxel size = 1m. (b) Voxel size = 2m. As can be seen, despite

the different voxel sizes, the selected reference planes are the same.

of the extracted keypoints. For each keypoint, we query the
k-D tree to find its K nearest neighbors (e.g., K = 10),
which gives us C(K, 3) candidate triangles for each keypoint.
The subsequent stage involves filtering this set of candidate
triangles based on a series of selection criteria as follows.

Firstly, we discard any triangles that have two identical side
lengths. This is because such triangles could cause ambiguity
in vertices correspondence; a triangle where two sides are of
the same length does not have a unique order of vertices for
the subsequent binary descriptor matching or pose estimation.

Secondly, we discard triangles with side lengths that fall
outside a specified range. Specifically, we eliminate any tri-
angles with side lengths smaller than a lower bound [,,;, or
larger than an upper bound [,,,,«. In our implementation, we set
Imin = 2 m and [, = 30 m. The reason for this is twofold:
On the one hand, very small triangles represent only local
spatial relations and thus provide limited information about
the broader scene’s appearance. On the other hand, very large
triangles are less likely to be matched when the two submaps
have small overlaps, reducing the effectiveness of the BTC
descriptors in such scenarios.

Finally, we remove redundant triangles. As an illustrative
example, consider three keypoints, denoted as p1, p2, and p3
in Fig.[6] These keypoints might all find each other within their
K nearest neighbors, and each would consequently generate
a triangle corresponding to the triangle formed by the same
vertices p1, p2, and ps. We eliminate such redundant triangles
by checking each new triangle against previous triangles of
the submap. If the new one has the same set of vertices
(irrespective of the order), it is discarded.

The filtered set of candidate triangles is finally used to con-
struct the BTC descriptors of the submap. For each triangle,
we construct a BTC descriptor, where the three side lengths
of the triangle form the triangle descriptor component, and
the three vertices and corresponding binary strings form the

binary descriptor component.
V. DATABASE CONSTRUCTION

This section introduces the design and implementation of
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Fig. 4: Height encoding of a pixel on the reference
plane with pixel resolution 7. Points above the pixel
are divided into m layers, with each layer being
encoded as a ‘1’ if it contains any points and ‘0’
otherwise, leading to a binary string “1111010”. The
pixel intensity “5” is the bit sum of the binary string.

Data Structure 1: Binary Descriptor

struct BinaryDescriptor/{
std: :bitset<m> b;

std::array<double, 3> p;};

Data Structure 2: Triangle Descriptor

struct TriangleDescriptor{
double 11, 12, 13,' } H

our database system, which is optimized for efficient storage
and querying of the BTC descriptors.

Efficient management of a large volume of descriptors is
crucial for efficient loop detection. Therefore, we opt for a
Hash table as the data structure for descriptor storage and
retrieval. Hash tables offer significant advantages over other
popular data structures, such as k-D trees commonly used in
existing loop detection systems [8,9], as detailed below.

The first advantage is scalability. In large-scale environ-
ments, the descriptors from submaps can reach a substantial
quantity; adding descriptors of a new submap will trigger a
reconstruction of the k-D tree containing all descriptors in
the past, leading to considerable construction time that is
also linearly growing with time. Hash tables, on the other
hand, demonstrate exceptional scalability and adaptability,
offering constant time complexity O(n) for both inserting and
retrieving n descriptors in the new submap. They can handle
dynamic datasets effectively; as new descriptors are generated,
they can be inserted into the Hash table efficiently without the
need for rebalancing in tree-based structures.

The second advantage stems from the structure of our trian-
gle descriptors. They allow us to construct a straightforward
yet effective Hash function, which computes the Hash key
from the quantized side lengths of a triangle. Specifically, to
quantize the side lengths of a triangle L = [11,,15,15]7, we
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Pixel Value

Imin
(b) Height-encode image generated on the reference plane.

(d) Extracted keypoints in the submap.

Fig. 5: Keypoints extraction: (a) The reference plane for height-
encode image generation. (b) The generated height-encoded image,
each pixel encoding the points distribution above it. (¢) A zoomed-in
region of a white square in (b) illustrates the process of detecting
local maxima (white squares) in a 5x5 windows (red squares) and
keypoints are generated at the corresponding pixel locations. (d)
The extracted keypoints in the submap. keypoints are represented by
yellow squares. The red number within each yellow square denotes
the pixel intensity. The right sub-figure shows the points distribution
above an extracted keypoint and its corresponding binary string.

employ a fixed resolution Al and calculate their quantized side
lengths 13, I, and I3 as follows:

1, = round [ 2 ), 1, = round | 22 ), I; = round | =
; = roun Al , 1y = roun Al , 13 = roun AL
“)

The Hash function Hash(L) uses these quantized side
lengths as input and calculates the Hash key:
Hash(L) = Hash(1;,15,13) = Int_Hash(1;,I,,13)
= Mod (Mod ((1s - p + 12) - p, B)] + 11, B)
where p is a large prime number chosen to minimize the

chance of Hash collisions by uniformly distributing the keys
across the Hash table, and B is a maximum value set to prevent
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Fig. 6: Illustration of the Binary Triangle-Combined descriptor.

Data Structure 3: Binary Triangle-Combined (BTC)
Descriptor

struct BtcDescriptor({
TriangleDescriptor T;
BinaryDescriptor Bj,B,,Bs;
int £;};

out-of-bounds indices. The design of our Hash function draws
inspiration from the voxel Hashing technique [55].

In our Hash table, each Hash key maps to a container
that saves the corresponding BTC descriptors. Descriptors in
the same container mean that they have similar side lengths
(i.e., similar triangle shapes). This organization allows us to
efficiently group triangle descriptors of similar shapes.

In summary, our database system exhibits several key ad-
vantages. Firstly, the efficiency of our Hash function allows
for rapid storage and retrieval of BTC descriptors, which is
critical when dealing with large-scale environments. Secondly,
the scalability of our system is ensured through the mapping
of Hash keys to containers, allowing us to effectively handle
increasing data volumes without significant degradation in
performance. Lastly, given the finite range of possible triangle
side lengths, we have a limited number of potential Hash keys.
This constraint results in a predictable and compact Hash table
size, further enhancing the system’s efficiency. Together, these
features improve the robustness and reliability of our system,
making it an ideal solution for large-scale loop detection tasks.

VI. Loop DETECTION

In this section, we describe how to perform loop detection
and relative pose estimation based on the BTC descriptors.

A. Selection of Candidate Submaps

For a querying submap, we first extract all its BTC descrip-
tors following the method we detailed in Sec For each
BTC descriptor C,, we query the descriptor database (e.g.,
built from previous submaps) by calculating its Hash key as
in (5). This allows us to locate it in the corresponding container
within the Hash table.

Next, we carry out a binary descriptor similarity check for
all candidate descriptors C = [---,Cg,- -] within the con-
tainer to reject possible outliers. Specifically, for a candidate
descriptor C., if it is a true match of the query descriptor
Cq, its triangle vertices should have similar binary descriptors.



Moreover, since the side lengths are stored in a unique as-
cending order, the binary descriptors (Bf,B3,B%) of the query
descriptor and (B§, BS, B§) of the candidate descriptor naturally
correspond with each other. Therefore, the binary similarity of
this pair of descriptors can be evaluated as follows:

3

Z SimBin(BY,Bf),
i=1
2 - HW (b} & bf)
HW(b{) + HW(bS)

SimBTC(Cg, Ce)
(6)
SimBin(B{,Bj}) =

where b denotes binary string, ‘&’ denotes the bitwise AND
operation of two binary strings, and HW stands for the Ham-
ming Weight [56], which counts the number of ‘1’s in the
binary string, i.e., the number of set bits. The binary descriptor
similarity SimBin is essentially the normalized sum of the
shared ‘1’ bits between two binary strings.

If the binary similarity (6) between the current BTC descrip-
tor C, and the candidate descriptor C. is above a threshold o,
we regard the triangle match to be correct and cast one vote for
the submap ID f of the candidate descriptor C.. We enumerate
all BTC descriptors of the querying submap, and for each BTC
descriptor, we cast votes for all candidate descriptors in the
corresponding container whose binary descriptors match with
the query one. Finally, the submap IDs with the top « votes
are saved for use in the fine loop detection step.

Fig. [7] illustrates our approach to descriptor querying and
matching using a Hash table, as well as outlier rejection via
binary similarity checking.

(T SN T T T T T T T T T T T T T T T ~
| Step1: Querying | | | | Step2: checking binary descriptor similarity :
| by triangle side . o
| lengths — 1 v-— |
| | V= :
| Query Cq | |
| y
| — 1 '
I H 1, u L] : I Candidate C; Query Cq :
| I 7 :
Py I
L g —-X—— |
| Hash(ly,15,13) '; 11 | —_— —x— — |
[ — - —
| £ X ] |
o |
2 |
| = | Candidate C,, Query C
| S ———— —-— ) S ——— }

Fig. 7: llustration of the descriptor querying and matching process in
two steps. Step 1 (left dashed box) shows the input BTC descriptor
and the Hash key computation to locate the container. Step 2 (right
dashed box) demonstrates the binary similarity checking between
the querying descriptor and each candidate descriptor, using color
columns to visually represent the binary string at each vertex, with
red indicating 1 and blue indicating 0.

B. Geometrical Verification

After identifying the potential x loop candidate submaps
through the descriptor voting process, we perform geometrical
verification on each of them in sequence. This step is designed
to filter out false detections that primarily arise from local
areas with similar overall appearance.
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As mentioned in Section [VI-A] the vertices correspondence
between binary descriptors in a BTC descriptor pair have been
established during the descriptor matching process. Specifi-
cally, for a query descriptor C, and its corresponding candidate
descriptor C., each binary descriptor of the triangle vertices in
C4 naturally corresponds to a binary descriptor in C.. Utilizing
this vertices correspondence, we can efficiently compute the
relative transformation §T = (§R, §t) € SE(3) between the
querying submap and candidate submap using Singular Value
Decomposition (SVD):

HZ” p?)(pi — P°),

3 1

nd = = D —

p _32i21 79 p 32 p7,7

U, S, V] =sv(H

[U, S, V] =svp(H), )
10 0

GR=V [0 1 0 u’,

0 0 det(VUT)
St = —8R* p?+p-.

Here, this transformation, €T = (SR7 ¢t), when applied
to the triangle vertices in the querying submap expressed
in the submap local coordinate frame, aligns them directly
to the candidate submap. To enhance the robustness, we
employ RANSAC[57] to find the transformation that max-
imizes the number of correctly matched vertices. We term
this transformation as a rough transformation and denote it
as 5T, = (§R,, §t.).

With the rough transformation ST“ we calculate the plane
overlap between the querying submap and the candidate
submap for geometrical verification. Denote the plane list of
the querying submap be 119 = [--- , (p!,ul,), - - -] extracted
from Sec [IV-B1] and the plane list of the candidate submap be
¢ = [---,(p§,us;), - ]. We construct a three-dimensional
k-D tree with the center points [---,p§,- -] of the candidate
submap planes II¢. Then, for each plane center point p} € I1¢,
we first transform f)g using the transformation 8TT’ and
then search for the nearest point pj in the k-D tree. We
judge whether the two planes coincide by examining the plane
distance and difference in normal vectors:

max ((ug;) " (GT-p! — p5), (u) " (GT7 b§

c
arccos(QRTugi ‘ug;) <

Pl)) <V

®)
where v4 and v, are preset hyperparameters, slightly larger
than o4 and o, used in the merging criteria equation (2),
to determine whether planes in the two submap overlap.
If a pair of planes satisfy the plane distance and normal
constraints in equation (8, the pair of planes is considered
to be overlapping. After checking all planes of the querying
frame, we calculate the percent of plane overlap (V) between
the querying submap and the candidate submap:

No

Nc _ Verlap % 100

N, total (9)
where Noyer1ap is the number of overlapping planes and
Niota1 18 the total number of planes in the querying submap.

For each candidate submap, we determine whether the
computed percept of plane overlap exceeds a certain threshold
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2

(c) Plane overlap. (d) Optimal registraion.

Fig. 8: Example of loop detection and correction using BTC descrip-
tors. (a) Loop detection with 45° rotation and 50m translation error
between submap O (white) and submap 4405 (yellow) of KITTIOO.
Matched descriptors are shown in the same color and connected
with three colored lines. (b) Registration result after transforming
the yellow point cloud to the white point cloud using the rough
transformation gTT obtained from H (c) Schematic representation
of the plane overlap ratio between the two point clouds, with the
plane overlap in this case being 58.9%. (d) The registration result
using the fine transformation 8T f-

op. If it does, the loop detection for this candidate submap is
considered valid. In cases where multiple candidate submaps
pass the geometrical verification, we select the one with the
highest percent of plane overlap N, as the best candidate.

By performing this geometrical verification, we significantly
reduce the chance of false loop detections, thus improving
the accuracy of our system. Moreover, the efficiency of our
geometric verification surpasses ICP-based methods used in
existing loop detection works [_8,|10] since the number of
planes is considerably lower than the number of points.

With the best candidate submap and its rough pose trans-
formation 8T“ we further refine it by minimizing the plane
distance and normal vector difference as defined in equation
using Ceres-Solver [58]. The optimized pose is termed as
the fine transformation and is denoted as gT t- We illustrate
the loop detection process between two submaps in Figure [§]

Finally, after performing loop detection, we add the de-
scriptors of the new submap to the Hash table database by
appending each descriptor to its corresponding container.

VII. BENCHMARK SETUP

In this section, we first introduce the datasets utilized
for benchmark evaluation. Next, we discuss the criteria for
experiments and provide an overview of the implementation
details for each method in comparison.

A. Datasets for Evaluation

We have selected various datasets detailed below to thor-
oughly evaluate the performance of our proposed method un-
der different conditions. The datasets are collected by different
types of LiDAR sensors and in diversified environments.

1) KITTI: The KITTI Odometry dataset [16] is acquired
at 10 Hz using a 64-beam spinning LiDAR (Velodyne HDL-
64E) mounted on the rooftop of a car moving in urban
road environments. It contains six sequences with loops (i.e.,

sequence 00,02,05,06,07,08), which are all utilized for eval-
uation. Since the ground-truth poses provided by the KITTI
Odometry dataset are not very accurate to determine the loop
ground-truth, we use a global hybrid LiDAR bound adjustment
method [59] to obtain the optimum pose estimate for all these
six sequences and use them as the ground-truth pose.

2) NCLT: The NCLT dataset [18] offers long-term mea-
surements captured on different days or seasons along similar
routes in a campus environment. The NCLT dataset is collected
at 10 Hz using a 32-beam spinning LiDAR (Velodyne HDL-
32E) mounted on a Segway mobile platform. Four sets of
sequences are selected according to the number of loops and
seasonal diversity, 2012-05-26, 2012-08-20, 2012-09-28, and
2013-04-05, marked as NCLT1 to NCLT4, respectively.

3) Complex Urban Dataset: The Complex Urban Dataset
[60] covers various complex urban environments, character-
ized by numerous moving objects and high-rise buildings.
Considering its complexity and number of loops, we select
five sequences for evaluation: Campus00, Urban04, Urban09,
Urban10, and Urban16, labeled as CU1, CU2, CU3, CU4, and
CUS5, respectively.

4) Wild-Places: The Wild-Places dataset [19] is a chal-
lenging large-scale dataset designed for LiDAR place recogni-
tion in unstructured, natural environments. It comprises eight
sequences captured using a handheld sensor over fourteen
months. We use all eight sequences for both inter-sequence
and intra-sequence (i.e., multi-session) evaluations, marked as
K-01 to K-04 and V-01 to V-04, respectively. These datasets
are collected by a 16-beam rotating LiDAR (Velodyne VLP-
16) at 20 Hz. The raw scans are then locally registered into
submaps, leading to a total of 67K undistorted submaps, each
with an accurate 6DoF ground-truth pose. Given that the data
is captured by a handheld device moving at a slow pace, we
sample submaps with a 1-meter distance to avoid redundancy.

5) Livox Dataset: The aforementioned datasets all utilize
spinning LiDARs leading to 360° horizontal Fied of View
(FoV). To verify the adaptability of our method to differ-
ent LiDAR types, we have also collected solid-state LiDAR
datasets. We employ Livox series LIDARs (Horizon and Avia)
and collect data in urban, campus, and unstructured environ-
ments. For urban environments, we select the open-source
Ka_Urban_East sequence from the Lili-OM[61]], referred to
as HORIZONI1. For campus environments, we provide two
datasets of varying lengths with loops, collected at the campus
of SUSTech, labeled as HORIZON2 and HORIZON3. For
unstructured environments, we provide two datasets collected
with a handheld device in parks and two datasets collected
with a drone above mountains, labeled AVIA1 to AVIA4.

In summary, we have used a total number of 25 sequences
in our evaluation. A comprehensive overview of the key
characteristics of the datasets is shown in TABLE [l The di-
verse datasets enable us to thoroughly assess the performance,
robustness, and adaptability of our proposed method across a
wide range of scenarios.

B. Comparison Methods

We compare the proposed methods against four existing
methods: Scan Context [8], M2DP [39]], NDT [34], Bow3D
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TABLE I: Datasets for benchmark evaluation.
Dataset KITTI NCLT Complex Urban Dataset Wild Place Livox Dataset
J f %,
- g
Platform =
/ A
e -
&
i
LiDAR !L/ ~§
- by "‘hmt" Veloayne U
Velodyne HDL-64E Velodyne HDL-32E Velodyne VLP-16 Velodyne VLP-16 Livox Horizon Livox Avia
Scanning S . S . e . e . . .
Mechanism spinning 64-line spinning 32-line spinning 16-line spinning 16-line Risley prism
Field of View 360.0° x 26.8° 360.0° x 41.3° 360.0° x 30° 360.0° x 30° 120° x 40° 70.4° x 77.2°
No. of Sequences 6 4 5 8 7
Environment Urban Campus Urban, Campus Forest Urban, Campus, Unstructured

[48] and FreSCo [45]. Among them, M2DP, NDT, BoW3D,
and BTC have the capability to operate on accumulated point
cloud submaps. Therefore, we prepare submaps for these
datasets by accumulating consecutive ns LiDAR scans using
the ground-truth poses in each dataset. Specifically, for the
KITTI and Wild-Places datasets, additional accumulation is
not necessary since each LiDAR scan in KITTI is already
sufficiently dense (so a single scan is used as a submap), and
the Wild-Places dataset already provides accumulated dense
submaps. For NCLT and Livox datasets, we accumulate every
ns = 10 consecutive LiDAR scans to one submap. For the
Complex Urban dataset, it employs two 16-beam spinning
LiDARs (Velodyne VLP16) installed on the left and right
side of the vehicle. We merge the point clouds from both
LiDARs into a single scan and then accumulate every n, = 10
consecutive scans to one submap. The submaps are directly fed
to M2DP, NDT, BoW3D, and BTC for evaluation. The default
implementation of Scan Context accepts individual scans as its
inputs. To enable a fair comparison, we also run it on submaps.
To do so, we reproject an accumulated submap back to the
middle scan to mimic a denser ’scan” measured at this pose.
For all loop detection methods, we excluded the 100 most
recent submaps in loop detection, avoiding the detection of
loops that are too close in time. All methods are evaluated on
the same computing platform with implementation details as
follows.

1) Scan Context: We utilize the open-source C++ imple-
mentatiorﬂ of Scan Context. To reproduce the results reported
in the original Scan Context paper, we keep the original
implementation to our best efforts. Specifically, we enable
descriptor augmentation and apply a 0.5 m3-resolution voxel
downsampling to the input point cloud submap. For the
parameter settings, we set the candidate number to 50 and
use the default configurations for the other parameters as
provided in their open-source implementation. As the open-
source version of Scan Context is incompatible with solid-state
LiDAR, so its evaluation on the Livox dataset is omitted.

Zhttps://github.com/irapkaist/scancontext

2) M2DP: The open-source code for M2DPE| is provided in
MATLAB. To ensure a fair comparison in terms of computa-
tional efficiency, we replicate the algorithm in C++, following
the MATLAB code provided by the original authors. To best
reproduce the original M2DP implementation, we adhered to
the same configuration provided in their open-source code,
except for incorporating a 0.5 m? point cloud downsampling
before descriptor calculation, which we find further improve
the efficiency of M2DP from their original implementation.

3) NDT: The authors of NDT [34] do not provide open-
source code for their implementation. Thus, we re-implement
the algorithm in C++, based on the descriptions in the
original publication, and open-source our re-implementation
on GitHulﬂ for the reproduction of our evaluated results.
In line with the guidance of the original authors, we use
submaps as the input, which leads to improved detection
performance. Additionally, due to the high computational cost
of the descriptor similarity calculation for NDT, we limit the
NDT search range to 500m from the query submap, especially
in larger such as Wild-Places. This step ensures the method
maintains an acceptable computation time.

4) BoW3D: We employe the open-source C++ implemen-
tatiorﬂ provided by BoW3D [48]. Link3D, the corner point
extraction module in BoW3D, exhibits improved performance
when the point cloud is denser. As such, we input submaps
into the BoW3D algorithm in our evaluation. For parameter
settings, we use the default configurations as provided in their
open-source implementation. BoW3D is only adapted to the
KITTI dataset, so we only evaluate it on KITTL

5) FreSCo: FreSCo [45] first pre-processes the original
LiDAR point cloud of a single scan to obtain BEV (Bird’s Eye
View) images. Subsequently, descriptors are extracted from
these BEV images for loop detection. We directly use the
MATLAB implementationﬂ provied by FreSCo [45], where the
pre-processing part is implemented using C++|Z| while the rest

3https://github.com/LiHeUA/M2DP
4https://github.com/ChongjianY UAN/ndt_loop
Shttps://github.com/YungeCui/BoW3D!
Shttps://github.com/soytony/FreSCo
"https://github.com/soytony/Point-Cloud- Preprocessing-Tools
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of descriptor extraction and loop detection are implemented in
MATLAB. It’s noteworthy that the point cloud preprocessing
module of FreSCo is only designed for single-scan point
clouds, so only it’s results on the KITTI dataset are included
in our evaluation to ensure a fair comparison. For parameter
setting, we use the defaults configurations in the open-source
implementation, which is specifically tailored for KITTI.

6) BTC: Our proposed BTC is implemented in C++ with
parameters presented in TABLE While we’ve listed all
parameters to provide a comprehensive understanding of our
method, it should be noted that only a couple of them,
specifically x (number of candidates) and M (number of
reference planes), needs to be tuned with little efforts. The
parameter ~ holds significance as it affects the selection of
loop submap candidates, thereby influencing the balance be-
tween recall rate and computational efficiency. The parameter
M determines the BTC’s adaptability to diverse terrains. In
our experimental evaluations, only the parameter M is slightly
adjusted among different datasets. Specifically, for the AVIA1
to AVIA4 datasets, due to the very uneven terrains and the
absence of (or very small) ground areas, we use two reference
planes (i.e., M = 2). For all other dataset sequences, we use
one reference plane (i.e., M = 1). Except for this minor
adjustment, all rest parameters remain identical across all
sequences, showcasing their robustness and adaptability.

TABLE 1I: Parameters for BTC.

Parameter Value Description
Ng 1,10 scans number to form a submap
AL 2m voxel size for plane detection
01,02 0.01, 0.05  threshold for plane determination criteria
Od,0u 0.3m, 20°  threshold for plane merging criteria

1,2 number of reference planes
r 0.5m pixel resolution for height-encode image
hmax 5m maximum height for binary encoding
Ah 0.1m height resolution for binary encoding
or 10 intensity threshold for keypoint selection
K 10 Nearest keypoints No. for triangle formation
Imin, lmax 2m, 30m valid triangle side lengths range
Al 0.2m side length quantization resolution
p 116101 prime number for Hash key distribution
B 1010 maximum value for Hash key range
s 0.7 threshold for binary similarity checking
K 50 No. of loop submap candidates
Yds Yu 0.5m, 30°  threshold for plane overlap criteria
op 0.5 threshold for geometrical verification

C. Evaluation Criteria

In order to evaluate the performance of all loop detection
methods, we rely on precision and recall metrics. Precision is
defined as the ratio of true positives (TP) over all predicted
positives, which is the sum of true positives and false positives
(FP), i.e., Precision = TP / (TP + FP). The recall is defined
as the ratio of true positives over the actual positives (i.e.,
ground-truth loops (GT)), i.e., Recall = TP / GT.

Determination of true positives (TP) and false positives (FP)
of a loop submap predicted by a method can be a complex task
in loop detection scenarios. Many existing methods [810}/39}
48|] rely on a distance-based criterion, where if the ground-
truth pose distance between the query and the predicted loop
submap is less than a threshold (e.g., 4m), the detection is
considered a true positive (TP), or else false positive (FP).

b .
(b) KITTIOO submap 3250-2338.

(a) AVIAOI submap 575-31.
Fig. 9: Examples illustrating the problem of distance-based criterion
for true/false positives determination. (a) Two submaps observing
completely different areas have a small distance (3.5 m with no point
cloud overlap); (b) Two submaps sharing large co-visible areas have
a large distance (18.3 m with 51% cloud overlap).

Determining the true or false positives based on distances
suffers from fundamental limitations. For LiDARs with a
frontal FoV (e.g., Livox LiDARSs), the sensors could be closely
positioned but face opposite directions, observing completely
different areas of the scene (see Fig. P(a) In such cases,
using the distance-based criterion will identify incorrect true
positives. On the other hand, LiDAR’s long-range capability
can result in situations where the submap distance is large,
yet the point cloud share substantial co-visible areas (see Fig.
Ekb)). In this case, the distance-based criterion will identify
incorrect false positives.

To address the above issue, we adopted an overlap-based
criterion similar to that used in OverlapNet [54]]. Specifically,
for each querying submap, if the predicted loop submap shares
an overlap over 50%, it is viewed as a true positive (TP); Oth-
erwise, it is viewed as a false positive (TP). When calculating
the overlap between two submaps, we use the ground-truth
pose to register them to the same frame. The registered point
cloud is then split into voxels of size 0.5m. Afterward, the
overlap is determined as the ratio of the number of voxels
containing points from both submaps over the number of
voxels containing points. The overlap-based criterion offers
a more sensible evaluation metric by measuring the degree of
overlap between point clouds from the querying submap and
loop submap.

Finally, to determine the number of actual positives (or
ground-truth loops), we adopt the following procedure. For
each submap, we conduct a search in all previous submaps
except the 100 most recent ones to avoid detecting temporally-
close loops (as we did for all loop detection methods).
Utilizing the ground-truth poses, we compute the overlap
between the current submap and each of the previous submap.
If any previous submap shares more than 50% overlap with
the current submap, it contributes an effective loop, and the
number of actual positives, GT, is increased by one.

VIII. BECNHMARK RESULTS
A. Precision Recall Evaluation

1) Single-session Evaluation: In this experiment, we aim to
evaluate the performance of all benchmarked loop detection
methods in terms of precision-recall curves, following the
evaluation criteria outlined in Section To generate the
precision-recall curve, we vary the threshold o, used in the
geometrical verification process (Section [VI-B) and obtain a
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Fig. 10: Single-session evaluation of all benchmark methods on 30 sequences. Each subfigure corresponds to a different sequence, showcasing
the precision-recall performance of each method. The results show that BTC consistently outperforms the other methods across all sequences,
demonstrating its robustness and superior adaptability to various types of data and environments. Each subfigure corresponds to a different
sequence, illustrating the precision-recall performance of all the benchmark methods.

set of precision and recall pairs at different threshold levels.
For other comparison methods, we follow a similar approach
by varying the threshold of key parameters to generate their
respective precision-recall curves.

The precision-recall curves of all methods on the 30 se-
quences are plotted in Fig. As can be seen, our proposed
method consistently outperforms the other four methods across
all datasets. In contrast, other methods exhibit large perfor-
mance variations in different scenes. Scan Context achieves
satisfactory performance in urban and campus environments
(as shown in KITTI and NCLT datasets, respectively), but
its performance significantly declines in Wild Place forest
datasets. This performance degradation can be primarily at-
tributed to the 2.5D image descriptor employed by Scan
Context, which is generated through BEV (bird’s-eye view)
spatial partitioning and maximum height encoding that lack
of sufficient discriminativeness in forest scenes. For the Livox
dataset, M2DP and NDT demonstrate good results in short-
term campus sequences (e.g., HORIZON2, HORIZON3);
however, their performances drop considerably in long-term
sequence (HORIZON1), unstructured (AVIA1 AVIA4), urban
(KITTI) or campus (NLCT) datasets. FreSco demonstrates
superior performance than other comparitive methods on the

KITTI dataset, but is still outperformed by BTC in terms of
both accuracy and recall with big margins. Overall, our BTC
method exhibits much higher recall rates while maintaining
superior precision even in complex unstructured scenes and in
environments with numerous dynamic obstacles and signifi-
cant occlusions (e.g., the Complex Urban dataset).

For Scan Context and BoW3D, their recall rates on the
KITTI dataset are lower than the results presented in the
original paper [8,48]]. This discrepancy primarily stems from
the different criteria used for determining the ground-truth
loops (GT). Scan Context used the distance-based criterion
for determining the ground-truth loops (GT) as well as true or
false positives where the distance threshold was 4m. Bow3D
further reduces this threshold to 3m in their evaluation. Such
distance threshold is much less than the LiDAR measuring
range (up to hundreds of meters) and hence causes the ground-
truth loops (GT) to be much smaller than the actual number,
which causes a higher recall rate. In contrast, our overlap-
based evaluation computes the overlap between querying
submaps and loop submap candidates to determine the ground-
truth loops as well as true and false positives. Due to the
long LiDAR measuring range, the overlap of two submaps
could still be large (e.g., more than 50%) even when the
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two submaps are far apart, leading to a much higher number
of ground-truth loops (GT). For instance, considering the
KITTIOO, 02, 05, and 08 sequences utilized in Scan Context
[8]], the ground-truth loops are 790, 309, 493, and 332 when
applying the 4-m distance criterion. However, when using the
overlap criterion, ground-truth loops are 1037, 358, 662, and
478, respectively. Furthermore, Scan Context [[8] and Bow3D
[48]] exhibit weaker pose invariance, causing missing loop
detection when the distance is large whilst the point cloud
overlap is still over 50%. Such missing loop detection reduces
the number of true positives (hence lower precision and recall)
for these methods when using the overlap criteria.

The robustness of our BTC method is further highlighted
through a series of challenging scenarios, where other bench-
marked methods often struggle due to their limited pose
invariance. These situations, selected from the benchmark
dataset, are illustrated in Fig.

« Reversed loops: As shown in Fig. [IT] (a-b), our method
successfully recognizes reversed loops in both KITTIO8
and Livox sequence AVIA1. A reversed loop occurs when
the vehicle revisits a place from an opposite direction,
presenting a significantly different perspective of the
environment. This situation poses a big challenge for
methods without strong pose invariance.

e Loops with large rotation and translation: (c-d)
show loops under large rotation and translation from
the KITTIO8 sequence and the forest sequence V-04,
respectively. In these scenarios, BTC effectively handles
substantial changes in viewpoint.

o Loops with different revisit routes: As demonstrated in
Fig. [1 1| (e-f), our method is able to recognize a loop with
the same direction but different routes from the Livox
sequence AVIAL. This type of loop can be challenging
due to the partial overlap of point clouds between the first
and revisited pass.

o Down-looking scenarios: In Fig. (g-h), we highlight
two cases from sequence AVIA3, which is collected by
an airborne LiDAR flying at the height of 50 meters,
creating a downward-looking view angle that is often not
demonstrated in existing works [16,|18}[19]. The BTC
method still performs well despite the natural, unstruc-
tured environments.

2) Multi-session Evaluation: In this experiment, we evalu-
ate the multi-session capability of the proposed method by
examining its ability to detect loops across different time
intervals. We employ two benchmark datasets, the NCLT
and Wild-Places datasets, which represent typical campus and
forest environments, respectively. The datasets are collected in
their respective environment at different times. For the NCLT
dataset, the NCLT1 is used as the database, and the NCLT2,
NCLT3, NCLT4 are selected as query sequences with time
intervals of 3 months, 4 months, and 11 months, respectively.
The Wild-Places dataset includes sequences from two distinct
forest environments, Karawatha and Venman. For Karawatha,
the K-01 is utilized as the database, and the K-02, K-03, and
K-04 are selected as query sequences with time intervals of the
same day, 6 months, and 14 months, respectively. The Venman

sequences are handled in a similar manner.

For assessment, since both datasets do not offer precise
multi-session trajectory alignment, we employ Hierarchical
Bundle Adjustment (HBA) [[59]] to optimize all poses of all
sessions, leading to a global consistent pose estimate across all
sequences. Fig. [[2] shows the global point cloud registered by
this approach on the NCLT and WildPlace datasets. Then we
use the estimated pose trajectory as the ground-truth pose to
determine true positives and false positives (detailed in Section
for the multi-session evaluation. For the assessment
criterion, we use the average precision (AP), which is the area
under the precision-recall curve.

Fig. [[3] shows the average precisions (APs) of BTC, Scan
Context, NDT, and M2DP on the NCLT dataset, and BTC,
Scan Context, and NDT on the Wild-Places dataset. As can
be seen, while all methods’ APs degrade as the time interval
increases, our proposed method outperforms other methods
consistently overall at all time intervals on all datasets. No-
tably, for the Wild-Places dataset, our method’s AP at the
longest time interval surpasses those of the other methods even
at the shortest interval.

B. Runtime Evaluation

In this section, we compare the runtime of BTC with other
methods. All experiments are carried out on the same system
with an Intel i7-11700k @ 3.6 GHz and 64 GB memory. The
implementation of all methods is described in Section
Since BoW3D is only compatible with the Velodyne 64-line
LiDAR and ScanContext is only compatible with mechanical
spinning LiDARs, the results will not be recorded for datasets
that are not compatible with these two methods.

Table presents the average descriptor extraction time,
loop detection time (comprising candidate submap selection
and geometrical verification, if performed), and total time
(both descriptor extraction and loop detection, representing
the total time duration of the loop detection process) for each
method across different sequences, along with the path length,
loop node number, total node number, and average points per
submap for each dataset.

Unlike global description methods such as ScanContext,
M2DP, NDT, and FreSCo, which utilize a single descriptor
for a submap, BTC extracts multiple descriptors for each
submap. This design allows each descriptor in the current
query submap to search the database for similar descriptors
and conduct binary similarity checks independently. Therefore,
BTC employs multi-threading (four threads) in candidate
submap search (Section [VI-A), while the rest of the BTC
process (including descriptor extraction in Section and
geometrical verification in Section operates in a single-
threaded mode. For a comprehensive comparison, we’ve also
presented results with all BTC steps executed using a single
thread.

As can be seen, BTC consumes the least time for descriptor
extraction in average and also on all individual sequences
except KITTIL, where its extraction time closely follows that of
Scan Context. The primary reason for the efficient descriptor
extraction in BTC is the efficient incremental plane merging
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Fig. 11: Successful place recognition in challenging scenarios selected from the benchmark datasets. This figure presents eight subplots, each
depicting a unique scenario. (a) and (b) show reversed loops from KITTIO8 and AVIA1 sequences, respectively. (c) and (d) demonstrate loops
with large rotation and translation from KITTIO8 and forest sequence V-04, respectively. (e) and (f) present loops with the same direction
but different routes from the Livox sequence AVIAL. Lastly, (g) and (h) display down-looking cases from sequence AVIA3, with a flight
height of about 50 meters. In each subplot, the caption indicates the relative rotation and translation between the two submaps in a loop pair.

Il NCLT1: 2012-05-26
Bl NCLT2: 2012-08-20
Il NCLT3: 2012-0

Il K-01:same day

Il K-02:same day
Il K-03: 6 months

(b) Wild-Places Dataset

Fig. 12: Point cloud alignment results on the NCLT and Wild-Places
datasets. The aligned poses are used to determine ground-truth loops
(GT) and assess whether detected loops are true or false positives
during multi-session evaluations.

for reference plane generation and the simple yet efficient
keypoint extraction. FreSCo’s descriptor extraction is most
time consuming due to the requirement of a ground removal
preprocessing step (implemented in C++) to generate a BEV
(Bird’s Eye View) image, which significantly lengthens its
extraction time.

For loop detection, BTC achieves the second-fastest speed

after M2DP when using multi-threading. Under single-
threaded operation, BTC’s performance is closely competi-
tive with Scan Context. Fast query Hash tables are utilized
to accelerate the query process, enabling faster similarity
searches among a large number of descriptors and thus improv-
ing detection speed. Additionally, many incorrect descriptor
matches are eliminated through binary similarity checking,
resulting in a high ratio of correct keypoints correspondence
that further speeds up RANSAC in the geometric verification
step. Furthermore, our geometric verification step employs
plane-to-plane registration, which is more efficient than ICP
due to the smaller number of planes than points. Although
M2DP has the fastest query time by directly using the L2 norm
for rapid descriptor similarity comparison, its high descriptor
extraction time results in overall high computation time. For
Scan Context, numerous engineering optimizations (e.g., align
key and partial comparison for distance calculations between
two scan contexts) available in the open-source code but not
described in the original paper have significantly reduced
the actual computation time when compared to the original
paper [8]. However, despite these optimizations and others
(e.g., point downsample), the overall computation efficiency
of Scan Context is still considerably lower than that of BTC.
NDT exhibits the lowest efficiency, especially in large-scale
scenes. This is because it requires comparing each individual
descriptor in the database with the querying descriptor during
retrieval. When the database contains a large number of de-
scriptors, loop retrieval becomes increasingly time-consuming.
In sum, BTC consumes the least total computation time in all
the 30 sequences, both in multi-threaded and single-threaded
environments.

C. Pose Estimation Evaluation

In this section, we evaluate the accuracy and efficiency
of the relative pose estimation of the benchmark methods.
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Fig. 13: Multi-session evaluation of different methods across varying time intervals on the NCLT and Wild-Places datasets. The bars represent
the average precision for each method at different time intervals, while the lines with markers show the overall performance trend. The
results suggest that BTC consistently outperforms the other methods across all time intervals.

TABLE III: Dataset size, submap number, and runtime performance on 30 sequences. For BTC, we evaluate both multi-thread and single-
thread implementation. In multi-thread implementation, four threads are employed in the candidate submap search of loop detection (including
descriptor querying and binary similarity checking), while the geometrical verification of loop detection and the descriptor extraction run in
a single thread. The results of single-thread implementation is shown inside parentheses. For BoW3D and FreSCo, they are only evaluated
on KITTI, so their average time are not computed to avoid biased results.

Path length [km] Avg. points

Descriptor Extraction [ms] / Loop Detection [ms] / Total [ms]

Sequence o

(# revisits / # total) / submap BTC Scan Context NDT M2DP BoW3D FreSCo
KITTIOO0 3.72 (1037 / 4541) 121,495 11.0/ 6.6 (19.6) / 17.7 (30.6) 10.6 / 23.1 /33.7 31.8/180.9/212.7 295/0.3/29.8 15.1/21.3/364 561.9/37.2/599.1
KITTIO2 5.06 (358 / 4661) 125,627 14.0/8.3 (25.4) /224 (39.4) 10.6 /23.0/33.6 33.1/1799/213.0 309/03/31.2 12.6/17.8/30.4 547.3/46.6/593.9
KITTIOS 2.21 (662 / 2761) 125,037  12.1/6.4 (18.4) /185 (30.5) 11.0/22.7/33.7 355/119.4/ 1548 33.8/0.2/34.0 17.1/22.7/39.8 537.2/41.1/578.3
KITTIO6 1.23 (606 / 1101) 122,300  13.8 /9.1 (24.4) /22,9 (38.2) 12.6/21.2/33.8 49.6/46.2/958 457701 /458 164/12.5/289 528.9/37.2/566.1
KITTIO7 3.22 (141 / 1101) 121,330 120/ 3.6 (9.6) / 15.6 (21.6) 9.7/21.2/30.9 31.7/41.7/734 299/70.1/300 163/135/299 565.7/37.6/603.3
KITTIO8 2.45 (478 1 4047) 122,593  13.4/6.2 (20.8) / 19.6 (34.2) 11.8/23.0/34.7 39.9/2583/2982 383/03/34.6 17.6/222/39.8 547.7/44.9/592.6
NCLT1 6.35 (1280 / 5284) 194,611 18.5/16.3 (33.2) / 34.7 (51.7) 23.0/23.8/46.9 74.2/430.1 /5043 42.6/0.3/429 —-/=1- -/=1/-
NCLT2 6.02 (992 / 4994) 198,008 18.2/16.7 (33.7) / 34.8 (51.9) 23.2/23.8/47.0 729/439.9/512.8 429/0.3/43.1 /== -/=1/-
NCLT3 5.58 (1208 / 4647) 197,000 18.7 / 14.3 (24.6) / 33.0 (43.3) 22.3/23.4/457 70.8/3255/3964 40.7/0.2/40.9 —-/=1- -/=1/-
NCLT4 6.54 (601 /4153) 207,651 23.6/17.6 (35.1) / 41.3 (58.7) 27.2/23.6/50.8 110.9/415.8/526.7 59.4/0.2/59.6 /== -/=/-
CU1 9.56 (120 / 1470) 356,824 37.3/11.9 (26.8) / 49.3 (64.1) 41.8/22.2/64.0 179.8 /89.3/269.1 88.2/0.1/88.3 /== -/=/-
Cu2 16.35 (537 /2175) 347,975 29.6/ 15.3 (42.3) / 44.9 (71.9) 32.9/23.8/56.7 154.2/189.4/343.6 79.8/0.2/80.0 —-/—/- —-/-1/-
CU3 15.70 (439 / 2079) 360,970  26.5 /8.3 (21.8) / 34.8 (48.3) 34.2/22.8/57.0 182.0/231.2/413.1 84.1/0.2/84.3 —/=1- -/=1/-
CU4 14.67 (159 / 1561) 391,331  29.7 /8.4 (24.1) / 38.1 (53.8) 39.4/223/61.7 197.9/198.1/396.0 96.2/0.2/96.4 /== -/=1/-
CUS 21.84 (765 / 3185) 397,388 25.7/11.4 (33.7) / 37.1 (59.4) 32.0/23.3/553 206.8/342.1 /5489 92.8/0.2/93.0 /== -/=/-
K-01 5.12 (231/3932) 315,715  30.7 /7.7 (20.3) / 38.4 (51.0) 43.5/22.7/66.2 185.0/245.6/430.7 89.9/0.2/90.0 /== -/=/-
K-02 5.63 (381 /4253) 225240 22.0/5.5 (14.7)/27.5 (36.7) 38.6/23.4/62.0 196.2/329.2/5255 862/0.2/864 /== -/=/-
K-03 6.18 (1258 / 5059) 334,566  32.0 /7.2 (23.1) / 39.2 (55.1) 46.6/23.0/69.7 196.2/325.7/522.0 90.4/0.2/90.6 /== —-/-1/-
K-04 5.55 (514 /3975) 323,248 28.8/52(13.2)/34.1 (42.0) 41.7/22.8/64.4 187.8/348.1 /5359 813/0.2/814 /== -/=1/-
V-01 2.64 (529 /2109) 332,214  32.8/4.8 (13.3)/37.6 (46.1) 50.6/222/729 236.8/407.9/644.7 109.0/0.1/109.1 —/=1- -/=1/-
V-02 2.62 (442 /1996) 332,680 31.6 /4.6 (11.7)/ 36.3 (43.3) 49.1/222/71.3 237.0/371.9/608.9 108.6/0.1/108.7 /== -/=/-
V-03 4.56 (576 / 3436) 366,496  29.8 /4.6 (11.9)/ 34.4 (41.7) 50.4/22.6/72.9 260.1 /758.6/1018.6 106.3 /0.1 / 106.4 /== -/=/-
V-04 2.80 (361 /2320) 326,698  22.3/8.4(27.9)/30.7 (50.2) 45.7/22.4/68.1 229.4/633.5/862.9 98.1/0.1/982 /== -/=/-
HORIZON1 3.60 (138 / 1251) 72,135 9.5/8.5(204)/18.1 (29.9) /== 31.5/456/71.1 28.4/0.1/285 /== -/=/-
HORIZON2  0.96 (74 / 317) 207,748 185/ 11.9 (14.9) / 30.4 (33.4) /== 58.4 /258 /842 59.7/0.1/59.8 /== —-/—-1/-
HORIZON3  1.67 (103 / 559) 208,055 19.2/15.9 (28.1) / 35.2 (47.3) —/=/- 65.4 /3257979 63.1/ 0.1/ 63.2 /== -/=1/-
AVIA1 0.89 (122 / 599) 238,400 25.8/14.7 (31.9) / 40.5 (57.7) —-/=-/- 63.8/211.7/2755 61.0/0.1/61.1 —/=1/- -/=1/-
AVIA2 0.80 (151 / 539) 238,404 24.9 / 18.3 (35.3) / 43.2 (60.2) /== 74.8 /1244.7/319.5 582/0.1/583 /== -/=1/-
AVIA3 0.89 (179 / 399) 211,741 39.6 / 15.6 (27.2) / 55.1 (66.8) /== 129.5/347/1642 915/0.1/91.6 —-/=1- -/=/-
AVIA4 0.96 (187 / 380) 178,778  37.2/ 15.9 (30.0) / 54.1 (67.2) /== 1169 /454 /1622 78.0/0.1/78.1 /== -/=/-
Average 5.42 (487 /2706) 243,408 22.6/10.3 (23.9) / 32.9 (46.5) 30.4/22.9/53.3 124.6/251.4/376.0 68.1/0.2/68.3 /== -/=/-

Our proposed BTC provides the relative transformation of all
six degrees of freedom (DoF) between the query and loop
submaps. BoW3D [48]] is also capable of estimating the full
6-DoF relative pose because the Link3D descriptor [51] it
uses is pose invariant, hence allowing to establish keypoints
correspondences necessary for relative pose estimation. Scan
Context [[8] can only estimate the yaw angle between two
submaps, which, as claimed by the authors [8], can accelerate
point cloud registration and enhance ICP accuracy; thus, we
additionally run a G-ICP registration [46] following the Scan
Context to determine the 6 DoF relative pose (denoted as
SC+GICP). We also test the original G-ICP [46] alone under
the same conditions. For FreSCo [45]], it first estimates the yaw
angle from descriptor matching similar to Scan Context [S]],

then it executes a 2D normal-based ICP on the flattened 2D
point clouds to obtain a full 6-DoF relative pose estimation.
Finally, as M2DP [39] and NDT [34] do not offer any
information regarding relative pose estimation, we exclude
them from the results.

We conduct pose estimation evaluation on ground-truth loop
submap pairs. For each loop pair, the evaluated method first
performs loop detection by extracting descriptors (for both
submaps), matching descriptors, and examining if the submap
scene similarity exceeds the loop detection threshold. If true,
the method proceeds to estimate the relative pose between
these two submaps. To test the robustness of pose estimation
under different initial poses, for each loop pair, we perturb
the initial relative pose from the true relative pose at different
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TABLE IV: Relative Pose Estimation Evaluation. The descriptor time includes the descriptor extraction time for both submaps in a loop pair
(note that for Scan Context, the descriptor augmentation was performed only for one submap in a pair).

KITTIOO with small perturbation KITTIO8 with small perturbation

Recall  Sucess TE RE  Descriptor Registration  Recall Sucess TE RE  Descriptor Registration

Rate Rate [m] [deg] Time [ms] Time [ms] Rate Rate [m] [deg] Time [ms] Time [ms]
BTC 97.05% 99.68% 0.059 0.154 25.23 2.83 96.13% 100.00% 0.095 0.233 31.17 3.51
BoW3D 70.57% 98.96% 0.088 0.481 35.11 11.29 36.33%  87.24%  0.142 1.593 38.78 13.09
FreSCo 89.78% 97.42% 0.297 0305 1076.29 81.24 86.09% 96.27% 0371 0380 1083.16 103.21
SC+GICP 81.36% 99.37% 0.071 0.206 11.66 120.25 70.58%  98.75%  0.190 0.325 12.37 235.34
GICP - 93.70% 0.102 0.281 - 169.52 - 9491% 0246 0.405 - 306.40

KITTIOO with large perturbation KITTIO8 with large perturbation

Recall ~ Sucess TE RE  Descriptor Registration ~ Recall Sucess TE RE  Descriptor Registration

Rate Rate [m] [deg] Time [ms] Time [ms] Rate Rate [m] [deg] Time [ms] Time [ms]
BTC 97.05% 99.68% 0.059 0.154 25.23 2.83 96.13% 100.00% 0.095 0.233 31.17 3.51
BoW3D 70.57% 98.96% 0.088 0.481 35.11 11.29 36.33% 87.24% 0.142 1.593 38.78 13.09
FreSCo 89.78% 57.23% 0384 0316 1076.29 147.95 86.09% 37.55% 0.411 0.463 1083.16 167.18
SC+GICP 81.36% 48.94% 0.081 0.213 11.66 201.85 70.58%  30.01% 0.206 0.420 12.37 412.23
GICP - 46.03% 0.115 0.298 - 230.50 - 30.09%  0.283 0.505 - 465.70

scales: small perturbations (£10° in each axis of rotation and
£5 m in each axis of translation) and large perturbations
(£90° in each axis of rotation and +10 m in each axis of
translation). The parameters of each method are set to the
values that yield the maximum F1 scores in its respective
precision-recall curve shown in Section

We evaluate all methods in terms of the overall recall rate
(successfully detected loop pairs over all ground-truth pairs),
the success rate (successfully registered loop pairs over all
successfully detected loop pairs), and the average translation
error (TE) and rotation error (RE) of all successfully registered
loop pairs. We consider a loop pair to be successfully regis-
tered if the TE is below 3m and the RE is below 5° when
compared with the ground-truth pose. We also evaluate the
computation efficiency of all methods in terms of averaged
descriptor extraction time (for both submaps in a loop pair)
and pose registration time (comprising descriptor matching,
scene similarity assessment, and pose estimation).

The results on KITTIOO and KITTIO8 sequences are re-
ported in Table As can be seen, both BTC and BoW3D
demonstrate remarkable invariance to rotation and translation
perturbations, as indicated by their consistent performance
across both small and large initial pose disturbances. This
stability arises from their ability to extract features completely
in the local frame of the point cloud, hence not susceptible
to initial pose perturbations. In contrast, the success rate of
FreSCo, SC+GICP and GICP drops significantly when there
is a large pose disturbance due to their dependence on good
initial pose estimations for convergence.

Overall, BTC achieves the highest recall rate and success
rate with the lowest TE and RE compared to all other methods.
Meanwhile, BTC has the least registration time, about 4x
faster than BoW3D and 50x faster than SC-ICP and G-ICP.
BTC’s superior performance and speed are attributed to two
factors: its triangle matching scheme and binary similarity
checking. These techniques significantly enhance the accuracy
of keypoints matching, thus enhancing the efficiency and
accuracy of the pose registration.

Fig. |14| further illustrates several examples of submap regis-
tration utilizing BTC. As demonstrated, BTC effectively aligns
pairs of loop submaps in various environments, including both
urban and unstructured environments.

D. Ablation Study

In this section, we provide ablation studies on the key
designs of our method.

1) Binary Descriptor: A key novel design with respect to
our previous conference paper [[11] is the binary descriptor,
which aims to improve the accuracy and efficiency of triangle
matching. This experiment investigates the effectiveness of
the binary descriptor. We select four representative sequences
from the benchmark datasets for the ablation study: KITTI00
(urban environment with a spinning LiDAR), Wild-Place K-
03 (forest environment with a spinning LiDAR), HORIZON1
(urban environment with a solid-state LiDAR), and AVIA1
(unstructured environment with a solid-state LiDAR). In the
experiment, we evaluate the full BTC, denoted as BTC (full),
and compare it with the BTC without binary descriptor, termed
as BTC (w/o binary), while keeping all other configuration
parameters the same. More specifically, the two methods use
the same set of keypoints and triangle descriptors, but in BTC
(w/o binary), only the side lengths of the triangle descriptors
are used for matching, and the binary similarity checking of
triangle vertices detailed in Sec. is omitted.

We report the average precision (AP), average computation
time (including both descriptor extraction and loop detection)
and descriptor matching accuracy of all true positive loops
in Table To calculate the descriptor matching accuracy,
we use the relative pose between a loop pair provided by
the geometrical verification to transform all descriptors of
the querying submap to the loop submap’s frame. Then,
distances between the three triangle vertices of each BTC
descriptor pair are calculated. Pairs of BTC descriptors with all
vertices closer than 2 m are considered correct matches. The
matching accuracy is then defined as the ratio of the number
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(a) RPY: (18.3°, —19.1°, —19.2°) (c) RPY: (—81.2°,71.4°,45.1°) (d) RPY: (23.3°,70.8°,19.5°)

(b) RPY: (—4.8°,30.4°,81.3°)
Fig. 14: Registration of loop submap pairs using BTC in four different cases, each with varying initial RPY errors. The top row shows the
point clouds before registration and displays their initial relative pose, with the two point clouds and their corresponding keypoints colored
in white and yellow, respectively. Matched descriptor pairs are represented by triangle surfaces colored in the same color. The bottom row

displays the point clouds after registration. In all cases, BTC successfully aligns the point clouds despite the large errors in initial poses.

of correct matches to the total number of matches input to the
geometrical verification step.

As can be seen from Table [V| BTC (full) significantly
outperforms BTC (w/o binary) with much higher AP and
lower computation time. The improvement in AP is due to
the significantly higher matching accuracy of the triangles, as
evidenced in the last column, which effectively suppresses the
votes on false loop submaps. The higher triangle matching
accuracy also eliminates the number of false keypoints (i.e.,
triangle vertices) correspondences, hence reducing the time for
RANSAC. The time reduction in RANSAC even outweighs
the time for extracting the binary descriptor, leading to a
less overall time for BTC (full). These findings highlight the
importance of binary descriptors, particularly for challenging
environments such as forest scenes (K-03) and the Livox
dataset (HORIZON1 and AVIAL).

TABLE V: Ablation Study: Comparison of place recognition perfor-
mance using BTC (full) and BTC (w/o binary) on four representative
sequences.

Sequence BTC (full) | BTC (w/o binary)
Avg. Precision Avg. Comp. Time[ms] Match Accuracy
KITTIOO0 0.983/0.974 17.71/20.92 0.874/0.668
K-03 0.874/0.786 39.21/66.10 0.762/0.440
HORIZON1 | 0.890/0.801 14.15/30.79 0.773/0.369
AVIA1 0.867/0.687 19.86/36.73 0.664/0.209

2) Candidate number: In the default implementation, as
detailed in Sec. we selected £ = 50 candidate submaps
from the Hash table database and eventually picked the best
one through geometrical verification (Sec. [VI-B). To inves-
tigate the effect of candidate number x on loop detection
performance, we conduct an ablation study by varying « dur-
ing the retrieval process. We select two sequences (KITTIO0
and NCLT1), whose average precision and computation time
(including both descriptor extraction and loop detection) are
reported in Fig. @ As can be seen, as k increases, the
computation time also increases due to the more number of
candidate submap to process in loop detection. However, the
detection precision does not continue to increase with x after
63 because with the binary descriptor, the true loop submap, if
any, easily stands out as a top 63 candidate. Considering both

time efficiency and precision, we selected a candidate number
of 50 in the default implementation.
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Fig. 15: Ablation study: Analyzing the effect of candidate number x
on average precision and computation time. Results are presented for
two distinct sequences: (a) KITTIOO and (b) NCLT1.

3) Number of Reference Planes: We further analyze the
performance impact of varying the number of reference planes
across diverse scenarios, specifically focusing on sequences
KITTIO8, NCLT2, AVIA3 and AVIA4. Table showcases
the average precision and computation time. Our analysis
suggests that for sequences featuring relatively flat terrains,
such as KITTIO8 and NCLT2, a single reference plane is
ideal. Interestingly, in such environments, adding more ref-
erence planes can decrease detection performance. This is
primarily because when a large flat ground serves as the main
reference plane, any additional reference plane might often
correspond to vertical structures, such as walls. Descriptors
derived from these secondary planes can potentially interfere
with the matching process of more salient descriptors from the
primary plane, consequently diminishing detection accuracy.
In contrast, in terrains marked by significant height variations
like AVIA3 and AVIAA4, the introduction of multiple reference
planes does effectively improve the detection performance,
but at the expense of increased computation time due to the
extraction of more descriptors.

E. Comparision with Deep learning-based methods

In this section, we provide comparisons to recent state-of-
the-art deep learning-based approaches, namely LCDNet [10]
and Logg3D-Net [52]. For both methods, we use pre-trained



Avg. Precision / Avg. Comp. Time[ms]

Sequence =1 =3 =3
KITTIO8 | 0.98/19.63  0.92/23.31  0.89/26.88
NCLT2 0.85/34.83  0.79/41.25  0.73/48.62
AVIA3 0.60/48.39  0.74/55.12  0.75/63.41
AVIA4 0.52/46.52  0.68/54.13  0.69/67.83

TABLE VI: Ablation study: Comparison of place recognition perfor-
mance across different sequences for varying values of M (number
of reference planes)

models released by the authors. For LCDNet, it is noted that
better performance is achieved on the KITTI dataset when
ground points are removed during pre-processing. To ensure
a fair comparison, we evaluate LCDNet with and without
ground points removal, denoted as LCDNet* and LCDNet.
On the other hand, the original implementation of Logg3D-
Net excludes the recent 300 submps in the loop detection; we
modify it to 100, the number used by all other methods, for
a fair comparison.

Table shows the Average Precision (AP) of all methods.
Considering that the ground-truth for the training set of the
two deep learning methods is calculated using the distance
criterion, we also record the AP based on the distance criterion
in addition to the overlap-based criterion as described in
Section As can be seen, under the distance criterion,
BTC achieves an AP that is significantly higher than Logg3D-
Net, similar to LCDNet, and slightly lower than LCDNet*,
which has additional ground points removal. Under the overlap
criterion, BTC outperforms all other methods in all sequences
with significant margins. This outcome is reasonable, as both
LCDNet and Logg3D-Net are trained under the distance
criterion, which may lead to missed loop submaps that are
farther apart but still exhibit a relatively large overlap.

Table shows the computation time of all methods.
BTC boasts significant advantages in terms of computation
time, with its much more efficient descriptor extraction than
that of both LCDNet and Logg3D-Net. LCDNet* extracts
descriptors more rapidly than LCDNet, as a large number of
ground points has been removed. However, such ground points
removal consumes considerable additional time.

TABLE VII: Comparisons with learning-based methods on KITTI
Odometry dataset.

Sequence AP in 4m distance criteria / AP in overlap criterion
BTC  Logg3D-Net LCDNet LCDNet*
KITTIO0 | 0.977/0.983  0.982/0.828  0.987/0.906  0.988/0.906
KITTIO2 | 0.848/0.963  0.783/0.772  0.931/0.913  0.934/0.913
KITTIOS | 0.938/0.969  0.955/0.852  0.955/0.922  0.956/0.922
KITTIO6 | 0.957/0.988  0.997/0.548  0.992/0.606  0.988/0.859
KITTIO7 | 0.953/0.833  0.910/0.691  0.858/0.713  0.858/0.713
KITTIO8 | 0.935/0.985 0.465/0.806  0.843/0.926  0.917/0.927
Avg. 0.926/0.968  0.808/0.787  0.925/0.885  0.946/0.901

TABLE VIII: Runtime comparisons with learning-based methods on
KITTI Odometry dataset. All units are in ms

Method Pre-process  Descriptor Extraction — Retrieval Total
BTC 0.00 12.70 6.88 19.58
Logg3d-Net 13.78 49.55 0.47 63.79
LCDNet 0.00 173.80 0.02 173.82
LCDNet* 1012.35 110.39 0.01 1122.75
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IX. APPLICATIONS

In this section, we demonstrate the practical applications of
the BTC descriptor in two major robotic applications: SLAM
and Multi-Map Alignment. Each application highlights the
unique advantages and substantial enhancements offered by
the BTC descriptor. When integrated into a SLAM system,
the BTC descriptor provides a robust and efficient solution
for loop closure detection, which consequently leads to more
accurate localization and mapping. Furthermore, the BTC de-
scriptor can be used for Multi-Map Alignment to identify co-
visible areas and estimate the relative pose between different
point cloud maps that are collected and constructed at different
time. Due to page limit, we put the implementation details
and result analysis of these applications in the Supplementary
Material [62].

X. CONCLUSION

In this paper, we presented the Binary Triangle Combined
(BTC) Descriptor, a novel approach to place recognition that
combines local and global features for improved performance
in diverse and multi-scale environments. BTC builds on the
advantages of our previous work by employing the geometric
invariance of triangle shapes and introducing a local binary
descriptor to enhance discriminative capabilities during the
matching process. This combination allows for more accurate
and efficient place recognition while maintaining robustness
across different conditions.

Our experimental evaluation demonstrated that BTC out-
performs state-of-the-art methods across various environments
and with different types of LiDAR sensors. In particular, our
method exhibits significant improvements in precision and
adaptability, especially in challenging environments. By open-
sourcing our codes, we aim to contribute to the robotics com-
munity and promote further advancements in place recognition
and robot navigation.

While the performance of BTC is impressive, there are
situations where limitations have been observed. For instance,
in smooth long corridor environments (e.g., tunnels, long
halls), the method struggles to extract valid keypoints, result-
ing in unsuccessful place recognition (i.e., false negatives).
Furthermore, false positives can be observed in cases where
two places share high geometric similarity and point cloud
distribution (e.g., two offices with the same layout). These
limitations are ultimately due to the insufficient or non-
discriminative geometry features offered by the point cloud.
Addressing such issues would require the integration of other
sensing modalities (e.g., visual information).
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