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Modeling lexical tones for speaker discrimination 

 

Abstract: Fundamental frequency (F0) has been widely studied and used in the context of 

speaker discrimination and forensic voice comparison casework, but most previous studies 

focused on long-term F0 statistics. Lexical tone, the linguistically structured and dynamic 

aspects of F0, has received much less research attention. A main methodological issue lies on 

how tonal F0 should be parameterized for the best speaker discrimination performance. This 

paper compares the speaker-discriminatory performance of three approaches to lexical tone 

modelling: discrete cosine transform (DCT), polynomial curve-fitting, and quantitative target 

approximation (qTA). Results show that using parameters based on DCT and polynomials led 

to similarly promising performance, whereas those based on qTA generally yielded relatively 

poor performance. Implications modelling surface tonal F0 and the underlying articulatory 

processes for speaker discrimination are discussed. 
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1. Introduction 

Speech carries a certain degree of indexical information about a speaker such as gender and 

regional background, and we can often identify familiar speakers even when we cannot see 

them (e.g. on the phone) (Nolan, 1999). Whilst it is theoretically interesting to determine the 

extent to which a person’s voice is idiosyncratic, there are specific circumstances where it is 

important to determine the identity of a speaker solely based on speech. For example, a 

witness/victim of a crime may have heard but not seen the offender, and be asked to identify 

the offender from a voice lineup; or an anonymous speech sample related to a crime (e.g. a 

bomb threat) may have to be compared with the voice of a suspect (Nolan, 1999).  With the 

widespread availability of speech recordings, law enforcement and courts are increasingly 

relying on specialists who can analyze/provide expert opinions on speech samples during court 

proceedings or as part of the investigation process. The majority of such work concerns forensic 

voice comparison (FVC) (French & Stevens, 2013). 

FVC typically involves the comparison of two or more speech samples in forensic 

contexts (e.g., hoax emergency calls, ransom demand, conversation with accomplice), with the 

goal of assisting the trier-of-fact in determining if the speech samples are from the same person 

or different people (French & Stevens, 2013). One of the main objectives in FVC research is 

to identify useful parameters for distinguishing speakers. Fundamental frequency (F0) has been 

widely researched and used in FVC casework due to its ease of extraction and robustness in 

channel transmission and poor recording conditions (e.g., Hudson et al., 2007; Kinoshita et al., 

2009). Commonly used F0-based parameters are all long-term static parameters such as mean, 

standard deviation, and median (Gold & French, 2011). However, many forensic experts noted 

that long-term fundamental frequency (LTF0) parameters are mostly of limited help in forensic 

casework and used mainly for elimination rather than speaker identification (Gold & French, 

2011), primarily due to its notable within-speaker variability as a result of factors such as health, 



emotional state, Lombard effect, and intoxication (Braun, 1995). Empirical tests using the 

likelihood ratio (LR) approach also show poor evidential strength of LTF0 parameters (e.g., 

Kinoshita, 2005; Kinoshita et al., 2009; Rose, 2017; Rose & Zhang, 2018). Nonetheless, few 

studies have explored the linguistically structured and dynamic aspects of F0, which may carry 

rich speaker-specific information (Chan, in press; McDougall, 2004).  

Lexical tone is a case in point. Lexical tones are often defined as syllable-based pitch 

patterns for contrasting lexical or grammatical meaning. For instance, in Cantonese, the 

syllable [ji] means “clothes” when it carries a high-level tone, but “doubt” when it carries a 

low falling tone. Yip (2002) estimated that as much as 60%–70% of the world’s languages are 

tone languages, and a number of tone languages have millions of native speakers (e.g., 

Mandarin—921 m, Cantonese—85 m, Vietnamese—76 m; Eberhard et al., 2021). Yet, most 

existing research on FVC involves non-tonal languages such as English or a few European 

languages such as German. FVC research on tone languages not only will be relevant to a large 

number of people in the world but also is necessary for developing a comprehensive theory of 

speaker idiosyncrasy in speech production. 

Although lexical tones function at the lexical level like consonants and vowels, tones 

are typically regarded as a suprasegmental feature because the primary acoustic correlate of 

tone is F0, determined mainly by the rate of vibration of the vocal folds (Bauer & Benedict, 

1997). However, F0 variation in tone languages cue not only lexical tones but also intonation 

that may convey discourse, attitudinal and affective information alike, and indexical 

information such as the speaker’s age, gender, regional background, health, and psychological 

state (Braun, 1995). These kinds of information are transmitted virtually simultaneously. Given 

the multiplicity of information carried by F0 in tone languages, the extent to which speaker-

specific information is encoded in F0 is an empirical question. It is not until the past decade 

that research has focused on speaker discriminatory power and evidential value of lexical tones 



(see Chan, in press for a review). For example, based on discriminant analysis of 20 Cantonese 

male speakers, Chan (2016) found that rising tones generally perform better than other tones 

at discriminating speakers across speech rates and voice levels. Also, between-speaker 

differences in tone realization manifest in terms of F0 height and the shape of the tone contours. 

Chan (2016) found that after normalizing for F0 height, in general around 70% of the 

discriminatory power of lexical tones was preserved. This shows that the dynamic changes of 

tonal f0 make a substantial contribution to speaker discrimination. Similarly, using both 

Cantonese and Mandarin data, Chan (2020) found that tones in their citation forms generally 

yield better speaker discriminatory performance than tones undergoing coarticulation, and the 

inclusion of duration as an additional predictor leads to significantly better performance. 

However, a few studies used the LR framework to assess the evidential strength of tonal F0-

based parameters (e.g., Pingjai, 2019; Rose, 2017; Rose & Wang, 2016). For instance, based 

on spontaneous speech data from Standard Thai young male speakers, Pingjai demonstrated 

that tonal F0 from the low tone in Thai outperformed LTF0 parameters but the falling tone 

performed worse than LTF0 parameters. 

A key methodological issue lies in how lexical tones should be parameterized to capture 

maximal speaker-specific information. Existing studies either used a series of instantaneous 

measurements of the tonal F0 contours directly (e.g., dividing a tone-bearing unit into 

equidistant intervals and taking F0 measurements accordingly), or fitted polynomial curves 

(typically quadratic or cubic) with these measurements based on the following general equation: 

𝑎𝑛𝑥𝑛 +  𝑎𝑛−1𝑥𝑛−1 + ⋯ 𝑎1𝑥 + 𝑎0 = 0  (1) 

where n refers to the degree (e.g., n = 2 for quadratic and n = 3 for cubic). 𝑎𝑛  … 𝑎1 are the 

coefficients that describe the vowel formant or tonal f0 trajectories, 𝑎0 is the intercept with the 

y-axis. These coefficients are used for subsequent statistical analysis. It should be noted that 



there are many other ways to model tonal F0 production that have not been thoroughly explored 

for speaker characterization. This study is an extension of Chan (2020), who investigated 

speaker discriminatory power of lexical tones parameterized using quadratic or cubic 

polynomials. We aim to compare the effectiveness of modeling surface F0 contours (i.e., 

instantaneous F0 measurements of lexical tones) directly versus modeling underlying 

articulatory mechanisms of F0 production for speaker discrimination, using discrete cosine 

transform (DCT) and quantitative target approximation (qTA) as test cases, respectively.  

DCT involves estimating time-varying data points using cosine basis function(s) and 

has been widely used in signal processing (see Rao & Yip, 1990 for details). For tone modeling, 

DCT involves representing F0 contours with coefficients that are in proportion to the mean, 

linear slope, and curvature of F0 (Yu et al., 2022). qTA, however, is quantitative 

implementation of the parallel encoding and target approximation (PENTA) model (Xu, 2005). 

PENTA assumes that prosody carries multiple levels of communicative functions in parallel 

and surface F0 is the result of realizing the underlying syllable-based pitch target, which is the 

ideal F0 contour associated with each syllable and can be static ([high], [low], or [mid]) or 

dynamic ([rise] or [fall]) (see Figure 1 below). 



 

 

Figure 1: A schematic representation of the PENTA model. The upper panel illustrates how 

multiple levels of parallel communicative functions are encoded in surface F0 through a 

number of encoding schemes and target approximation parameters. The lower panel illustrates 

how each syllable is assumed to have an underlying F0 target (dotted lines), and that the 

surface F0 contour (solid line) is the result of asymptotic approximation of the target in full 

synchrony with the syllable (Xu et al., 2022). 

In qTA, a pitch target is estimated based on a third-order critically damped linear system 

as illustrated in the formula below (Prom-on et al., 2009): 

F0(t) = (mt + b) + (c1 + c2t + c3t
2)e-t   

 (2) 

where F0(t) refers to the surface F0 of a syllable as a function of time t, and the first term mt + 

b the underlying pitch target with m representing its slope and b representing its height. The 

second term represents the natural response of the system, with λ representing the strength of 



F0 movement and three transient coefficients ((c1, c2, and c3) calculated based on the initial F0 

level, velocity and acceleration of the current syllable involved (see Xu et al., 2022 for details 

on the conceptual framework of PENTA and the principles behind the development of qTA). 

The parameters m, b, and λ can be extracted from speech data automatically based on analysis-

by-synthesis machine learning algorithms in PENTA (Prom-on et al., 2009). DCT and qTA 

have been used to parameterize lexical tones for a range of research questions but not in the 

context of speaker characterization and discrimination. As an extension of Chan (2020), this 

short report involves an exploratory study that compares the speaker discriminatory power of 

the tonal parameters generated from polynomial curve fitting, DCT, and qTA. This is assessed 

based on the speaker classification results from discriminant analysis as discussed below. 

 

2. Methods 

2.1 Databases 

We used the same speech corpora reported in Chan (2020), which involve 20 male Hong Kong 

Cantonese speakers and 20 male Beijing Mandarin speakers aged 19–25 years. The speech data 

consist of all the Cantonese and Mandarin phoneme tones1  produced under normal or fast 

speech rate, and in a compatible or a conflicting adjacent tonal context (i.e., adjacent tones have 

F0 values either similar to or different from the target tone (Chan, 2020; Xu, 1994)). Normal 

speech rate and a compatible tonal context generally facilitate the realization of tones in their 

citation forms, whereas fast speech rate and a conflicting tonal context induce tonal 

coarticulation. In total, 5,760 tokens of Cantonese tones and 3,840 tokens of Mandarin tones 

 
1 Cantonese contrasts six phonemic tones: high level[55], mid level[33], low level[22], high rising[25], low 

rising[23], and low falling[21] (Bauer & Benedict, 1997), and Mandarin distinguishes four phonemic tones: high 

level[55], rising[35], dipping[214], and falling[51]. See Chan (2020) for details. 

https://journals-sagepub-com.eproxy.lib.hku.hk/doi/full/10.1177/00238309241261702#bibr6-00238309241261702


were analyzed. Details of the recording procedure and reading materials for eliciting the target 

tones can be found in Chan (2020). 

 

2.2 Data extraction and parameterisation 

Syllables that carry the target tones were manually segmented in Praat (Boersma & Weenink, 

2024), and two different segmentation approaches were adopted. Before conducting DCT, the 

vocalic portion of the target syllable was segmented and F0 was estimated using the 

STRAIGHT package in VoiceSauce (Shue et al., 2011). Eleven measurements were taken for 

each token; the first and the last measurements were excluded due to potential perturbation 

effects by neighboring consonants. The remaining nine measurement points then served as the 

input for zeroth to second and zeroth to third DCT tone modeling, resulting in three or four 

coefficients for subsequent speaker discrimination. In qTA modeling, for each tone, the entire 

target syllable was segmented as syllable is argued to be the best target interval for modeling 

its underlying pitch target (Xu et al., 2022). Three coefficients related to the underlying pitch 

target—slope m, height b, and strength —were extracted using the qTAtrainer 2 . The 

coefficients generated from these two approaches were used as the predictors for subsequent 

(linear) discrimination analysis (DA). Discriminant analysis is a multivariate statistical test that 

determines if a given set of predictors may be used in conjunction to predict group membership 

(Tabachnick & Fidell, 2014). In the forensic phonetics literature, DA has been used to evaluate 

the speaker-specificity of a given feature and its potential usefulness in forensic casework (e.g., 

Chan, 2020; Eriksson & Sullivan, 2008; McDougall, 2004, 2006). In the current context, each 

speaker is treated as a “group” and parameters generated from tone modeling with DCT/qTA 

were used as predictors to predict speaker identity (see Tabachnick & Fidell, 2014 for details 

 
2 Details can be found on http://www.homepages.ucl.ac.uk/~uclyyix/qTAtrainer/.  

http://www.homepages.ucl.ac.uk/~uclyyix/qTAtrainer/


on the mathematical procedure). The results were then compared with those reported in Chan 

(2020) based on polynomial curve fitting. 

DA can be divided into two parts: (1) constructing discriminant functions, and (2) 

classification. Taking into account both between- and within-speaker variations, DA first uses 

Wilks’ lambda to assess the overall relationship between predictors and groups (speakers); if 

the relationship is significant, it is concluded that the groups can be distinguished on the basis 

of the combinations of predictors. Discriminant functions that best separate different speakers 

based on linear combinations of predictors are then constructed. The classification part 

evaluates the extent to which group membership can be predicted with the data provided. A 

classification equation is developed for each group, and every case (i.e., each tone token) in 

the dataset is allocated to one of the groups (speakers) based on the classification equations. 

For each case, the data on each predictor are inserted into the classification equation to compute 

a classification score, and the case is assigned to the group that gives the highest classification 

score. The percentage of correctly attributed cases (or a classification rate) is calculated and is 

reported as a DA score. Classification was cross-validated with the “leave-one-out” method, 

which involved leaving each case out in turn when the classification equations were calculated 

(Tabachnick & Fidell, 2014). This allows testing of the generalizability of the classification 

equations to new data as that case is not used in the formulation of any classification equation. 

With 20 speakers for each language, the chance performance was 5%. 

 

3. Results 

3.1 Descriptive statistics 

To highlight the between-speaker differences in f0 contours visually, all raw f0 data were z 

normalized using the following formula (Chan, 2016; Rose, 1987): 



 

f0norm = (f0i – f0mean)/s  (3) 

where f0mean stands for the mean of all sampled data for a given speaker and s one standard 

deviation from the mean. The z score then represents the degree of dispersion by the number 

of standard deviations from the mean. Data were normalised separately for each speaker in 

each language. 

Figure 2 shows the six Cantonese tones and the four Mandarin tones, respectively, under 

different speech rates and tonal contexts: fast + compatible, fast + conflicting, normal + 

compatible, and normal + conflicting, which have observable effects on the shape of the tone 

contours. For Cantonese tones, even tones of the same types display different patterns. For the 

level tones, T1[55] shows a modest fall in a conflicting context but rises gradually to the peak 

in a fast + compatible context. T3[33] and T6[22] generally exhibit f0 declination, especially 

under a fast speech rate. For the rising tones, T2[25] resembles its canonical citation forms (i.e., 

shows a small dip and then rises to the peak) in normal speech, but shows a considerably 

smaller rise and a subtle fall at the end in fast speech. Tonal context has little effects on the 

overall shape of T2[25]. T5[23], however, varies drastically: it changes from a canonical low 

rising tone to a level tone and even a falling tone in the order of normal speech + compatible 

context → normal speech + conflicting context → fast speech + compatible context → fast 

speech + conflicting context, revealing the influence of both speaking rate and tonal context. 

T4[21] displays a consistent falling pattern in the first half of the tone, with a steeper fall in a 

conflicting context. 



 

Figures 2 (left panel) and 2 (right panel): Mean f0 contours of the six Cantonese tones (left) 

and the four Mandarin tones (right) by 20 speakers under different speech rates and tonal 

contexts (see Appendices A and B for the production of tones by individual speakers). 

As for Mandarin tones, T1[55], T2[35], and T3[21] in Mandarin exhibit comparable 

patterns to Cantonese T1[55], T2[25], and T4[21], respectively. Similar to Cantonese T1[55], 

the Mandarin T1[55] shows a small declination in a compatible context but rises gradually to 

the peak in a conflicting context. T3[21] in Mandarin exhibits similar patterns to T4[21] in 

Cantonese and has a consistent falling pattern in the first half of the tone, with a steeper fall in 

a conflicting context. T2[25] in Mandarin, just like the Cantonese T2[25], resembles its citation 

forms in normal speech. However, unlike the Cantonese counterpart, it becomes more like a 

level tone and even shows a subtle fall at the end in fast speech, especially in the conflicting 

context. A possible explanation lies in the need to maintain perceptual contrast: Cantonese 

speakers have to maintain a rising pattern for the T2[25] lest it should be perceived as a mid-

level tone or a low rising tone; by contrast, the Mandarin T2[35] is less likely to be confused 

as another tone in the language even when it becomes more like a level tone due to contextual 



tonal effect. T4[51] shows a sharp fall in most cases, but becomes more like a level tone in fast 

speech and a conflicting context. The observations in T2[25] and T4[51] of Mandarin chime 

with Xu’s (1994) findings that the contour of a rising/falling tone can be drastically “distorted”. 

One might imagine that because the realizations of some of these coarticulated 

Cantonese and Mandarin tones deviate considerably from their citation forms, they might not 

be perceived as their intended targets. In real-life interactions, semantic information may be 

used by listeners to unravel the tones of the target words. However, Xu (1994) found that even 

when Mandarin tones deviated drastically from their canonical forms due to coarticulation and 

when semantic information was removed, native Mandarin listeners were able to identify 

coarticulated tones with a high accuracy with the help of the adjacent tonal context. When 

heavily coarticulated tones were presented without the adjacent tonal context, tone 

identification dropped below the chance level. However, even with the presence of adjacent 

tonal context, tone identification accuracy was higher for tones in compatible contexts than for 

those in conflicting contexts, suggesting that listeners do not always fully compensate for tonal 

variation due to coarticulation. In this study, we followed the procedure outlined in Xu (1994) 

when eliciting naturally produced Cantonese and Mandarin tones under different speech rates 

and tonal contexts. We would expect that if a tone identification task was conducted for the 

tones reported in this study, the results would be largely similar to those of Xu (1994). 

 

3.2 Discriminant analysis 

Figures 3 and 4 show the DA scores (% correct classification) of Cantonese and Mandarin tones 

based on parameters generated from 0th to 2nd DCT, quadratic polynomial and the qTA model 

(qTA hereafter), each of which involved three parameters as predictors for DA (chance level = 

5% for 20 speakers). In general, parameters based on DCT appeared to yield significantly-



higher-than-chance DA scores, ranging from 23.6% to 40.8% (mean = 32.5%, SD = 4.2%, t(23) 

= 32, p < .001, d = 6.5) for Cantonese tones and 22.0% to 43.1% (mean = 31.8%, SD=7.5%, 

t(15) = 14.3, p < .001, d = 3.6) for Mandarin tones. Modelling with quadratic polynomial 

yielded similar results: 23.2% to 42.0% (mean = 32.2%, SD = 4.4%, t(23) = 30.1, p < .001, d 

= 6.1) for Cantonese tones and 17.7% to 45.4% (mean = 31.3%, SD = 8.3%, t(15) = 

12.7, p < .001, d = 3.2) for Mandarin tones. Parameters based on qTA modelling led to 

relatively poor but still significantly-above-chance performance: 7.9% to 15.0% (mean =10.7%, 

SD = 2.1%, t(23) = 13.5, p < .001, d = 2.7) for Cantonese tones and 5.0% to 14.6% (mean = 

10.5%, SD = 2.9%, t(15) = 7.7, p < .001, d = 1.9) for Mandarin tones. Separate one-way 

ANOVAs revealed significant overall differences in the DA scores of the three modelling 

approaches, F(2, 69) = 270.6, p < 0.001 for Cantonese tones and F(2, 45) = 53.5, p < 0.001 for 

Mandarin tones. For both Cantonese tones and Mandarin tones, post-hoc Tukey’s HSD tests 

for multiple comparisons (Table 1) revealed no significance difference in DA scores based on 

quadradic polynomial and 0th to 2nd DCT, but significant differences between quadradic 

polynomial and qTA and between 0th to 2nd DCT and qTA. 

 Cantonese Mandarin 

Comparison Estimated 

difference 

Adjusted p Estimated 

difference 

Adjusted p 

0th to 2nd DCT - qTA 21.81 0.00 21.24 0.00 

Quadratic polynomial - qTA 21.54 0.00 20.80 0.00 

0th to 2nd DCT –  

Quadratic polynomial 

0.27 0.96 0.43 0.98 

 

Table 1: Post-hoc Tukey pairwise multiple comparisons for the overall DA scores based on the 

three modelling approaches. 



 

Figures 3 and 4: DA scores (% correct attribution) of Cantonese tones (upper panel) and 

Mandarin (lower panel) tones under different speech rates (normal vs. fast speech) and tonal 

contexts (compatible vs. conflicting), based on parameters generated from 0th to 2nd DCT, 

quadratic polynomial and qTA (chance level = 5%). 

 

Figures 5 and 6 show the DA scores of Cantonese and Mandarin tones based on 

parameters generated from 0th to 3rd DCT and cubic polynomial, each of which involved four 



parameters as predictors for DA (qTA modelling was not involved in the comparison here as it 

only yielded three parameters). Overall, DA scores based on zeroth to third DCT coefficients 

are significantly above chance, ranging from 22.7% to 44.5% (mean = 33.3%, SD = 5.3%, t(23) 

= 25.9, p < .001, d = 5.3) for Cantonese tones and 23.6% to 43.5% (mean = 33.2%, SD = 7.3%, 

t(15) = 15.4, p < .001, d = 3.9) for Mandarin tones. Cubic polynomials yielded similar results: 

23.2% to 42.9% (mean = 32.9%, SD = 5.2%, t(23) = 26.1, p < .001, d = 5.3) for Cantonese 

tones and 18.1% to 48.7% (mean = 33.5%, SD = 8.8%, t(15) = 12.9, p < .001, d = 3.2) for 

Mandarin tones. The DA scores based on zeroth to third DCT are not significantly different 

from those based on cubic polynomial, t(23) = -0.22, p = 0.828 for Cantonese tones and t(15) 

= 0.099, p = 0.922 for Mandarin tones. 

Comparing with the results above, independent sample t-tests showed no significant 

difference in overall DA scores based on 0th to 3rd DCT vs. 0th to 2nd DCT, t(46) = -0.559, p = 

0.580 for Cantonese tones and t(30) = -0.559, p = 0.581 for Mandarin tones. Similarly, there is 

no significant difference in overall DA scores based quadratic vs. cubic polynomials, t(46) = 

0.512, p = 0.611 for Cantonese tones and t(30) = 0.721, p = 0.477 for Mandarin tones. This 

suggests that having one extra predictor in DCT or polynomial curve-fitting does not improve 

speaker-discriminatory performance. 

Separate one-way ANOVAs revealed that in general speech rates and tonal contexts (i.e. 

normal_compatible, normal_conflicting, fast_compatible, and fast_conflicting) do not have 

any significant effect on the DA scores of Cantonese tones, F(3, 116) = 1.61 p = 0.192 but have 

significant effect on the DA scores of Mandarin tones, F(3, 76) = 4.12, p = 0.0092. However, 

a post-hoc Tukey’s HSD Test for multiple comparisons found no significant difference for any 

of the pairwise comparisons as shown in Table 2. 

 



Comparison Estimated 

difference 

Adjusted p 

normal_compatible - normal_conflicting 0.24 1.00 

normal_compatible - fast_compatible 8.00 0.094 

normal_compatible - fast_conflicting 9.03 0.046 

normal_conflicting - fast_compatible 7.76 0.11 

normal_conflicting - fast_conflicting 8.79 0.054 

fast_compatible - fast_conflicting 1.03 0.99 

 

Table 2: Post-hoc Tukey pairwise multiple comparisons for the DA scores based on different 

speech rates and tonal contexts. 

 

 



Figures 5 and 6: DA scores of Cantonese tones (upper panel) and Mandarin (lower panel) 

tones under different speech rates and tonal contexts, based on parameters generated from 0th 

to 3rd DCT and quadratic polynomial (chance level = 5%). 

 

4. Discussion 

In this study, we compared the speaker discriminatory performance of three approaches with 

lexical tone parameterization: polynomial curve fitting, DCT, and the extraction of underlying 

pitch target parameters using qTAtrainer. Results show that, broadly speaking, speech rates and 

tonal contexts do not have any significant effect on the correct classification rate (DA scores) 

on Cantonese or Mandarin tones. DA scores based on all three modeling approaches are 

significantly higher than the chance level, suggesting that some degree of speaker idiosyncratic 

information can be captured by these approaches. Using the same number of predictors, 

polynomial curve fitting and DCT did not yield significantly different results, revealing that 

both approaches capture similar amount of speaker-specific information based on surface tonal 

F0 contours. This is not surprising, as the fitting points of both DCT and polynomial curves, 

generated with a cosine function and a sine function, respectively, are related to the mean, slope, 

and curvature of tonal F0 contours. Their mean discrimination rates are about 33%, which 

might appear not ideal for a closed set of 20 potential speakers. However, it should be noted 

that only one speech feature (i.e., lexical tone) was analyzed in this study, and one can analyze 

a combination of speech features for maximal speaker discriminatory performance, especially 

in forensic situations (French & Stevens, 2013). Future research may explore how lexical tones 

may be combined with other features for better speaker discrimination. 

However, parameterizing tonal F0 using qTA generally led to poor speaker 

discriminatory performance, with some of the DA scores close to the chance level, suggesting 



that this modeling approach captures limited information for separating speakers. A possible 

reason is that the underlying pitch targets which encode communicative functions in a tone 

language may be shared among speakers in the same speech community, leaving little room 

for encoding speaker-specific information. Speaker idiosyncrasy may be manifested in the 

implementation of these underlying pitch targets, which may be observable in the surface 

realization of tonal F0.  

Overall, our findings point to the conclusion that modeling surface tonal F0 leads to 

better speaker discriminatory performance than approximating underlying articulatory 

mechanisms of F0 production. However, it should be noted that there are other computational 

models that parameterize lexical tones based on their surface F0 contours (e.g., the tilt model 

(Taylor, 2000), the superposition of functional contours (Bailly & Holm, 2005), the linear 

alignment model (van Santen & Möbius, 2000), the quadratic spline model (Hirst & Espesser, 

1993), and the tone transformation model (Ni et al., 2006)), and other models that simulate the 

process of F0 production (e.g., the soft-template model (Kochanski & Shih, 2003) and the 

command response model (Fujisaki, 1983; Fujisaki et al., 2005)). Future research should test 

the relative effectiveness of different tonal parameterization approaches for maximal speaker 

discrimination based on lexical tones. 

In this study, DA was used to evaluate the speaker discriminatory power of tonal F0-

based parameters. While DA is a useful statistical method for this purpose, it should be noted 

that DA is not a proper method for evaluating the evidential strength of speech features in 

forensic contexts. In order for the results to be directly relevant to forensic contexts, the LR 

framework, which evaluates both the similarity and the typicality of evidence, should be used 

to assess the evidential strength of tonal F0 data (see Morrison et al., 2021 for a discussion). 

Also, although a total of 5,760 tokens of Cantonese tones and 3,840 tokens of Mandarin tones 

were analyzed, only 20 male speakers were involved per language. Future studies should 



ideally involve a larger number of speakers (at least 60–90 speakers for LR-based studies; e.g., 

Hughes, 2017; Kinoshita & Ishihara, 2014), and involve both male and female speakers. 

Forensically relevant speech styles (e.g., police interview) and recording conditions (e.g., 

telephone recordings) should also be involved (see Morrison et al., 2012 for a discussion). This 

study should be treated as a controlled study on testing various modeling approaches under 

different speech rates and tonal contexts, and our findings lay the groundwork for large-scale 

studies using forensically relevant databases on tone languages in the future. 
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Appendix A 

Mean f0 contours of the six Cantonese tones in different speech rates and tonal contexts by 20 

speakers. 

 

 



 

Appendix B 

Mean f0 contours of the four Mandarin tones in different speech rates and tonal contexts by 

20 speakers. 

 

 



 

 

 

 

 

 


