Reliability-based journey time prediction via two-stream deep
learning with multi-source data

Li Zhuang®? and Xinyue WuP and Andy H.F. Chow” and Wei Ma® and William
H.K. Lam® and S.C. Wong?

2School of Cyber Science and Engineering, Southeast University, Nanjing, China; "Systems
Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; °Civil
and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong
Kong SAR, China;4Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
SAR, China

ARTICLE HISTORY
Compiled January 4, 2024

ABSTRACT

This paper presents a distribution-free reliability-based prediction approach for es-
timating journey time intervals with multi-source data using a two-stream deep
learning framework. The prediction framework consists of a long short-term mem-
ory (LSTM) module for extracting temporal features and a convolutional neural
network (CNN) module for extracting spatial-temporal features from the heteroge-
neous data. The precision and reliability of the prediction are assessed respectively
by the Mean Prediction Interval Width (MPIW) and Prediction Interval Cover-
age Probability (PICP) metrics. For computational effectiveness, a Gaussian ap-
proximation is adopted to formulate a smooth and differentiable loss function for
training the prediction framework. The computational experiments are conducted
based on a real-world Hong Kong corridor, where multi-source data including traf-
fic and weather conditions are collected. The proposed framework shows significant
improvements over existing methods in terms of both precision and reliability over a
range of traffic and weather conditions. This study contributes to the development
of reliability-based intelligent transportation systems with advanced deep learning
techniques.

KEYWORDS
vehicle journey times; interval prediction; traffic data fusion; deep learning;
Gaussian approximation

1. Introduction

Precise and reliable prediction of vehicle journey times and their associated variabil-
ity are important for the development of road performance measures and intelligent
transportation systems (Chen et al., 2021; Chow et al., 2014; Qiao et al., 2016; Wu
et al., 2016; Zhan et al., 2020). This need leads to a number of related studies reported
in the literature. The journey time prediction algorithms found in the literature can
generally be classified into two groups: model-based and data-driven (Shi et al., 2021;
Yang et al., 2023). Model-based methods operate upon an underlying physical model
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of traffic flow or journey time dynamics. Balijepalli et al. (2007) present a dynamic
travel time model with consideration of both within-day and day-to-day variations
in a stochastic user equilibrium model. Connors and Sumalee (2009) analyze travel
time variations with consideration of travel behavior in a stochastic environment.
Kurzhanskiy and Varaiya (2010) present an active traffic management system for es-
timating and managing traffic flows and journey times based on a cell transmission
model, and extend it to a model-based interval estimation framework (Kurzhanskiy
and Varaiya, 2012). Sumalee et al. (2013) present a stochastic traffic flow and journey
time estimation framework based on a probabilistic extension of the cell transmission
model. Chow et al. (2015) develop a hybrid journey time prediction model with use
of probe GPS bus data, and later apply it to bus service reliability control (Chow
et al., 2017). In contrast, the data-driven methods are based on empirical data with
no explicit underlying models. Billings and Yang (2006) use the autoregressive inte-
grated moving average (ARIMA) method for urban travel time prediction. Myung
et al. (2011) present a k-nearest neighbors (KNN) algorithm for travel time prediction
with data inferred from an automatic toll collection system. Qiao et al. (2013) intro-
duce a KNN-T model developed based on KNN for short-term travel time prediction.
Cheng et al. (2014) present a journey time prediction algorithm with consideration
of spatio-temporal characteristics of journey times using the STARIMA (Space-Time
Autoregressive Integrated Moving Average) framework. Haworth et al. (2014) present
a journey time prediction model with use of kernel regression. Zhang and Haghani
(2015) introduce a gradient boosting regression tree for freeway journey time predic-
tion. Woodard et al. (2017) introduce a Markov model with maximizing a posterior to
predict the reliability of travel time by using GPS data in road networks. Zhong et al.
(2017) adopt the functional principal component analysis for journey time prediction
with abnormal road conditions. Feng et al. (2018) introduce an adaptive multi-kernel
support vector machine with spatial-temporal correlations for traffic flow prediction.
Chen et al. (2020) introduce a gradient boosting model for travel time prediction.
Kwak and Geroliminis (2020) present a dynamic linear model for travel time pre-
diction on congested freeways. Zhang et al. (2022) present an estimation method for
travel time distributions with low-resolution video images.

Many existing traffic prediction methods require further manual refinements follow-
ing the calibration process for actual implementation due to the complexity of real
world traffic dynamics (Li et al., 2021a). With the advancement in data science and
computing technology, we see an increasing use of deep machine learning techniques in
the development of traffic estimation and prediction algorithms (Dia, 2001; Li et al.,
2021a; Wang et al., 2022). Khosravi et al. (2011) and later Lin et al. (2018) present
an artificial neural network (ANN) based journey time prediction framework trained
by particle swarm optimization (PSO). Duan et al. (2016) adopt a long short-term
memory (LSTM) based approach for journey time prediction. Zhu and Laptev (2017)
present a Bayesian deep learning model with LSTM for predicting journey times for
Uber services. Wu et al. (2018) present a deep neural network framework for predicting
journey times along freeways. Li et al. (2019) introduce a deep feature fusion model
to predict traffic speed. Yang et al. (2019) develop a parking occupancy prediction
framework using LSTM and graph neural networks (GNNs). Wang et al. (2019) pro-
pose a path-based deep learning approach for traffic speed prediction in urban areas.
Zhao et al. (2019) present a temporal graph convolutional network (T-GCN) model
using the graph convolutional network and the gated recurrent unit for traffic predic-
tion. Abdollahi et al. (2020) introduce a feature learning module using a deep stacked
autoencoder for travel time prediction. Shi et al. (2020) introduce an attention-based



periodic-temporal neural network for traffic forecasting. Li et al. (2020) develop a two-
stage journey time prediction framework with use of a deep belief network (DBN)
and quantile regression. Li et al. (2022) adopt a fusion attention mechanism based
LSTM for short-term traffic flow prediction. Tang et al. (2021) present a sparse de-
noising auto-encoders based deep architecture for citywide travel time prediction using
contextual information. Yuan et al. (2021) present two convolutional neural networks
(CNN) for traffic state and speed prediction. Despite the recent development on deep
learning-based prediction algorithms, we have identified several issues that have not
been fully addressed. Most prediction algorithms operate on a single data source and
they have not been able to harness the potential benefits brought by multiple data
sources. Moreover, many prediction algorithms developed in the literature are for point
estimation and have not taken into account of the associated variability with interval
estimates (Kurzhanskiy and Varaiya, 2012). Furthermore, the loss functions adopted
in the most training process for an interval estimation algorithm are empirical and
inherently non-differentiable. Such non-differentiable loss functions are difficult to op-
timize and hence introduce computation challenges to the training process of deep
learning-based methods (Khosravi et al., 2011; Lin et al., 2018; Murphy, 2022).

This paper presents a distribution-free reliability-based prediction framework for ve-
hicle journey times and their associated variability based on a two-stream deep learning
framework with use of heterogeneous traffic data collected from multiple sources, lo-
cations, times, and days. The heterogeneous data sources (e.g. travel time, spot speed,
weather) provide ranges of spatial and temporal features of prevailing traffic flow for
precise and reliable journey time prediction. The spatial and temporal features in
the input data are extracted through the two-stream architecture consisting of a long
short-term memory (LSTM) and a convolutional neural network (CNN). To improve
its computational effectiveness, this paper presents and adopts a smooth and differ-
entiable loss function for training the reliability-based prediction framework through
applying a Gaussian approximation to its inherent step loss function. It is shown that
minimizing the proposed loss function can result in an accurate prediction interval for
a given significant level. The training process can hence be conducted via the effec-
tive derivative-based Adam (Kingma and Ba, 2014; Murphy, 2022) stochastic gradient
search instead of using the conventional but less effective metaheuristics as in many
previous studies (Khosravi et al., 2011; Lin et al., 2018). The extracted features are
fused and processed through multiple fully connected layers to generate a lower and
upper bound of predicted journey time at the time of interest. The performance of the
proposed framework is validated and tested with traffic data collected from a selected
corridor in Hong Kong. To summarize, this study contributes to the development of
reliability-based intelligent transportation systems with advanced deep learning tech-
niques through delivering:

e a distribution-free interval prediction method for vehicle journey times;

e a two-stream deep learning framework for incorporating multi-source data with
different spatio-temporal features;

e a smooth and differentiable loss function for prediction training with use of
Gaussian approximation.

The rest of the paper is organized as follows: Section 2 presents the proposed
methodology. Section 3 shows the case study with data collected from a selected Hong
Kong highway corridor. Finally, Section 4 provides some concluding remarks.



2. Methodology

Figure 1 shows the overall architecture of the proposed prediction framework in which
X represents all data available at a present time ¢ and includes pure time series
datasets X} and a spatio-temporal dataset X 7. Given the data X, the prediction
framework aims to generate the corresponding upper U (z;) and lower bounds L(z;) of
the (unknown) journey time z; to be experienced by a traveler embarking en-route at
this time. Considering the differences in the orders and magnitudes between different
types of data (e.g. journey times, speeds, rainfall intensities), all quantities in X will
first be normalized with respect to their associated means and standard deviations
(Ying et al., 2020). With this normalization process, the data will be converted to
standard scores with mean and standard deviation equaling respectively to zero and
one.

X} and X? are further denoted as x; and X7 respectively after normalization
as shown in the figure. The notation x; represents a vector containing all pure time
series data (e.g. vehicle journey times and rainfall intensities over previous time in-
tervals) and X7 is a multi-dimensional tensor storing data with spatial and external
features (e.g. previous spot speeds observed at specific locations along the route of
interest and measurements on previous days). The pure time series data ax; will be
fed into a temporal feature extraction stream (TFES) in the prediction framework
which is constructed by a LSTM, while the multi-dimensional data in AT will be
fed into a spatio-temporal feature extraction stream (STFES) that is built by a CNN.
The CNN is a specific kind of artificial neural network designed for incorporating
high-dimensional input data structure (e.g. tensors) by having its hidden layers per-
forming convolution operation (Goodfellow et al., 2016). The extracted features from
X through the two streams will be integrated and renamed as the comprehensive
spatio-temporal features eventually to derive the corresponding upper bound U (z)
and lower bound E(zt) estimates of the vehicle journey time z; after denormalization.

The following sections will first present the construction of the TFES and STFES,
followed by the training and validation procedures. We refer the readers to Goodfellow
et al. (2016) and Murphy (2022) for further details of the computational properties of
the deep learning-based methods presented herein.

2.1. Temporal feature extraction stream (TFES)

The temporal feature extraction stream is developed based on the long short-term
memory (LSTM), which is an extension form of the standard recurrent neural net-
work (RNN) (Goodfellow et al., 2016; Hochreiter and Schmidhuber, 1997) designed
for handling sequential and time series data (Duan et al., 2016; Li et al., 2021b; Wang
et al., 2019, 2020; Yang et al., 2019). Figure 2 shows the structure of each LSTM hid-
den layer, known as ’cell’; in the LSTM. Each LSTM cell consists of signals generated
from an input gate vector %;, a forget gate vector f,, and an output gate vector o;.
These signals (i, f;, 0¢) govern the information flow in the LSTM cell over time ¢.
We further have m; and my as vectors representing the ‘memory’ (Goodfellow et al.,
2016; Yang et al., 2019) generated within the LSTM cell at each time ¢. The ‘mem-
ory’ vectors contain and store prevailing state conditions at different stages within the
LSTM cell.

The variables in the LSTM cell evolve as follows. We first determine the vectors
from the input gate, the forget gate, the output gate, and the memory cell based upon
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the current input x; and previous LSTM hidden layer output h;_1 as:

iy =o(W'zy + U'hy_1)
fi=0(Wlz, + U h;_y)

o, =W+ U°hy_1)

m; = tanh(W9x; + U%%h;_1)

(input gate
(forget gate

(1)

(output gate

~— ~— ~— ~—

(memory cell

where o(-) and tanh(-) are respectively the sigmoid function and hyperbolic tangent
function. In the system of state equations (1), W*, W/, We, and W9, as well as U?,
U/, U°, and UY, are the underlying parameter matrices that determine the LSTM
cell signals (¢4, f;, 0¢), and the memory my, given the current input vector x; and
hidden layer output vector h;_1 at the previous time step. All parameter matrices in
the LSTM cell are to be determined from the training process with a given training
dataset.

Given the memory m; computed in (1) and memory m;_; obtained at previous
time t — 1, the memory variable m; at time ¢ is updated as:

my =1t Omy+ f; Omy_y (2)

where the notation ‘@’ in (2) refers to the Hadamard product, or element-wise product
(Goodfellow et al., 2016; Murphy, 2022), of the two matrices. The layer output vector
h; of the LSTM cell at time t is determined as:

ht =0 ©® tanh(mt) (3)

with which the eventual predicted output feature vector h;.

In the TFES, the LSTM cells are connected and proceed over time steps ¢t — 1 via
the corresponding output vector of each LSTM cell. Eventually, an output vector h;_1,
with a length of Nyg7as, is to be delivered with tunable parameters by the TFES based
on the observations made in previous time steps, say (€;—1, ®i—2, ...,&i—5), shown in
Figure 1. The output feature of the LSTM module will be concatenated with that
produced by the CNN module (see the following section) to form a comprehensive
spatio-temporal feature vector for traffic observations that would lead to the eventual
predicted interval of journey times through the proposed deep learning framework (see
Figure 1).

2.2. Spatio-temporal feature extraction stream (STFES)

Associated with the TFES presented above is the STFES built by a CNN shown
in Figure 1 for handling multi-dimensional data (Krizhevsky et al., 2012; Wu et al.,
2018). Each data matrix X(Sﬁ = [X‘(gg(t, k)] in the input tensor X7 to the CNN
module, where j = 1,2,...,J, contains traffic data collected over times ¢ (where ¢t =
1,2,...,T) and from all selected locations k (where k = 1,2, ..., K') on each specific day
4. The input tensor X7 will be fed through three connected convolutional layers which
generate the output of sizes (K x T x N1), (K xT X N3), and (K x T x N3) respectively.
The convolutional layers consist of a set of filters, known as ‘kernels’, with trainable
parameters. During each forward pass across the convolutional layers, each kernel is
convoluted across the width and height of the input tensor, which computes the dot
product between the filter entries and the input and hence produces an activation map



of that input. The dimension of the feature tensor outputted from the convolutional
layers is to be reduced from (K x T x N3) to (Q x @ x N3), where Q@ < K and Q < T,
by passing it through a pooling layer (Goodfellow et al., 2016). The principle of the
pooling layer is to reduce the dimensions of the data by combining the outputs of
neuron clusters at the previous convolutional layer into a single neuron in the pooling
layer. This study adopts a max pooling approach which takes the maximum value
of each local cluster of neurons as the representative value of that cluster during the
pooling process (Goodfellow et al., 2016).

The STFES (i.e. the CNN module) will eventually generate an output feature vector
with a length of Noyn (see Figure 1) after passing through the max-pooling layer to
the fully connected layer. This output feature will be concatenated with that produced
by the TFES (i.e. the LSTM module) (see the previous section) to form a complete
extracted feature vector, with a total length of (Npsra + Nonn), from the heteroge-
neous traffic data (i.e. X;). The concatenation of the extracted features from the two
streams, i.e, the comprehensive spatio-temporal feature vector, will be passed forward
to a series of connected hidden layers, which eventually generate the corresponding
upper bound U(z;) and lower bound L(z;) of the future vehicle journey time z; at time
t (see Figure 1).

2.3. Performance metrics

The objective of the prediction framework is to derive an upper bound U (z¢) and a
lower bound L(z;) for the future vehicle journey time z; of a driver embarking at time
t, such that the probability of this unknown future journey time z; lying within the

interval [L(z:), U(zt)] would be greater than or equal to a predefined threshold (1 —«),
where a € [0,1], i.e.

P[L(z) <z < U(z)] >1-a. (4)

The notation « in (4) can be regarded as analogous to the notion of significance
level in statistical analysis. Considering the criterion specified in (4), we first define
an empirical metric known as that prediction interval coverage probability (PICP)
which measures the reliability of the estimates.

Suppose there is a total of I realized values of the vehicle journey times over the
study period T'. We define ZZ‘(Z.) be the i—th observed value in the dataset of I taken
from a driver embarking at time ¢. We further define

. {1, if 25, € [L(z1), U (=) )

0, otherwise

as a binary indicator denoting whether this specific observed value z;(i) fell within the

prediction interval [L(z), U (z¢)] generated by the prediction framework.
The PICP can then be determined as

PICP = |§’ (6)

where PICP € [0,1] and |c| = Zi[:l ¢; is the total number of ¢; in the set ¢ =
{c1, ca, ..., cr } equaling to one. A satisfactorily trained prediction algorithm shall deliver



a PICP > (1 — «a) according to the criterion specified in (4) with consideration
of all noises and uncertainties existing in the training dataset and prevailing traffic
conditions.

In addition to the PIC' P measure (which represents the reliability of the estimates),
we have another metric for evaluating its precision known as the mean prediction
interval width (M PIW) (Pearce et al., 2018). This M PIW indicator is defined as

T
MPIW = %Z[ﬁ(zt) ~ T2, (7)
t=1

which is essentially the time average of the prediction interval widths [L(z), U(z¢)]
over all times ¢ in the study period T'.

The PICP and M PIW in (6) and (7) will both be used for evaluating the predic-
tion framework during the validation and testing processes. Given a target PICP to
achieve, a prediction associated with a smaller M PIW would imply it is more precise
(and hence more desirable) than another one with a larger M PIW.

2.4. Training procedure

We now present the training procedure for the proposed prediction. We define 8 be the
set of all parameters (including all parameters in the LSTM and CNN modules, and
all fully connected layers) specifying the prediction framework. The training process
primarily aims to determine a set of these model parameters 6 that can minimize the
M PIW while ensuring the predefined minimum PICP can also be achieved.

To incorporate the M PIW in the training process with the ¢; determined in (5),
we first revise the M PIW indicator in (7) and derive the following loss function
representing the precision of the prediction model in the training process (Pearce
et al., 2018):

Lyrprw =

Zﬁzt Ezt] (8)

N\P—‘

The loss function Ly prw in (8) is a measure of M PIW in (7) based on the realized
¢;. This loss function can be regarded as the average of all prediction interval width
of all data points fell within the associated interval [L(z:),U(z:)]| (i-e. ¢;) over time ¢
in the study period. The objective of this construction is to reduce the influence of
outliers, i.e. data points lying outside the prediction interval, when evaluating M PIW
in the training process.

We now establish the loss function £y for determining 6 aiming to achieve the target
PICP with consideration of computational effectiveness in the training process.

Proposition 2.1. Given a predefined target PICP > (1 — «), the prediction frame-
work parameters 0 can be determined by minimizing the following loss function:

Lo=Lyprw + A maz((1 — a) —PICP,0)2 (9)

.
a(l —a)



where X is a penalty cost balancing the trade-off between PICP and MPIW in the
training process.

Proof. 1t is noted that each ¢; in (5) can be regarded as following a Bernoulli process,
ie.

¢i ~ Bernoulli(l — ) (10)

which are identically and independently distributed for all ¢ = 1,2, ..., I given (1 — «)
is the predefined minimum PIC'P to achieve. The Bernoulli distributed ¢; implies the

corresponding total number of ¢;, i.e. |c| = Zle ¢i, in the training dataset would
follow a binomial distribution, i.e.
|c| ~ Binomial(I, (1 — «)) (11)

where [ is that total observed data points and the probability of finding an obser-
vation ¢; in ¢ is (1 — «). The likelihood expression of having |c| observations within
the prediction interval can hence be specified through the Binomial probability mass
function as

Pl = (

) (1 — a)lat-le, (1)
It is noted that P(|c||@) in (12) is dependent on the choice of 6.

Seeking a set of model parameters 6 that maximizes P(|c||f) involves computation
of the combination in (12) which could be computationally demanding with a large
dataset. Following Pearce et al. (2018), this study adopts a solution approach with use
of Gaussian approximation on the likelihood function in (12). It is known from the

central limit theorem that the binomial distribution in (12) can be approximated as a
normal distribution:

NUI(1 - a), Ia(l - a)) (13)

with the mean and standard deviation being I(1 —«) and Ia(1 — «) respectively when
the underlying sample size I is sufficiently large (say, I > 50). The likelihood function
in (12) can now be transformed with this Gaussian approximation as

—(|c| = —a))?
Pl = e ) O

in which |c| is influenced by the choice of 6.
Maximizing (14) is equivalent to minimizing the following:

(11— a) — |el)*

Ia(l - a) (15)

Substituting (6) into (15), Expression (15) can be rewritten in terms of PIC'P as

1

a0 a1~ — PICP)’ (16)



Expression (16) can be adopted as a constraint governing the choice of § with con-
sideration of the required minimum PICP needed. We further consider that penalty
should only be imposed when the resultant PICP is less than the required (1 — «)
but not higher. Consequently, Expression (16) can be further revised as Pearce et al.
(2018):

mmaw((l —a) — PICP,0)? (17)

Expression (17) can then be augmented with the M PIW objective in (8) to form
the Lagrangian function shown in (9), in which A can be regarded as a penalty fac-
tor, or Lagrange multiplier, ensuring the required minimum PICP is satisfied while
minimizing the M PIW.

O

The minimization of (9) involves computation of |c| for each candidate parameter
set via (5). Due to the non-differentiable nature of each ¢; in (5), the resultant mini-
mization would be a combinatorial problem which needs to be solved by probabilistic
search heuristics such as the particle swarm optimization (PSO) method (Khosravi
et al., 2011). Such solution strategy could be computationally extensive when a large
amount of data and parameter sets are involved. To further facilitate the solution
process, the non-differentiable ¢; in (5) is approximated by using the sigmoid function
as (Khosravi et al., 2011; Murphy, 2022):

G = [ exp[s(z:(i) — L(z))] } [ exp[s(U(zt) - Zt*(i))]

expls(0(z0) — 7)) + 1 e

for all observed zj, with the associated L(z) and U(z), governed a user-defined

scaling factor s. With the approximation (18) on ¢;, the PIC'P term in the Lagrangian
function (9) would become continuous with respect to the choice of parameters 6 that
can be minimized by effective solution algorithm such as the Adam stochastic gradient
search method (Kingma and Ba, 2014). The Adam stochastic gradient search is to be
used in this study for training the prediction framework in the case study presented
in the following section.

3. Case Study

3.1. Scenario settings

A case study using traffic data collected from a 9-km Hong Kong strategic route
section is conducted to evaluate the effectiveness of the proposed framework for interval
prediction of vehicle journey times. The selected route section is shown in Figure 3
which starts from the Island Eastern Corridor (marked by the ‘Entry’ hexagon in the
figure) and ends at the exit of Western Harbour Crossing in Kowloon (marked by the
‘Exit’ hexagon in the figure). The route section takes approximately 500 seconds to
traverse under free-flow conditions.

The data were collected and processed over a 15-month period of weekdays from
January 2017 to March 2018, 06:30 to 21:00. Traffic data of journey times, local speeds,
and weather are adopted herein. To measure the journey times, a pair of Automatic

10



Legend:
& Entry and exit

Exit @ AVistations
Kowloon I Autoscope stations

AV <l Travel direction

Entry

Island Eastern Corridor

‘Western Harbour Crossing

Autoscope’

‘Autoscope?

Autoscope®
Autoscope!

Happy Valley

Hong Kong Island

Figure 3. Case study corridor - Hong Kong strategic route

Vehicle Identification (AVI) stations have been deployed at the ‘Entry’ and ‘Exit’ lo-
cations (represented by the two hexagons in the figure) from which the journey times
of the vehicles passed by can be derived from matching their identifications with the
associated time stamps (Cheng et al., 2014; Chow et al., 2014; Robinson and Polak,
2006). Associated with the AVI stations are five Autoscope detection stations deployed
at different locations along the route. The Autoscope stations equipped with point de-
tectors are used to measure and record local spot speeds of vehicles through Autoscope
video detection and analysis. The collected spot speed data are aggregated by the de-
tection system into 5-min averages. We further have precipitation data, in terms of
rainfall intensity per minute, in the area obtained from the Hong Kong Observatory
for investigating the relationship between traffic and weather conditions.

It is known that journey times inferred from AVI could be subject to various distur-
bances and outliers caused by mismatching, vehicles making stop(s) or taking a detour
between the AVI stations (Dion and Rakha, 2006; Robinson and Polak, 2006; Tam and
Lam, 2011). To remove the invalid measurements, we adopt a filtering algorithm devel-
oped from the Spatio-Temporal Density-Based Spatial Clustering of Applications with
Noise method (ST-DBSCAN) (Behara et al., 2021; Birant and Kut, 2007; Ester et al.,
1996; Yao and Qian, 2021). An example of the filtered journey time data compared
with its raw input is shown in Figure 4.

The dataset is divided into three subsets: data collected during 1 January 2017 - 31
October 2017 are classified as ‘training dataset’. The training dataset is for determin-
ing the model parameters given a predefined model architecture. Data collected during
15 November 2017 - 20 December 2017 are used as ‘validation dataset’, which is for
determining hyperparameters of the modeling framework that reflect the structural
settings and architecture of the prediction model. The hyperparameters in the pro-
posed prediction framework include the penalty cost A in Equation (15), the sizes of
the three convolutional layers in the CNN module (N7, No, and N3), the size of the max
pooling layers (@), and the number of units in the hidden layer in the LSTM module.
Data collected during 1 March 2018 and 31 March 2018 are used as ‘testing dataset’
for evaluating the performance of the trained and validated modeling framework.

We now define At to be the sampling interval of the traffic data, which is set to 5-
min as aforementioned. Considering the data granularity and practical usage in Hong
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Journey time data with filtering on Jan 6, 2017
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Figure 4. Vehicle journey times inferred from AVI on 6 January 2017: (a) raw data; (b) filtered data with
ST-DBSCAN.

Kong, the prediction framework is set to generate an interval estimate for journey time
along the selected route after 5 minutes (i.e. At) based on all observations over the
past 25 minutes (i.e. 5At). Accordingly, the number of cells in the LSTM module is set
to be 5 (i.e. the number of sampling intervals taken from observed previous journey
times) for incorporating the traffic features in the previous 25-minute period (or 5At).
The dimension of the input tensor X7 to the CNN module, K x T x J, hence is
set as K = 5 which refers to the number of local speed stations (corresponding to
the ‘5’ Autoscope stations) taken for generating the journey time predictions, 7' = 5
which is the number of sampling interval taken from the past data for generating the
journey time predictions, the last ‘J’ will be subject to the number of previous days we
took from the historical dataset for generating journey time predictions. The effect of
setting different tensor structures and the corresponding value of J will be investigated
and presented in latter parts of the paper.

The prediction framework is learned through the Adam stochastic gradient algo-
rithm (Goodfellow et al., 2016; Kingma and Ba, 2014; Ying et al., 2020) with a max-
imum number of epochs of training set to be 20, the underlying learning rate in the
Adam algorithm is set to be 0.0001 following the numerical experiments conducted
in Goodfellow et al. (2016); Kingma and Ba (2014). The computations are coded in
Python and are conducted on a computer with an Intel Core i7-10700 processor with
32GB RAM running on Windows 10.

3.2. Training and validation with different framework settings

Table 1 shows four different model set-ups representing different degrees of day-to-
day correlations incorporated. The first (P0) is the base case setting in which we
do not take into account of day-to-day correlation in journey times. This gives the
dimension J in the input tensor X7 to the CNN module being ‘one’ as we only
consider observations on the present day. The second (P1) model type captures the
correlation between days a week apart, say journey times observed on ‘Wednesday’ in
the current week compared with those observed on the ‘Wednesday’ in the previous
week. The underlying consideration here is the similarity in travel patterns on the same
day in a week. The third (P2) mode type captures the correlation between consecutive
days, which can be understood as the conventional day-to-day dynamics investigated
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Table 1. Summary of model set-ups with different de-
grees of day-to-day correlations incorporated

Model type  Description

PO No day-to-day correlation considered
P1 Same days in previous week(s)

P2 Previous day(s)

P3 Combination of P1 and P2 above

in the literature (Balijepalli et al., 2007; Zhong et al., 2020). The last model type (P3)
is constructed as a combination of P1 and P2, i.e. with consideration of correlations
over both consecutive days and same days over consecutive weeks.

Following a series of validation tests with data collected on 15 November 2017 - 20
December 2017 as aforementioned, the channel sizes of the three convolutional layers
(N1, N2, and N3) in the CNN module are set respectively to be 64, 128, and 256. Thus,
the sizes of such three convolutional layers are 5 x 5 x 64, 5 x 5 x 128, and 5 x 5 x 256
respectively based on the convolutional operation with use of 3 x 3 convolutional
kernels. The size of the associated max pooling layers is set to be 2 x 2 x 256 (i.e.
@ = 2). The dimension of the features extracted from the CNN module (i.e. Nonyn)
is set to be 128, while the dimension of features extracted from the LSTM module
(i.e. Npsrar) is set to be 64. This gives the dimension of the concatenated features
from the CNN and LSTM modules Ny = 128 4-64 = 192. The concatenated Ny = 192
features are further passed through two fully connected layers with the size of 64 x 1
and 2 x 1, which lead eventually to the upper and lower bounds of the estimated
journey time. The scalar s in the sigmoid function (18) is set to be 50 following our
validation experiments and the analysis reported in Pearce et al. (2018).

Table 2 shows the validation results of the proposed prediction framework with
different settings given their best sets of parameters and hyperparameters. Following
the usual practice (Khosravi et al., 2011), the target PICP (i.e. (1—a)) is set to be 90%
in the training process. The performance of the prediction framework is measured in
terms of the corresponding M PIW achieved. The second column in the table refers to
the structure of the input tensor to the CNN module in the prediction framework. The
tensor structure represents the degree of day-to-day correlations to be considered when
deriving the journey time predictions. In the case of P1 where correlations between
journey times observed on the same weekday over consecutive weeks are considered,
the tensor structure X]%T_ 7 refers to the model setting that would incorporate journey
times observed on the present day j and those on the same weekday in the previous
week (i.e. j — 7). Consequently, this gives the dimension J = 2 with two days (i.e.
j and j — 7) of observed journey time variations considered. The tensor structure
ijT_z j—14 refers to the model setting that would incorporate journey times observed
one week (i.e. 7 — 7) and two weeks (i.e. j — 14) before, and so forth. Consequently
this specific tensor setting gives the dimension J = 3 with three days (i.e. j, 7 —7, and
j — 14) of observed journey time variations considered. For the case of P2, the tensor
structure X]%T_l refers to the model setting that would incorporate correlations in
journey times observed on the present day j and those on the previous day (i.e. j —1).
Consequently, this again would give the dimension J = 2 with two days (i.e. j and
j — 1) of observed journey time variations considered. The tensor Xfﬁ 1,j—o Trefers to
the model setting that would incorporate correlations in journey times observed over
the previous two days (i.e. j —1 and j —2), and so forth. The tensor structure settings
in the table hence represent different orders of day-to-day correlations incorporated in
the prediction framework.
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In Table 2, the tensor structures in bold represent the best settings which we recog-
nize for each specific model type (P1, P2, and P3). We regard a model setting is "better’
than another if it produces a smaller M PIW given that the minimum required PI1C P
is achieved (i.e. 90%). We note the tensor settings XJS_I;J-_M (P1), Xf_TLj_Q (P2), and

ngjﬂl,j—Q,j—7,j—14 (P3) perform the best in their own type with consideration of their
PICP and M PIW loss function values achieved.

For further reference, Table 2 also includes the point estimation metrics: mean
absolute percentage error (M APE), mean absolute error (MAE), and root mean
square error (RMSE). Given the estimated interval [L(z),U(z)] derived for each
journey time z; over time ¢ with which zZ‘(i) is the associated true (i—th) observed
value, we define

(19)

be the point estimate for z; derived from the interval [L(z:),U(z:)], assuming the
distribution of true value of z; within the interval is uniform. We further have the
corresponding point estimation metrics over all observed data points as:

I A
D=1 |2 =z

MAE = 7 (20)
Sy 12— 2|/ 28

MAPE = - (21)
iy i = 2 P

RMSE = \/ — (22)

Table 2 reveals that all settings herein can achieve the minimum predefined tar-
get PICP (90%) in the validation test. It also indicates that the settings under P3
(i.e. with consideration of both weekly and daily day-to-day journey time correla-
tions) deliver the best performances in terms of both PICP and M PIW, as well as
all the point estimation metrics (M APE, M AE, RMSFE) achieved when compared
with other settings. The results generally show that incorporation of the day-to-day
correlations could improve the precision and reliability of the vehicle journey time
prediction.

Figure 5 further illustrates the progression of the training processes in terms of
the reduction of the loss function values over iterations (epochs) with the best tensor
structures identified in Table 2 for each model type. During the training process, the
parameters in the LSTM and CNN components are refined iteratively through the
Adam stochastic gradient algorithm. For validation purpose, the trained model by
each epoch is also used to generate predictions using data in the validation dataset.
The validation results are included in the figure as shown. The validation process
provides an unbiased evaluation of the trained models with a dataset that is different
from the one used for training.

Figure 5 shows that the most significant improvements would occur in the first five
epochs, followed by more gradual improvement until Epoch 20 where there is no fur-
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Table 2. Performances of different prediction settings in the validation process

Type CNN tensor structure Prediction Interval Point Estimation

PICP MPIW(s) MAPE MAE(s) RMSE(s)

PO xpT 91.6% 309.8 7.7% 71.1 111.8
x5T 93.1% 327.7 7.9% 71.8 1124

P1 XL 14 93.3% 320.0 7.8% 69.6 109.5
P 1421 92.0% 331.4 8.0% 74.2 116.4

x3T 93.6% 343.7 8.5% 74.8 112.2

P2 Xé{ld% 92.5% 321.4 7.8% 71.6 112.1
XeL i aiia 91.9% 319.1 7.7% 72.6 115.9
x5t 92.3% 322.1 7.6% 70.3 112.1

P3 XJSJ.T_I,]._Q,]._”_M 92.3% 300.5 7.4% 68.2 109.0
T 90.5% 345.0 8.1% 77.9 125.7

J,j—1,—2,j—3,—-7,j—14,j—21

ther noticeable improvement in the loss function values. The minimum requirement
on the PICP, i.e. (1 — «), is satisfied in all training and validation processes pre-
sented herein. Consequently, the loss function values reflect the precision, i.e. M PIW
that each model setting could achieve with the minimum PICP satisfied. Despite
the differences in the performances (i.e. loss function values) achieved, the validation
processes essentially follow the same trend as the training processes. This implies an
improvement achieved by the model parameter adjustments in each training epoch
would also result in a corresponding improvement in the validation epoch. This can
be interpreted as the fact that overfitting does not occur in the training process in the
current settings (Yang et al., 2019). As expected, the trained prediction framework
delivers better performance, in terms of a lower loss function value, when a higher
degree of day-to-day correlation is incorporated.

3.3. Determination of hyperparameter A

As an illustration on determining the hyperparameter A through the validation
process, Figure 6 displays the loss function values Lp;op and Lysprw achieved in the
validation processes over different A. In the figure, we adopt the ’'P3’ model setting
with CNN input tensor structure X’ J%T—L j—2.j—7j—14 S an illustration. The loss function
Lprcp here is defined as

Lpicp = maz((1 — a) — PICP,0)? (23)

a(l —a)

as extracted from (9) in which the PICP is calculated with use of approximation on
¢; in (18). The loss function values Lprop and Lyrprw in Figure 6 are calculated with
normalized data instead of actual data as discussed in Section 2.

As reflected in (9), a larger A implies more penalty would be placed on PICP
which leads to the increase of Ly;prw (i.e. reduction in precision) in order to cover
more data points within the prediction interval and hence result in a lower Lp;cp
(i.e. improvement in reliability). As observed from the figure, there is no significant
reduction in Lprop for A > 0.5. Consequently, we decide from this validation process
that the value of A shall be set to be 0.5 for this case as a balanced consideration of
both PICP and M PIW to be achieved.
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Table 3. Performances of the best model settings for each type in the testing process

Type CNN tensor structure Prediction Interval Point Estimation

PICP MPIW(s) MAPE MAE(s) RMSE(s)

PO xsT 95.0% 311.3 6.5% 57.8 86.5
P1 X3 95.3% 330.3 7.0% 61.2 90.9
P2 JSJ.TA’H’H 93.9% 317.9 7.1% 66.2 99.7
P3 xﬁj{ld%’jqdfu 93.8% 305.3 6.9% 62.7 94.2

3.4. Testing results

The best four CNN input tensor settings identified from the training and validation re-
sults (i.e. XJST (PO), ijTijflzl (P1), Xj?jT—l,ij,jfii (P2), and Xj?jT—l,jijf?,ij (P3))
are now evaluated through the testing process. The testing results are summarized in
Table 3. The results are generally consistent with the training and validation ones,
and they reveal that the proposed prediction framework can incorporate day-to-day
correlation and deliver the best performance in terms of M PIW under the P3 setting.
Nevertheless, the advantage of incorporating the day-to-day journey time correlation is
not as significant as that reflected in the training and validation stages, as the testing
results reveal that the basic PO model setting could still deliver a similar or even bet-
ter performance in some occasions when compared with the other more sophisticated
settings (P1 and P2). This suggests that the within-day journey time variations play
a more important role in the prediction framework than the day-to-day variations and
correlations. This echoes some of our previous findings (Cheng et al., 2014). It can be
understood for the fact that the within-day information would capture more relevant
features such as prevailing traffic variations due to roadwork, incidents, and adverse
weather. These more recent features contribute more significantly to the current traffic
conditions compared with the traffic features recorded on previous days or weeks.

3.5. Benchmarking with existing methods

The performance of the proposed prediction framework is compared with five estab-
lished algorithms in the literature for benchmarking purposes. The five algorithms
selected here are ARIMA (AutoRegressive Integrated Moving Average) (Cheng et al.,
2014), FPCA (Functional Principal Component Analysis) (Chen and Miiller, 2014;
Zhong et al., 2017), the conventional LSTM-based prediction algorithm (Li et al.,
2021b; Yang et al., 2019), the convolution-based prediction algorithm (TCN) (Bai
et al., 2018), and the convolutional LSTM neural network (ConvLSTM) (Fu et al.,
2020; Petersen et al., 2019; Ran et al., 2019; Shi et al., 2015). Among the selected
algorithms, ARIMA is a classical time-series model with an assumption of stationar-
ity, which implies there are no systematic temporal variations in the time series data
apart from white noises. The FPCA is a parametric time series prediction model con-
structed with use of functional approximation. Essentially, the FPCA model learns the
relationship between the historical and target journey time series in its training pro-
cedure, and then applies the learned relationship for short-term prediction of journey
times and their associated variability (Zhong et al., 2017). The LSTM predictor can
be regarded as the proposed prediction framework without incorporation of the CNN
module. This essentially reduces the proposed prediction framework to a pure time-
series prediction process with no incorporation of multiple data sources. The TCN is
another type of time-series prediction model with use of convolutional architectures.
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Table 4. Overall testing results of the benchmarking algorithms

Algorithm Prediction Interval Point Estimation

PICP MPIW() MAPE MAE(s) RMSE(s)
ARIMA 88.1% 249.1 6.6% 59.0 91.1
FPCA 87.2% 733.5 14.8% 162.6 1045
LSTM 94.3% 350.2 7.3% 68.2 103.1
TCN 93.3% 309.5 6.9% 60.9 91.0
ConvLSTM  94.7% 345.7 6.9% 61.0 92.0

Table 5. Comparison of testing results at morning peak (7:30-10:00)

Algorithm Prediction Interval Point Estimation
PICP MPIW(s) MAPE MAE(s) RMSE(s)
ARIMA 91.8% 246.2 6.3% 52.6 75.9
FPCA 78.9% 447.5 8.5% 67.2 86.5
LSTM 95.0% 310.6 6.2% 52.1 74.5
TCN 94.5% 289.7 6.6% 55.2 77.9
ConvLSTM 94.3% 303.4 6.1% 51.4 74.3
Ours PO 93.8% 244.8 6.0% 49.8 67.8
Pl 95.5% 283.9 6.5% 52.8 71.9
P2 94.3% 261.5 6.4% 51.0 69.2
P3  93.5% 273.0 6.4% 51.7 71.0

To consider the spatio-temporal feature extraction in both input-to-state and state-
to-state transactions, the ConvLSTM, a single structure with a novel combination of
convolutional and LSTM layers, is introduced. All benchmarking algorithms selected
herein (including LSTM) operate with only a single source of data (i.e. AVI journey
times). Hence the benchmarking experiments can also reveal the benefit of incorporat-
ing multiple data sources as in the proposed prediction framework. All benchmarking
algorithms are trained and validated, with a target PIC'P = 90%, using the specified
training and validation datasets with their associated training processes. The overall
testing results of the benchmarking algorithms are shown in Table 4 with inclusion of
both interval and point estimation metrics.

Compared with the results given in Table 3, it is found that the proposed approach
could outperform the benchmarking algorithms with a lower M PIW given the same
PICP target. The proposed prediction framework can also deliver lower point esti-
mation metrics: MAPE, MAE, and RMSE when compared with the benchmarking
algorithms. As a stationary time-series model (Cheng et al., 2014), ARIMA is not
effective in capturing the transient characteristics of road traffic for dynamic model-
ing purpose and it is computational expensive for one-step prediction. Moreover, it

Table 6. Comparison of testing results at afternoon peak (17:30-19:30)

Algorithm Prediction Interval Point Estimation
PICP MPIW(s) MAPE MAE(s) RMSE(s)
ARIMA 81.2% 251.9 6.9% 79.4 111.6
FPCA 91.7% 1014.6 10.2% 120.3 167.7
LSTM 93.2% 493.8 8.1% 101.8 141.9
TCN 93.5% 424.5 6.8% 78.1 109.8
ConvLSTM 94.5% 477.1 7.1% 84.3 116.5
Ours PO 95.7% 448.5 6.7% 79 110.8
Pl 95.7% 461.0 6.9% 80.8 111.8
P2 92.0% 442.0 8.0% 101.6 142
P3  93.8% 415.4 7.2% 87.6 124.3
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Table 7. Comparison of testing results in the afternoon (13:30-15:30)

Algorithm Prediction Interval Point Estimation
PICP MPIW(s) MAPE MAE(s) RMSE(s)
ARIMA 92.9% 249.4 5.6% 45.9 85.1
FPCA 85.5% 656.8 41.0% 523.6 2620.4
LSTM 96.6% 288.2 6.2% 49.8 79.9
TCN 95.4% 254.5 6.1% 48.7 84.4
ConvLSTM 97.2% 290.3 6.0% 49.5 90.3
Ours PO 97.2% 258.4 6.0% 47.8 81.8
P1  96.6% 276.4 6.7% 53.5 93.3
P2 96.0% 265.5 6.4% 51.8 84.0
P3  97.2% 259.8 6.3% 48.6 76.6

estimates the uncertainties of journety time by using deterministic predictions based
on assumptions that the residuals are uncorrelated and normally distributed. Thus,
alghouth ARIMA achieves a relatively good performance on point estimation, it fails
to deliver a target prediction interval. Given the same target PICP, the proposed
prediction framework could deliver a M PIW that is almost halved compared with
that by the parametric FPCA. We attribute this to the capability of the underlying
ANN-based deep learning framework in the proposed algorithm for capturing complex
traffic dynamics. This reveals and supports the deep learning method as a promising
approach and research direction for complex traffic modeling compared with the con-
ventional parametric modeling approaches. Furthermore, the convetional LSTM could
deliver significantly better performance than the other two more conventional bench-
marking methods. However, it is still being outperformed by around 10% in terms of
the M PIW delivered when compared with the proposed prediction framework which
incorporates multiple data sources through the CNN module. TCN can offer similar
performance on point estimation compared with the proposed framework, but it still
fails to achieve a better prediction interval in terms of M PIW. Alghtough the ConvL-
STM achives a better prediction interval compared with the convetional LSTM, which
indicates the effictiveness of the convolutional layers, it is also being outperformed
by around 10% in terms of the M PIW compared with the proposed framework. The
comparison between the proposed framework and the benchmarking algorithms high-
lights the benefit of incorporating information extracted from multiple data sources in
terms of improving the prediction precision in a deep learning-based traffic prediction
framework.

To further investigate the performance of different algorithms at different peri-
ods especially when the transportation systems are most vulnerable, morning peaks
(7:30-10:00) and afternoon peaks (17:30-19:30) of weekdays in the testing dataset are
considered. The comparison results of all algorithms are shown in Tables 5 and 6. The
CNN tensor structures of PO, P1, P2, and P3 of the proposed framework are the same
as that described in Table 3. The proposed framework outperforms all benchmarks
on prediction intervals for morning peak hours and afternoon peak hours. It supports
that the proposed framework is able to capture dynamic traffic states and deliver a
better uncertainty estimation for irregular travel time. Compared with rush hours, a
relatively free-flow traffic period (13:30-15:30) is considered and comparison results are
shown in Table 7. According to Table 7, it is found that the proposed framework can
also deliver a similar performance in terms of prediction interval and point estimation
compared with ARIMA. The reason why ARIMA can achieve the best performance
in the free-flow traffic state is that the travel time is almost stationary and ARIMA
is re-trained for each one-step prediction. The comparison of all algorithms for differ-
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ent traffic periods indicates the proposed distribution-free reliability-based prediction
framework has the ability to handle dynamic and complex traffic states.

3.6. Effect of weather conditions

We now investigate the effect of weather conditions incorporated into the prediction
framework via the LSTM module. Two days, 14 March 2018 and 21 March 2018, have
been selected from the test dataset as representatives of a rainy day and a sunny day
respectively. The two days are a week apart, and hence it is reasonable to assume that
the underlying travel patterns on the two days would be similar except under different
weather conditions.

Figures 7 and 8 depict the performances of the proposed prediction framework
on the two selected days over different model settings. The dots in the figures (a-
d) are the actual measurements, regarded as ‘ground truth’, of the vehicle journey
times while the shaded regions in the figures represent the corresponding journey
time prediction intervals produced by the trained and validated prediction model.
For readers’ reference, Figure 7 (e) shows the associated precipitation record (rainfall
intensity (mm/min) on 14 March 2018 provided by the Hong Kong Observatory.

On the effect of congestion, the figures first reveal that estimations with greater
variability (characterized by the wider prediction intervals) are produced from the
prediction algorithms during the congested hours (i.e. when the average journey times
are high). This characteristic is consistent with empirical observations herein (the
‘dots’) as well as previous studies on journey time characteristics (Chow et al., 2014;
Zhong et al., 2017).

On the effect of adverse (rainy) weather conditions, we attribute the surges in jour-
ney times during 08:30-10:30, 11:30-12:30, and 14:30-15:30 on 14 March 2018 in Fig-
ure 7 to the rainfall during those periods as compared with the journey time pattern
(see Figure 8) observed on the sunny day (21 March 2018). Figure 8 reveals that the
prediction algorithms are able to estimate the surges in journey times as well as the
associated variability during those periods. Figur 9 shows the training and validation
processes (in terms of the logarithm of the loss function values) of the prediction with
and without consideration of weather conditions. Similar to Figure 5, the validation
processes essentially follow the same trend as the training processes over epochs run.
This implies overfitting does not occur during the training process of the prediction
models with and without incorporation of weather conditions. Moreover, it is observed
that the eventual training and validation processes could achieve similar loss function
values for all model settings regardless of whether weather information is incorporated.
This implies weather information (e.g. rainfall intensity) does not have a significant
effect on improving the precision and reliability of the prediction results. We reckon
this could be because the influence of the weather condition has already been reflected
in the corresponding variations in traffic flows and journey times (e.g. journey times
increase as rainfall intensity increases as shown in Figure 7). Consequently, the weather
condition is not a crucial factor to include for improving the precision and reliability
of the journey time prediction.

4. Conclusion

This paper presents a distribution-free reliability-based prediction framework for vehi-
cle journey times and their associated variability based on a two-stream deep learning
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Figure 8. Prediction results on a sunny day - 21 March 2018

framework with use of heterogeneous traffic data collected from multiple sources, lo-
cations, times, and days. The heterogeneous data sources provide ranges of spatial
and temporal features of prevailing traffic flow for precise and reliable journey time
estimation. The spatial and temporal features in the input data are extracted through
the underlying two streams (TFES and STFES) which are built respectively by LSTM
and CNN. Given a target level of reliability PIC'P, the extracted features are fused
and processed through a series of fully connected layers to generate estimates of lower
and upper bound of an unknown vehicle journey time at a time of interest. We further
introduce a smooth and differentiable loss function for the training process through
use of a Gaussian approximation. The training algorithm can hence be conducted via
the computational effective Adam stochastic gradient search. The proposed predic-
tion framework is implemented and tested with traffic data collected from a selected
Hong Kong corridor with sensitivity analyses conducted on different traffic and weather
conditions. The proposed prediction framework is also compared with five other estab-
lished journey time prediction methods (ARIMA, FPCA, LSTM, TCN, ConvLSTM)
for benchmarking. The results reveal that the proposed approach can deliver estimates
of journey time distributions with higher precision (i.e. lower M PIW) given target re-
liability (i.e. PIC'P). We attribute this to the capability of the underlying ANN-based
deep learning framework for capturing the complex spatio-temporal traffic dynamics.
The results herein support the use of deep learning methods for developing advanced
traffic modeling and prediction system. The proposed framework also outperforms the
conventional LSTM which is regarded as a standard deep learning-based prediction
approach in the present study with a single data source. The comparison with the con-
ventional LSTM highlights the benefit of incorporating temporal and spatial features
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Figure 9. Training and validation processes for different prediction framework settings with and without

consideration of weather condition
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from multiple data sources.

With different formulations of the prediction framework, it is also found that the
precision and reliability of the corresponding journey time estimates could be im-
proved through incorporation of day-to-day correlation. Nevertheless, it is observed
that the value of the day-to-day journey time information is less significant than that
observed on the same day for short-term journey time prediction purpose. Moreover,
on the effect of including non-traffic information such as weather conditions, our test
results reveal that the proposed prediction framework could deliver similar perfor-
mance whether weather information is incorporated or not. This implies, despite the
flexibility of the proposed prediction framework herein, inclusion of day-to-day journey
time and additional (e.g., weather) information may not have a significant effect on
improving the precision and reliability of journey time prediction as reflected in our
case study. We reckon this could be due to the fact that the influence of traffic con-
ditions on previous day(s) and weather have already been reflected in the prevailing
observations of traffic flows and journey times.

This work contributes to reliability-based journey time prediction with use of emerg-
ing deep learning techniques. It offers potential for investigating the use of advanced
deep learning algorithms for development of urban traffic prediction and intelligent
transportation systems with heterogeneous data sources. On building reliable intelli-
gent transportation systems, the proposed journey time prediction algorithm could be
applied to development of reliability-based travel guidance system (Chow et al., 2020)
or multi-modal network management (Chow et al., 2021). Finally, it is noted that
the prediction framework presented here is data-driven. Future work will also include
integrating the present data-driven approach with a model-based approach (Su et al.,
2021) through the use of advanced traffic flow modeling technique (Bai et al., 2021;
Shi et al., 2021) for more accurate and stable results.
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