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Abstract

Currently, most academic research involving the mortality modeling of multi-

ple populations mainly focuses on factor-based approaches. Increasingly, these

models are enriched with socio-economic determinants. Yet these emerging

mortality models come with little attention to interpretable spatial model fea-

tures. Such features could be highly valuable to demographers and old-age

benefit providers in need of a comprehensive understanding of the impact of

economic growth on mortality across space. To address this, we propose and

investigate a family of models that extend the seminal Li-Lee factor-based sto-

chastic mortality modeling framework to include both economic growth, as

measured by the real gross domestic product (GDP), and spatial patterns of the

contiguous United States mortality. Model selection performed on the intro-

duced new class of spatial models shows that based on the AIC criteria, the

introduced spatial lag of GDP with GDP (SLGG) model had the best fit. The

out-of-sample forecast performance of SLGG model is shown to be more accu-

rate than the well-known Li–Lee model. When it comes to model implications,

a comparison of annuity pricing across space revealed that the SLGG model

admits more regional pricing differences compared to the Li-Lee model.
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1 | INTRODUCTION

With life expectancy undergoing substantial improve-
ments over recent decades, institutionally managed
financial needs of a rapidly aging population are getting
more costly (Blake & Cairns, 2020). The process of aging
of a population yields a change in the relative number of
retirees compared to the number of active workers,
which given political constraints of taxation, can create
financial uncertainty for these institutions. That is why
the ability to understand human survivorship is essential
for actuarial, economic, and demographic practices,
especially with regards to mortality modeling (Li &

O'Hare, 2019; Renshaw & Haberman, 2003; Seklecka
et al., 2017), annuity pricing (D'Amato et al., 2011;
Pitacco, 2016), and social security affordability (Soneji &
King, 2012).

The relationship between mortality and economic
growth is particularly complex when it comes to social
security affordability. For example, in the case of the
United States (US) if there is a positive correlation of
economic growth and longevity, then a program such as
the US federal Old-Age and Survivors Insurance (OASI)
could be more expensive in the long term, as a result of
the economy performing well and vice versa. In the
context of the European Union (EU), it is not hard to see
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how this relationship would be of interest to insurers or
reinsurers who conduct business across the entire EU. As
the economy may grow faster in one location than others,
it may lead to better habits in life and better health care
and opposite when an economy declines. For instance, it
is well known that smoking is more prevalent in popula-
tions with a declining economy (Franks et al., 2007).
In fact, the demographic literature recognizes that
there exists a long-run relationship between economic
developments and mortality changes in various countries
and there is a cross-sectional positive dependence
between life expectancy and real per capita income
(Preston, 1975). Also, significant co-movements between
mortality dynamics and the gross domestic product
(GDP) per capita have been shown (Hanewald, 2011). A
particular complexity is the relationship between neigh-
boring states' GDP, mortality, and mortality of a state
under consideration. At present, there is a lacking of a
state-level literature that investigates this nexus. How-
ever, when it comes to US, the relationship between mea-
sures of economic growth and regulatory and economic
freedoms of neighboring states has been shown to exist
(Hall et al., 2019).

All considered models of mortality and economic
growth in the US should ultimately be heterogeneous in
their analyses of the different states and allow for the
interconnections of mutual influences between space,
mortality, and economic growth. Thus, we propose and
investigate a new class of models, with one of the defin-
ing features being the ability to capture the heteroge-
neous economic growth impact on human mortality
across space. When considering the connection between
mortality and GDP in different states, our models' second
defining feature is investigating the effect that neighbor-
ing states' economic growth has on the mortality of a
particular state. With this approach, we focus on the
intricacies of the relationship between mortality and eco-
nomic growth and show that even though these dynam-
ics are by no means trivial, by considering stochastic
models of economic and mortality patterns across space
and time, this relationship can be much better
understood.

Previously, Niu and Melenberg (2014) and Boonen
and Li (2017) added economic growth as a risk factor to
the Lee–Carter model (Lee & Carter, 1992) and to the
Li–Lee model (Li & Lee, 2005), respectively. Also,
Seklecka et al. (2019) obtained better mortality forecasts
by adding economic growth as a risk factor to O'Hare-Li
model (O'Hare & Li, 2012). The recent works of Li and
Lu (2017), Doukhan et al. (2017), Ludkovski et al. (2018),
and Shi (2020) implemented spatial considerations into
the mortality modeling framework by defining spatial

relationships based on closeness in age and time; how-
ever, we investigate spatial patterns from a geographical
perspective, in spirit of Quick et al. (2018). Also, multi-
population models have gained significant interest in
recent years, with various institutions such as the Dutch
and Belgian Actuarial Institute relying on them to
provide mortality projections for insurers (Antonio
et al., 2017). That is why in this work, we propose a
multi-population model with economic growth and
extend Boonen and Li (2017) to introduce spatial depen-
dence of mortality dynamics in the short-run. The spatial
effect parameters account for the spillover effects among
adjacent geographic locations. While such effects can be
present in any region comprised of neighboring popula-
tions, we will use the United States of America as a
motivating example throughout this paper. Intuitively, in
the context of the US, it is not difficult to imagine that
due to labor mobility or health care systems, an increase
in life expectancy or GDP per capita in Massachusetts
may have a direct positive impact on the life expectancy
in Rhode Island but no direct effect on the life expectancy
in Arizona.

Our contributions in this paper are manifold. First,
we comprehensively discern the impacts that the struc-
tural inequalities in economic growth on mortality across
space. Specifically, we disentangle the heterogeneous
impact across space of GDP on mortality, the effect of
neighboring GDP on mortality of a particular state, the
effect of mortality in neighboring states has on mortality
of a particular state, the effect that the national GDP has
on mortality in individual states, and the effect that the
GDP in previous years has on mortality. Second, we
compare and validate the best performing models, by
performing thorough backtesting and forward testing
assessments, as well as residual analysis. Third, we
benchmark the model implications by performing an
annuity pricing comparison between leading model
candidates.

Our work should garner significant interest of
academics and practitioners in the actuarial, economic,
and demographic communities. To the best of our knowl-
edge, we are the first to model the connection between
structural economic inequality and mortality at the
comprehensive level for the case of the US, thus bridging
the actuarial, economic, and demographic disciplines.
For various practitioners and stakeholders, this paper
provides a justification for considering interconnected
spatial components in mortality models of any given
state, while also considering economic characteristics.

The paper is organized as follows. In Section 2,
we describe the data that we use in this paper. The
mortality models with GDP are introduced and examined
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in Section 3. In Section 4, we define our forecasting
method and validate the forecast performance of mortal-
ity models as well as a forecast comparison in an applica-
tion of annuity pricing. Finally, Section 5 concludes
the study.

2 | DATA

In this paper, we measure economic growth by the GDP
per capita. Data of the real GDP per capita per state in
the US from 1977 to 2016 are collected from the Bureau
of Economic Analysis.12

To model human mortality, we focus on the central
death rates in every state of the US, and we consider
only the male population. For notational convenience,
we label the 48 contiguous states with numbers from
1 to 48. The states Hawaii and Alaska are excluded
because they do not share a land-border with another
state. The central death rate of a population for a given
year is the number of deaths occurring among a popula-
tion during a given year relative to the number of
people that are alive at the beginning of that given year.
We let mi,x,t denote the central death rate for age
group x � 0,1�4,5�9,10f �14,15�19,20�24,25�
34,35�44,45�54,55�64,65�74,75�84,85þg at time
t � 1977,1978,…,2016f g in state i� 1,2,…,48f g, to be

mi,x,t ¼ Number of deaths in age group x at year t in state i
Number of people alive in age group x at time t in state i

:

The mortality data that we investigate in this study
are obtained from the Centers for Disease Control and
Prevention's (CDC) WONDER internet databases.3 The
Compressed Mortality File (CMF), produced by the
National Center for Health Statistics, is a national mortal-
ity and population database, which spans the years 1968–
2016. This dataset specifically features the crude mortality
rates for each age bracket among the individual counties
of the contiguous US, as identified by their respective
Federal Information Processing Standards (FIPS) codes.

As an example, in Figure 1, we display the central
death rates for all contiguous states of the age group of
55–64 years, for two different years. To compare the cen-
tral death rates, we also show in this figure the GDP per
state. All plots in Figure 1 display the value of the death
rate (in red) and GDP per capita (in blue) relative to the
US average. With a darker shade, a relatively higher
value of the death rate or GDP is represented. For
instance, the states California and New York have a high
relative GDP per capita, while having a low death rate.
Each of the maps presents a clear spatial pattern of mor-
tality, with states having similar mortality rates clustered
together across the entire country. These are the effects
that we capture in this paper.

FIGURE 1 Comparison between the mortality rates of the 55–64 age group and the GDP per capita for the years (a, b) 1986 and (c, d)

2016. A darker shade represents a relatively higher death rate or GDP when compared to the national average.
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3 | MODEL EXAMINATION

3.1 | Spatial mortality models with
state GDPs

Rather than generating separate models for each
individual state, Li and Lee (2005) show the plausibility
of improving mortality forecasts for individual popula-
tions by taking into account the mortality dynamics in a
larger group. The Li–Lee model is a multi-population
generalization of the Lee–Carter model, in which a com-
mon mortality pattern is incorporated and a coherence
assumption is imposed where forecasts of different
populations could not diverge in the long run. The
Li–Lee model is given by

log mi,x,tð Þ¼ αi,xþBxKtþβi,xκi,tþ εi,x,t,

with the following normalization conditions:
P

xβi,x ¼ 1
and

P
tκi,t ¼ 0 for all i, and

P
xBx ¼ 1 and

P
tKt ¼ 0. The

error terms εi,x,t are assumed to be i.i.d. Gaussian with
mean 0. Here, the parameter αi,x describes the time-
average mortality for each state i and age x, the common
factor Kt captures the evolution of national mortality
rates over time, and the age effect Bx explains this sensi-
tivity to this Kt of the age-specific mortality rates. To
ensure coherency, the κi,t time-series processes need to be
stationary (Li & Lee, 2005). Li and Lee (2005) propose to
estimate the parameters in a two-step procedure, by first
estimating the common parameters Bx and Kt from the
combined data for all the populations and then, second,
estimating the remaining population-specific parameters.
In both estimation steps, the parameters are estimated by
a singular value decomposition.

Starting from the above, to develop a family of multi-
population mortality models that combine coherency,
macroeconomic variable GDP, and spatial effects, we
begin by recalling the simple extension of the Li–Lee
model developed by Boonen and Li (2017).

log mi,x,tð Þ¼ αi,x þ γxGDPtþβi,xκi,tþ εi,x,t,

where αi,x ,βi,x and κi,t are the state population-specific
parameters and GDPt is the demeaned GDP per capita of
the US at time t, with respective loading γx . The following
normalization conditions apply:

P
xβi,x ¼ 1 andP

tκi,t ¼ 0. The error terms εi,x,t are assumed to be
i.i.d. Gaussian with mean 0. In this base model, the
parameters are estimated in two steps. First, parameters
αi,x and γx are estimated by OLS. Second, the remaining
parameters βi,x and κi,t are estimated by a singular value
decomposition. We refer to Boonen and Li (2017) for a
further discussion on the estimation.

To extend this model to the spatial domain, we pro-
pose incorporating spatially autoregressive and lagged
components to generate a class of models of the form

log mi,x,tð Þ¼ αi,x þρi,x
X
j≠ i

Wi,j log mj,x,t
� �

þψ i,x

X
k ≠ i

Wi,kGDPk,tþ γi,xGDPi,tþβi,xκi,t

þ εi,x,t: ð1Þ

The following normalization conditions apply:P
xβi,x ¼ 1,

P
tκi,t ¼ 0, cov(

P
k ≠ iWi,k log mj,x,t

� �
, κi,t)

= cov(
P

k ≠ iWi,kGDPk,t, κi,t)= cov(GDPi,t, κi,t)= 0. Here,
cov means the sample covariance. These constraints
identify the parameters uniquely, which proof follows the
same steps as in theorem 3.1 of Boonen and Li (2017)
and is thus omitted. The αi,x ,βi,x and κi,t are the state-
specific parameters; GDPi,t is the demeaned GDP per
capita of state i at time t, with respective loadings γi,x ;
and W is a fixed matrix that indicates whether states are
neighbors. Each state is represented in the matrix W by a
row i, and potential neighbors by the columns j, with
j≠ i. The existence of a spatial relationship between
states i and j is defined as wi,j ¼ 1, and the elements of
W are comprised of the row-standardized weights
Wi,j ¼wi,j=

P
jwi,j. Conceptually, Wi,j is non-zero if the

two states i and j share a common border, such as
California and Arizona, and zero if they are not adjacent,
such as California and New York. In that context, rather
than treat the US as an “island,” Canada and Mexico are
also included in our spatial models.

Including ρi,x
P

j≠ iWi,j log mj,x,t
� �

and ψ i,x
P

k ≠ iWi,k

GDPk,t into our model allows for the exploration of spa-
tial lag coefficients. Specifically, ρi,x provides means for
an investigation of the effect that mortality rates from
neighboring states have on the mortality of a specific
state, while ψ i,x focuses on the relationship between the
economic growth of specific states in relation to the mor-
tality rates of their neighbors, which addresses the impact
that the economic growth in a state has on the mortality
dynamics of states that it shares close proximity with.

The parameters of the proposed model are estimated
in two steps where we combine the approaches of
Haining and Haining (2003) for spatial models and Niu
and Melenberg (2014) for mortality models. First, we
estimate the parameters αi,x as

bαi,x ¼
P2016

t¼1977 log mi,x,tð Þ
2016�1977þ1

,

and we estimate the spatial parameters and the parame-
ters Bi,x by ordinary least-square (OLS). Second, the
parameters βi,x and κi,t are estimated using a singular

1324 CUPIDO ET AL.

 1099131x, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/for.3086, W

iley O
nline L

ibrary on [05/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



value decomposition. This procedure ensures that the κi,t
parameters are estimated orthogonally to the other terms
in the model.

3.2 | Model specifications

We will refer to the model given by expression (1) as spa-
tial complete. We also study possible simplifications of
this model by setting certain parameters to zero or by
focusing on national GDP rather than state-specific GDP.
Table 1 contains an overview of all of the models that we
investigate in this study. There are a variety of models
that will be investigated. For example, the “Time Lagged
GDP”model assumes that mortality in an individual state
at any point in time is only concerned with an unobserva-
ble latent factor and the first time lag of the state's indi-
vidual GDP per capita. The “Spatial Lag of GDP” model
only considers the effects that the GDP of neighboring
states have on mortality of an individual state. The
“Spatial Autoregressive with National GDP” model con-
siders the effects that the mortality of an individual states'
neighbors, in combination with the GDP of the entire
country, has on mortality rates in the state, and so on.

3.3 | Model selection

To evaluate the in-sample fit for model selection, the AIC
and BIC ratios are compared for the mortality models.

The AIC ratio is introduced by Akaike (1973) and is
defined as

AIC¼�2 � log bL
� �

þ2 �k,

where log bL
� �

is the log-likelihood of the model and k is
the number of its free parameters to be estimated.
Moreover, as defined by Schwarz (1978), the BIC ratio is
given by

BIC¼�2 � log bL
� �

þk � log nð Þ,

where n is the number of data points. The number of free
parameters, k, is the number of total parameters minus
the number of constraints placed in the model. A lower
AIC or BIC ratio means that the model has a better in-
sample fit. The difference between the AIC and the BIC
is that the BIC ratio imposes a higher penalty for the
number of free parameters. Multi-population mortality
models contain typically many free parameters. A well-
cited reference that explains the differences between the
AIC and BIC ratios is Yang (2005).

Table 2 displays the number of free parameters, the
AIC and BIC ratios and the R2 for each of the models in
the study. After fitting procedure, we find that the BIC
ratio of the Li–Lee model is the smallest, indicating the
best in-sample fit. For the AIC ratio, we observe that the
Spatial Lag of GDP with GDP (SLGG) model has the best
in-sample fit. While our hypothesis was that the mortality
of a particular state may be affected by the evolution of

TABLE 1 Family of multi-population mortality models that are studied in this paper.

Name Model specification

Li–Lee log mi,x,tð Þ¼ αi,x þBxKt þβi,xκi,t þεi,x,t

Base log mi,x,tð Þ¼ αi,x þ γxGDPt þβi,xκi,t þεi,x,t

GDP log mi,x,tð Þ¼ αi,x þ γi,xGDPi,tþβi,xκi,t þ εi,x,t

Spatial autoregressive Li–Lee log mi,x,tð Þ¼ αi,x þρi,x
P

j≠ iWi,j log mj,x,t
� �þBxKt þβi,xκi,t þεi,x,t

Time lagged GDP log mi,x,tð Þ¼ αi,x þϕi,xGDPi,t�1þβi,xκi,t þεi,x,t

GDP with time lagged GDP log mi,x,tð Þ¼ αi,x þ γi,xGDPi,tþϕi,xGDPi,t�1þβi,xκi,tþ εi,x,t

Spatial time lagged GDP log mi,x,tð Þ¼ αi,x þξi,x
P

k ≠ iWi,kGDPk,t�1þβi,xκi,t þεi,x,t

GDP with spatial time lagged GDP log mi,x,tð Þ¼ αi,x þ γi,xGDPi,tþ ξi,x
P

k ≠ iWi,kGDPk,t�1þβi,xκi,tþ εi,x,t

Spatial autoregressive log mi,x,tð Þ¼ αi,x þρi,x
P

j≠ iWi,j log mj,x,t
� �þβi,xκi,t þεi,x,t

Spatial lag of GDP log mi,x,tð Þ¼ αi,x þψ i,x
P

k ≠ iWi,kGDPk,tþβi,xκi,t þεi,x,t

Spatial autoregressive with GDP log mi,x,tð Þ¼ αi,x þρi,x
P

j≠ iWi,j log mj,x,t
� �þ γi,xGDPi,tþβi,xκi,t þ εi,x,t

Spatial lag of GDP with GDP (SLGG) log mi,x,tð Þ¼ αi,x þψ i,x
P

k ≠ iWi,kGDPk,tþ γi,xGDPi,t þβi,xκi,t þεi,x,t

Spatial autoregressive with national GDP log mi,x,tð Þ¼ αi,x þρi,x
P

j≠ iWi,j log mj,x,t
� �þ γxGDPt þβi,xκi,t þεi,x,t

Spatial log mi,x,tð Þ¼ αi,x þρi,x
P

j≠ iWi,j log mj,x,t
� �þψ i,x

P
k ≠ iWi,kGDPk,tþβi,xκi,t þ εi,x,t

Spatial complete log mi,x,tð Þ¼ αi,x þρi,x
P

j≠ iWi,j log mj,x,t
� �þψ i,x

P
k ≠ iWi,kGDPk,tþ γi,xGDPi,t þβi,xκi,t þεi,x,t

CUPIDO ET AL. 1325
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mortality of its neighboring states, this has implicitly
been rejected in the model selection process as the cho-
sen models do not feature any spatial lag of neighboring
mortality rates. However, the main hypotheses that
economic inequalities have an impact on mortality still
remains to be explored. Based on this, we proceed our
investigation by studying the Li–Lee model and the
SLGG model.

In addition to the AIC and BIC ratios, heat maps of
the residuals for the SLGG model are displayed in
Figure 2 for the states of Arizona, California, Florida, and
Texas, to further assess the fitting performance of the
model. The residuals illustrated in these maps are
presented as a function of both age group and calendar
year, with the lighter gray areas displaying more negative
valued residuals, and similarly, darker regions in black
corresponding to more positive residuals. From these
plots, we observe no discernible systematic structure in
terms of the residuals for the SLGG model in these
selected states.

3.4 | Discussion of estimation results

The parameter estimates for γi,x and ψ i,x in the SLGG
model allow us study the effect that economic growth has
on the mortality rate of each individual state, as well as
to understand the influence that the GDP of a particular
state's neighbors have on their mortality rate. To visually

investigate the impact that the economic growth of a
state's neighbors has on its mortality, Figure 3 displays a
map of the estimates for the state specific parameter ψ i,x

obtained by the SLGG model. The parameter ψ i,x repre-
sents the spatial spillover effects that GDP of neighboring
states of State i has on the mortality of age-group x in
State i. These maps allow us to gain insight into the sensi-
tivity of the mortality with respect to changes in GDP of
the neighboring states. The states colored in blue repre-
sent a negative relationship, indicating a lower mortality
experience associated with the improved economic
situation of their neighboring states, and similarly, states
colored in red indicate a higher mortality experience
associated with the improved economic situation of their
neighbors.

From these maps, we observe the strongest associa-
tions between mortality rates and neighboring states'
economic situations occur for the 65 to 74 age group, as
indicated by the darkest shaded in regions, which contain
the peak retirement ages for the majority of the US. In
the northeastern states of Maine, New Hampshire, New
Jersey, and Connecticut, we observe that the improved
economic situation of neighbors corresponds with a
lower mortality experience. The state of Massachusetts
experiences an opposite effect, where the improved
economic situation of its neighbors corresponds to higher
mortality rates. Further research is needed to investigate
whether the higher costs of living in the state of
Massachusetts may cause retirees to take advantage of

TABLE 2 The total number of parameters, AIC and BIC ratios, and the R2 for each of the multi-population mortality models.

Name
Total number of
parameters AIC BIC R2

Li–Lee 3,221 �30,857.11 �5,490.77 0.9323

Base 3,181 �29,868.97 �4,803.26 0.9296

GDP 3,792 �30,671.82 �641.71 0.9347

Spatial autoregressive Li–Lee 3,845 �29,605.71 830.65 0.9323

Time lagged GDP 3,744 �29,962.10 �414.35 0.9386

GDP with time lagged GDP 4,368 �29,619.02 4,982.95 0.9407

Spatial time lagged GDP 3,744 �30,524.76 �977.02 0.9399

GDP with spatial time lagged GDP 4,368 �30,706.31 3,895.66 0.9431

Spatial autoregressive 3,792 �26,789.46 3,240.65 0.9245

Spatial lag of GDP 3,792 �31,259.67 �1,229.56 0.9361

Spatial autoregressive with GDP 4,416 �29,420.78 5,679.34 0.9347

Spatial lag of GDP with GDP (SLGG) 4,416 �31,979.41 3,120.72 0.9407

Spatial autoregressive with national GDP 3,805 �27,137.65 2,998.09 0.9256

Spatial 4,416 �30,011.46 5,088.67 0.9361

Spatial “complete” 5,040 �30,731.44 9,438.71 0.9407

Note: The models are defined in Table 1, and the best models bold-faced for all three model selection criteria.
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better conditions in neighboring states when the eco-
nomic situation is flourishing and would be valuable for
better understanding the mortality experiences of small
states that are in very close proximity to each other. It
should be noted that affluent states such as California
and Texas, which have some of the largest GDPs in the
US, are not greatly affected by the economic situation of
their neighboring states.

To investigate the impact that a state's GDP has on
mortality, the state specific parameter estimates of γi,x are
presented in Table 3. From the table, we observe how the
relationship between economic growth and mortality dif-
fers for each state across the four oldest age groups being
studied. We see that in the western states of Washington
and Oregon, the estimates are similar in magnitude and
direction across the age groups, indicating that the

economic growth within each of these states has a similar
impact on their respective mortality rates. This contrasts
the estimates in the midwestern states of Nebraska and
Missouri, in which the estimated parameters indicate
that economic growth has a different impact on mortality
for each of the age groups. We see that parameter esti-
mates of γi,x in the affluent states of California and Texas
are much greater in magnitude than their respective
estimates of ψ i,x . This demonstrates that the mortality
experience within these states is much more impacted by
their individual GDPs, than by the economic growth of
their neighboring states. For annuity providers, these
observed relationships between mortality and GDP in
space, which greatly differ across the age groups in study,
further demonstrate the need of more nuanced tech-
niques to accurately model pricing.

FIGURE 2 Comparison of residual plots of the SLGG model for the studied age groups across the years of 1977 to 2016 for the states of

(a) Arizona, (b) California, (c) Florida, and (d) Texas.
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Interestingly, we find that when it comes to big and
affluent states such as California and Texas, there is a
large direct impact of the GDP on mortality, while the
GDP in neighboring states is relatively small (a very
negative estimate of γi,x and an estimate of ψ i,x close to
zero). On the other hand, for states with big and affluent
neighbors such as Arizona, Georgia, or New Mexico, we
find the opposite effect (an estimate of γi,x close to zero
and a very negative estimate of ψ i,x).

4 | FORECASTING AND
COMPARISON OF THE BEST
PERFORMING MODELS

To compare the best performing models, we begin by
formulating an approach to model individual states'
GDP. Following that, we perform both backtesting and
forward testing assessments.

4.1 | GDP model

To capture the time-dependent variables for the selected
models, we propose time series models. In line with Li
and Lee (2005), Niu and Melenberg (2014), and Boonen

and Li (2017), we fit a random walk with drift to the com-
mon latent factor, assuming

Kt ¼Kt�1þ cþηt,

where c is the drift term and the error term ηt is
i.i.d. Gaussian with mean 0. The common factors are
assumed to be non-stationary with a linear trend.
Following Li and Lee (2005), to allow for stationary of
the population-specific processes κi,t, we fit each with an
AR 1ð Þ specification:

κi,t ¼ ci,0þ ci,1κi,t�1þωi,t,

where the error term ωi,t is i.i.d. follows a Gaussian distri-
bution with mean 0.

Forecasting the GDP of each individual state over
time requires attention to the dependencies that each of
the states have on one other. Vector autoregressive
(VAR) models are used to model vectors of variables that
are assumed stationary, allowing for lagged relationships
between the variables and for the correlations between
the variables. A pth-order vector autoregression, VAR(p),
based on p lags of the variables is given by

yt ¼ cþΦ1yt�1þΦ2yt�2þ…þΦpyt�pþϵt,

FIGURE 3 Mapped estimates of the state specific parameter ψ i,x for the four oldest age groups, as obtained from the SLGG model:

(a) ages 55–64, (b) ages 65–74, (c) ages 75–84, and (d) ages 85+.
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TABLE 3 Estimates of the state specific parameter γi,x for the four oldest age groups, as obtained from the SLGG model.

Parameter γi,x
Age group (x)

State (i) 55–64 65–74 75–84 85+

Alabama �0.0810 �0.4039 �0.2291 �0.0823

Arizona �0.0033 0.2301 0.2861 0.2380

Arkansas 0.0070 0.1530 0.0720 0.1237

California �0.1398 �0.2768 �0.2079 �0.1121

Colorado �0.0675 0.2198 0.1271 0.1357

Connecticut 0.0864 0.2616 0.1025 0.0248

Delaware 0.0443 0.2453 0.1747 0.1034

Florida �0.0531 0.0379 0.1020 0.1131

Georgia 0.2480 0.5629 0.3568 0.1782

Idaho �0.0311 0.2614 0.0860 0.0620

Illinois 0.2250 0.0327 �0.0545 0.0241

Indiana �0.2486 �0.5143 �0.2318 �0.2035

Iowa �0.0277 �0.1640 �0.0515 �0.0813

Kansas �0.0648 �0.2148 �0.1757 �0.1567

Kentucky 0.0201 0.1995 0.1268 0.1146

Louisiana �0.0348 0.0227 0.0313 0.0457

Maine 0.1390 0.4007 0.2349 0.1006

Maryland �0.1417 �0.3591 �0.2307 �0.1819

Massachusetts �0.3726 �0.7063 �0.3047 �0.1034

Michigan 0.0800 0.2156 0.1294 0.0912

Minnesota �0.0760 0.0915 0.0483 0.0843

Mississippi 0.0017 0.1258 0.0038 �0.0915

Missouri �0.0132 0.1960 0.1255 0.1608

Montana 0.1803 0.0312 0.0388 �0.0563

Nebraska 0.0224 �0.1524 �0.1170 �0.0656

Nevada 0.0206 0.0921 0.0676 0.0503

New Hampshire 0.2189 0.3979 0.2243 0.2511

New Jersey 0.2552 0.3063 0.1524 0.1154

New Mexico �0.0712 0.0642 0.0900 0.0364

New York �0.2498 �0.3920 �0.2474 �0.1845

North Carolina �0.1472 �0.2255 �0.0901 �0.1157

North Dakota �0.0167 �0.0570 �0.0105 �0.0522

Ohio 0.1109 0.1157 0.0208 0.1154

Oklahoma 0.0418 �0.0868 �0.0857 �0.1031

Oregon �0.0550 �0.2120 �0.0938 �0.1006

Pennsylvania �0.2134 �0.3583 �0.2186 �0.1551

Rhode Island �0.2023 �0.3225 �0.1323 �0.1186

South Carolina 0.1498 0.1946 0.1142 0.0135

South Dakota �0.1572 0.0854 0.0115 0.1080

Tennessee 0.2474 0.1687 0.0271 �0.0396

Texas 0.0124 �0.1319 �0.1201 �0.1129

Utah �0.1388 �0.2912 �0.2315 �0.0209

(Continues)
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where the GDPs of the individual state being modeled at
time t, along with its neighboring states,4 are denoted by
the vector yt, c is a vector of constants, Φi is a matrix of
autoregressive coefficients for i¼ 1,2,…,p, and ϵt is the
i.i.d. Gaussian error term with mean 0. The lag order of
the VAR, p, is determined by using selection criteria such
as Akaike's Information Criteria (AIC), Hannan-Quinn
Criterion (HQ), Schwarz Criterion (SC), and Final
Prediction Error (FRE) (Akaike, 1973; Hamilton, 1994;
Hannan & Quinn, 1979; Schwarz, 1978).5 For the
modeling of the GDP in each of the individual US, these
four tests displayed inconclusive results, with the SC
consistently indicating a lag order of one, and the AIC,
HQ, and FRE varying from one to three depending on
the state being evaluated. As this study is focused on
forecasting mortality, to keep the model simple, a
VAR(1) was determined to be the most suitable model for
the GDP in each of the individual contiguous US.

In our setting, specific situations do arise. For exam-
ple, in order to model the future GDP in California, we
also need to consider the economic growth occurring in
the neighboring states: Arizona, Nevada, and Oregon, as
well as the economic growth in Mexico. The GDP of all
these neighbors of California and California itself are
jointly forecasted using a VAR(1) model. The same
reasoning applies to all states neighboring either Mexico
or Canada.

4.2 | Out-of-sample backtesting

To further compare the accuracy of the SLGG model with
the Li–Lee model, we evaluate the out-of-sample forecast
performance. We fit the two models to data up to a jump-
off year bu and compute the forecasting error for the rest
of the sample. A cross-validation is performed by letting
bu range from 2006 to 2015 (1 year before the end of the
sample), allowing for a comparison of the forecast
accuracy for the two models under a range of forecast
horizons. For each model and jump-off year, the

forecasting performance is compared using the mean root
mean squared forecast error (RMSFE) of the logarithm of
mortality rates. We let log bmi,x,tð Þ denote the forecasted
logarithm of mortality rate for state i, age group x, and
year t. The mean of the RMSFE of mortality rates across
the states for jump-off year bu is given by

Mean RMSFE buð Þ¼ 1
48

X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

13� 2016�buð Þ
X2016

u¼buþ1

X
x

log mi,x,uð Þ� log bmi,x,uð Þð Þ2
j log mi,x,uð Þ j

vuut :

We use the mean RMSFE to measure the relative
forecasting errors for all future years in the sample and
all ages.

Figure 4 displays the mean RMSFE of for all jump-off
years for each of the two models. For each model, the
mean RMSFE of all the states is shown. We observe that
although the forecasting accuracies of the two models are
rather similar, the mean RMSFEs of the Li–Lee model
are routinely higher than those from the SLGG model.
This demonstrates that while both methods capture
mortality improvements well, the forecasts from the
SLGG model are generally more accurate.

4.3 | Comparison of model implications:
Annuity pricing

Our proposed approach to the spatial modeling of mortal-
ity with GDP lends itself to many applications. Mortality
forecasts and their differences have crucial impact on
pricing of mortality linked insurance products, most
notable of which are annuities. That is why the annuity
pricing is of key concern to insurance providers and
retirement planners who are tasked with managing the
financial risks associated with human longevity.

In this section, we compare the impact of the LL and
SLGG models on annuity pricing. To proceed, we use the
following well-known definition of a T-year fixed term
annuity of a y-year old individual

TABLE 3 (Continued)

Parameter γi,x
Age group (x)

State (i) 55–64 65–74 75–84 85+

Vermont �0.0529 �0.1324 �0.0549 0.0077

Virginia �0.1339 �0.1952 �0.0996 �0.0898

Washington �0.0467 �0.2128 �0.1892 �0.0361

West Virginia �0.0204 0.0169 0.0497 0.0831

Wisconsin �0.3526 �0.0500 �0.0636 �0.0078

Wyoming 0.0519 �0.0232 �0.0257 0.0184
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€ai,y ¼
XT
t¼0

tpi,y= 1þ rð Þt, ð2Þ

where r is the yearly discount rate and tpi,y is the
probability that a (male) life age y from state i survives
for t years, that is,

tpi,y ¼
Yt�1

k¼0

1�qi,yþk,2016þk

� �

where, starting with year 2016, qi,yþk,2016þy is the time-0
death probability determined from forecasts of
mi,yþk,2016þk. We calculate the present value of a 45-year
fixed term annuity of 1 unit per year commencing at age
65 for a male individual in each of the US. Similarly as in
Su and Sherris (2012), to obtain qi,yþk,2016þk for each indi-
vidual age y, we assume a uniform distribution of death
(UDD) among our 10-year age-group central death rate
forecasts (Bowers et al., 1997). Forecasts of mortality rates
from the LL and SLGG models were used to calculate

tpi,y. Table 4 displays values of €ai,65 as priced with fixed
rates r of 1%, 3%, and 5%.

From the results in Table 4, we observe that for both
models, the values of €ai,y appear to be greatest in states
with higher GDP when compared with the states with

lower GDP (cf. Figure 1). From the table, we see that
under a constant interest rate of 1%, the actuarial value
of a 45-year fixed term annuity paying out 1 unit every
year until the age of 110 ranges from 13.33 in West
Virginia to 17.57 in New York under the SLGG model,
and 14.41 in Mississippi to 16.61 in Florida under the LL
model. We see higher annuity prices in the more
economically growing regions of the northeastern US
and observe that in the south-eastern states, where there
limited economic growth, the LL model produces higher
values of €ai,y. We conclude that the pricing of annuities
has an underlying spatial dimension to it and that the
SLGG model is better equipped to capture the existing
economic inequalities among the neighborhoods of the
US to produce more accurate estimates.

Table 5 displays the summary statistics of mean and
standard deviation for the calculated values of €ai,y and
allows for a comparison of the values across the three
fixed rates of r. Importantly, we observe that while the
mean present value of the annuities calculated using the
mortality rates of both models are similar, the SLGG
model reveals more of the variability among these prices
than the LL model, as indicated by the standard devia-
tions. As the interest rate r increases to higher levels, the
SLGG model continues to admit more regional differ-
ences in these annuity prices than the LL model.

FIGURE 4 Comparison of the relative RMSFE for the logarithm of mortality rates obtained from the Li–Lee and SLGG models.
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TABLE 4 Present value of a 45-year fixed term annuity of 1 unit per year commencing at age 65 with discount rates r of 1%, 3%, and 5%,

as defined in (2), for each state and for the LL and SLGG models.

State

LL SLGG

1% 3% 5% 1% 3% 5%

Alabama 14.58 11.94 10.01 13.76 11.40 9.63

Arizona 16.51 13.28 10.98 16.52 13.26 10.94

Arkansas 14.98 12.23 10.22 13.93 11.50 9.70

California 16.53 13.30 11.00 16.97 13.57 11.16

Colorado 16.05 13.02 10.82 16.19 13.10 10.88

Connecticut 15.97 12.95 10.76 17.40 13.90 11.43

Delaware 15.40 12.54 10.46 16.68 13.37 11.03

Florida 16.61 13.34 11.02 16.94 13.54 11.14

Georgia 14.86 12.14 10.15 14.40 11.86 9.98

Idaho 15.94 12.94 10.76 15.60 12.71 10.60

Illinois 15.27 12.44 10.39 14.86 12.17 10.20

Indiana 14.90 12.19 10.20 14.71 12.05 10.11

Iowa 15.62 12.70 10.59 15.51 12.63 10.53

Kansas 15.58 12.67 10.56 15.42 12.55 10.47

Kentucky 14.43 11.84 9.94 13.68 11.33 9.58

Louisiana 14.71 12.02 10.07 14.16 11.66 9.82

Maine 15.27 12.47 10.42 16.00 12.97 10.78

Maryland 15.37 12.51 10.43 15.26 12.44 10.39

Massachusetts 15.66 12.73 10.60 16.51 13.32 11.02

Michigan 15.21 12.41 10.37 15.42 12.55 10.46

Minnesota 15.99 12.97 10.79 16.65 13.42 11.10

Mississippi 14.41 11.81 9.91 13.47 11.18 9.46

Missouri 15.06 12.30 10.29 15.65 12.67 10.53

Montana 15.72 12.78 10.64 16.24 13.11 10.86

Nebraska 15.61 12.70 10.58 15.41 12.57 10.49

Nevada 15.38 12.52 10.44 16.13 12.96 10.71

New Hampshire 15.65 12.74 10.62 15.94 12.94 10.77

New Jersey 15.58 12.69 10.56 16.34 13.16 10.89

New Mexico 16.23 13.11 10.86 16.20 13.07 10.83

New York 16.09 13.00 10.79 17.57 13.92 11.38

North Carolina 15.10 12.31 10.28 14.92 12.24 10.27

North Dakota 15.92 12.91 10.73 16.19 13.06 10.82

Ohio 15.28 12.45 10.39 14.57 11.97 10.05

Oklahoma 14.83 12.13 10.15 14.79 12.06 10.08

Oregon 15.79 12.82 10.67 15.40 12.55 10.47

Pennsylvania 15.21 12.42 10.38 15.67 12.70 10.57

Rhode Island 15.51 12.62 10.52 15.45 12.59 10.50

South Carolina 15.00 12.23 10.22 14.48 11.93 10.04

South Dakota 15.80 12.83 10.67 16.01 12.97 10.77

Tennessee 14.72 12.05 10.09 14.37 11.81 9.93

Texas 15.46 12.56 10.47 15.69 12.70 10.56
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5 | CONCLUSION

This study introduces the large class of models which
incorporate spatial components, as reflected in mortality
and GDP, into the traditional stochastic mortality model-
ing framework outlined by Li and Lee (2005). As such, it
goes well beyond mortality models that incorporate eco-
nomic growth (Boonen & Li, 2017). Also, by investigating
questions about the impact of neighboring mortality on
the mortality of a particular state, our study goes well
beyond the current mortality modeling literature. Our
findings show that there is a heterogeneous impact of
GDP on mortality across space. Also, when it comes to
the impact of GDP of neighboring states on a state under
consideration, it is important to notice that this impact is
heterogeneous across space and different given the GDP
of the state under consideration. Interestingly, these con-
siderations impact different age groups differently across
space. In conclusion, this research provides an important
starting point for more localized and interpretable studies
of mortality, serving as a blueprint for the inclusion of
spatial components and economic growth into the tradi-
tional mortality models. Further research should include
investigating a variety of possible covariates that may
impact mortality and their relationships across space.
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ENDNOTES
1 The federal district Washington DC is excluded from our
analysis, because the GDP per capita in this district is very
high, and uninformative as factor of economic growth for
this area.

2 State level real GDP data were obtained online (from https://
www.bea.gov/).

3 Mortality data were obtained online (from https://wonder.cdc.
gov/).

4 To reduce the model to a reasonable number of parameters, we
only incorporate neighboring states.

5 Results of these criteria can be found in Table A1 of Appendix A.
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APPENDIX A: TABLES OF SELECTION CRITERIA

TABLE A1 The optimal lag order of the VAR selected by the Akaike's Information Criteria (AIC), Hannan-Quinn Criterion (HQ),

Schwarz Criterion (SC), and Final Prediction Error (FRE) for the individual states.

State

Criterion

AIC HQ SC FPE

Alabama 1 1 1 1

Arizona 3 3 1 3

Arkansas 3 3 1 3

California 2 1 1 2

Colorado 3 3 1 3

Connecticut 3 1 1 2

Delaware 2 1 1 2

Florida 2 2 1 2

Georgia 3 1 1 3

Idaho 3 3 1 3

Illinois 3 1 1 1

Indiana 1 1 1 1

Iowa 3 1 1 1

Kansas 3 1 1 3

Kentucky 3 3 1 1

Louisiana 3 1 1 3

Maine 1 1 1 1

Maryland 2 1 1 2

Massachusetts 3 1 1 2

Michigan 1 1 1 1

Minnesota 3 1 1 3

Mississippi 2 1 1 1

Missouri 3 3 3 3

Montana 3 3 1 3

Nebraska 3 3 1 3

Nevada 3 1 1 1

New Hampshire 1 1 1 1

New Jersey 1 1 1 1

New Mexico 3 3 1 3

New York 3 3 1 2

North Carolina 1 1 1 1

North Dakota 3 1 1 1

Ohio 3 1 1 1

Oklahoma 3 3 1 3

Oregon 2 2 1 2

Pennsylvania 3 2 1 2

Rhode Island 2 2 1 2

South Carolina 1 1 1 1
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TABLE A1 (Continued)

State

Criterion

AIC HQ SC FPE

South Dakota 3 3 1 3

Tennessee 2 1 1 3

Texas 1 1 1 1

Utah 3 3 1 3

Vermont 1 1 1 1

Virginia 3 3 1 3

Washington 2 1 1 2

West Virginia 3 2 1 2

Wisconsin 1 1 1 1

Wyoming 3 3 1 3

Note: For the modeling of GDP, a VAR(1) model was determined to be most suitable. For more information about these four selection criteria, we refer to
Akaike (1973), Hannan and Quinn (1979), Schwarz (1978), and Hamilton (1994).
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