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Abstract: The relationship between rheumatoid arthritis (RA) and early onset atherosclerosis is well
depicted, each with an important inflammatory component. Glycoprotein acetyls (GlycA), a novel
biomarker of inflammation, may play a role in the manifestation of these two inflammatory conditions.
The present study examined a potential mediating role of GlycA within the RA–atherosclerosis
relationship to determine whether it accounts for the excess risk of cardiovascular disease over
that posed by lipid risk factors. The UK Biobank dataset was acquired to establish associations
among RA, atherosclerosis, GlycA, and major lipid factors: total cholesterol (TC), high- and low-
density lipoprotein (HDL, LDL) cholesterol, and triglycerides (TGs). Genome-wide association study
summary statistics were collected from various resources to perform genetic analyses. Causality
among variables was tested using Mendelian Randomization (MR) analysis. Genes of interest
were identified using colocalization analysis and gene enrichment analysis. MR results appeared to
indicate that the genetic relationship between GlycA and RA and also between RA and atherosclerosis
was explained by horizontal pleiotropy (p-value = 0.001 and <0.001, respectively), while GlycA may
causally predict atherosclerosis (p-value = 0.017). Colocalization analysis revealed several functionally
relevant genes shared between GlycA and all the variables assessed. Two loci were apparent in all
relationships tested and included the HLA region as well as SLC22A1. GlycA appears to mediate the
RA–atherosclerosis relationship through several possible pathways. GlycA, although pleiotropically
related to RA, appears to causally predict atherosclerosis. Thus, GlycA is suggested as a significant
factor in the etiology of atherosclerosis development in RA.

Keywords: rheumatoid arthritis; atherosclerosis; lipid factors; GlycA; inflammation; pleiotropy

1. Introduction

Rheumatoid arthritis (RA) is an inflammatory, autoimmune joint disease whose mani-
festation and progression are caused by a variety of genetic, metabolic, and environmental
factors [1,2]. RA patients experience increased risk of cardiovascular disease (CVD) as well
as other comorbidities [3], leading to higher mortality, disability, and disease burden [4,5].

CVD is a major comorbidity of RA [6], affecting over 50% of patients with cardio-
vascular complications [7,8]. Atherosclerosis, a key CVD phenotype, is an inflammatory
condition promoting arterial plaque formation, prevalent in both clinical and sub-clinical
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RA cases [9]. Atherosclerosis involves significant lipid profile changes, heart failure, my-
ocardial infarction (MI), and other cardiovascular complications [10,11]. Examining lipid
profile abnormalities and inflammatory markers can shed light on the distinctive RA–
atherosclerosis relationship [10,11].

Both RA and atherosclerosis involve genetic factors, with RA’s heritability estimated
at approximately 0.60 in twin studies [12]. Atherosclerosis, in a study of 20,966 twins,
showed heritability estimates of 0.38 in females and 0.57 in males [13]. Shared genetic
components between RA and atherosclerosis include TNFA, CCR5, MTHFR, and the HLA
region, though the extent of their shared effects is yet to be determined [14,15].

A novel inflammation biomarker, glycoprotein acetyls (GlycA), has been proposed for
assessing inflammation in RA and other autoimmune conditions, along with the evaluation
of the CVD risk [16]. GlycA appears to reflect the clinical profile of RA patients, indicating
both the inflammatory status and CVD risk [17]. It captures acute and chronic inflammation
and correlates with disease severity under inflammatory conditions [16]. The inflammatory
mechanism of GlycA may differ from that of C-reactive protein (CRP), though it significantly
correlates with CRP and other inflammatory markers like the erythrocyte sedimentation
rate [17].

The correlation between atherosclerosis-related phenotypes and RA has been explored
previously, emphasizing their shared inflammatory nature [18,19]. However, the poten-
tial pathway underlying these relationships remains incompletely understood and is a
major focus of this study. Using large datasets, we investigated the underlying shared
genetic architecture between RA and atherosclerosis, assessing pleiotropy and possible
causal relationships. Furthermore, we examined the role of inflammation by assessing
the involvement of GlycA in these diseases as well as in lipid profile components. The
present study was carried out in two stages: (1) assessing GlycA’s relationship with RA,
atherosclerotic phenotypes, and lipid factors and (2) analyzing the relationship between RA
and atherosclerotic phenotypes, excluding lipid factors. The underlying genetic architecture
between RA and lipid factors was previously examined by us and reported elsewhere [20].

2. Results
2.1. Phenotypic Association

The UKBB dataset, comprising 273,294 females and 229,062 males with a mean age of
56.53 ± 0.01 years, was analyzed. First, potential predictors of GlycA variation were exam-
ined in a multiple linear regression model (Table 1). GlycA was highly and significantly
correlated with all the variables examined (p < 10−16), and the regression model explained
about 40% of the variation in the circulating GlycA levels (R2 = 0.4374, p < 2.0 × 10−16).
Importantly, the presence of disease (RA and atherosclerosis) as well as lipid factors (except
total cholesterol) also exhibited an independent association. The association of TGs was
particularly strong (β = 0.5772 ± 0.0019). Lastly, males had elevated GlycA compared to
females (β = 0.3197 ± 0.0152). Although the multiple regression results of the lipid factors
appear promising, it should be noted that TCH may cause collinearity with the other lipid
factors as TCH is a culmination of TGs, LDL, and HDL.

Table 1. Risk factors for GlycA assessed through multiple linear regression analysis *.

Independent Variables Estimate SE t-Value p-Value

Intercept −0.2497 0.0184 −13.6 <2.00 × 10−16

RA 0.2740 0.0088 31.1 <2.00 × 10−16

Atherosclerosis 0.3197 0.0152 21.0 <2.00 × 10−16

Total Cholesterol −0.5652 0.0101 −56.2 <2.00 × 10−16

Triglycerides 0.5772 0.0019 298.7 <2.00 × 10−16

HDL 0.2066 0.0037 55.3 <2.00 × 10−16
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Table 1. Cont.

Independent Variables Estimate SE t-Value p-Value

LDL 0.5970 0.0087 68.8 <2.00 × 10−16

BMI 0.1956 0.0016 125.7 <2.00 × 10−16

Age 0.0642 0.0015 44.3 <2.00 × 10−16

Sex −0.2442 0.0033 −74.4 <2.00 × 10−16

* These variables were tested as dummy variables. For both RA and atherosclerosis, the presence of the condition
was defined as 1 vs. no disease—0. Sex included 0 for males and 1 for females. All quantitative variables were
standardized prior to analysis. General goodness-of-fit measure for the model, R2 = 0.4374, p < 2.00 × 10−16.

Subsequently, multiple logistic regression analysis assessed whether and to what ex-
tent RA is associated with GlycA and atherosclerosis, while adjusting for age, sex, and BMI.
RA appeared significantly and independently associated with GlycA (β = 0.0079 ± 0.0003,
p < 2.0 × 10−16) and atherosclerosis (β = 0.0202 ± 0.0033, p = 8.30 × 10−10). (Table S1,
Supplementary Materials).

2.2. Genetic Association Study

Genetic correlations were used to investigate whether a potential underlying genetic
framework depicts the relationship between GlycA and RA, as well as those between
GlycA and the atherosclerotic phenotypes. The results summarized in Table 2 show
that GlycA was significantly genetically correlated with RA, atherosclerosis, CAD, heart
failure, heart attack/MI, and all tested lipids except LDL. The genetic correlation between
GlycA and RA, although statistically significant, was modest (Rg = 0.0724 ± 0.0344). The
most impressive genetic correlations were detected between GlycA and TGs (Rg = 0.6046
± 0.0751), while others ranged between 0.2311 and 0.3479. Subsequently, the genetic
correlation was examined between RA and atherosclerotic phenotypes, with no genetic
correlation with any of the atherosclerotic phenotypes detected by LDSC (Table 2).

Table 2. Pairwise genetic correlation using LDSC.

Phenotype Pairs Rg SE p-Value

GlycA, RA 0.0724 0.0344 3.56 × 10−2

GlycA, Atherosclerosis 0.2311 0.0468 8.09 × 10−7

GlycA, CAD 0.2934 0.0393 7.82 × 10−14

GlycA, Heart Failure 0.3232 0.0383 3.34 × 10−17

GlycA, Heart Attack/MI 0.3108 0.0494 3.11 × 10−10

GlycA, HDL −0.2910 0.0611 1.94 × 10−6

GlycA, LDL 0.3244 0.2425 1.81 × 10−1

GlycA, TC 0.3479 0.1402 1.31 × 10−2

GlycA, TGs 0.6046 0.0751 8.27 × 10−16

RA, Atherosclerosis 0.0152 0.0476 7.49 × 10−1

RA, CAD 0.0285 0.0342 4.06 × 10−1

RA, Heart Failure 0.0981 0.0560 7.98 × 10−2

RA, Heart Attack/MI 0.0291 0.0562 6.04 × 10−1

In addition, the genetic correlations between the atherosclerosis-related phenotypes
and lipid factors were estimated to potentially decipher the nature of the relationships from
all directions. Interestingly, the four atherosclerotic variables showed consistent significant
correlations with HDL and TGs (Table S2): atherosclerosis with HDL (Rg = −0.18 ± 0.08)
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and TGs (Rg = 0.27 ± 0.10); CAD with HDL (Rg = −0.22 ± 0.07) and TGs (Rg = 0.31 ± 0.08);
and heart failure with HDL (Rg = −0.26 ± 0.06) and TGs (Rg = 0.26 ± 0.06); lastly, heart
attack/MI genetically correlated with HDL (Rg = −0.20 ± 0.08) and TGs (Rg = 0.35 ± 0.09).

2.3. Mendelian Randomization Analysis

Mendelian randomization was implemented to assess potential causality between
GlycA and all other phenotypes. GlycA served as the exposure variable while RA,
atherosclerotic phenotypes, and lipid factors were the outcome variables. The reverse
scenario was also explored, with RA as the exposure variable and atherosclerotic variables
as outcomes.

Based on the IVW approach, GlycA showed a significant causal association with RA,
atherosclerosis, CAD, heart failure, heart attack/MI, HDL, LDL (p = 0.019), TGs, and TC
(all p < 0.001 except LDL) (Table S3a). When RA was the exposure phenotype, a causal
association was seen with atherosclerosis, CAD, heart failure, and heart attack/MI (all
p < 0.001) (Table S3b).

Implementing MRE, where GlycA was the exposure variable, we found that only
atherosclerosis (p = 0.017) and CAD (p = 0.029) were significantly causally associated
with GlycA, without evidence of horizontal pleiotropy (MRE intercept was non-significant,
Table 3a). Alternatively, testing the relationship between GlycA and RA, heart failure as well
as heart attack/MI revealed significant intercept estimates (and non-significant regression
coefficients), thus suggesting horizontal pleiotropy. However, the implementation of
MRE in testing the GlycA/lipid factors relationship did not provide evidence of causal or
horizontally pleiotropic relationships (Table 3a).

Table 3. Mendelian randomization, MR Egger approach. (a) GlycA as the exposure. (b) RA as the
exposure. (c) MR PRESSO results from the Global Test.

(a)

Outcome IVs Estimate
95%

Confidence
Interval

p-Value
MR Egger
Intercept
p-Value

I2Gx Heterogeneity

RA 40 0.019 −0.180, 0.217 0.854 0.001 0.9988 97.7%

Heart attack/MI 46 0.004 −0.001, 0.009 0.087 0.030 0.9940 94.3%

Heart failure 25 0.086 −0.074, 0.246 0.246 0.052 0.9341 94.2%

CAD 22 0.084 0.009, 0.160 0.029 0.061 0.3833 97.3%

Atherosclerosis 22 0.237 0.043, 0.431 0.017 0.757 0.8650 96.8%

HDL 9 −0.049 −0.114, 0.016 0.143 0.574 0.3526 99.4%

LDL 5 0.153 −0.196, 0.051 0.390 0.988 0.1189 97.5%

TC 9 −0.021 −0.180, 0.138 0.794 0.080 0.8227 98.2%

TGs 8 0.070 −0.022, 0.162 0.135 0.439 0.1620 99.1%

(b)

Outcome IVs Estimate
95%

Confidence
Interval

p-Value
MR Egger
Intercept
p-Value

I2Gx Heterogeneity

Heart attack/MI 36 0.001 0.000, 0.001 0.171 0.004 0.9900 99.6%

Heart failure 38 0.016 −0.003, 0.034 0.094 0.062 0.9956 99.4%

CAD 30 0.008 −0.008, 0.023 0329 0.002 0.8684 99.1%

Atherosclerosis 40 0.005 −0.023, 0.034 0.716 <0.001 0.9656 99.3%
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Table 3. Cont.

(c)

Exposure→Outcome Global Test
T-Value

Global Test
p-Value

GlycA → RA 4310.5 <0.001

GlycA → Atherosclerosis 781.2 <0.001

GlycA → CAD 1920.3 <0.001

GlycA → Heart Attack/MI 394.8 <0.001

GlycA → Heart Failure 232.0 <0.001

GlycA → HDL 4574.1 <0.001

GlycA → LDL 2464.9 <0.001

GlycA → TRIG 9001.9 <0.001

GlycA → TCH 4087.2 <0.001

RA → Atherosclerosis 113.5 0.003

RA → CAD 168.4 <0.001

RA → Heart Attack/MI 97.9 0.025

RA → Heart Failure 82.2 0.224

Significant results indicate the presence of horizontal pleiotropy.

In examining causality using MRE with RA as the exposure variable, the relationship
between RA and atherosclerosis, CAD, and heart attack/MI may be described by horizontal
pleiotropy (p < 0.001, 0.002, and 0.004, respectively), but not causally (Table 3b). A causal or
pleiotropic relationship between RA and heart failure was not apparent (Table 3b).

Based on MR PRESSO, horizontal pleiotropy was suggested to explain nearly all rela-
tionships examined (Table 3c). For example, GlycA appeared to be horizontally pleiotropic
with RA, all cardiovascular variables, and lipid variables (p < 0.001 for all, Table 3c). RA
appeared to be horizontally pleiotropic with atherosclerosis and CAD only (p = 0.003 and
<0.001, respectively; Table 3c).

2.4. Colocalization and Gene Enrichment Analyses

Colocalization analyses accompanied by FUMA aimed to identify shared genomic
regions with SNPs associated with multiple phenotypes. We limited our colocalization
results to those supporting hypothesis PP.H4 or PP.H3 with probability ≥75%. Nonsynony-
mous exonic SNPs or repeating genes associated with intronic SNPs are reported in Table 4.
However, a detailed description of all the colocalization results and corresponding gene
enrichment outcomes obtained with FUMA are provided in Supplementary Table S4.

GlycA and RA colocalization revealed six genomic regions significantly associated
with both phenotypes (Table 4a). As expected, HLA regions were identified on chromosome
6, corresponding to the intergenic regions between HLA-DRB1 and HLA-DQA1 and also
between HLA-DQB2 and HLA-DOB, both with PP.H3 of 100%.

A summary of colocalization findings between GlycA and the atherosclerotic variables
is provided in Table 4b. Several common genomic regions were found with each atheroscle-
rotic phenotype, including six shared genomic regions between GlycA and atherosclerosis.
On the other hand, several genomic regions were common for different atherosclerotic
phenotypes. For instance, Chr6: 160580497–162169564, harboring lipoprotein (A) coding
gene (LPA) was associated with all four phenotypes (Table 4). In the genomic regions shared
by GlycA and atherosclerosis, five nonsynonymous exonic SNPs were mapped to genes
FGB, SLC22A1, LPL, SERPINA1, and ANGPTL4, with the following high PPs, H3: 94.5%,
H4: 96.8%, H4: 73.7%, H4: 97.2%, and H4: 100% (Table 4b). In addition, one intronic SNP
(rs10455872) of interest was mapped to LPA, with strong evidence of PP of H4: 99.6%.
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Evidence of the causal effect was similarly high (99.7–99.8%) for all the other atherosclerotic
phenotypes (Table 4b).

Table 4. Colocalization Results. (a) GlycA and RA. (b) GlycA and atherosclerosis-related phenotypes.
(c) GlycA and lipid factors. (d) RA and atherosclerosis-related phenotypes.

(a)

Phenotype in
Colocalization

with GlycA

Genomic Region
Chromosome:

Base Pairs

Gene
(SNP)

Function

GlycA
p-Value

Other
Phenotype

p-Value

PP.H4 (Posterior
Probability of
Shared Causal

SNP) or PP.H3 (of
SNPs in the Same

Region)

RA Chr2: 110572432–
113921856

IL1F10/RNU6-1180P
(rs6734238)
intergenic

4.00 × 10−9 1.40 × 10−4 H4: 79.9%

RA Chr6: 28917608–
29737971

XXbac-BPG170G13.32/XXbac-
BPG170G13.31

(rs2394164)
intergenic

6.40 × 10−9 8.60 × 10−44 H3: 100%

RA Chr6: 31571218–
32682664

HLA-DRB1/HLA-DQA1
(rs532965)
intergenic

1.70 × 10−7 1.00 × 10−250 H3: 100%

RA Chr6: 32682664–
33236497

HLA-DQB2/HLA-DOB
(rs34422230)

intergenic
8.80 × 10−3 7.20 × 10−235 H3: 100%

RA Chr6: 158218719–
160580497

RP1-111C20.3/RP11-13P5.1
(rs1994564)
intergenic

1.50 × 10−3 1.00 × 10−9 H3: 100%

RA Chr8: 11278998–
13491775

BLK
(rs2736345)

intronic
3.70 × 10−6 8.60 × 10−7 H3: 99.9%

(b)

Phenotype in
Colocalization

with GlycA

Genomic Region
Chromosome:

Base Pairs

Gene
(SNP)

Function

GlycA
p-Value

Other
Phenotype

p-Value

PP.H4 (Posterior
Probability of
Shared Causal

SNP) or PP.H3 (of
SNPs in Same

Region)

Atherosclerosis Chr4: 155056126–
157485097

FGB
(rs6054)

Nonsynonymous SNV, exon3
1.80 × 10−9 6.71 × 10−3 H3: 94.5%

Atherosclerosis Chr6: 158218719–
160580497

SLC22A1
(rs2282143)

Nonsynonymous SNV, exon6
7.40 × 10−9 6.73 × 10−20 H4: 96.8%

Atherosclerosis Chr6: 160580497–
162169564

LPA
(rs10455872)

intronic
1.00 × 10−25 3.52 × 10−75 H4: 99.6%

Atherosclerosis Chr8: 19469840–
20060856

LPL
(rs328)

exon9 (stopagain)
7.90 × 10−36 2.97 × 10−5 H4: 73.7%

Atherosclerosis Chr14: 94325285–
95750867

SERPINA1
(rs28929474)

Nonsynonymous SNV, exon6
3.80 × 10−80 5.90 × 10−5 H4: 97.2%
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Table 4. Cont.

(b)

Phenotype in
Colocalization

with GlycA

Genomic Region
Chromosome:

Base Pairs

Gene
(SNP)

Function

GlycA
p-Value

Other
Phenotype

p-Value

PP.H4 (Posterior
Probability of
Shared Causal

SNP) or PP.H3 (of
SNPs in Same

Region)

Atherosclerosis Chr19:
8347513–9238393

ANGPTL4
(rs116843064)

Nonsynonymous SNV, exon11
4.00 × 10−11 4.94 × 10−11 H4: 100%

CAD Chr6: 158218719–
160580497

SLC22A1
(rs2282143)

Nonsynonymous SNV, exon6
7.40 × 10−9 7.35 × 10−42 H4: 97.5%

CAD Chr6: 160580497–
162169564

LPA
(rs10455872)

intronic
1.00 × 10−25 2.18 × 10−186 H4: 99.8%

CAD Chr8: 19492840–
20060856

LPL
(rs328)

exon9 (stopagain)
7.90 × 10−36 2.43 × 10−11 H3: 100%

CAD Chr11: 116383348–
117747110

ZNF259
(rs964184)

UTR3
2.70 × 10−68 4.41 × 10−17 H4: 100%

CAD Chr14: 943252885–
95750867

SERPINA1
(rs28929474)

Nonsynonymous SNV, exon6
3.80 × 10−80 5.23 × 10−10 H4: 99.7%

CAD Chr19:
8347513–9238393

ANGPTL4
(rs116843064)

Nonsynonymous SNV, exon11
4.00 × 10−11 3.56 × 10−21 H4: 100%

CAD Chr22: 43714200–
44995308

PNPLA3
(rs738409)

Nonsynonymous SNV, exon3
7.50 × 10−11 1.13 × 10−5 H4: 95.4%

Heart failure Chr6: 160580497–
162169564

LPA
(rs10455872)

intronic
1.00 × 10−25 1.89 × 10−11 H4: 99.7%

Heart failure Chr9: 135298842–
137041122

ABO
(rs9411378)

ncRNA_intronic
5.80 × 10−9 4.11 × 10−9 H4: 72.2%

Heart failure Chr11: 116383348–
117747110

ZNF259
(rs964184)

UTR3
2.70 × 10−68 4.24 × 10−4 H4: 70.1%

Heart attack/MI Chr6: 158218719–
160580497

SLC22A1
(rs3798170)

intronic
2.30 × 10−9 1.67 × 10−8 H4: 96.8%

Heart attack/MI Chr6: 160580497–
162169564

LPA
(rs10455872)

intronic
1.00 × 10−25 2.44 × 10−29 H4: 99.7%
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Table 4. Cont.

(c)

Cytokine in
Colocalization

with GlycA

Genomic Region
Chromosome:

Base Pairs

Gene
(SNP)

Function

GlycA
p-Value

Other
Phenotype

p-value

PP.H4 (Posterior
Probability of
Shared Causal

SNP) or PP.H3 (of
SNPs in Same

Region)

HDL Chr1: 61922365–
63445089

DOCK7
(rs1167998)

intronic
3.00 × 10−20 4.90 × 10−5 H4: 84.2%

HDL Chr2: 21050490–
23341383

APOB
(rs676210)

Nonsynonymous SNV, exon26
2.20 × 10−8 4.17 × 10−88 H4: 99.8%

HDL Chr6: 30798168–
31571218

PPP1R18
(rs9262143)

Nonsynonymous SNV, exon2
2.30 × 10−8 1.65 × 10−9 H3: 100%

HDL Chr6: 158218719–
160580497

SLC22A1
(rs12208357)

Nonsynonymous SNV, exon1
6.20 × 10−9 7.53 × 10−7 H4: 99.8%

HDL Chr8:
9154694–9640787

RP11-115J16.1
(rs4841132)

ncRNA_exonic
3.90 × 10−22 1.04 × 10−123 H4: 97.6%

HDL Chr8: 19492840–
20060856

LPL
(rs15825)

UTR3
8.30 × 10−28 9.88 × 10−324 H3: 100%

HDL Chr9: 135298842–
137041122

ABO
(rs687621)

ncRNA_intronic
6.30 × 10−11 4.92 × 10−8 H4: 99.9%

HDL Chr10: 63341695–
65794114

JMJD1C
(rs1935)

Nonsynonymous SNV, exon26
8.90 × 10−11 2.59 × 10−6 H4: 98.7%

HDL Chr11: 116383348–
117747110

ZNF259
(rs964184)

UTR3
2.70 × 10−68 2.60 × 10−217 H4: 100%

HDL Chr11: 124495528–
126311320

TIRAP
(rs8177399)

Nonsynonymous SNV, exon4
1.80 × 10−4 1.84 × 10−7 H4: 96.9%

HDL Chr15: 42776399–
44198049

MAP1A
(rs55707100)

Nonsynonymous SNV, exon4
1.50 × 10−7 2.26 × 10−34 H4: 100%

HDL Chr19:
8347513–9238393

ANGPTL4
(rs116843064)

Nonsynonymous SNV, exon1
4.00 × 10−11 4.79 × 10−146 H4: 100%

HDL Chr22: 43714200–
44995308

PNPLA3
(rs738409)

Nonsynonymous SNV, exon3
7.50 × 10−11 6.99 × 10−5 H4: 84.4%

LDL Chr1: 61922365–
63445089

DOCK7
(rs2131925)

intronic
1.10 × 10−19 1.44 × 10−24 H4: 99.2%
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Table 4. Cont.

(c)

Cytokine in
Colocalization

with GlycA

Genomic Region
Chromosome:

Base Pairs

Gene
(SNP)

Function

GlycA
p-Value

Other
Phenotype

p-value

PP.H4 (Posterior
Probability of
Shared Causal

SNP) or PP.H3 (of
SNPs in Same

Region)

LDL Chr2: 26894985–
28598777

GCKR
(rs1260326)

Nonsynonymous SNV, exon15
2.60 × 10−125 7.77 × 10−17 H4: 100%

LDL Chr2: 110572432–
113921856

IL1F10/RNU6–1180P
(rs6734238)
intergenic

4.00 × 10−9 1.39 × 10−5 H4: 95.7%

LDL Chr4: 155056126–
157485097

FGB
(rs6054)

Nonsynonymous SNV, exon3
1.80 × 10−9 2.90 × 10−5 H4: 98.7%

LDL Chr6: 31571218–
32682664

SKIV2L
(rs437179)

Nonsynonymous SNV, exon8
2.40 × 10−19 8.16 × 10−6 H3: 100%

LDL Chr6: 32682664–
33236497

TAP12
(rs241447)

Nonsynonymous SNV, exon12
6.80 × 10−5 6.22 × 10−9 H3: 75.5%

LDL Chr6: 158218719–
160580497

SLC22A1
(rs15643438)

intronic
9.80 × 10−6 2.11 × 10−38 H3: 88.0%

LDL Chr6: 160580497–
162169564

LPA
(rs3798220)

Nonsynonymous SNV, exon37
6.20 × 10−17 5.53 × 10−27 H4: 99.6%

LDL Chr8: 10463197–
11278998

RP1L1
(rs35602868)

Nonsynonymous SNV, exon4
6.70 × 10−7 1.34 × 10−5 H4: 75.7%

LDL Chr10: 63341695–
65794114

JMJD1C
(rs1935)

Nonsynonymous SNV, exon26
8.90 × 10−11 6.95 × 10−12 H4: 99.7%

LDL Chr11: 116383348–
117747110

ZNF259
(rs964184)

UTR3
2.70 × 10−68 1.13 × 10−23 H4: 100%

LDL Chr14: 943252885–
95750867

SERPINA1
(rs28929474)

Nonsynonymous SNV, exon6
3.80 × 10−80 4.30 × 10−14 H4: 100%

LDL Chr19: 18409862–
19877471

TM6SF2
(rs58542926)

Nonsynonymous SNV, exon6
7.80 × 10−13 6.48 × 10−93 H4: 100%

LDL Chr22: 43714200–
44995308

PNPLA3
(rs738409)

Nonsynonymous SNV, exon3
7.50 × 10−11 1.00 × 10−8 H4: 100%

TGs Chr1: 25516845–
27401867

NR0B2
(rs6659176)

Nonsynonymous SNV, exon1
1.30 × 10−6 3.27 × 10−9 H4: 99.8%
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Table 4. Cont.

(c)

Cytokine in
Colocalization

with GlycA

Genomic Region
Chromosome:

Base Pairs

Gene
(SNP)

Function

GlycA
p-Value

Other
Phenotype

p-value

PP.H4 (Posterior
Probability of
Shared Causal

SNP) or PP.H3 (of
SNPs in Same

Region)

TGs Chr1: 61922365–
63445089

DOCK7
(rs10889353)

intronic
2.10 × 10−19 6.39 × 10−170 H4: 99.2%

TGs Chr2: 21050490–
23341383

APOB
(rs676210)

Nonsynonymous SNV, exon26
2.20 × 10−8 4.94 × 10−118 H4: 99.8%

TGs Chr2: 26894985–
28598777

GCKR
(rs1260326)

Nonsynonymous SNV, exon15
2.60 × 10−125 9.88 × 10−324 H4: 100%

TGs Chr2: 110572432–
113921856

IL1F10/RNU6–1180P
(rs6734238)
intergenic

4.00 × 10−9 1.06 × 10−4 H4: 76.0%

TGs Chr2: 201576284–
202818637

CASP8
(rs3769823)

Nonsynonymous SNV, exon1
1.70 × 10−6 1.36 × 10−9 H4: 99.7%

TGs Chr4: 155056126–
157485097

FGB
(rs6054)

Nonsynonymous SNV, exon3
1.80 × 10−9 2.53 × 10−11 H4: 100%

TGs Chr6: 31571218–
32682664

SKIV2L
(rs419788)
intronic

3020 × 10−19 5.49 × 10−14 H3: 100%

TGs Chr6: 158218719–
160580497

SLC22A1
(rs12208357)

Nonsynonymous SNV, exon1
6.20 × 10−9 3.87 × 10−9 H4: 99.9%

TGs Chr7: 71874885–
73334602

MLXIPL
(rs35332062)

Nonsynonymous SNV, exon4
4.10 × 10−56 5.22 × 10−205 H3: 90.3%

TGs Chr8:
9154694–9640787

RP11–115J16.1
(rs4841132)

ncRNA_exonic
3.90 × 10−22 1.29 × 10−15 H4: 97.7%

TGs Chr8: 19492840–
20060856

LPL
(rs328)

exon9 (stopagain)
7.90 × 10−36 9.88 × 10−324 H4: 100%

TGs Chr10: 63341695–
65794114

JMJD1C
(rs12355784)

intronic
1.00 × 10−10 4.96 × 10−13 H4: 99.6%

TGs Chr11: 116383348–
117747110

ZNF259
(rs964184)

UTR3
2.70 × 10−68 9.88 × 10−324 H4: 100%

TGs Chr15: 42776399–
44198049

MAP1A
(rs55707100)

Nonsynonymous SNV, exon4
1.50 × 10−7 8.60 × 10−54 H4: 100%
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Table 4. Cont.

(c)

Cytokine in
Colocalization

with GlycA

Genomic Region
Chromosome:

Base Pairs

Gene
(SNP)

Function

GlycA
p-Value

Other
Phenotype

p-value

PP.H4 (Posterior
Probability of
Shared Causal

SNP) or PP.H3 (of
SNPs in Same

Region)

TGs Chr19:
8347513–9238393

ANGPTL4
(rs116843064)

Nonsynonymous SNV, exon11
4.00 × 10−11 4.19 × 10−175 H4: 100%

TGs Chr19: 18409862–
19877471

TM6SF2
(rs58542926)

Nonsynonymous SNV, exon6
7.80 × 10−13 3.75 × 10−125 H4: 100%

TGs Chr20: 39610856–
40585689

PLGC1
(rs738409)

Nonsynonymous SNV, exon21
2.80 × 10−7 1.12 × 10−5 H4: 99.6%

TGs Chr22: 43714200–
44995308

PNPLA3
(rs738409)

Nonsynonymous SNV, exon3
7.50 × 10−11 4.35 × 10−9 H4: 100%

TC Chr1: 61922365–
63445089

DOCK7
(rs10889353)

intronic
2.10 × 10−19 9.15 × 10−158 H4: 99.2%

TC Chr2: 26894985–
28598777

GCKR
(rs1260326)

Nonsynonymous SNV, exon15
2.60 × 10−125 5.25 × 10−102 H4: 100%

TC Chr3: 49316972–
51832015

GRM2
(rs116567227)

Nonsynonymous SNV, exon2
7.70 × 10−4 6.01 × 10−7 H3: 83.2%

TC Chr4: 155056126–
157485097

FGB
(rs6054)

Nonsynonymous SNV, exon3
1.80 × 10−9 4.79 × 10−12 H4: 100%

TC Chr6: 31571218–
32682664

SKIV2L
(rs437179)

Nonsynonymous SNV, exon8
2.40 × 10−19 5.03 × 10−14 H3: 100%

TC Chr6: 158218719–
160580497

SLC22A1
(rs15643438)

intronic
9.80 × 10−6 3.52 × 10−37 H3: 88.0%

TC Chr8:
9154694–9640787

RP11-115J16.1
(rs4841132)

ncRNA_exonic
3.90 × 10−22 2.09 × 10−69 H4: 98.1%

TC Chr10: 63341695–
65794114

JMJD1C
(rs1935)

Nonsynonymous SNV, exon26
8.90 × 10−11 3.11 × 10−5 H4: 81.2%

TC Chr11: 116383348–
117747110

ZNF259
(rs964184)

UTR3
2.70 × 10−68 4.71 × 10−135 H4: 100%
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Table 4. Cont.

(c)

Cytokine in
Colocalization

with GlycA

Genomic Region
Chromosome:

Base Pairs

Gene
(SNP)

Function

GlycA
p-Value

Other
Phenotype

p-value

PP.H4 (Posterior
Probability of
Shared Causal

SNP) or PP.H3 (of
SNPs in Same

Region)

TC Chr14: 943252885–
95750867

SERPINA1
(rs28929474)

Nonsynonymous SNV, exon6
3.80 × 10−80 5.53 × 10−14 H4: 100%

TC Chr19: 18409862–
19877471

TM6SF2
(rs28929474)

Nonsynonymous SNV, exon6
7.80 × 10−13 7.03 × 10−155 H4: 100%

TC Chr20: 39610856–
40585689

PLCG1
(rs755381)

Nonsynonymous SNV, exon21
2.80 × 10−7 6.66 × 10−47 H4: 99.9%

TC Chr22: 43714200–
44995308

PNPLA3
(rs738409)

Nonsynonymous SNV, exon3
7.50 × 10−11 1.69 × 10−21 H4: 100%

(d)

Cytokine in
Colocalization

with RA

Genomic Region
Chromosome:

Base Pairs

Gene
(SNP)

Function

RA
p-Value

Other
Phenotype

p-Value

PP.H4 (Posterior
Probability of
Shared Causal

SNP) or PP.H3 (of
SNPs in Same

Region)

Atherosclerosis Chr6: 158218719–
160580497

IGF2R
(rs2230044)

Synonymous SNV, exon33
1.30 × 10−3 2.14 × 10−19 H3: 100%

CAD Chr1:
1892607–3582736

SKI/MORN1
(rs2643905)
intergenic

4.00 × 10−4 1.97 × 10−11 H3: 100%

CAD Chr1: 37549183–
38731847

INPP5B
(rs35267671)

Nonsynonymous SNV, exon7
7.00 × 10−3 2.90 × 10−11 H3: 100%

CAD Chr1: 113273306–
114873845

MAGI3
(rs183352775)

intronic
4.10 × 10−50 1.69 × 10−5 H3: 100%

CAD Chr6: 31571218–
32682664

HLA-DRB1/HLA-DQA1
(rs532965)
intergenic

1.00 × 10−250 1.37 × 10−2 H3: 99.7%

CAD Chr6: 158218719–
160580497

SLC22A1
(rs2282143)

Nonsynonymous SNV, exon6
1.80 × 10−2 7.35 × 10−42 H3: 100%

CAD Chr15: 38530777–
40384132

RASGRP1
(rs72727388)

intronic
1.80 × 10−11 2.70 × 10−6 H4: 96.3%

Comparable results were obtained between GlycA and CAD and concerned the
SLC22A1, LPA, LPL, SERPINA1, and ANGPTL4 genes, with correspondingly high PPs
(H4: 97.5%, H4: 99.8%, H3: 100%, H4: 99.7%, and H4: 100%; Table 4b). Two other common
genomic regions were identified between GlycA and CAD; one mapped to the ZNF259
gene (PP.H4: 100%) and the other to the PNPLA3 gene (PP.H4: 95.4%; Table 4b).
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Colocalization between GlycA and heart failure identified three genomic regions
harboring the LPA, ABO, and ZNF259 genes with PP.H4 values of: 99.7, 72.2%, and 70.1%,
respectively (Table 4b). Lastly, two more genomic regions in chromosome 6, containing two
intronic SNPs with PP.H4 values of 96.8% and 99.7%, were identified and mapped to genes
SLC22A1 and LPA (Table 4b). These genes were also noted in other colocalized observations
between GlycA and other atherosclerotic phenotypes.

Next, colocalization was performed between GlycA and the four lipid factors. In all
comparisons, several significant common genetic variants were detected and are summa-
rized in Table 4c. The major results based on atherosclerotic phenotype were as follows:

GlycA and HDL shared 10 exonic SNPs mapped to specific genomic regions on
chromosomes 2, 6, 8, 10, 11, 15, 19, and 22 with mostly very high PP.H4 values ranging
between 96.9% and 100%. Of these, the most remarkable were rs15825 belonging to the
untranslated region of the LPL gene and associated with p = 8.30 × 10−28 (GlycA) and
p = 9.88 × 10−324 (HDL) and observed PP.H3 of 100% (distinct polymorphisms located
at the same site) and rs4841132 mapped to the RP11-115J16.1 gene, p = 3.90 × 10−22

p = 1.04 × 10−123, respectively) with PP.H4 of 97.6%.
GlycA and LDL. Consistent with the colocalization observations between GlycA and

HDL, SNPs mapped to the DOCK7, JMJD1C, and ZNF259 genes were also observed in
these analyses, with strong support of PP.H4, i.e., between 99.2% and 100%. In addi-
tion, eight other exonic SNPs were found in several known genes including GCKR, FGB,
SKIV2L, TAP12, LPA, RP1L1, TM6SF2, and PNPLA3, with evidence of colocalization in
support of PP.H4 (75.7% to 100%), but also with probabilities of 75.5% and 100% for H3 in
two analyses.

GlycA and TGs. Colocalization and enrichment analyses revealed similarity to LDL
and HDL genomic regions, including the genes DOCK7, APOB, GCKR, FGB, SLC22A1,
RP11-115J16.1, JMJD1C, ZNF259, MAP1A, ANGPTL4, TM6SF2, and PNPLA3 with high
PP.H4 (ranging between 99.2% and 100%) and the SKIV2L gene with PP.H3 100%. In
addition, five other exonic SNPs specifically colocalized between GlycA and TGs were
identified and mapped to the genes NR0B2, CASP8, MLXIPL, LPL, and PLGC1, with PP.H4
values ranging between 90.6% and 100%.

GlycA and TC. Here, we also detected several genomic regions common with other
lipid factors, namely, DOCK7, GCKR, FGBRP11-115J16.1, JMJD1C, ZNF259, SERPINA1,
TM6SF2, PLCG1, and PNPLA3, with strong support for PP.H4: from 81.2%, but mostly from
99.2% to 100%, Two colocalization results strongly supported PP.H3 (with 88.0% and 100%
probability for SLC22A1 and SKIV2L, respectively). Finally, an additional exonic SNP was
colocalized on chromosome 3, mapped to GRM2, with PP.H3 of 83.2%.

Importantly, several genes, namely, FGB, SKIV2L, SLC22A1, LPA, LPL, SERPINA1,
ANGPTL4, PNPLA3, ABO, and ZNF259, colocalized between GlycA and some lipid factors
and colocalized between GlycA and several atherosclerotic phenotypes (Table 4b,c). Lastly,
the intergenic region between IL1F10 and RNU6-1180P, seen to be colocalized between
GlycA and some lipid factors (Table 4c), was also colocalized between GlycA and RA
(Table 4a).

Considering RA and atherosclerotic variables, two regions of interest were apparent
on chromosome 6, specifically between RA and CAD (Table 4d). There was consistent
colocalization between GlycA and RA involving the HLA region, annotated to the intergenic
regions between HLA-DRB1 and HLA-DQA1, with very strong evidence of PP.H3: 99.7%.
Another remarkable result was an exonic SNP on chromosome 6 between base pairs
158218719 and 160580497 and mapped to SLC22A1 with strong evidence of colocalization
of the distinct causal variants (PP.H3: 100%) (Table 4d).

Additionally, several colocalization results were apparent between GlycA and atheros-
clerotic phenotypes and between GlycA and lipid factors that corresponded to the HLA
region and are reported in the Supplementary Materials (Table S2).
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2.5. ABN Analysis

ABN analysis was used to generate the most likely network describing the rela-
tionships among GlycA, RA, and the atherosclerotic variables (Figure 1 and Table S5,
Supplementary Materials). The resulting model suggests that RA induces GlycA (β = 0.350,
95%CI = 0.327 to 0.373), and GlycA is subsequently associated with atherosclerosis
(β = 0.370, 95%CI = 0.333 to 0.406), while RA is also significantly and independently
associated with atherosclerosis (β = 0.479, 95%CI = 0.291 to 0.652). As suspected, RA and
GlycA are both directly linked to lipid factors, in this case LDL (β = −0.250, 95%CI = −0.229
to −0.273 and β = 0.306, 95%CI = 0.302 to 0.309, respectively), which in turn are linked with
the other lipid factors. As such, the relationship with LDL may uniquely contribute to the
development of atherosclerosis (β = −0.441, 95%CI = −0.403 to −0.479). Not surprisingly,
age is the facilitating variable among major phenotypes, RA, GlycA, and atherosclerosis
(Figure 1).
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Figure 1. Additive Bayesian Network (ABN) Analysis. ABN analysis was used to create the statistical
model describing pathways of risk factors contributing to RA, atherosclerosis, and GlycA. Arcs
demonstrate the regression coefficients estimated by the model with corresponding 95% confidence
intervals found in Table S5, Supplementary Materials.

3. Discussion

In this study we explored the genetic basis of the relationships between RA and its
major comorbidity, atherosclerosis. Genetic correlations established that GlycA, an inflam-
mation marker, plays a role in facilitating the relationship between RA and atherosclerosis.
Two independent statistical analyses identified a pleiotropic relationship between GlycA
and RA. GlycA appears to be causally related to atherosclerosis, further reinforcing the role
of inflammation through a secondary approach/pathway. Lipid factors, known to be asso-
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ciated with the development of atherosclerosis, were previously shown to be pleiotropically
associated with RA [20], further presenting another pathway that promotes the nature of
the comorbidities. Lastly, colocalization and gene enrichment uncovered a series of genes
that may partake in the complicated relationship between RA and atherosclerosis, through
GlycA and other intermediatory forces, such as lipid factors.

While RA was previously reported to be in a causal genetic relationship with CRP [21],
we find that RA appears to be in horizontal pleiotropy with GlycA. This difference suggests
the presence of differing inflammatory pathways essentially induced by RA. Remarkably
also, the genetic relationship between RA and atherosclerotic phenotypes appears to be
described by horizontal pleiotropy, and yet, GlycA, or the inflammatory pathway in relation
to GlycA, appears to serve as a mediator because it causally predicts atherosclerosis and
CAD. Although the lipid contributions to cardiovascular complications are reportedly
causal [22], our previous study [23] suggests a pleiotropic association between them. Our
results from network analysis are in agreement with those of previous studies and shed
further light on “the lipid paradox” in RA, i.e., the tendency for lower LDL and higher
TG levels in RA individuals [24]. In addition, the lower LDL levels in association with
atherosclerosis may be explained by the efficacy of therapy lowering LDL levels [25].

It is important to note that the IVW method suggested that GlycA showed a causal
relationship with HDL and LDL, but no correlation or causation was demonstrated by the
MRE method. In addition, the MR PRESSO method showed a correlation between GlycA
and the lipid factors. IVW is a powerful and useful tool that considers that all selected
instrumental variables are significant. However, IVW does not account for horizontal
pleiotropy, which if present, falsely demonstrates a significantly causal relationship [26].
Thus, by implementing the MRE method, we are able to detect whether the significant
MR estimate was indeed attributed to horizontal pleiotropy and not causally related. In
examining the potential causal relationship between GlycA and HDL and LDL, a causal
relationship seemed apparent through the IVW approach but was instead due to horizontal
pleiotropy as suggested by the MR Egger approach. The MR PRESSO approach is a tool
designed to calculate the presence of horizontal pleiotropy [27], and thus the global results
significantly confirmed the presence of horizontal pleiotropy as was indicated in the results.

Here, we speculate that GlycA, a marker of systemic inflammation, predicts future
CVD events [28] and may modulate the relationship between RA and atherosclerosis.
Inflammatory pathways related to RA may attenuate CV complications as well as accelerate
atherosclerosis arising from early-onset vascular deterioration [29]. Inflammation arising
from atherosclerosis appears to contribute to plaque rupture, which is a typical complication
of CVD, and may be influenced by cytokines and chemokines [11].

Several mechanisms may be involved in the genesis of atherosclerosis in RA [15].
One mechanism involves lipid level alterations, which elicit atherosclerotic tendencies,
while another mechanism may include the escalation of the oxidative process triggered
by RA [15]. While underlying genetic factors may induce these conditions pleiotropically,
metabolic syndrome also appears to contribute to their joint manifestation [15]. Lipid
factors further reinforce the relationship between RA and atherosclerosis, as the present
analysis suggests. Similar observations have been recently reported and concluded that
postprandial hyperlipidemia (TG levels > 220 mg/dL), was more common in patients with
RA and was associated with inflammation and subclinical atherosclerosis [30].

Our study indicates that the inflammatory cascade in RA, as reflected by elevated
GlycA levels, facilitates the development of atherosclerosis. GlycA appears to have a
unique and pivotal role in this process, being strongly correlated with TG blood levels both
phenotypically and genetically. These observations are well supported by the existing non-
genetic data. GlycA coupled with triglyceride-rich lipoproteins was reportedly associated
with the presence of subclinical myocardial dysfunction in subjects with type 1 diabetes
mellitus [31]. Another study demonstrated that GlycA serum levels were high in RA
subjects and associated with incident atherosclerosis, independent of cardiometabolic
predictors [17]. The association between GlycA and subclinical CV was maintained after
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controlling for typical covariates including age, sex, dyslipidemia, smoking, BMI, and even
CRP [17]. In addition, the early stages of RA generate high serum levels of GlycA, which
appears to predict alterations in cholesterol levels such as lower LDL and higher TGs, in
line with our findings [17].

3.1. Genes of Interest

This study revealed significant genetic correlations between GlycA, RA, and atheros-
clerosis-related phenotypes, which is supplemented by the colocalization analysis that
pointed out several genes of interest. Of these, we believe the most significant are
the following.

The ILF10/RNU-1180P genomic region consistently appeared in colocalization across
lipid factors and GlycA but also between RA and GlycA. ILF10/RNU-1180P were implicated
in a genome-wide meta-analysis conducted on IL6 in addition to the HLA-DRB1/DRB5
loci [32]. These two regions may serve as major players in immunological and inflammatory
pathways [32], while it is known that IL6 is a key cytokine involved in RA pathogenesis
and the RA–atherosclerosis relationship [11].

Another gene of interest, SLC22A1, was noted across all phenotypes in colocalization
to GlycA but also between RA and CAD. While this gene was not noted previously in the
literature in relation to RA (or GlycA or lipids), its family member, SLC22A4, was associated
with RA susceptibility in the Chinese population [33], and SLC22A5 was suggested to be
associated with extra-articular manifestations in RA subjects [34].

The HLA region, which may contribute to the cascade of events leading to inflamma-
tion [35] and which is strongly associated with RA [36], was observed to colocalize between
all the variables examined. Importantly, glycoproteins demonstrated a relationship to HLA
under heightened inflammatory conditions [37]. In addition, HLA was associated with the
development of atherosclerosis [38] Moreover, HLA-DRB1 alleles were previously reported
to define the shared genetic relationship between RA and atherosclerosis [15]. Our previous
colocalization study revealed that HLA also participates in the pleiotropic relationship
between RA and lipid factors [20].

Studies clarifying autoimmune disease and their genetic variation are of particular
importance, as Ota et al. [39] clarifies and demonstrates that autoimmune GWAS findings
reveal cell types involved and environmental influences, as they have produced an atlas
containing these corresponding details.

3.2. Limitations

GWAS summary statistics were limited to participants of European ancestry; therefore,
findings may not generalize to other populations. The sample sizes used were among
the best available, yet LDSC genetic correlations were still underpowered, and some
potentially meaningful correlations fell slightly below statistically significant. The presence
of overlapping samples between the GWASs used for both the exposure and outcome in
MR may cause inflated estimates, where the GlycA GWAS also included data from the UK
Biobank, as well as the CAD phenotype.

4. Material and Methods
4.1. Dataset

Phenotypic data from the UK Biobank (UKBB) included 502,356 participants, of whom
13,514 had self-reported diagnosis RA, and 4532 were diagnosed with atherosclerosis.
Furthermore, 499,249 participants had measured BMI, and 274,349 had lipid profiles.

Genome-wide association study (GWAS) summary statistics were acquired from
several resources for GWAS-based analyses. RA summary statistics were collected from
Okada et al. [40] and comprised 14,361 RA cases and 43,923 controls of European ancestry
(18 data sources) subjected to meta-analysis using >8 million imputed genetic variants or
single nucleotide polymorphisms (SNPs). Analysis of coronary atherosclerosis was based
on 16,041 cases and 440,307 controls, with over 11 million genetic variants, carried out by
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Jiang et al., using data from the UKBB [41]. Coronary artery disease (CAD) was analyzed
by Aragam et al., based on 181,522 cases and 1,165,690 controls from 10 different data
sources across Europe, with over 20 million genetic variants [42]. Heart failure was based
on 47,039 cases and 903,014 controls compiled from 26 studies, including the UKBB, with
over 8 million genetic variants [23]. Lastly, heart attack/MI was acquired from the Neale
Lab website [43] and was based on 7735 cases and 329,424 controls with over 10 million
genetic variants. The Global Lipids Genetics Consortium provided summary statistics for
HDL, LDL, triglycerides (TGs), and total cholesterol (TC) [44]. The summary statistics
came from meta-analysis of each lipid from 73 studies including 237,050 participants of
European ancestry and nearly 250,000 genetic variants [44]. GWAS summary statistics for
GlycA were based on 115,078 European participants and comprised over 12 million genetic
variants. The full description of the GlycA GWAS, which is housed by Bristol University,
was taken from 3 studies as detailed by Crick et al. [45].

The atherosclerotic phenotypes were defined as coronary atherosclerosis (CAD), heart
failure, and heart attack/MI, whereas lipid factors included HDL, LDL, TGs, and TC.

4.2. Statistical Analysis

Basic statistical analyses were carried out using R 4.2.3 (https://www.R-project.org/,
accessed on 27 April 2024). The lm and glm functions from R stats were used to conduct
linear and logistic regression analyses, respectively. In general, a p-value ≤ 0.05 was
considered significant in analyses executed throughout this study. GlycA was analyzed as
the dependent variable, and RA or atherosclerotic phenotypes as independent variables, in
addition to covariates age, sex, and BMI. Subsequently, the relationships between RA (as
the dependent variable) and atherosclerotic variables, not including the lipid factors, as the
independent variables, were examined.

4.3. Genetic Correlation

Genetic correlation was assessed between GlycA and RA along with atherosclerotic
phenotypes, as well as between RA and atherosclerotic phenotypes, using cross-trait Link-
age Disequilibrium Score Regression (LDSC) (https://github.com/bulik/ldsc, accessed on
27 April 2024) [46]. The LD reference panel was limited to the European subset from the
1000 Genomes Project.

4.4. Mendelian Randomization (MR)

To assess potential causal effects between two phenotypes, we conducted two-sample
MR analyses using GWAS summary statistics and the Mendelian Randomization package in
R (https://CRAN.R-project.org/package=MendelianRandomization, accessed on 27 April
2024) [47]. The principles of MR analysis have been extensively described elsewhere [48]
Several MR approaches are available with the intent to satisfy different assumptions,
including inverse variance weighted (IVW) and MR Egger (MRE). Except for MRE, most
MR approaches correspond closely with IVW. Thus, we initially focused on MRE and IVW.

IVW, probably the most common method of MR, infers the existence and strength of
the causal relation between an exposure and outcome variable [48]. The MRE approach
is advantageous for its robustness and distinguishes between the pleiotropic and causal
effects on pleiotropy [49]. The MRE approach can determine instrument validity using the
I2 sensitivity statistic, which measures instrumental variable dilution or bias [50], and is
suggested to be at least 90% in a two-sample analysis [49].

In cases where MRE suggested the existence of pleiotropy, the MR PRESSO method was
implemented to specifically test for horizontal pleiotropy (https://github.com/rondolab/
MR-PRESSO, accessed on 27 April 2024) [27]. MR PRESSO is a robust outlier method, with
the global test determining the presence of horizontal pleiotropy, assuming <50% of the
chosen instrumental variants are horizontally pleiotropic [27].

https://www.R-project.org/
https://github.com/bulik/ldsc
https://CRAN.R-project.org/package=MendelianRandomization
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4.5. Colocalization Analysis and Gene Enrichment

To confirm the presence of horizontal pleiotropy, colocalization analysis employed
using the coloc.abf function in the coloc R package (https://github.com/chr1swallace/coloc,
accessed on 27 April 2024), applicable to GWAS summary statistics [51,52]. Based on
Bayesian statistical modeling, it generates five posterior probabilities corresponding to five
hypotheses as described by Wallace et al. [51]. Of these, two alternative hypotheses, H3
and H4, were of interest to us:

Hypothesis 3 (H3). Association to both traits detected but caused by distinct causal variants.

Hypothesis 4 (H4). Association to both traits detected and caused by a shared causal variant.

H4 is essentially suggestive of horizontal pleiotropy. H3 may suggest spurious
pleiotropy; however, it may also be suggestive of biological or horizontal pleiotropy in some
cases. H3 becomes more evident than H4 when the genomic region examined contains
a large number of SNPs. As a result, a high posterior probability (PP) of H3 might be
evident although shared causal SNPs may instead appropriately explain the pleiotropic
relationship [51]. Strong evidence of pleiotropy was defined as a PP > 75%, while 75% >
PP > 50% is cautiously suggestive of the presence of significant SNPs, shared or distinct,
mapped to the designated genomic region [52].

Colocalization analysis was carried out only between GlycA and all other variables
and between RA and atherosclerotic variables, except for lipid factors, for which the results
were reported elsewhere [20].

Genomic regions that revealed strong evidence of pleiotropy were subsequently exam-
ined to identify the corresponding genes of the apparent causal SNPs using gene enrichment
analysis. The most likely SNP in the genomic region common to both traits under compari-
son was generated by colocalization analysis and was considered in the gene enrichment
analysis. The latter was conducted using the Functional Mapping and Annotation (FUMA)
GWAS platform (https://fuma.ctglab.nl/, accessed on 27 April 2024) [53].

4.6. Additive Bayesian Network (ABN) Modeling

ABN modeling, utilizing the abn R package (version 3.0.1) (https://r-bayesian-networks.
org/, accessed on 27 April 2024) [54], employs a multidimensional approach to estimate
the most likely network of relationships among selected phenotypes [54]. Bootstrapping is
applied to control for over-fitting [54]. The correlations, or arcs, produced describe rela-
tionships between pairs of traits and are analogous to regression coefficients from multiple
regression analysis. The following variables were considered for the analysis: GlycA, RA,
coronary atherosclerosis, CAD, heart failure, heart attack/MI, HDL, LDL, TGs, TC with
adjustment for age and sex, and BMI in all the analyses.

5. Conclusions

In this study, we present a potential metabolic pathway that describes the relationship
between RA and atherosclerosis-related conditions, modeled by inflammation indicated
by GlycA. RA is suggested to elicit inflammatory pathways leading to the development of
atherosclerotic complications. GlycA causes atherosclerosis, and CAD and is therefore a
potential pivotal marker in the early screening of cardiovascular complications in RA sub-
jects. RA, concomitantly, induces lipid alteration through inflammatory pathways, but also
through GlycA, suggesting that several pathways may be involved in the manifestation of
atherosclerotic complications following the onset of RA. This study identified several genes
likely involved directly in the association between RA and atherosclerotic phenotypes and
indirectly through the mediator, GlycA. Interestingly, SLC22A1 appeared in colocalization
between GlycA and all tested atherosclerosis-related phenotypes as well as between RA
and atherosclerotic phenotypes.
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