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Crossed nonlinear dynamical Hall effect in twisted bilayers
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We propose a nonlinear dynamical Hall effect characteristic of layered materials with chiral symmetry, which
is driven by the joint action of in-plane and time variation of out-of-plane ac fields jH ∼ Ė⊥ × E‖. A different
band geometric quantity—interlayer Berry connection polarizability, which probes a mixed quantum metric
characteristic of layer hybridized electrons by twisted interlayer coupling—underlies this effect. When the two
orthogonal fields have a common frequency, their phase difference controls the on/off, direction, and magnitude
of the rectified Hall current. We show sizable effects in twisted homobilayer transition metal dichalcogenides
and twisted bilayer graphene over a broad range of twist angles. Our work opens the door to discovering mixed
quantum metric responses unique to van der Waals stacking and concomitant applications under the nonlinear
spotlight.
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Introduction. Nonlinear Hall-type response to an in-plane
electric field in a two-dimensional (2D) system with time-
reversal symmetry has attracted marked interests [1–4]. In-
tensive studies have been devoted to uncovering new types of
nonlinear Hall transport induced by quantum geometry [4–6]
and their applications such as terahertz rectification [7] and
magnetic information readout [8]. Restricted by symme-
try [1], the known mechanisms of the nonlinear Hall response
in quasi-2D nonmagnetic materials [2,3,9,10] are all of an ex-
trinsic nature, sensitive to fine details of the disorders [11,12],
which have limited their utilization for practical applications.

The intrinsic nonlinear Hall effect independent of scat-
tering, on the other hand, has been attracting increasing
interest [13–18], and the very recent observations of it
in antiferromagnets spotlight the importance of exploring
Hall transport induced by a quantum metric [19,20]. How-
ever, the intrinsic nonlinear Hall effect in its conventional
paradigm [13] can only appear in magnetic materials.

Moreover, having a single driving field only, the conven-
tional nonlinear Hall effect has not unleashed the full potential
of nonlinearity for enabling a controlled gate in logic opera-
tion, where separable inputs (i.e., in orthogonal directions) are
desirable. The latter, in the context of the Hall effect, calls for
the control by both out-of-plane and in-plane electric fields.
A strategy to introduce a quantum geometric response to an
out-of-plane field in quasi-2D geometry is made possible in
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van der Waals (vdW) layered structures with twisted stack-
ing [21–27] . Taking a homobilayer as an example, electrons
have an active layer degree of freedom that is associated with
an out-of-plane electric dipole [28–30], whereas interlayer
quantum tunneling rotates this pseudospin about the in-plane
axes that are of topologically nontrivial textures in the twisted
landscapes [31–33]. Such layer pseudospin structures can un-
derlie novel quantum geometric properties when coupled with
an out-of-plane field.

In this Letter we unveil a different type of nonlinear Hall
effect in time-reversal symmetric twisted bilayers, where an
intrinsic Hall current emerges under the combined action of an
in-plane electric field E‖ and an out-of-plane ac field E⊥(t ):
j ∼ Ė⊥ × E‖ [see Fig. 1(a)]. Having the two driving fields
(inputs) and the current response (output) all orthogonal to
each other, the effect is dubbed as the crossed nonlinear dy-
namical Hall effect. This is also a nonlinear Hall contribution
of an intrinsic nature in nonmagnetic materials without an
external magnetic field, determined solely by the band struc-
tures, not relying on extrinsic factors such as disorders and
relaxation times. Having two driving fields of the same fre-
quency, a dc Hall current develops, whose on/off, direction,
and magnitude can all be controlled by the phase difference
of the two fields. The effect has a band geometric origin
in the momentum space curl of interlayer Berry connection
polarizability (BCP), probes a mixed quantum metric arising
from the interlayer hybridization of electronic states under the
chiral crystal symmetry, and enables a unique phase tunable
rectification in chiral vdW layered materials and a transport
probe of them. As examples, we show sizable effects in small
angle twisted transition metal dichalcogenides (tTMDs) and
twisted bilayer graphene (tBG), as well as tBG of large angles
where umklapp interlayer tunneling dominates.

Geometric origin of the effect. A bilayer system couples to
in-plane and out-of-plane driving electric fields in completely
different ways. The in-plane field couples to the 2D crystal
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FIG. 1. (a) Schematics of the experimental setup. (b), (c) Valence-band structure and intrinsic Hall conductivity with respect to in-plane
input for tMoTe2 at twist angles (b) θ = 1.2◦ and (c) θ = 2◦ in the +K valley. In (b) and (c) the color coding denotes the layer composition
σ z

n (k), and the red dashed curve denotes the contribution of the Fubini-Study metric term.

momentum, leading to Berry-phase effects in 2D momentum
space [34]. In comparison, the out-of-plane field is coupled
to the interlayer dipole moment p̂ in the form of −E⊥ p̂,
where p̂ = ed0σ̂z with σ̂z as the Pauli matrix in the layer index
subspace and d0 the interlayer distance. When the system has
a more than twofold rotational axis in the z direction, as in
tBG and tTMDs, any in-plane current driven by the out-of-
plane field alone is forbidden. It also prohibits the off-diagonal
components of the symmetric part of the conductivity tensor
σab = ∂ ja/∂E||,b with respect to the in-plane input and output.
Since the antisymmetric part of σab is not allowed by the On-
sager reciprocity in nonmagnetic systems, all the off-diagonal
components of σab are forbidden, irrespective of the order of
the out-of-plane field. On the other hand, as we will show, an
in-plane Hall conductivity σxy = −σyx can still be driven by
the product of an in-plane field and the time variation rate of
an out-of-plane ac field.

To account for the effect, we make use of the semiclassical
theory [13,34–36]. The velocity of an electron is given by

ṙ = 1

h̄
∂kε̃ − e

h̄
E‖ × �k − �kE⊥ Ė⊥, (1)

with h̄k as the 2D crystal momentum. Here and hereafter we
suppress the band index for simplicity, unless otherwise noted.
For the velocity at the order of interest, the k-space Berry
curvature �k is corrected to the first order of the variation rate
of out-of-plane field Ė⊥:

�k = ∂k × (A + AĖ⊥ ). (2)

Here, A = 〈uk|i∂k|uk〉 is the unperturbed k-space Berry con-
nection, with |uk〉 being the cell-periodic part of the Bloch
wave, whereas

AĖ⊥ (k) = G(k)Ė⊥ (3)

is its gauge invariant correction [34,37,38], which can be
identified physically as an in-plane positional shift of an elec-
tron [13] induced by the time evolution of the out-of-plane
field. For a band with index n, we have (see details in the
Supplemental Material [39])

Gn(k) = 2h̄2 Re
∑
m �=n

pnm(k)vmn(k)

[εn(k) − εm(k)]3
, (4)

whose numerator involves the interband matrix elements of
the interlayer dipole and velocity operators, and εn is the
unperturbed band energy.

Meanwhile, up to the first order of the in-plane field, the
hybrid Berry curvature in (k, E⊥) space reads �kE⊥ = ∂k(A +
AE|| ) − ∂E⊥ (A + AE|| ). Here, AE|| is the k-space Berry con-
nection induced by the E|| field [13,36], which represents an
intralayer positional shift and whose detailed expression is
not needed for our purpose. A = 〈uk|i∂E⊥|uk〉 is the E⊥-space
Berry connection [42], and

AE|| (k) = e

h̄
G(k) · E‖ (5)

is its first-order correction induced by the in-plane field. In ad-
dition, ε̃ = ε + δε, where δε = eE‖ · GĖ⊥ is the field-induced
electron energy [35].

Given that AE|| is the E⊥-space counterpart of intralayer
shift AE|| , and that E⊥ is conjugate to the interlayer dipole
moment, we can pictorially interpret AE|| as the interlayer
shift induced by the in-plane field. It indeed has the desired
property of flipping sign under the horizontal mirror-plane
reflection, hence it is analogous to the so-called interlayer
coordinate shift introduced in the study of the layer circular
photogalvanic effect [42], which is merely the E⊥-space coun-
terpart of the shift vector well known in the nonlinear optical
phenomenon of the shift current. Therefore, the E⊥-space
BCP eG/h̄ can be understood as the interlayer BCP. This
picture is further augmented by the connotation that the in-
terlayer BCP is featured exclusively by interlayer-hybridized
electronic states: According to Eq. (4), if the state |un〉 is fully
polarized in a specific layer around some momentum k, then
G(k) is suppressed.

With the velocity of individual electrons, the charge
current density contributed by the electron system can be
obtained from j = e

∫
[dk] f0ṙ, where [dk] is shorthand for∑

n d2k/(2π )2, and the distribution function is taken to be the
Fermi function f0 as we focus on the intrinsic response. The
band geometric contributions to ṙ lead to a Hall current

j = χ intĖ⊥ × E‖, (6)
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where

χ int = e2

h̄

∫
[dk] f0[∂k × G(k)]z (7)

is intrinsic to the band structure. This band geometric quantity
measures the k-space curl of the interlayer BCP over the
occupied states, and hence is also a characteristic of layer-
hybridized electronic states. Via an integration by parts, it
becomes clear that χ int is a Fermi-surface property. Since
χ int is a time-reversal even pseudoscalar, it is invariant under
rotation, but flips sign under space inversion, mirror reflection,
and rotoreflection symmetries. As such, χ int is allowed if and
only if the system possesses a chiral crystal structure, which
is the very case of twisted bilayers [42,43]. Moreover, since
twisted structures with opposite twist angles are mirror images
of each other, whereas the mirror reflection flips the sign of
χ int, the direction of Hall current can be reversed by reversing
the twist direction.

Quantum metric nature of the effect. Given the recent
intensive studies on nonlinear Hall transport induced by
the k-space quantum metric [19,20,44], it is interesting
to point out that our proposed effect is ultimately related
to the mixed quantum metric in (k, E⊥) space, which is
unique to 2D layered materials. The interlayer BCP can
be cast into Gn = −2h̄

∑
m �=n gnm/(εn − εm), where gnm =

Re[〈∂E⊥un|um〉〈um|∂kun〉] has the meaning of the quantum
metric in (k, E⊥) space for a pair of bands n and m, in
parallel to the familiar k-space quantum metric for a pair of
bands [44–46] (see details in the Supplemental Material [39]).
It is gauge invariant and related to the Fubini-Study met-
ric [47] gn = Re〈∂E⊥un|(1 − |un〉〈un|)|∂kun〉 in (k, E⊥) space
as gn = ∑

m �=n gnm. Moreover, χ int can be decomposed into
the Fubini-Study metric term plus an additional interband
contribution (AIC),

χ int = 2h̄e2
∑

n

∫
dk

(2π )2

∂ f0

∂εn

(vn × gn)z

εn − εn̄
+ χ int

AIC, (8)

where vn = ∂εn/h̄∂k, and n̄ denotes the band whose energy
is closest to n. In both tTMD and TBG, we find that the
Fubini-Study metric term strongly dominates [shown below
in Figs. 1(b) and 1(c) and Figs. 3(e) and 3(f)].

Phase tunable Hall rectification. This effect can be utilized
for the rectification and frequency doubling of an in-plane ac
input E‖ = E0

‖ cos ωt , provided that the out-of-plane field has
the same frequency, namely E⊥ = E0

⊥ cos(ωt + ϕ). The phase
difference ϕ between the two fields plays an important role in
determining the Hall current, which takes the form of

j = j0 sin ϕ + j2ω sin(2ωt + ϕ). (9)

Here, ω is required to be below the threshold for direct inter-
band transition in order to validate the semiclassical treatment,
and

j0 = j2ω = σHẑ × E0
‖, (10)

where σH = 1
2ωE0

⊥χ int quantifies the Hall response with re-
spect to the in-plane input.

One notes that the rectified output is allowed only if the two
crossed driving fields are not in phase or antiphase. Its on/off,
chirality (right or left), and magnitude are all controlled by

FIG. 2. (a) The interlayer BCP G, and (b) its vorticity [∂k × G]z

on the first valence band from the +K valley of 1.2◦ tMoTe2. The
background color and arrows in (a) denote the magnitude and vector
flow, respectively. Gray curves in (b) show energy contours at 1/2
and 3/4 of the bandwidth. The black dashed arrow denotes the
direction of increasing hole-doping level. The black dashed hexagons
in (a) and (b) denote the boundary of the moiré Brillouin zone (mBZ).

the phase difference of the two fields. Such a unique tunabil-
ity provides not only a prominent experimental hallmark of
this effect, but also a controllable route to Hall rectification.
In addition, reversing the direction of the out-of-plane field
switches that of the Hall current, which also serves as a control
knob.

Application to tTMDs. We now study the effect quan-
titatively in tTMDs, using tMoTe2 as an example [31,32]
(see details of the continuum model in Ref. [43]). For illus-
trative purposes, we take ω/2π = 0.1 THz and E0

⊥d0 = 10
mV [21,26,27] in what follows.

Figures 1(b) and 1(c) present the electronic band struc-
tures at twist angles θ = 1.2◦ and θ = 2◦. In both cases, the
energy spectra exhibit isolated narrow bands with strong layer
hybridization. At θ = 1.2◦, the conductivity shows two peaks
∼0.1e2/h at low energies associated with the first two valence
bands. At higher hole-doping levels, a remarkable conductiv-
ity peak ∼e2/h appears near the gap separating the fourth and
fifth bands. At θ = 2◦, the conductivity shows smaller values,
but the overall trends are similar: A peak ∼O(0.01)e2/h ap-
pears at low energies, while larger responses ∼O(0.1)e2/h can
be spotted as the Fermi level decreases.

One can understand the behaviors of σH from the interlayer
BCP in Eq. (4). It favors band near-degeneracy regions in k
space made up of strongly layer hybridized electronic states.
As such, the conductivity is most pronounced when the Fermi
level is located around such regions, which directly accounts
for the peaks of response in Fig. 1(b) [and Fig. 1(c)]. When the
Fermi level is located on the third valence band in Fig. 1(b),
the effect is vanishingly small due to the large gaps to adjacent
bands.

Let us take the case of the Fermi level being located within
the first valence band of 1.2◦ tMoTe2 in Fig. 1(b) as an
example and explain the emergence of the first conductivity
peak. The k-space distributions of G and [∂k × G]z for this
band are shown in Figs. 2(a) and 2(b), respectively. G is
suppressed around the corners of mBZ, because the states
are strongly layer polarized there. Interlayer hybridization
becomes stronger as k moves away from the mBZ corners.
In this process, the competition between enlarged pnm(k) and
k-space local gap renders narrow ringlike structures enclosing
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FIG. 3. (a)–(c) Three high-symmetry stacking registries for tBG
with a commensurate twist angle θ = 21.8◦. Lattice geometries with
a rotation center on an overlapping atomic site (a), (b) and hexagonal
center (c). (d) Schematic of the moiré pattern when the twist angle
slightly deviates from 21.8◦, here θ = 21◦. Red squares marked
by A–C are the local regions that resemble commensurate 21.8◦

patterns in (a)–(c), respectively. (e), (f) Low-energy band struc-
tures and intrinsic Hall conductivity of the two geometries [(a) and
(b) are equivalent]. The red dashed curve denotes the contribution
of the Fubini-Study metric term. The shaded areas highlight energy
windows ∼h̄ω around band degeneracies where interband transi-
tions, not considered here, may quantitatively affect the conductivity
measured.

the mBZ corners, in which G is prominent and points radially
inward/outward around κ/κ ′. The distribution of G dictates
that of [∂k × G]z. One observes that [∂k × G]z is negligible
at lower energies, and it is dominated by positive values as
the doping increases, thus the conductivity rises initially. As
the doping level is higher, regions of [∂k × G]z < 0 start to
contribute, thus the conductivity decreases after reaching a
maximum.

Application to tBG. The second example is tBG. We focus
on commensurate twist angles in the large angle limit in the
main text [48], which possess moiré-lattice-assisted strong
interlayer tunneling via umklapp processes [49]. This case is
appealing because the umklapp interlayer tunneling is a man-
ifestation of the discrete translational symmetry of a moiré
superlattice, which is irrelevant at small twist angles and not
captured by the continuum model but plays important roles
in physical contexts such as higher-order topological insula-
tors [50] and moiré excitons [51–53]. The umklapp tunneling
is strongest for the commensurate twist angles of θ = 21.8◦
and θ = 38.2◦, whose corresponding periodic moiré superlat-
tices have the smallest lattice constant (

√
7 of the monolayer

counterpart). Such a small moiré scale implies that the exact
crystalline symmetry, which depends sensitively on the fine
details of the rotation center, has a critical influence on the
low-energy response properties.

To capture the umklapp tunneling, we employ the tight-
binding model [48]. Figures 3(a)–3(c) show two distinct
commensurate structures of tBG at θ = 21.8◦ belonging to
chiral point groups D3 and D6, respectively. The atomic con-
figurations in Figs. 3(a) and 3(b) are equivalent, which are
constructed by twisting AA-stacked bilayer graphene around

an overlapping atom site, and that in Fig. 3(c) is obtained by
rotating around a hexagonal center. The band structures of
these two configurations are drastically different within a low-
energy window of ∼10 meV around the κ point [48]. Remark-
ably, despite large θ , we still get σH∼O(0.001) e2/h (D3) and
∼O(0.1) e2/h (D6), which are comparable to those at small
angles (cf. Fig. S1 in Supplemental Material [39]). Such siz-
able responses can be attributed to the strong interlayer cou-
pling enabled by umklapp processes [43,51–53]. The profiles
of σH can be understood from the distribution of [∂k × G]z.

Figure 3(d) illustrates the atomic structure of tBG with
a twist angle slightly deviating from θ = 21.8◦, forming a
supermoiré pattern [39]. In short range, the local stacking
geometries resemble the commensurate configurations at θ =
21.8◦, while the stacking registries at different locales dif-
fer by a translation. Similar to the moiré landscapes in the
small-angle limit, high-symmetry locales also exist: Regions
A and B enclose the D3 structure, and region C contains
the D6 configuration. A position-dependent Hall response is
therefore expected in such a supermoiré. As the intrinsic Hall
signal from the D6 configuration dominates [see Figs. 3(e) vs
3(f)], the net response mimics that in Fig. 3(f). As the twist
angle deviates more from 21.8◦, both the scales of supermoiré
and of the D3 and D6 local regions become shorter.

Discussion. We have uncovered the intrinsic crossed non-
linear dynamical Hall effect characteristic of layer hybridized
electrons in twisted bilayers, elucidated its quantum geomet-
ric origin, and showed its sizable values in tTMD and tBG.
Our focus is on the intrinsic effect, which can be evaluated
quantitatively for each material and provides a benchmark
for experiments. There may also be extrinsic contributions,
similar to the side jump and skew scattering in the anomalous
Hall effect. They typically have a distinct scaling behavior
with the relaxation time τ from the intrinsic effect, hence can
be distinguished from the latter in experiments [3,5,12,54].
Moreover, they are suppressed in the clean limit ωτ � 1 [12].
In high-quality tBG, τ ∼ ps at room temperature [55]. Much
longer τ can be obtained at lower temperatures. In fact, a
recent theory explaining well the resistivity of tBG predicted
τ ∼ 10−8 s at 10 K [56]. As such, high-quality tBG under
low temperatures and subterahertz input (ω/2π = 0.1 THz)
is located in the clean limit, rendering an ideal platform for
isolating the intrinsic effect.

This work paves a different route to driving the in-plane
response by the out-of-plane dynamical control of layered
vdW structures [57]. The study can be generalized to other
observables such as spin current and spin polarization, and
the in-plane driving can be statistical forces, such as the tem-
perature gradient. Such orthogonal controls rely critically on
the nonconservation of the layer pseudospin degree of free-
dom, and constitute an emerging research field at the crossing
of vdW materials, layertronics, twistronics, and nonlinear
electronics.
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